河南省2020年中考数学压轴题全揭秘专题15最短路径问题(含解析)

合集下载

类型11 最短路径类问题(精选20题) 2020年中考数学 三轮冲刺 难点题型突破

类型11 最短路径类问题(精选20题) 2020年中考数学 三轮冲刺 难点题型突破

最短路径类问题1.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm2.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.354.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20B.25C.30D.355.如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.C.D.46.如图所示,是一圆柱体,已知圆柱的高AB=3,底面直径BC=10,现在有一只蚂蚁想要从A处沿圆柱表面爬行到对角C处去捕食,则它爬行最短路径是()(本题π取3).A.13B.3C.D.27.已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A.B.C.D.8.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)9.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.11.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.12.如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是.13.如图,Rt△ABC中,∠B=90°,∠A=30°,AC=4,D是AC的中点,P是AB上一动点,则CP+PD的最小值为.14.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=12,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.15.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,D为BC中点,AD=4,P为AB 上一个动点,当P点运动时,PC+PD的最小值为.16.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.17.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.18.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积19.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连接AE、EC1.虫乙如果沿路径A﹣E﹣C1爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点C1,以1厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)20.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.试题解析1.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.2.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2dm,∴这圈金属丝的周长最小为2AC=4dm.故选:A.3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.35解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.4.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20B.25C.30D.35解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故选:B.5.如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.C.D.4解:如图,AB==.故选:C.6.如图所示,是一圆柱体,已知圆柱的高AB=3,底面直径BC=10,现在有一只蚂蚁想要从A处沿圆柱表面爬行到对角C处去捕食,则它爬行最短路径是()(本题π取3).A.13B.3C.D.2解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=5π=15,所以AC==3,此时考虑一种情况就是蚂蚁在圆柱体上方走直径这一情况:即路程为AB+R BC=3+10=13∵13<3∴最短路径为13.故选:A.7.已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A.B.C.D.解:由题意知,底面圆的直径为2r,故底面周长等于2rπ,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得,2rπ=,解得n=120,所以展开图中扇形的圆心角为120°,∴∠AOA′=120°,∴∠1=60°,过C作CF⊥OA,∵C为OB中点,BO=3r,∴OC=r,∵∠1=60°,∴∠OCF=30°,∴FO=r,∴CF2=CO2﹣OF2=r2,∵AO=3r,FO=r,∴AF=r,∴AC2=AF2+FC2=r2+r2=r2,∴AC=,故选:B.8.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为3cm.(结果保留π)解:如图所示,∵无弹性的丝带从A至C,绕了1.5圈,∴展开后AB=1.5×2π=3πcm,BC=3cm,由勾股定理得:AC===3cm.故答案为:3.9.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13cm.解:∵P A=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).11.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.解:过点D作DE⊥AB于点E,过点E作EQ⊥AC于点Q,EQ交AD于点P,连接CP,此时PC+PQ=EQ取最小值,如图所示.在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴AB=═15.∵AD是∠BAC的平分线,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ∥BC,∴,即,∴EQ=,故答案为.12.