苏科版七年级数学上册 有理数专题练习(解析版)

合集下载

【精选】苏科版七年级数学上册 有理数中考真题汇编[解析版]

【精选】苏科版七年级数学上册 有理数中考真题汇编[解析版]

一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

【精选】苏科版七年级上册数学 有理数(基础篇)(Word版 含解析)

【精选】苏科版七年级上册数学 有理数(基础篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.2.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

【精选】苏科版七年级数学上册 有理数单元测试与练习(word解析版)

【精选】苏科版七年级数学上册 有理数单元测试与练习(word解析版)

一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

苏科版七年级数学上册 有理数(提升篇)(Word版 含解析)

苏科版七年级数学上册 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

【苏科版】有理数的混合运算计算题(50题)(附解析版)

【苏科版】有理数的混合运算计算题(50题)(附解析版)

(苏科版)七年级上册数学《第二章有理数》专题有理数的混合运算的计算题(50题)一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(−12)×(﹣4)﹣22.2.(2022秋•大竹县校级期末)计算:(1)(−12+16−38)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.4.(2022秋•长顺县期末)计算(−1)3−(−1)+(−6)÷(−12 ).5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).7.(2023春•松江区期末)计算:(516−14)×(−4)2−32+14.8.(2022秋•海丰县期末)计算:﹣6÷2+(13−34)×12+(﹣3)29.(2023春•黄浦区期中)计算:229×(−1)9−(−115)2÷(−0.9)2.10.(2023春•杨浦区期末)计算:−32−(23−32)÷|−16|.11.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).12.(2023春•青秀区校级月考)计算:23×(−12+1)÷(2−3).13.(2022秋•西宁期末)计算:−14−16×[2−(−3)2].14.(2023春•长宁区期末)计算:(2−0.4)×416÷(−123)−14.15.(2022秋•宁明县期末)−22+|5−8|+24÷(−3)×1 316.(2023•大连一模)计算:(−2)3−(16+38−0.75)×|−24|.17.(2023春•长宁区期末)计算:−22+(−43)−13×[(−2)3+1].18.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|−12|+(﹣1)2023.19.(2023春•普陀区期末)计算:−32+(−214)÷32+(38−512)×24.20.(2023•桂平市三模)计算:−32×|−29|+(−1)2023−5+(−54).21.(2023春•普陀区期末)计算:−32+(−214)÷32+(38−512)×24.22.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.523.(2022秋•大冶市期末)计算:﹣14+[4﹣(38+16−34)×24]÷5.24.计算:﹣14﹣(0.5﹣1)÷13×[5﹣(﹣3)2].25.计算:|4﹣412|+(−12+23−16)÷112−22−(+5).26.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].27.(2022秋•滕州市校级期末)计算(1)(−79+56−34)×(﹣36);(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.28.(2022秋•禹城市期中)计算(1)36﹣27×(73−119+227)(2)﹣72+2×(﹣3)2﹣(﹣6)÷(−13)2.29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)−24−(13−1)×13[6−(−3)].30.(2022秋•洛江区期末)计算:(1)(12−23−34)×(﹣24). (2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].31.(2022秋•运城期末)计算:(1)(−1)2023−12×14+|−3|;(2)−32÷(−2)2×|−113|×6+(−2)3.32.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)33.(2022秋•庐江县期中)计算:(1)−12÷3×[3﹣(﹣3)2];(2)﹣52×|1−1615|−|−13|+34×[(−1)3−7].34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(−512)﹣|+18|÷(−12)3.36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(−79+56−34)×(﹣36);(4)75×(13−12)×37÷54.37.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13; (3)(34−13−56)×(﹣12); (4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷94×49÷(﹣16);(3)﹣42﹣3×22×(13−12)÷(﹣113).39.(2022秋•德州期中)计算:(1)−14−16×[3+(﹣3)2]÷(﹣112);(2)(−12+23−56)÷(−118);(3)(512+34−58+712)÷(−724)−227;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2].40.(2022秋•光明区期中)计算题:(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)−14−16×[3−(−3)2];(3)(−60)×(34−56+112);(4)16÷(−2)2−(−12)3×(−4).41.(2022秋•新野县期中)计算题:(1)(−1)5+5÷(−14)−(1−4);(2)−22+313×(−65)+1÷(−14)2;(3)(75−2110−2815)÷(−710)+(−83);(4)[323÷(−2)−114×(−0.2)2÷110]÷(−13)−23.42.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−35)×53;(3)﹣22×7﹣(﹣3)×6+5;(4)(113+18−2.75)×(﹣24)+(﹣1)2014+(﹣3)3.43.计算:(1)(18−13+16)×(−24);(2)|−2|×(−1)2013−3÷12×2;(3)−12−(1−0.5)×13×[2−(−3)]2;(4)7×(−36)×(−87)×16.44.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+534+(﹣825); (3)(23−110+16−25)÷(−130); (4)﹣12020+(﹣2)3×(−12)﹣|﹣1﹣6|.。

苏科版数学七年级上册 有理数单元复习练习(Word版 含答案)

苏科版数学七年级上册 有理数单元复习练习(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。

因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。

因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。

苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)

苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)

