第八章 统计回归模型

合集下载

第八章相关与回归

第八章相关与回归

(Xt X )(Yt Y )
(Xt X )2 (Yt Y )2
2、相关系数r的取值范围:-1≤r≤1
r>0 为正相关,r < 0 为负相关; |r|=0 表示不存在线性关系; |r|=1 表示完全线性相关;(函数关系)
0<|r|<1表示存在不同程度线性相关:
|r| < 0.3 为微弱相关; 0.3≤ |r| <0.5为低度线性相关; 0.5≤|r| <0.8为显著性线性相关。 0.8≤ |r| 为高度相关
1. 使因变量的观察值与估计值之间的离差平方和达 到最小来求得 a 和 b 的方法。
2. 用最小二乘法拟合的直线来代表x与y之间的关 系与实际数据的误差比其他任何直线都小。
b
n xy x y n x2 ( x)2
a y bx
例:配合回归直线
x 编

人口增长量 年 需 求
(千人)
量(十吨)
y x x 编

人口增长 年 需 求 量(千人)量(十吨)
2
y2
xy
合计 3626
2261 1067614 395039 647851
Lxy n xy x y 15 647851 3626 2261
1519379
Lxx n x2 ( x)2151067614 36262 2866334
103
15
370
212
合计 3626
2261
x2
75076 32400 140625 42025 7396 70225 9604 108900 38025 2809 184900 138384 55696 24649 136900 1067614
y2
26244 14400 49729 17161

回归分析方法

回归分析方法

第八章 回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。

如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。

本章讨论其中用途非常广泛的一类模型——统计回归模型。

回归模型常用来解决预测、控制、生产工艺优化等问题。

变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。

另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。

例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。

回归分析就是处理变量之间的相关关系的一种数学方法。

其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。

应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。

运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。

MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。

MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。

运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。

本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

第八章成对数据的统计分析小结课件(人教版)

第八章成对数据的统计分析小结课件(人教版)

R 1
2

i
y y
【参考数据】 y y 226 .
8
—0.5
i
i 1
n
2

N
i 1
n
yi y i
y
i 1
i
y


2
2
1
21.2
0.91 .
226
所以解释变量(身高)对于响应变量(体重)变化的决定系数 R 2 约为 0.91.
②通过残差分析,对于残差的绝对值最大的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过
善下列残差表,并求解释变量(身高)对于响应变量(体重)变化的决定系数(保留两位有效数字)R 2 ;
y y
n
编号
体重
残差
(kg ) y
e
1
2
3
4
5
6
7
8
57
58
53
61
66
57
50
66
0.1
0.3
0.9
—1.5
【参考公式】 R 1
2
i 1
解析: (2)
对编号为 6 的数据: e 6 57 0.8 169 75.9 2.3 ,
身高较矮
身高较高
合计
体重较轻
6
15
21
体重较重
6
5
11
合计
12
20
32
零假设 H0:男生的身高与体重的 BMI 指数无关
32(6 5 6 15) 2 160
由于 K

3 3.841 ,
12 20 21 11

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模》课程教学大纲课程编号: 90907011学时:32学分:2适用专业:本科各专业开课部门:各学院一、课程的性质与任务数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

本课程主要介绍初等模型、简单优化模型、微分方程模型、概率统计模型、数学规划模型等模型的基本建模方法及求解方法。

通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力,综合分析能力;培养学生应用数学方法解决实际问题的能力。

三、实践教学的基本要求(无)四、课程的基本教学内容及要求第一章数学模型概述1.教学内容数学模型与数学建模、数学建模的基本方法和步骤、数学模型的特点和分类。

2.重点与难点重点:数学模型与数学建模。

难点:数学建模的基本方法和步骤。

3.课程教学要求了解数学模型与数学建模过程;了解数学建模竞赛规程;掌握几个简单的智力问题模型。

第二章初等模型1.教学内容双层玻璃窗的功效、动物的身长与体重。

2.重点与难点重点:初等方法建模的思想与方法。

难点:初等方法建模的思想与方法。

3.课程教学要求了解比例模型及其应用。

第三章简单的优化模型1.教学内容存贮模型、最优价格。

2.重点与难点重点:存贮模型。

难点:存贮模型。

3.课程教学要求掌握利用导数、微分方法建模的思想方法;能解决简单的经济批量问题和连续问题模型。

第四章数学规划模型1.教学内容线性规划建模、非线性规划建模,奶制品的生产与销售、接力队的选拔与选课策略、钢管和易拉罐下料。

2.重点与难点重点:线性规划方法建模、非线性规划建模。

难点:非线性规划方法建模、Lingo软件的使用。

3.课程教学要求掌握线性规划建模方法;了解对偶单纯形的经济意义;了解Lingo数学软件在解决规划问题中的作用。

第二单元 统计学高级篇

第二单元   统计学高级篇

逐步回归法实例(第一步)
模型 Y与X4 Y与X1 Y与X2 Y与X3
SS回
SS残
SS总
82.7144 139.8375 222.5519 69.4251 153.1267 222.5519 46.7873 175.7645 222.5519 57.9133 164.6386 222.5519
逐步回归法实例(第二步)

二、多重线性回归模型与方程
多重线性回归模型用于研究一个被解释变量(因变量)与 多个解释变量(自变量)的线性关系分析。多重线性回归模 型与一元线性回归模型基本类似,只不过解释变量由一个增 加到两个以上,被解释变量y与多个解释变量x1,x2·· ·xk之间 存在线性关系。 假定被解释变量y与多个解释变量x1,x2· xm之间具有线性 · · 关系,建立多重线性回归模型为:
S
1.5934 2.5748 3.6706 1.8234 2.9257
第三节 自变量的选择(筛选)



多重线性回归分析中,常常通过专业知识或实践经 验,去挑选那些对因变量影响较大的自变量与因变 量Y建立回归方程。 如从为数众多因素中,选择的自变量对反应变量无 影响或影响甚微,把它们引入方程后,不但计算量 大,信息成本高,而且会使回归系数的估计和预测 的精度降低。 选择对因变量影响较大的自变量引入方程,将对反 应变量无影响或影响甚微的自变量排除方程,这种 统计方法称为自变量选择(筛选),统计中常用方 法之一是逐步选择法。
SY,1,2,
与R2 …M
3.校正决定系数RC2(Radj2)=0.5282
R2与RC2关系:



R2表示总变差中已由多元回归方程“解释”的比 例,R2可解释模型的拟合优度,残差平方和越小, 决定系数越接近1,回归方程的拟合程度越好。 RC2当给模型增加自变量时,决定系数也随之逐步 增大,然而决定系数的增大代价是自由度的减少。 自由度小意味着估计和预测的可靠性低。为了克 服样本决定系数的这一缺点,我们设法把R2给予 适当的修正,这就是校正决定系数。 R2或RC2只能说明在给定的样本条件下回归方程与 样本观测值拟合优度,并不能做出对总体模型的 推测,因此不能单凭它们来选择模型。

2024春高中数学第8章成对数据的统计分析8-2一元线性回归模型及其应用8-2-1一元线性回归模型8

2024春高中数学第8章成对数据的统计分析8-2一元线性回归模型及其应用8-2-1一元线性回归模型8
Ƹ
(2)通过(1)中的方程,求出y关于x的回归方程.
[解]
=1.2t-1.4,代入t=x-2
Ƹ
017,z=y-5,
得-5=1.2(x-2

017)-1.4,
即=1.2x-2

416.8.
故y关于x的经验回归方程为=1.2x-2

416.8.
◆ 类型3 利用经验回归方程进行预测
【例3】 (源自湘教版教材)一个车间为了估计加工某种新型零件所
(√ )
(2)经验回归方程最能代表观测值x,y之间的线性关系,且回归直线
过样本点的中心(,
ҧ ).

(√ )
(3)求经验回归方程前可以不进行相关性检验.
( × )
(4)利用经验回归方程求出的值是准确值.
( × )

①④
2.下列有关经验回归方程=
ො +
叙述正确的是______(填序号).
位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并
由调查数据得到y对x的经验回归方程:=0.254x+0.321.由经验回

归方程可知,家庭年收入每增加1万元,年饮食支出平均增加
0.254
________万元.
0.254
[由于=0.254x+0.321知,当x增加1万元时,年饮食支出y增

①反映与x之间的函数关系;

②反映与x之间的函数关系;
③表示与x之间不确定关系;

④表示最接近与x之间真实关系的一条直线.
①④

[=
ො +
表示

与x之间的函数关系,而不是y与x之间的函数

关系,但它反映的关系最接近y与x之间的真实关系,故①④正确.]

第八章 成对数据的统计分析-8.2一元线性回归模型及其应用-人A版(2019)数学-选择性必修第三册

第八章 成对数据的统计分析-8.2一元线性回归模型及其应用-人A版(2019)数学-选择性必修第三册
8.2一元线性回归模型及其应用
通过前面的学习我们已经了解到,根据成对样本数据的散 点图和样本相关系数,可以推断两个变量是否存在相关关系、 是正相关还是负相关,以及线性相关程度的强弱等.
思考:是否可以通过建立适当的统计模型来刻画两个变量之 间的相关关系?
课标要求
1.能根据给出的线性回归方程系数公式建立线性回归方程.2.了解随机 误差、残差、残差图的概念.3.会通过分析残差判断线性回归模型的拟 合效果.4.了解常见的非线性回归模型转化为线性回归模型的方法.
素养要求
1.通过对线性回归的分析,培养数据分析的素养. 2.借助回归模型的建立,培养数学建模、数据分析及数学运 算的素养.
探究点1 一元回归模型
生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说, 父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者 之间的关系,有人调查了14名男大学生的身高及其父亲的身高, 得到的数据如表1所示.
均值的理想状态应该为0. 如果随机误差是一个不为0的常数 e,则可以将 e 合并到截距项a
中,否则模型无法确定,即参数没有唯一解. 如果随机误差e=0,那么Y与x之间的关系就可用一元线性函数模
型来描述.
问题5:请根据以上的分析,你能建立一个数学模型表示儿子身高与父 亲身高的关系吗?
1.一元线性回归模型
由于随机误差表示大量已知和未知的各种影响之和,它们会相互抵
消,为使问题简洁,可以假设随机误差e的均值为0,方差为与父亲身高无
关的定σ 2值 .
即: E(e) 0, D(e) 2.
思考:为什么要假设E(e)=0,而不假设其为某个不为0的常数? 因为误差是随机的,即取各种正负误差的可能性一样,所以它们
b未知,我们能否通过样本数据估计参数a和b? Y bx a e,