第二章《有理数》选择、填空专题练习一.选择题1.下面几个数中,属于正数的是()A.3 B.﹣0.5 C.﹣10 D.02.上升5cm,记作+5cm,下降6cm,记作()A.6cm B.﹣6cm C.+6cm D.负6cm3.下列数是无理数的是()A.πB.C.D.04.如图,数轴上A,B两点之间表示的整数共有()A.5个B.6个C.7个D.8个5.﹣8的相反数是()A.﹣8 B.C.8 D.﹣6.﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣7.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣8.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣19.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1 B.3 C.﹣1 D.﹣310.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和11.若a≠0,b≠0,则代数式的取值共有()A.2个B.3个C.4个D.5个12.若|a﹣b|=1,|b+c|=1,|a+c|=2,则|a+b+2c|等于()A.3 B.2 C.1 D.013.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣314.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)15.计算+++++……+的值为()A.B.C.D.16.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大17.﹣|﹣|的负倒数是()A.B.C.D.18.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×10619.遗爱湖有5400亩,15亩=10000平方米,用科学记数法表示遗爱湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米20.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为()A.4.07×105元B.4.07×106元C.4.07×107元D.4.07×108元21.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F (n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201822.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入﹣1,并将所显示的结果再次输入,这时显示的结果应当是()A.2 B.3 C.4 D.523.定义一种运算:C=,则C=()A.10 B.C.D.2024.定义运算a⊗b=a(1﹣b),则下面的结论正确的是()A.2⊗(﹣2)=﹣2 B.a⊗b=b⊗aC.若a+b=0,则(a⊗a)+(b⊗b)=2ab D.若a⊗b=0,则a=025.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元二.填空题26.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.27.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.28.﹣2018的绝对值是.29.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.30.若x是实数,则y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为.31.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b﹣c|+|c ﹣d|+|d﹣a|的最大值是.32.计算:|﹣3|﹣1=.33.计算1+4+9+16+25+…的前29项的和是.34.从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有个.35.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.36.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.37.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为.38.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.39.按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)40.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.答案与解析一.选择题1.【分析】根据正数和负数的定义可直接解答.【解答】解:根据正数和负数的定义可知,四个选项中只有A符合题意.故选:A.【点评】此题考查的知识点是正数和负数,解答此题要熟知正数和负数的概念:大于0的数叫正数,小于0的数为负数,0既不是正数也不是负数.2.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可知上升为+,则下降为﹣,所以下降6cm,记作﹣6cm.故选答案B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【分析】首先正确估算﹣2和﹣2的范围,再进一步找到之间的整数.【解答】解:∵6<<7,∴4﹣2<5,∴数轴上点A和点B之间表示整数的点有﹣1,0,1,2,3,4共6个.故选:B.【点评】此题考查了无理数的估算以及数轴上的点和数之间的对应关系,关键是能够根据一个数的平方正确估算无理数的大小,结合数轴确定两点之间的整数.5.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.6.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.7.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.8.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.9.【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.10.【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11.【分析】本题可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【解答】解:由分析知:可分4种情况:①a>0,b>0,此时ab>0所以=1+1+1=3;②a>0,b<0,此时ab<0所以=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0所以=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0所以=﹣1+1﹣1=﹣1;综合①②③④可知:代数式的值为3或﹣1.故选:A.【点评】本题主要考查了绝对值的运用,绝对值都为非负数.这一点必须牢记.12.【分析】把a+c写成a﹣b+b+c,然后根据绝对值的性质求出a﹣b、b+c,再求出a+c,然后代入代数式根据绝对值的性质解答即可.【解答】解:|a+c|=|a﹣b+b+c|=2,∵|a﹣b|=1,|b+c|=1,∴a﹣b=b+c=1或a﹣b=b+c=﹣1,①a﹣b=b+c=1时,a+c=2,所以,|a+b+2c|=|a+c+b+c|=|1+2|=3,②a﹣b=b+c=﹣1时,a+c=﹣2,所以,|a+b+2c|=|a+c+b+c|=|﹣1﹣2|=3,故|a+b+2c|=3.故选:A.【点评】本题考查了绝对值,熟记性质并观察已知条件的特征求出a﹣b=b+c=1或a﹣b=b+c=﹣1是解题的关键.13.【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.15.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.【点评】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.16.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.17.【分析】根据相反数,倒数的定义,负倒数是相反数的倒数.【解答】解:﹣|﹣|=﹣,﹣的负倒数是.故选:B.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.19.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400÷15×10000=3600000=3.6×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:四千零七十万元,则此营业额可表示为4.07×107元,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.22.【分析】先根据显示屏的结果总等于所输入有理数的平方与1之和这个条件,由此得出显示屏的结果,即可得出正确结论.【解答】解:∵当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,∴若输入﹣1,则显示屏的结果为(﹣1)2+1=2,再将2输入,则显示屏的结果为22+1=5.故选:D.【点评】本题主要考查了有理数的混合运算,在解题时要注意这个计算程序的条件.23.【分析】根据题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:==10,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】根据定义的运算方法逐一运算,【解答】解:A、2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,此选项不正确;B、a⊗b=a(1﹣b),b⊗a=b(1﹣a),a⊗b=b⊗a只有在a=b时成立,此选项不正确;C、a+b=0,a=﹣b,(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2=2ab,此选项正确;D、a⊗b=0,a(1﹣b)=0,a=0或b=1,此选项不正确.故选:C.【点评】此题主要考查了有理数的混合运算,理解和掌握新运算的计算方法是解决问题的关键.25.【分析】认真分析表格,弄清返购物券的标准与使用购物券的条件,从而确定最佳方案.【解答】解:∵买化妆品不返购物券,∴先购买鞋,利用所得购物券再买衣服,需要现金(280+220)元,得到200购物券,利用购物券,现金100元,购买化妆品即可.张阿姨购买这三件物品实际所付出的钱的总数为:280+220+100=600元.故选:B.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.二.填空题26.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.28.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:2018【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.29.【分析】分三种情况:x<﹣1;﹣1≤x≤4;x>4;去绝对值后解方程即可求解.【解答】解:x<﹣1时,﹣x﹣1﹣x+4=7,解得x=﹣2;﹣1≤x≤4时,x+1﹣x+4=7,方程无解;x>4时,x+1+x﹣4=7,解得x=5.故答案为:﹣2或5.【点评】考查了绝对值,注意分类思想的运用,是中档题型.30.【分析】分6个区域:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55;比较最小值,即可求得答案.【解答】解:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x,则x=1时,有最小值40;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x,则x=2时,有最小值27;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x,则x=3时,有最小值18;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x,则x=4时,有最小值15;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5,则y没有最小值;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55,则y没有最小值;故当x=4时,|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为15.故答案为:15.【点评】此题考查了绝对值的最值问题.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.31.【分析】若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,再代入计算即可求解.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的最大值=0+0+8+8=16.故答案为:16.【点评】此题考查了绝对值,要使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1,再根据低位上的数字不小于高位上的数字解答.32.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.33.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.34.【分析】两个数相加最小的和是1+4=5,最大的和是295+298=593,和也是隔3的自然数,根据等差数列通项公式求出项数即可求解.【解答】解:1+4=5,295+298=593,和是隔3的自然数,n=(593﹣5)÷3+1=588÷3+1=197.故答案为:197.【点评】考查了有理数的加法,等差数列通项公式,关键是求出两个数相加最小的和,以及最大的和.35.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.36.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.37.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.【点评】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x 的一元一次方程是解题的关键.39.【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.40.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.。