MBA管理统计学(中科大万红燕)第八章回归分析和相关分析

MBA管理统计学(中科大万红燕)第八章回归分析和相关分析

2010-7-23
销售额
12
第二节 相关分析
例1解:
xi = 2139, ∑ yi = 11966, ∑ xi2 = 179291 ∑ yi2 = 6947974, ∑ xi y i = 1055391, n = 30 ∑ r= n∑ xi yi ∑ xi ∑ yi (∑ xi ) 2 n∑ yi2 (∑ yi ) 2
2010-7-23
4
第一节 相关与回归分析的基本概念
三.相关分析与回归分析
相关分析和回归分析是研究现象之间相关关系 的两种基本方法. 相关分析:研究两个或两个以上随机变量之间 相关关系密切程度和相关方向的统计分析方法. 回归分析:研究某一随机变量(因变量)与其 他一个或几个变量(自变量)之间数量变动关 系形式的统计分析方法.
一.一元线性回归模型的建立 设因变量y(通常是随机变量)和一个自变量 (非随机变量)X之间有某种相关关系.在x的 不全相同的取值点x1,x2,…,xn作为独立观 察得到y的个观察值y1,y2,… ,yn记为( x1, y1 )( x2 , y2 ), … ,(xn , yn ). 根据这组数据寻求X与Y之间关系. 设一元线性回归模型为:yi=a+bxi+ ei
r=0.955248
2010-7-23 14
第二节 相关分析
25000 税收收入(亿元 亿元) 20000 15000 10000 5000 0
0 20000 40000 60000 80000 100000 120000 140000
GDP(亿元)
2010-7-23
15
第二节 相关分析
二.有序数据的相关系数(等级相关系数)
2010-7-23
8

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

三、非线性回归
例3 下表为收集到的一组数据: x 21 23 25 27 29 32 35 y 7 11 21 24 66 115 325 (1)作出x与y的散点图,并猜测x与y之间的关系;
解 作出散点图如图,从散点图可以看出x 与y不具有线性相关关系,根据已有知识可 以发现样本点散布在某一条指数函数型曲线 y=c1ec2x的周围,其中c1,c2为待定的参数.
年份
2015 202X 202X 202X 202X
时间代号t
1
2
3
4
5
储蓄存款y(千亿元) 5
6
7
8
10
(1)求 y 关于 t 的经验回归方程y^=b^ t+a^ ;
n
tiyi-n t y
i=1
参考公式:b^ =
n
t2i -n
t2
,a^ =
y
-b^
t
i=1
解 由题意可知,n=5, t =1nn ti=155=3, i=1
来比较两个模型的拟合效果,R2 越 大 ,模型
n
yi- y 2
i=1
拟合效果越好,R2 越 小 ,模型拟合效果越差.
思考 利用经验回归方程求得的函数值一定是真实值吗? 答案 不一定,他只是真实值的一个预测估计值.
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
知识点四 对模型刻画数据效果的分析
1.残差图法
在残差图中,如果残差比较均匀地集中在以 横轴为对称轴的水平带状
区域内 ,则说明经验回归方程较好地刻画了两个变量的关系.
2.残差平方和法
n
(yi-y^i)2
残差平方和 i=1

2022年秋高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用8.2.2一元线性回归模型

2022年秋高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用8.2.2一元线性回归模型

5 , 则 b^ =
i=1
i=1
5
uiyi-5 u y
i=1
≈4.13,a^= y -b^ u ≈0.8.
5
u2i -5 u 2
i=1
从而得到 y 关于 u 的经验回归方程为^y=4.13u+0.8,则 y 关于 x 的回 归方程为^y=4.x13+0.8.
| 素养达成 |
1.检验回归模型的拟合效果一般有三种方法: (1)残差分析:通过残差分析发现原始数据中的可疑数据,判断所建 立模型的拟合效果.其步骤是:计算残差、画残差图、在残差图中分析 残差特性.
5
yi-^yi2
i=1
R2=1-
≈0.994,
5
yi- y 2
i=1
所以回归模型的拟合效果很好.
题型2 非线性回归
下表为收集到的一组数据:
x
21
23
25
27
29
32
35
y
7
11
21
24
66
115
325
(1)作出 x 与 y 的散点图,并猜测 x 与 y 之间的关系;
(2)建立 x 与 y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报 x=40 时 y 的值.
n
(2)残差平方法: (yi- y i)2 表示残差平方和,残差平方和越小,模
i=1
型的拟合效果越好;残差平方和越大,模型的拟合效果越差.
n
yi-^yi2
i=1
(3)R2 法:通过公式 R2=1-
计算 R2,R2 越大,模型的拟
n
yi- y 2
i=1
合效果越好;R2 越小,模型的拟合效果越差. 2.常见误区:不判断变量间是否具有线性相关关系,盲目求解经验

人教A版高中数学选择性必修第三册同步课件第八章成对数据的统计分析第2节一元线性回归模型及其应用

人教A版高中数学选择性必修第三册同步课件第八章成对数据的统计分析第2节一元线性回归模型及其应用

归模型进行预测.
会进行线性回归分析.
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
必备知识•探新知
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
知识点1 一元线性回归模型
一元线性回归模型的完整表达式为YE=eb=x+0,a+Dee,=σ2.其中 Y 称为 __因__变__量____或 __响__应__变__量____,x 称为自变量或___解__释___变量;a,b 为模 型的未知参数,e 是 Y 与 bx+a 之间的__随__机__误__差____.
i=1
i=1
5
xiyi-5 x 得b^=i=1 5
xi2-5 x 2
y =1
319405--55××55×2 50=7,a^= y -b^ x =50-7×5=15.
i=1
故所求的回归直线方程是y^=7x+15.
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
(3)根据上面求出的经验回归方程,当成交量突破 100 件(含 100 件), 即 x=^y-715≥100 时,y^≥715,所以预测这家店铺的浏览量至少为 715 次.
返回导航
第八章 成对数据的统计分析
[解析] (1)散点图如图所示.
数学(选择性必修·第3册 RJA)
返回导航
第八章 成对数据的统计分析
数学(选择性必修·第3册 RJA)
(2)根据散点图可得,变量 x 与 y 之间具有线性相关关系.
5
5
根据数据可知,x =5,y =50, xiyi=1 390, xi2=145,代入公式
月份 月用电量(千瓦时)