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.2.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.3.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.4.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.5.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.6.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.7.如图所示(1)A在数轴上所对应的数为﹣2.点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在A、B两点位于第(1)题所在的位置开始,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)当A、B两点位于第(2)题结束所在的位置,如果A点静止不动,B点以每秒2个单位长度沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【答案】(1)解:−2+4=2. 故点B所对应的数为2;(2)解:(−2+6)÷2=2(秒),这时A对应的数为:-6,B对应的数为:2+2×2=6,故A,B两点间距离为是6-(-6)=12个单位长度;(3)解:分两种情况讨论:1)运动后的B点在A点右边4个单位长度,设经过x秒时间A,B两点相距4个单位长度,依题意有2x=12−4,解得x=4;2)运动后的B点在A点左边4个单位长度,设经过x秒时间A,B两点相距4个单位长度,依题意有 2x=12+4,解得x=8;故经过4秒或8秒长时间A,B两点相距4个单位长度。

【精选】苏科版数学七年级上册 有理数(基础篇)(Word版 含解析)

【精选】苏科版数学七年级上册 有理数(基础篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A、B两点间的距离为________;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?【答案】(1)4;7(2)1;2(3)﹣13;9(4)解:一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p 个单位长度,那么请你猜想终点B表示m+n﹣p,A、B两点间的距离为|n﹣p|.【解析】【解答】解:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是﹣13,A、B两点间的距离是9;【分析】(1)根据数轴上的点向右平移加,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(4)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.4.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.5.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)在数轴上标示出-4、-3、-2、4、(2)结合数轴与绝对值的知识回答下列问题:①数轴上表示4和-2的两点之间的距离是________,表示-2和-4两点之间的距离是________.一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,即那么a=________②若数轴上表示数a的点位于-3和2之间,则的值是________;③当a取________时,|a+4|+|a-1-|+|a-4|的值最小,最小值是________.【答案】(1)解:如图所示:(2)6;2;1或-5;5;1;8.【解析】【解答】解:(2)①数轴上表示4和−2的两点之间的距离是4−(−2)=6,表示−2和−4两点之间的距离是−2−(−4)=2;∵|a−(−2)|=3,∴a−(−2)=±3,解得a=−5或1;②因为|a+3|+|a−2|表示数轴上数a和−3,2之间距离的和,又因为数a位于−3与2之间,所以|a+3|+|a−2|=5;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,所以当a=1时,式子的值最小,此时|a+4|+|a−1|+|a−4|的最小值是8.故答案为:6,2,−5或1;5;1,8.【分析】(1)数轴上原点表示正数,原点左边表示负数,原点右边表示正数,然后在数轴上找出表示各个数的点,用实心的小原点标记,并在实心小圆点上方写出该点所表示的数;(2)①根据数轴上任意两点的距离等于这两点所表示的数差的绝对值即可算出答案;解含绝对值的方程,根据绝对值的意义去掉绝对值符号,再解即可;②因为数a位于−3与2之间,故a+3>0,a−2<0,根据绝对值的意义去掉绝对值符号再合并他即可;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,根据两点之间线段最短即可得出当a=1时,式子的值最小,从而将a=1代入即可算出答案。

【精选】苏科版七年级数学上册 有理数专题练习(解析版)

【精选】苏科版七年级数学上册 有理数专题练习(解析版)

一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。

苏科版数学七年级上册 有理数(提升篇)(Word版 含解析)

苏科版数学七年级上册 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=________;另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=________;你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离. ________(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q 所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣=________;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ________;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-1.5)与D(-3.5)之间的距离.________【答案】(1)解:8;2;有道理;点M与点N之间的距离为点C与点D之间的距离为(2)解:8;2;有道理;点M与点N之间的距离为点C与点的之间的距离为【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之和。

【精选】苏科版七年级数学上册 有理数(基础篇)(Word版 含解析)

【精选】苏科版七年级数学上册 有理数(基础篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

苏科版七年级数学上册 有理数达标检测卷(Word版 含解析)

苏科版七年级数学上册 有理数达标检测卷(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.4.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.5.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。

苏科版七年级上册数学 有理数单元测试与练习(word解析版)

苏科版七年级上册数学 有理数单元测试与练习(word解析版)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.如图,点A、B、C在数轴上表示的数分别是-3、1、5。

【举一反三】有理数、数轴(十大题型)2023-2024学年七年级数学上册举一反三系列(苏科版)解析版

【举一反三】有理数、数轴(十大题型)2023-2024学年七年级数学上册举一反三系列(苏科版)解析版

有理数、数轴【十大题型】【苏科版】【题型1 辨别正数和负数】 (1)【题型2 判断具有相反意义的量】 (3)【题型3 正负数表示的意义】 (5)【题型4 用正负数表示已知量】 (6)【题型5 应用正负数的实际意义解决问题】 (8)【题型6 有理数的分类】 (9)【题型7 数轴上的整点问题】 (12)【题型8 数轴上两点间的距离】 (13)【题型9 数轴上点的移动】 (15)【题型10 应用数轴解决实际问题】 (16)【知识点1 正数和负数的概念】大于0的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数【题型1 辨别正数和负数】【例1】(2023·浙江·七年级假期作业)把下列各数分别填在相应的括号内:12 5,10,−213,0,3.1415,−5,0.6,−113,712.(1)正数:{…};(2)负数:{…};(3)整数:{…}.【答案】(1)125,10,3.1415,0.6,712(2)−213,−5,−113(3)10,0,−5【分析】(1)在有理数中,正数包括正整数、正分数;(2)在有理数中,负数包括负整数、负分数;(3)在有理数中,除了分数以外都是整数,包括正整数、负整数和零.【详解】(1)解:正数:{125,10,3.1415,0.6,712…}故答案为:125,10,3.1415,0.6,712(2)负数:{−213,−5,−113…} 故答案为:−213,−5,−113(3)整数:{10,0,−5…}故答案为:10,0,−5【点睛】本题主要考查了有理数.正确把握正数、负数和整数的概念是解题关键.【变式1-1】(2023·江西宜春·统考模拟预测)下列各数中,负数是( )A .−2B .0C .√2D .3 【答案】A【分析】根据负数的定义即可得出答案.【详解】解:−2是负数,0既不是正数也不是负数,√2和3是正数.故选:A .【点睛】本题考查了实数,掌握在正数前面添加“−”得到负数是解题的关键.【变式1-2】(2023春·4、﹣2、0、1、3、4这六个数中,正数有( )A .1个B .2个C .3个D .4个【答案】C【详解】分析:实数分类为:正数,零,负数,其中数字前面带有符号 “﹣”的数为负数,“0”仅有一个数,其余均为正数,由此可得出判断.详解:这六个数中,只有“1,3,4”这三个数为正数,故答案为C.点睛:本题考查对正数的认识:数字前带符号“+”的数即为正数,符号“+”可省略不写,据此可以得出判断;也可以用排除法判断,实数可分为以下三类:正数,0,负数,排除了0和负数,其余的都是正数.【变式1-3】(2023春·福建泉州·七年级校考期中)把下列各数填入相应的括号内.12,−56,1,5.2,﹣2.3,0.5%正数:{ }; 整数:{ };分数:{ }; 负数:{ }.【答案】12,1,5.2,0.5%;1;12,﹣56,5.2,﹣2.3,0.5%;﹣56,-2.3【分析】根据有理数的分类,把相应的数填写到相应的括号中.【详解】解:正数:{12,1,5.2,0.5%};整数:{1};分数:{12,﹣56,5.2,﹣2.3,0.5%}; 负数:{﹣56,-2.3}.故答案为:12,1,5.2,0.5%;1;12,﹣56,5.2,﹣2.3,0.5%;﹣56,-2.3. 【点睛】本题考查了有理数的分类.有理数分为整数和分数;正整数、0、负整数统称整数;正分数、负分数统称分数.非负整数包括正整数和0.【知识点2 具有相反意义的量】一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,并用正数来表示,把与它意义相反的量规定为负的,并用负数来表示.【题型2 判断具有相反意义的量】【例2】(2023春·广西崇左·七年级校考阶段练习)下列各组数中,不是互为相反意义的量的是( )A .收入200元与支出20元B .超过0.05mm 与不足0.03mC .增大2L 与减少2kgD .上升10m 和下降7m【答案】C【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.据此对各选项进行判断即可.【详解】解;A 、收入200元与支出20元,是一组互为相反意义的量,故A 不符合题意;B 、超过0.05mm 与不足0.03m ,是一组互为相反意义的量,故B 不符合题意;C 、增加2L 与减少2kg ,不是相反意义的量,故C 符合题意;D 、上升10m 与下降7m ,是一组互为相反意义的量,故D 不符合题意;故选:C .【点睛】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.【变式2-1】(2023春·湖南邵阳·七年级统考期中)下列是具有相反意义的量是( )A .身高增加1cm 和体重减少1kgB .顺时针旋转90°和逆时针旋转45°C.向右走2米和向西走5米D.购买5本图书和借出4本图书【答案】B【分析】相反意义的量主要记住两个因素,第一,同一属性,第二,意义相反.【详解】解:A、身高和体重不是相反的量,不符合题意;B、顺时针旋转与逆时针旋转是具有相反意义的量,符合题意;C、向右和向西不是相反的量,不符合题意;D、购买和借出不是相反的量,不符合题意;故选:B.【点睛】本题考查相反意义的量,解题关键:掌握相反意义的量的两个关键因素,必须是同一属性,意义相反.【变式2-2】(2023春·重庆渝北·七年级校联考阶段练习)下列各组叙述中,互为相反意义的量是()A.篮球比赛胜5场与负5场B.上升的反义词是下降C.增产10吨粮食与减产−10吨粮食D.向东走3千米,再向南走2千米【答案】A【分析】根据相反意义的量的含义直接进行判断即可得到答案.【详解】解:A、篮球比赛胜55场,是相反意义的量,选项说法正确,符合题意;B、上升的反义词是下降是正确的,但上升和下降中没有具体数量,故不是相反意义的量,选项说法错误,不符合题意;C、减产−10吨粮食就是增产10吨粮食,故不是相反意义的量,选项说法错误,不符合题意;D、和向东走具有相反意义的是向西走,故不是相反意义的量,选项说法错误,不符合题意,故选:A.【点睛】本题考查相反意义的量,解题的关键是明确什么事相反意义的量.【变式2-3】(2023春·七年级单元测试)下列意义叙述不正确的是()A.若上升5m记作+5m,则0m指不升不降B.鱼在水中的高度为−2m表示鱼在水下2mC.温度上升−5∘C,指温度下降5∘CD.盈利−1000元表示赚了1000元【答案】D【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负数表示,结合选项即可选出正确答案.【详解】解:A.若上升5m记作+5m,则0m指不升不降,说法正确,不符合题意;B.鱼在水中的高度为−2m表示鱼在水下2m,说法正确,不符合题意;C.温度上升−5∘C,指温度下降5∘C,说法正确,不符合题意;D.盈利−1000元表示亏了1000元,说法错误,符合题意;故选D.