第八章相关与回归分析Correlation and Regression Analysis

第八章相关与回归分析Correlation and Regression Analysis
变量之间的函数关系和相关关系在一定条件下可以相互转化。 客观现象的函数关系可以用数学分析的方法去研究,而研究客观现
象的相关关系必须借助于统计学中的相关与回归分析方法。
Chap 08-4
相关关系的类型
从相关关系涉及的变量数量看:单相关和复相关 一个变量对另一变量的相关关系,称为单相关; 一个变量对两个以上变量的相关关系时,称为复相关; 从变量相关关系的表现形式看:线性相关和非线性相关 从变量相关关系变化的方向看:正相关和负相关 从变量相关的程度看:完全相关〔函数关系〕、不完全相
或:
r
n xtyt xt yt
[n ( xt2)( xt)2]n [( yt2)( yt)2]
Chap 08-7
2 简单线性相关与回归分析
2.1 简单线性相关系数及检验 2.2 总体回归函数与样本回归函数 2.3 回归系数的估计 2.4 简单线性回归模型的检验 2.5 简单线性回归模型预测
Chap 08-8
相关系数
总体相关系数〔 population correlation coefficient〕 ρ 是反映两变量之间线性相关程度的 一种特征值,表现为一个常数。
关、不相关
Chap 08-5
相关分析与回归分析
而样本回归函数中 的和 是随机变量,其具体数值随所抽取的样本观测值不同而变动。
是当 x 等于 0 时 y 的平均估计值 S越小说明实际观测点与所拟合的样本回归线的离差程度越小,即样本回归线具有较强的代表性,反之,S越大说明实际观测点与所拟 合的样本回归线的离差程度越大,即回归线的代表性越差。
Chap 08-1
本节学习目标
通过本节的学习,你应该能够:
理解和掌握相关分析和回归分析的原理 估计一元线性回归模型,并对模型进行检验 利用计算机软件估计多元线性回归模型,并对模型进行

第八章统计回归模型

第八章统计回归模型

第八章--统计回归模型第八章 统计回归模型回归分析是研究一个变量Y 与其它若干变量X 之间相关关系的一种数学工具.它是在一组试验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系.粗略的讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系.这个函数称为回归函数.回归分析所研究的主要问题是如何利用变量X 、Y 的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等.回归分析包含的内容广泛.此处将讨论多项式回归、多元线性回归、非线性回归以及逐步回归.一、多项式回归(1) 一元多项式回归一元多项式回归模型的一般形式为εβββ++++=m m x x y ...10.如果从数据的散点图上发现y 与x 呈现较明显的二次(或高次)函数关系,则可以选用一元多项式回归.1. 用函数polyfit 估计模型参数,其具体调用格式如下:p=polyfit(x,y,m) p 返回多项式系数的估计值;m 设定多项式的最高次数;x ,y 为对应数据点值.[p,S]=polyfit(x,y,m) S是一个矩阵,用来估计预测误差.2. 输出预估值与残差的计算用函数polyval实现,其具体调用格式如下:Y=polyval(p,X) 求polyfit所得的回归多项式在X处的预测值Y.[Y,DELTA]=polyval(p,X,S) p,S为polyfit的输出,DELTA为误差估计.在线性回归模型中,Y±DELTA以50%的概率包含函数在X处的真值.3. 模型预测的置信区间用polyconf实现,其具体调用格式如下:[Y,DELTA]=polyconf(p,X,S,alpha) 求polyfit所得的回归多项式在X处的预测值Y及预测值的显著性为1-alpha的置信区间Y±DELTA,alpha缺省时为0.05.4. 交互式画图工具polytool,其具体调用格式如下:polytool(x,y,m);polytool(x,y,m,alpha);用m次多项式拟合x,y的值,默认值为1,alpha 为显著性水平,默认值为0.05.例1 观测物体降落的距离s与时间t的关系,得到数据如下表,求s . t (s) 1/30 2/30 3/30 4/30 5/30 6/30 7/30 s(cm) 11.86 15.67 20.60 26.69 33.71 41.93 51.13t (s) 8/30 9/3010/30 11/30 12/30 13/30 14/30 s(cm) 61.49 72.90 85.44 99.08 113.77 129.54 146.48解 根据数据的散点图,应拟合为一条二次曲线.选用二次模型,具体代码如下:%%%输入数据t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];%%%多项式系数拟合[p,S]=polyfit(t,s,2);则得回归模型为:1329.98896.652946.489ˆ2++=t t s . %%%y 的拟合值及预测值y 的置信半径delta [y,dalta]=polyconf(p,t,S); 得结果如下:y=Columns 1 through 1111.8729 15.7002 20.6148 26.6168 33.7060 41.8826 51.1465 61.4978 72.9363 85.4622 99.0754Columns 12 through 14113.7759 129.5637 146.4389dalta=Columns 1 through 110.0937 0.0865 0.0829 0.0816 0.0817 0.0823 0.0827 0.0827 0.0823 0.0817 0.0816Columns 12 through 140.0829 0.0865 0.0937%%%交互式画图polytool(t,s,2);polytool所得的交互式图形如图8-1所示.图8-1(2) 多元二项式回归多元二项式回归模型的一般形式为εββββ∑≤≤+++++=m k j k j jk m m x x x x y ,1110....多元二项式回归命令:rstool(x,y,’model’,alpha) x 表示n ⨯m 矩阵;y 表示n 维列向量;alpha 为显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):mm x x y βββ+++= 110;purequadratic(纯二次):∑=++++=nj jjj m m x x x y 12110ββββ ; interaction(交叉):∑≤≠≤++++=m k j k j jk m m x x x x y 1110ββββ ; quadratic(完全二次):∑≤≤++++=m k j k j jk m m x x x x y ,1110ββββ .例2 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量100 75 80 70 50 65 90 100 11060 收入 1000 600 1200 500 300 400 1300 1100 1300 30价格 5 7 6 6 8 7 5 4 3 9解 选择纯二次模型,即2222211122110x x x x y βββββ++++=. %%%输入数据 x1=[1000 600 1200 500 300 400 1300 1100 1300 300];x2=[5 7 6 6 8 7 5 4 3 9];x=[x1' x2'];y=[100 75 80 70 50 65 90 100 110 60]';%%%多元二项式回归rstool(x,y,'purequadratic');得如下结果:图8-2得到一个如图所示的交互式画面,左边是x1(=1000)固定时的曲线y (x1)及其置信区间,右边是x2(=6)固定时的曲线y (x2)及其置信区间.用鼠标移动图中的十字线,或在图下方窗口内输入,可改变x1,x2.在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y1”下方的数据变为88.4791,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方单击”Export ”,在出现的窗体中单击”ok ”按钮,则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta,rmse ,得结果: beta=110.5313 0.1464 -26.5709 -0.00011.8475rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=,剩余标准差为4.5362,说明此回归模型的显著性较好.二、多元线性回归多元线性回归模型的一般形式为011...m m y x x βββε=++++. 在Matlab 统计工具箱中使用函数regress 实现多元线性回归.具体调用格式为:b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y ...21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m x x x x x x x x x X ...1..................1...1212222111211.对于一元线性回归,取1=m 即可.b 为输出向量;b ,bint 表示回归系数估计值和它们的置信区间;r 表示残差;rint 表示残差的置信区间;stats 表示用于检验回归模型的统计量,有四个数值:相关系数2R 、F 值、与F 值对应的概率P 、2s 的值.相关系数2R 越接近1,说明回归方程越显著;)1,(1-->-m n m F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率α<P 时拒绝0H ,回归模型成立;alpha表示显著性水平(缺省时为0.05).残差及其置信区间可以用命令rcoplot(r,rint)画出. 例3 已知某湖泊八年来湖水中COD 浓度实测值(y )与影响因素,如湖区工业产值(x 1)、总人口数(x 2)、捕鱼量(x 3)、降水量(x 4)的资料,建立y 的水质分析模型.湖水浓度与影响因素数据表 x 11.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477 x 20.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575 x 32.170 2.554 2.676 2.713 2.8233.088 3.122 3.262x40.89221.1610.53460.95891.02391.04991.10651.1387y 5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95 解作出因变量y与各自变量的样本散点图作散点图的目的主要是观察因变量y与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式.图8-3、图8-4、图8-5、图8-6分别为y与x1、x2、x3、x4的散点图.从图中可以看出这些点大致分布在一条直线旁边,因此有较好的线性关系,可以采用线性回归.图8-3 y与x1的散点图图8-4 y与x2的散点图图8-5 y与x3的散点图图8-6 y与x4的散点图在Matlab中实现回归的具体代码如下:%%%输入数据x1=[1.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477];x2=[0.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575];x3=[2.170 2.554 2.676 2.713 2.823 3.088 3.122 3.262];x4=[0.8922 1.1610 0.5346 0.9589 1.0239 1.04991.1065 1.1387];x=[ones(8,1) x1' x2' x3' x4'];y=[5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95];%%%多元线性回归[b,bint,r,rint,stats]=regress(y',x);得如下结果:b =-13.984913.19202.42280.0754-0.1897bint =-26.0019 -1.96791.4130 24.9711-14.2808 19.1264-1.4859 1.6366-0.9638 0.5844r =-0.06180.02280.01230.0890 0.0431 -0.1473 0.0145 0.0274 rint =-0.1130 -0.0107 -0.1641 0.2098 -0.1051 0.1297 -0.2542 0.4321 -0.0292 0.1153 -0.2860 -0.0085 -0.3478 0.3769 -0.1938 0.2486 stats =0.9846 47.9654 0.0047 0.0123 故回归模型为:43211897.00754.04228.21920.139849.13x x x x y -+++-=,此外,由stats 的值可知9846.02=R,9654.47=F ,0047.0=P 。

高考数学必背知识手册-第八章-成对数据的统计分析(公式、定理、结论图表)

高考数学必背知识手册-第八章-成对数据的统计分析(公式、定理、结论图表)