【点睛】本题考查具有相反意义的量,熟记和理解概念是解题关键.【题型3 正负数表示的意义】【例3】(2023春·内蒙古包头·七年级统考期末)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若盈余2万元记作+2万元,则−2万元表示()A.亏损−2万元B.盈余2万元C.亏损2万元D.不盈余不亏损【答案】C【分析】结合题意运用正负数的意义进行求解.【详解】解:∵与盈余意义相反的量是亏损,∴盈余2万元记作+2万元,,则−2万元表示亏损2万元,故选:C.【点睛】此题考查了运用正负数的概念和正负数的意义解决实际问题的能力,关键是能准确理解并运用以上知识.【变式3-1】(2023春·浙江台州·七年级校考阶段练习)如果+3圈表示顺时针转3圈,那么-6圈表示()A.增加6圈B.增加-6圈C.减少6圈D.逆时针转6圈【答案】D【分析】首先审清题意,明确“正”和“负”所表示的意义:顺时针旋转为正,逆时针旋转为负,再根据题意作答.【详解】如果+3圈表示顺时针转3圈,那么-6圈表示逆时针转6圈;故选D.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【变式3-2】(2023春·河北保定·七年级统考期末)如图所示的是某用户微信支付情况,−100表示的意思是()A.发出100元红包B.收入100元C.余额100元D.抢到100元红包【答案】A【分析】根据相反意义的量可以用正负数来表示,正数表示收到,则负数表示发出,据此解答即可.【详解】解:由题意可知,−100表示的意思是发出100元红包.故选:A.【点睛】考查用正负数表示相反意义的量,理解正负数的意义是解决问题的前提.【变式3-3】(2023春·山东潍坊·七年级统考期中)先向南走5m,再向南走-4m的意义是()A.先向南走5m,再向南走4mB.先向南走5m,再向北走-4mC.先向北走-5m,再向南走4mD.先向南走5m,再向北走4m【答案】D【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答即可.【详解】解:先向南走5m,再向南走-4m的意义是:先向南走5m,再向北走4m,故选D.【点睛】此题考查了正数和负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【题型4 用正负数表示已知量】【例4】(2023·浙江·七年级假期作业)中国是最早采用正负数表示相反意义的量并进行负数运算的国家. 若气温上升7℃,记作:+7℃,那么气温下降10℃可记作()A.7℃B.10℃C.D.−7℃【分析】主要用正负数来表示具有意义相反的两种量:若上升记为正,则下降就记为负,直接得出结论即可.【详解】解:若气温上升7℃,记作:+7℃,那么气温下降10℃,可记作:−10℃,故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【变式4-1】(2023春·七年级单元测试)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作−500年,那么公元2023年应记作()A.−2023年.B.+1523年.C.+2023年.D.+2523年.【答案】C【分析】根据相反意义的量进行求解即可.【详解】解:∵公元前500年记作−500年,∴公元前为“−”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式4-2】(2023·山东烟台·一模)如果节约4吨水记为+4吨,那么浪费3吨水记为()A.+3吨B.-3吨C.+7吨D.-7吨【答案】B【分析】根据正负数可以表示具有相反意义的量解答即可.【详解】解:∵节约记为“正”,∴浪费记为“负”,∴浪费3吨水记为-3吨.故选:B.【点睛】本题考查了正负数在实际中的应用,属于应知应会题型,熟知具有相反意义的量可以用正负数表示是关键.【变式4-3】(2023春·湖北襄阳·七年级统考期末)随着季节的变化,某种蔬菜的价格也在发生变化.每千克涨1元记作+1元/千克,那么每千克降0.6元记作()A.+0.6元/千克B.+0.4元/千克C.−0.4元/千克D.−0.6元/千克【分析】根据正数和负数代表的含义即可解答.【详解】每千克涨1元记作+1元/千克,那么每千克降0.6元记作−0.6元/千克,故选:D.【点睛】本题考查正数和负数代表的含义,解题的关键是正确掌握正数和负数的意义.【题型5 应用正负数的实际意义解决问题】【例5】(2023春·全国·七年级专题练习)大米包装袋上有(10±0.2)kg的标识,则下面几袋大米重量合格的是()A.9.6kg B.9.7kg C.10.2kg D.10.3kg【答案】C【分析】根据正负数的意义求出质量合格的取值范围,然后判断即可.【详解】解:∵10-0.2=9.8,10+0.2=10.2,∴质量合格的取值范围是9.8kg~10.2kg.所以,四个选项中只有10.2kg合格.故选:C.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意【变式5-1】(2023春·福建龙岩·七年级校考阶段练习)某工厂生产一批零件,要求对零件的标准是30±0.05mm 为合格,该工厂生产出了一个29.9mm的零件,则该零件___________(填“合格”或“不合格”).【答案】不合格【分析】根据题意,判断29.9mm的零件,不在30±0.05mm范围之内,进而即可求解.【详解】解:∵要求对零件的标准是30±0.05mm为合格,∴29.9mm的零件不在合格的范围内,即该零件不合格,故答案为:不合格.【点睛】本题主要考查正负数的意义,理解题意,得出零件的标准合格范围是关键.【变式5-2】(2023春·河南郑州·七年级统考期中)某零件的直径尺寸在图纸上标注是10±0.05(mm),则这种零件的标准尺寸是_____(mm),合格产品的零件尺寸范围是_____~_____(mm).【答案】10 9.95 10.05【分析】根据零件的直径尺寸是10±0.05(mm),意思是这种零件的标准尺寸是10mm,最大尺寸是(10+0.05)mm,最小尺寸是(10−0.05)mm,计算后则可得出结果.【详解】解:“正”和“负”相对,所以,某零件的直径尺寸在图纸上标注是10±0.05(mm),则这种零件的标准尺寸是10(mm),合格产品的零件尺寸范围是9.95~10.05(mm).故答案为:10,9.95,10.05.【点睛】本题主要考查正负数的实际应用,解题关键是理解“正”和“负”的相对性,并能准确理解题意.【变式5-3】(2023·全国·七年级专题练习)如图,加工一根轴,图纸上注明它的直径是Φ45−0.04+0.03.其中,Φ45表示直径是45mm,+0.03表示合格品的直径最大只能比规定的直径大0.03mm,–0.04表示合格品的直径最小只能比规定的直径小0.04mm,现有四根轴的直径尺寸(单位:mm),其中不合格的是()A.45.02B.45.01C.44.98D.44.93【答案】D【分析】根据题意可得出合格的范围,从而可判断出直径是否合格.