第八章成对数据的统计分析(公式、定理、结论图表)一、成对数据的统计相关性1.变量的相关关系(1)函数关系函数关系是一种确定性关系,常用解析式来表示.(2)相关关系两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.与函数关系不同,相关关系是一种非确定性关系.2.散点图(1)散点图成对样本数据都可用直角坐标系中的点表示出来,由这些点组成的统计图叫做散点图. (2)正相关和负相关如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关.3.线性相关一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,则称这两个变量线性相关.4.样本相关系数(1)对于变量x和变量y,设经过随机抽样获得的成对样本数据为(,),(,),,(,),利用相关系数r来衡量两个变量之间线性关系的强弱,相关系数r的计算公式:(其中,,,和,,,的均值分别为和).①当r >0时,称成对样本数据正相关.这时,当其中一个数据的值变小时,另一个数据的值通常也变小;当其中一个数据的值变大时,另一个数据的值通常也变大.②当r <0时,称成对样本数据负相关.这时,当其中一个数据的值变小时,另一个数据的值通常会变大;当其中一个数据的值变大时,另一个数据的值通常会变小.二、一元线性回归模型及其应用1.线性回归方程:(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:()()()1122,,,,,,n n x y x y x y ,其回归方程为a bx y +=∧,则1221,.ni i i nii x y nx y b x nx a y bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点(),x y .(3)相关系数:()()()()12211nii i nni i i i xx y y rx x y y ===--=--∑∑∑1222211ni ii n ni i i i x y nxyx nx y ny ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑.【方法归纳】(1)利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.(2)利用相关系数判定,当r 越趋近于1相关性越强.当残差平方和越小,相关指数2R 越大,相关性越强.(3)在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数r 进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.(4)正确运用计算 ,ba 的公式和准确的计算,是求线性回归方程的关键.并充分利用回归直线 y bxa =+ 过样本点的中心(),x y 进行求值.2、回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。

2020_2021新教材高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用课件新人教A版

2020_2021新教材高中数学第八章成对数据的统计分析8.2一元线性回归模型及其应用课件新人教A版

有5名学生的数学和化学成绩如表所示:
学生学科
A B CDE
数学成绩(x) 87 76 73 66 63
化学成绩(Y) 78 66 71 64 61
(1)如果Y与x具有相关关系,求经验回归方程 = x+ ;
(2)预测如果某学生数学成绩为79分,他的化学成绩为多少?(结果取整数)
n
(xi- x )(yi- y )
=1-(-2.8)2+(-01..625)1 2+0.52+1.52+22 =1-01.56.5718 ≈0.9587. (4)经验回归方程 =1.23x+0.08,所以当 x=10 年时, =1.23×10+0.08=12.38(万 元), 即估计使用 10 年时维修费是 12.38 万元.
【类题通法】建立线性回归模型的基本步骤: (1)确定研究对象,明确解释变量和响应变量; (2)画出解释变量和响应变量的散点图,观察它们之间的关系(如是否存在线性关 系等); (3)由经验确定回归方程的类型; (4)按一定的规则估计回归方程的参数; (5)对所建立的模型进行残差分析,判断拟合效果.
【解析】由题意e为随机变量,e称为随机误差.根据随机误差的意义,可得E(e) =0. 答案:0
主题2 经验回归方程的求解 如何对具有线性相关关系的两个变量进行分析?
提示:对具有线性相关关系的变量,利用回归分析的方法进行研究.其步骤为 画散点图,求经验回归直线方程,并利用经验回归方程对模型刻画数据的效果 进行分析,借助残差分析对模型进行改造,使我们能够根据改进模型作出符合 实际的预测和决策.
为研究质量x(单位:克)对弹簧长度Y(单位:厘米)的影响,对不同质量的6个物 体进行测量,数据如表所示:
x 5 10 15 20 25 30 y 7.25 8.12 8.95 9.90 10.9 11.8

第八章 相关与回归分析-一元线性回归

第八章 相关与回归分析-一元线性回归
11
12
1、散点图
不良贷款
14
12
10
8
6
4
2
0 0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8 6
4
2
0 0
10
20
30
40
贷款项目个数
不良贷款与贷款项目个数的散点图不来自贷款不良贷款14
12
10
8
6
4
2
0 0
10
20
30
累计应收贷款
不良贷款与累计应收贷款的散点图
14
2
本章主要内容
➢ 相关分析
• 相关关系度量 • 相关关系显著性检验
➢ 一元线性回归分析
• 一元线性回归模型 • 参数的最小二乘估计 • 回归直线的拟合优度 • 显著性检验
➢ 利用回归方程进行预测
➢ 残差分析
3
第一节 直线相关分析 一、变量间的关系
函数关系
相关关系
函数关系的例子
▪ 某种商品的销售额(y)与销售量(x)之间的关系可 表示为 y = px (p 为单价)
儿子与父亲的身高关系:Y=33.73+0.516X(英寸)
24
一、概述——什么是回归分析(Regression )?
1. 从一组样本数据出发,确定变量之间的数学关系式 2. 对这些关系式的可信程度进行各种统计检验,并从
影响某一特定变量的诸多变量中找出哪些变量的影 响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的取值来 预测或控制另一个特定变量的取值,并给出这种预 测或控制的精确程度