【详解】由题意得:合格范围为:45–0.04=44.96到45+0.03=45.03,而44.93<44.96,故可得D不合格.故选D.【点睛】本题考查正数和负数的意义,解题的关键是熟练掌握正数和负数的意义.【知识点3 有理数】1.概念:正整数、零和负整数统称整数;正分数和负分数统称分数;整数和分数统称有理数.2.分类:①按整数和分数的关系分类;②按正有理数、零和负有理数的关系分类.【题型6 有理数的分类】【例6】(2023春·七年级单元测试)把下列各数填入相应的大括号内:+5,−12,4.2,0,−5.37,37,−3(1)自然数:{______________…};(2)整数:{______________…};(3)正分数:{______________…};(4)负有理数:{______________…}.【答案】(1)+5,0(2)+5,0,−3(3)4.2,37(4)−1,−5.37,−32【分析】根据自然数、整数、正分数、负有理数的定义即可得到结果.【详解】(1)解:自然数有:+5,0;故答案为:+5,0;(2)解:整数有:+5,0,−3;故答案为:+5,0,−3;(3)解:正分数有:4.2,3;7;故答案为:4.2,37,−5.37,−3;(4)解:负有理数有:−12故答案为:−1,−5.37,−3.2【点睛】本题考查了有理数的分类,熟练掌握自然数、整数、正分数、负有理数的定义是解题的关键.【变式6-1】(2023·全国·七年级假期作业)下列说法:①整数包括正整数和负整数;②分数包括正分数和负分数;③−7既是负数也是整数,但不是自然数;④0既是正整数也是负整数;⑤非负分数就是正分数.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】根据有理数的分类方法逐一判断即可.【详解】解:①整数包括正整数、负整数和0,故原说法错误,不符合题意;②分数包括正分数和负分数,故原说法正确,符合题意;③−7既是负数也是整数,但不是自然数,故原说法正确,符合题意;④0既不是正数也不是负数,故原说法错误,不符合题意;⑤非负分数就是正分数,故原说法正确,符合题意.∴正确的个数是3个.故选:C.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【变式6-2】(2023·全国·七年级假期作业)在15,−0.23,0,513,2,−35,316%这几个数中,是非负数的有()A.4个B.5个C.6个D.7个【答案】B【分析】直接利用非负数定义判断即可得出答案.【详解】解:根据非负数的定义,非负数包含正数和零,所以在15,−0.23,0,513,2,−35,316%这七个数中,是非负数的有15,0,513,2,316%共5个.故选:B.【点睛】本题考查了有理数的分类,解题的关键是正确掌握有理数的分类,非负数的定义.【变式6-3】(2023春·四川成都·七年级校考期中)把下列各数分别填入相应的集合:+26,0,−8,−4.8,−17,227,0.6,−58.正有理数集{_______________……}负有理数集{_______________……};非负数集{_______________……};整数集{_______________……};分数集{_______________……}.【答案】+26,227,0.6;−8,−4.8,−17,−58;+26,0,227,0.6;+26,0,−8,−17;−4.8,227,0.6,−58.【分析】根据有理数分类逐个判断即可得到答案.【详解】解:由题意可得,正有理数集:+26,227,0.6,负有理数集:−8,−4.8,−17,−58,非负数集:+26,0,227,0.6,整数集:+26,0,−8,−17,分数集:−4.8,227,0.6,−58,故答案为:+26,227,0.6;−8,−4.8,−17,−58;+26,0,227,0.6;+26,0,−8,−17;−4.8,227,0.6,−58.【点睛】本题考查有理数的分类,解题的关键是熟练掌握几个定义.【知识点4 数轴】1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.2.数轴的画法:①在直线上任取一个点表示数0,这个点叫做原点,②通常规定直线上从原点向右为正方向,从原点向左为负方向;③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,……;从原点向左用类似的方法依次表示-1,-2,-3,…….3.数轴上的点与有理数之间的关系:①每个有理数都可以用数轴上的一点来表示,也可以说每个有理数都对应数轴上的一点;②一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示-a 的点在原点的左边,与原点的距离是a个单位长度.【题型7 数轴上的整点问题】【例7】(2023春·宁夏银川·七年级校考阶段练习)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2022厘米的线段AB,则线段AB盖住的整点的个数是() A.2021B.2022C.2021或2022D.2022或2023【答案】D【分析】分线段的端点与整数点重合、不重合两种情况进行计算即可.【详解】解:当长2022厘米的线段AB的端点A与整数点重合时,两端与中间的整数点共有2023当长2022厘米的线段AB的端点A不与整数点重合时,中间的整数点只有2022个,故选:D.【点睛】本题考查数轴表示数的意义和方法,理解线段及端点与数轴上点的对应关系是解决问题的前提.【变式7-1】(2023春·云南曲靖·七年级曲靖市民族中学校考期中)数轴上,表示数-3.5与2.5的两点之间整数点的个数是()A.5B.6C.7D.8【答案】B【分析】根据题意画出数轴,在数轴上标出−3.5与2.5,再找出符合条件的整数点即可.【详解】解:如图所示:符合条件的点有:-3、-2、-1、0、1、2共6个;故选:B .【点睛】本题考查的是数轴,根据题意画出图形,利用数形结合求解是解答此题的关键.【变式7-2】(2023春·河北石家庄·七年级石家庄市藁城区第一中学校考阶段练习)如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有_______个,负整数点有______个.【答案】 70 53【详解】由数轴可知,−7212和−4115 之间的整数点有:-72,-71,……,-41,共32个;−2134和1623之间的整数点有:-21,-20,……,15,16,共38个,所以被淹没的整数点有70个,负整数点有个53.【变式7-3】(2023春·天津南开·七年级南开中学校考阶段练习)在数轴上任取一条长度为200019的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A .1998B .1999C .2000D .2001【答案】D【分析】把这条线段的一个端点覆盖第一个整数点记作0,再进行计算即可.【详解】解:把这条线段的一个端点覆盖第一个整数点若记作0,则覆盖的最后一个数是2000,因而共有从0到2000共有2001个数.故选:D .