第8章 回归分析-ns

第8章 回归分析-ns

二、SPSS提供的回归分析方法 SPSS提供的回归分析方法
包括:
Linear: 线性回归分析 Curve Estimation: 曲线拟合估计 Binary Logistic:二维logistic回归分析 Multinomial Logistic:多维logistic回归分析 Ordinal: Ordinal回归分析 Probit:概率单位回归分析 Nonline:非线性回归分析 Weight Estimation:加权估测分析 2-Stage least Squares:两阶最小二乘法分析 本章主要介绍Linear Regression线性回归分析,包括一元线性回归 和多元线性回归。
第八章 回归分析
(Regression Analysis) )
基本概念与SPSS SPSS提供的回归分析方法 第一节 基本概念与SPSS提供的回归分析方法
一、基本概念 回归分析和相关分析的区别 区别主要是模型的假设以及研究的目的有所不同。 概括地说,线性回归分析是处理两个或两个以上变量间线性依存关 系的统计方法。 (1)回归分析: 两个变量一个是非随机变量,而另一个是随机变量。 (2)相关分析: 两个变量都是不能控制的随机变量,形成一个二维 分布。
5.单击"Statistics"按钮,打开Statistics对话框。
(1)Regression Coefficient栏,在此栏内选择回归系数。 A. Estimates 默认复选项,输出回归系数估计值(B)及其标准误, 标准化回归系数(Beta);B的t值及双侧显著性水平等相关测量。 B.Confident Interval复选项,输出回归系数的95%的置信区间。 C.Covariance复选项,输出协方差和相关矩阵。 (2)Model fit复选项,默认选项,列出进入或从模型中剔除的变量, 输出复相关系数R,测定系数R2,调整R2 ,估计值的标准误,方差表。 (3)R squared change复选项,R2,F值的改变及方差分析P值的改变。 (4)Descriptive复选项,它显示了变量均值、标准差,单侧检验及相 关系数矩阵。 ( 5 ) Part and partial correlation 复 选 项 , 输 出 零 阶 相 关 系 数 (Zero-order, 即Pearson相关)、偏相关系数,要求方程中至少有2个 自变量。