【点睛】此题主要考查了数轴上的点与实数的对应关系,能够理解什么情况最多是解决本题的关键.【题型8 数轴上两点间的距离】【例8】(2023春·重庆垫江·七年级校联考期末)已知A ,B ,C 三点在数轴上从左向右依次排列,且AC =3AB =6,若B 为原点,则点A 所表示的数是( )A .−4B .4C .−2D .2 【答案】C【分析】A 到C 长度为6,A 到B 长度为2,B 为原点,由此即可求解.【详解】解:A ,B ,C 三点在数轴上从左向右依次排列,且AC =3AB =6,∴A 到C 长度为6,A 到B 长度为2,∵B 为原点,即B 对应的数是0,∴A对应的数是−2,故选:C.【点睛】本题主要考查有理数与数轴的关系,掌握数轴上线段与线段之间的数量关系,原点的位置是解题的关键.【变式8-1】(2023·江苏·七年级假期作业)数轴上一个点到原点的距离为6,则这个点表示的数为______.【答案】±6【分析】根据“与原点的距离相等的点(除原点外)在数轴的两旁”可得答案.【详解】解:∵数轴上有一点到原点的距离是6,∴该点表示为±6.故答案为:±6.【点睛】本题考查了数轴的应用,涉及数轴上点到原点的距离的含义.【变式8-2】(2023·江苏·七年级假期作业)如图,数轴上的点A、B分别表示1和2,点C在数轴上且到A和B的距离相等,则点C表示的数是_____.【答案】1.5【分析】根据数轴的特点解答即可.【详解】解:∵数轴上的点A、B1和2,点C在数轴上且到A和B的距离相等,∴点C表示的数为1.5,故答案为:1.5.【点睛】本题考查了数轴上对应的点,熟记概念是解题关键.【变式8-3】(2023春·浙江杭州·七年级杭州市十三中教育集团(总校)校考期中)A,B是数轴上的两个点,它们到原点的距离分别为2和1,则A,B两点的距离为()A.1B.3C.1或−1D.1或3【答案】D【分析】根据题意分别求出A点表示的数是2或−2,B点表示的数是1或−1,再求A、B两点的距离即可.【详解】解:∵A点到原点的距离是2,∴A点表示的数是2或−2,∵B点到原点的距离是1,∴B点表示的数是1或−1,∴当A、B在原点同侧时,距离为1,和当A、B在原点两侧时距离为3,∴A、B两点的距离是1或3.故选:D.【点睛】本题考查实数与数轴,熟练掌握数轴上点的特征,数轴上两点间距离的求法是解题的关键.【题型9 数轴上点的移动】【例9】(2023春·内蒙古兴安盟·七年级校考阶段练习)数轴上点M表示有理数−2,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为_____.【答案】4或−4【分析】先求出N点表示的数,再分情况讨论求点E表示的数.【详解】解:数轴上点M表示有理数−2,将点M向右平移2个单位长度到达点N,则点N所表示的数为−2+2= 0,当点E在点N的右侧时,点E到点N的距离为4,点E所表示的数为4,当点E在点N的左侧时,点E到点N的距离为4,点E所表示的数为−4,故答案为:4或−4.【点睛】本题考查了数轴上点的平移和两点之间的距离问题,解题关键是掌握右移增加,左移减小,以及掌握分类讨论的思想方法.【变式9-1】(2023春·重庆沙坪坝·七年级重庆南开中学校考期末)在数轴上,将表示2的点A沿数轴向右移动4个单位长度得到的数是【答案】6【分析】根据数轴的特点进行解答即可.【详解】解:将表示2的点向右移动4个单位后,对应点表示的数为2+4=6.故答案为:6.【点睛】此题考查数轴,掌握点在数轴上的平移规律:左减右加是解决问题的关键.【变式9-2】(2023春·山东德州·七年级统考期末)点B先向右移动3个单位,又向左移动6个单位到达图中点A,则点B在数轴上表示的数为______.【答案】0【分析】点B在数轴上表示的数为点A向右移动6个单位,再向左移动3个单位得到的.【详解】解:根据题意可得:点B在数轴上表示的数为点A向右移动6个单位,再向左移动3个单位得到的,∵点A在数轴上表示的数为:−3,∴点B在数轴上表示的数为:0,故答案为:0.【点睛】本题考查了数轴,注意数形结合的运用是解答此题的关键.【变式9-3】(2023春·广东佛山·七年级校考期末)如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示−1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字___的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与−1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与−12023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.【题型10 应用数轴解决实际问题】【例10】(2023春·江苏常州·七年级校考阶段练习)一辆货车从超市出发,向东走了3千米到达A地,继续向东走25千米到达B地,然后向西走了10千米到达C地,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,画出数轴并在数轴上表示出A地、B 地、C地的位置;(2)求C地距离A地多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.5升,这次共耗油多少升?【答案】(1)见解析;(2)7.5千米;(3)20;(4)10.【分析】(1)根据题目的叙述1个单位长度表示1千米,即可表示出;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;(3)路程是10×2=20千米;(4)路程是20千米,乘以0.5即可求得耗油量.【详解】(1);(2)根据数轴可知:C地距离A地是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米;(4)耗油量是:20×0.5=10升.答:小明家距小彬家7.5千米,这趟路货车共耗油10升.故答案为(1)见解析;(2)7.5千米;(3)20;(4)10.【点睛】本题考查数轴,正数和负数,解题的关键是熟练掌握利用数轴表示一对具有相反意义的量.【变式10-1】(2023春·吉林长春·七年级校考期中)甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.6米.相持一会儿后,标志物向乙队方向移动了0.5米,随后又向甲队方向移动了1.3米,在大家的加油声中,标志物又向甲队方向移动了0.9米.若规定标志物向某队方向移动2米以上该队即可获胜,通过计算说明最后哪队获胜?【答案】甲队胜,见解析【分析】根据题目内容建立数轴模型,规定原点、正方向、单位长度后,利用数轴表示数的方法求出标志物最后表示的数,由此判断即可.【详解】解:把拔河绳看作数轴,标志物开始在原点,甲在正方向,乙在负方向,标志物最后表示的数=−0.2+0.6−0.5+1.3+0.9=2.1米>2米.即标志物向正方向移了2.1m,而规定标志物向某队方向2米该队即可获胜,所以甲获胜.【点睛】本题主要考查数轴的相关知识,解题的关键是规定正方向,灵活变化,能说明问题是否成立的理由.。