8.回归分析方法

8.回归分析方法

2.一元线性回归分析法

2.一元线性回归分析法
实际值
Syy
Q U
理论值
一元线性回归分析法
2.一元线性回归分析法
a y bx
x y x y b x x x
i i 2 i i i
2.一元线性回归分析法
2.一元线性回归分析法
相关性检验 X,y之间是否真的有回归模型描述的关系? 回归方程的可信性:回归方差占总方差的比重:
ˆ 4、将 a, b 两个参数值代入 y a bx
5、根据
ˆ 中求出 y
值;
ˆ y 值正负或大小,说明相关程度
6、如有要求;编制相关分析图。
2.一元线性回归分析法
张秀
等 运用布拉德福定律测定检索工具的完整性 情 报科学 2006,24(1):69-73 CNKI期刊数与发表论文数的分布
0.8539
f n2927
查相关系数临界值表 因为 所以回归方程在
R0.01 0.7977
R R0.01
的检验水平下有统计意义。 0.01
即可以认为大豆的蛋白质含量与脂肪含量有线性相关性。
第一节 简单线性回归方法 二、多元线性回归模型
1. 多元线性回归模型
2. 多元线性回归系数的确定
儿子身高与父母身高发现父母的身高可以预测子女的身高两者近乎一条直线当父母越高或越矮时子女的身高会比一般儿童高或矮儿子与父母身高的这种现象拟合出一种线形关系其回归直线方程为33730516x这种趋势及回归方程表明
第八章 回归分析法
1.概述:回归的概念
Francis
Galton:神童,与达尔文 同一个外祖父。 特立独行、知识渊博而又毁誉不一。 人体测量学、实验心理学、生物统计学、地理学、遗 传学…… 优生学:“种族主义者和法西斯蒂的精神领袖和鼻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 统计回归模型回归分析是研究一个变量Y 与其它若干变量X 之间相关关系的一种数学工具.它是在一组试验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系.粗略的讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系.这个函数称为回归函数.回归分析所研究的主要问题是如何利用变量X 、Y 的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等.回归分析包含的内容广泛.此处将讨论多项式回归、多元线性回归、非线性回归以及逐步回归.一、多项式回归(1) 一元多项式回归一元多项式回归模型的一般形式为εβββ++++=mm x x y ...10.如果从数据的散点图上发现y 与x 呈现较明显的二次(或高次)函数关系,则可以选用一元多项式回归.1. 用函数polyfit 估计模型参数,其具体调用格式如下:p=polyfit(x,y,m) p 返回多项式系数的估计值;m 设定多项式的最高次数;x ,y 为对应数据点值. [p,S]=polyfit(x,y,m) S 是一个矩阵,用来估计预测误差.2. 输出预估值与残差的计算用函数polyval 实现,其具体调用格式如下: Y=polyval(p,X) 求polyfit 所得的回归多项式在X 处的预测值Y .[Y ,DELTA]=polyval(p,X,S) p ,S 为polyfit 的输出,DELTA 为误差估计.在线性回归模型中,Y ±DELTA 以50%的概率包含函数在X 处的真值.3. 模型预测的置信区间用polyconf 实现,其具体调用格式如下:[Y ,DELTA]=polyconf(p,X,S,alpha) 求polyfit 所得的回归多项式在X 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ,alpha 缺省时为0.05.4. 交互式画图工具polytool ,其具体调用格式如下: polytool(x,y,m); polytool(x,y,m,alpha);用m 次多项式拟合x ,y 的值,默认值为1,alpha 为显著性水平,默认值为0.05. 例1 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s .t (s) 1/30 2/30 3/30 4/30 5/30 6/30 7/30 s (cm) 11.86 15.67 20.60 26.69 33.71 41.93 51.13 t (s) 8/30 9/30 10/30 11/30 12/30 13/30 14/30 s (cm)61.4972.9085.4499.08113.77129.54146.48解 根据数据的散点图,应拟合为一条二次曲线.选用二次模型,具体代码如下: %%%输入数据t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; %%%多项式系数拟合 [p,S]=polyfit(t,s,2); 则得回归模型为:1329.98896.652946.489ˆ2++=t t s. %%%y 的拟合值及预测值y 的置信半径delta [y,dalta]=polyconf(p,t,S); 得结果如下: y=Columns 1 through 1111.8729 15.7002 20.6148 26.6168 33.7060 41.8826 51.1465 61.4978 72.9363 85.4622 99.0754Columns 12 through 14 113.7759 129.5637 146.4389 dalta=Columns 1 through 110.0937 0.0865 0.0829 0.0816 0.0817 0.0823 0.0827 0.0827 0.0823 0.0817 0.0816Columns 12 through 14 0.0829 0.0865 0.0937 %%%交互式画图 polytool(t,s,2);polytool 所得的交互式图形如图8-1所示.图8-1(2) 多元二项式回归多元二项式回归模型的一般形式为εββββ∑≤≤+++++=mk j k j jkm m x x x x y ,1110....多元二项式回归命令:rstool(x,y,’model’,alpha) x 表示n ⨯m 矩阵;y 表示n 维列向量;alpha 为显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110;purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββ ;interaction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββ ;quadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ .例2 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量.需求量 100 758070 50 65 90 100 110 60 收入1000 600 1200 500 300 400 1300 1100 1300 300 价格5 7 66875439解 选择纯二次模型,即2222211122110x x x x y βββββ++++=.%%%输入数据x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9]; x=[x1' x2'];y=[100 75 80 70 50 65 90 100 110 60]'; %%%多元二项式回归 rstool(x,y,'purequadratic'); 得如下结果:图8-2得到一个如图所示的交互式画面,左边是x1(=1000)固定时的曲线y (x1)及其置信区间,右边是x2(=6)固定时的曲线y (x2)及其置信区间.用鼠标移动图中的十字线,或在图下方窗口内输入,可改变x1,x2.在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y1”下方的数据变为88.4791,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方单击”Export ”,在出现的窗体中单击”ok ”按钮,则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta,rmse ,得结果: beta=110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=, 剩余标准差为4.5362,说明此回归模型的显著性较好.二、多元线性回归多元线性回归模型的一般形式为011...m m y x x βββε=++++.在Matlab 统计工具箱中使用函数regress 实现多元线性回归.具体调用格式为: b=regress(Y,X)[b,bint,r,rint,stats]=regress(Y,X,alpha)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y ...21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m x x x x x x x x x X ...1..................1 (12)12222111211.对于一元线性回归,取1=m 即可.b 为输出向量;b ,bint 表示回归系数估计值和它们的置信区间;r 表示残差;rint 表示残差的置信区间;stats 表示用于检验回归模型的统计量,有四个数值:相关系数2R 、F 值、与F 值对应的概率P 、2s 的值.相关系数2R 越接近1,说明回归方程越显著;)1,(1-->-m n m F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率α<P 时拒绝0H ,回归模型成立;alpha 表示显著性水平(缺省时为0.05).残差及其置信区间可以用命令rcoplot(r,rint)画出.例3 已知某湖泊八年来湖水中COD 浓度实测值(y )与影响因素,如湖区工业产值(x 1)、总人口数(x 2)、捕鱼量(x 3)、降水量(x 4)的资料,建立y 的水质分析模型.湖水浓度与影响因素数据表x 1 1.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477 x 2 0.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575 x 3 2.170 2.554 2.676 2.713 2.823 3.088 3.122 3.262 x 40.89221.16100.53460.95891.02391.04991.10651.1387y 5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95 解作出因变量y与各自变量的样本散点图作散点图的目的主要是观察因变量y与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式.图8-3、图8-4、图8-5、图8-6分别为y与x1、x2、x3、x4的散点图.从图中可以看出这些点大致分布在一条直线旁边,因此有较好的线性关系,可以采用线性回归.图8-3 y与x1的散点图图8-4 y与x2的散点图图8-5 y与x3的散点图图8-6 y与x4的散点图在Matlab中实现回归的具体代码如下:%%%输入数据x1=[1.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477];x2=[0.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575];x3=[2.170 2.554 2.676 2.713 2.823 3.088 3.122 3.262];x4=[0.8922 1.1610 0.5346 0.9589 1.0239 1.0499 1.1065 1.1387];x=[ones(8,1) x1' x2' x3' x4'];y=[5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95];%%%多元线性回归[b,bint,r,rint,stats]=regress(y',x);得如下结果:b =-13.9849 13.1920 2.4228 0.0754 -0.1897 bint =-26.0019 -1.9679 1.4130 24.9711 -14.2808 19.1264 -1.4859 1.6366 -0.9638 0.5844 r =-0.0618 0.0228 0.0123 0.0890 0.0431 -0.1473 0.0145 0.0274 rint =-0.1130 -0.0107 -0.1641 0.2098 -0.1051 0.1297 -0.2542 0.4321 -0.0292 0.1153 -0.2860 -0.0085 -0.3478 0.3769 -0.1938 0.2486 stats =0.9846 47.9654 0.0047 0.0123故回归模型为:43211897.00754.04228.21920.139849.13x x x x y -+++-=, 此外,由stats 的值可知9846.02=R ,9654.47=F ,0047.0=P 。

相关文档
最新文档