【精选】苏科版七年级上册数学 有理数单元测试与练习(word解析版)

【精选】苏科版七年级上册数学 有理数单元测试与练习(word解析版)

一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。

【精选】苏科版数学七年级上册 有理数(提升篇)(Word版 含解析)

【精选】苏科版数学七年级上册 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。

(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。

2.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=________;另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=________;你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离. ________(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q 所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣=________;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ________;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-1.5)与D(-3.5)之间的距离.________【答案】(1)解:8;2;有道理;点M与点N之间的距离为点C与点D之间的距离为(2)解:8;2;有道理;点M与点N之间的距离为点C与点的之间的距离为【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.4.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.5.阅读材料,回答下列问题:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题。

例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|3−1|=2;在数轴上,有理数5与−2对应的两点之间的距离为|5−(−2)|=7;在数轴上,有理数−2与3对应的两点之间的距离为|−2−3|=5;在数轴上,有理数−8与−5对应的两点之间的距离为|−8−(−5)|=3;……如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a−b|或|b−a|,记为|AB|=|a−b|=|b−a|.(1)数轴上有理数−10与−5对应的两点之间的距离等于________;数轴上有理数x与−5对应的两点之间的距离用含x的式子表示为________;若数轴上有理数x与−1对应的两点A,B之间的距离|AB|=2,则x等于________;(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为−2,动点P表示的数为x.①若点P在点M,N之间,则|x+2|+|x−4|=________;若|x+2|+|x−4|═10,则x=________;②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x−2|+|x−4|的最小值等于________ .【答案】(1)5;x+5;1或−3(2)6;6或−4;8【解析】【解答】(1)根据绝对值的定义:数轴上有理数−10与−5对应的两点之间的距离等于5;数轴上有理数x与−5对应的两点之间的距离用含x的式子表示为|x+5|;A,B之间的距离|AB|=2,则x等于1或−3,(2)①若点P在点M,N之间,则|x+2|+|x−4|=6;若|x+2|+|x−4|═10,则x=6或−4;②|x+2|+|x|+|x−2|+|x−4|的最小值,即x与4,2,0,−4之间距离和最小,这个最小值=4−(−4)=8.故答案为:5,|x+5|,1或−3;6,6或−4,8.【分析】(1)根据绝对值的定义:数轴上有理数-10与-5对应的两点之间的距离等于5;数轴上有理数x与-5对应的两点之间的距离用含x的式子表示为|x+5|;若数轴上有理数x 与-1对应的两点A,B之间的距离|AB|=2,则x等于1或-3;(2)①若点P在点M,N之间,则|x+2|+|x-4|=6;若|x+2|+|x-4|═10,则x=6或-4;②|x+2|+|x|+|x-2|+|x-4|的最小值,这个最小值=4-(-2)=6.6.如图,在数轴上A点表示的数是-8,B点表示的数是2。

相关文档
最新文档