如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是.解:∵四边形ABCD是矩形,∴AD=BC=1,∠A=90°,∴=2,∵将△ABD沿射线DB平移得到△A'B'D',∴B′D′=BD=2,作点C关于BD的对称点G,连接CG交BD于E,连接D′G,则CD′=GD′CE⊥BD,CG=2CE,∵CE===,∴CG=,以B′D′,GD′为邻边作平行四边形B′D′GH,则B′H=D′G=CD′,当C,B′,H在同一条直线上时,CB′+B′H最短,则B'C+D'C的最小值=CH,∵四边形B′D′GH是平行四边形,∴HG=B′D′=2,HG∥B′D′,∴HG⊥CG,∴CH==,故答案为:.13.如图,Rt△ABC中,∠B=90°,∠A=30°,AC=4,D是AC的中点,P是AB上一动点,则CP+PD的最小值为2.本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.14.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=12,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为44.解:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以5为半径的圆于G,由两点之间线段最短,此时C′B的值最小最小值为==50,则GH+CH的最小值=50﹣6=44,故答案为:44.15.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,D为BC中点,AD=4,P为AB 上一个动点,当P点运动时,PC+PD的最小值为4.解:设CD=x,∵AC=BC,∠ACB=90°,D为BC中点,∴AC=BC=2x,∵AD=4,∴(2x)2+x2=42,∴x=(负值舍去),∴CD=,∴AC=BC=,作点C关于AB对称点C′,则OC′=OC,连接DC′,交AB于P,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵BD=CD=,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=,根据勾股定理可得DC′==4.故答案为:4.16.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.解:(1)方案1:AC+AB=1+5=6,方案2:,∵,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,(或)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4﹣x)2+128x=1∴,即:;故当DQ=3或时,△ABQ为等腰三角形.17.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.18.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积解:(1)∵AB=AC,AD是中线,∴∠BAD=∠CAD;(2)连接EC.结论:BD=CE.理由:∵AD是中线,∴BD=CD,∵AD,AE关于AC对称,∴CD=CE,∴BD=CE;(3)连接BE交AD于点P,此时PE+PC的值最小.∵AB=AC,∠BAC=90°,BD=DC=4,∴AD=AE=4,由题意AE∥BD,AE=AD=BD,∴四边形ABDE是平行四边形,∴P A=PD=2,∵PD⊥BC,∴S△BCP=×8×2=819.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连接AE、EC1.虫乙如果沿路径A﹣E﹣C1爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点C1,以1厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)解:(1)画出图①中A⇒E2⇒C1,A⇒E3⇒C1,A⇒E4⇒C1中任意一条路径;(E1、E2、E3分别为各棱中点)(说明:无画法,扣2分)(2)由(1)可知,当昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙可以沿下列四种路径中的任意一种爬行:可以看出,图②﹣1与图②﹣2中的路径相等,图②﹣3与图②﹣4中的路径相等.①设昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙从顶点A按路径A→E→F 爬行捕捉到昆虫甲需x秒钟,如图②﹣1,在Rt△ACF中,(2x)2=(10﹣x)2+202,解得x=10;设昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙从顶点A按路径A→E2→F 爬行捕捉到昆虫甲需y秒钟,如图④﹣4,在Rt△ABF中,(2y)2=(20﹣y)2+102,解得y≈8;所以昆虫乙从顶点A爬行捕捉到昆虫甲至少需8秒钟.[说明]未考虑到A→E→F和图④中其它路径,而直接按路径A→E→F(或A→E→F)计算,并求出正确答案的不扣分.20.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.解:(1)(cm);(2)画图分两种情况:①当横向剪开时:(cm),②当竖向剪开时:(cm);∵,∴最短路程为cm.(3)如图所示:连接AA1,过点O作OD⊥AA1于点D,在Rt△ADO和Rt△A1DO中,∵OA=OA1,∴AD=A1D,∠AOD=∠AOA1=60°,∴AD=OA sin60°=4×=2(cm),∴AA1=2AD=4(cm),∴所求的最短的路程为AA1=cm.。

2020届中考数学压轴题全揭秘 专题15 动点综合问题(含解析)

2020届中考数学压轴题全揭秘 专题15 动点综合问题(含解析)

的速度向点 C 运动,其中一个动点到达终点时,另一个动点也随之停动,过点 N 作 NQ 垂直于 BC 交 AC
于点 Q,连结 MQ.
①求△ AQM 的面积 S 与运动时间 t 之间的函数关系式,写出自变量的取值范围;当 t 为何值时,S 有最大 值,并求出 S 的最大值; ②是否存在点 M,使得△ AQM 为直角三角形?若存在,求出点 M 的坐标;若不存在,说明理由.
【例 2】(模型建立) (1)如图 1,等腰直角三角形 ABC 中,ACB 90 ,CB CA ,直线 ED 经过点 C ,过 A 作 AD ED 于点 D ,过 B 作 BE ED 于点 E .求证: BEC CDA ;
(模型应用)
(2)已知直线 l1 : y
4 3
x
4
与坐标轴交于点
AQ=OB=4,于是得到 Q1(7,0),Q2(-1,0),②当∠APQ=90°时,如图 2,根据全等三角形
的性质得到 AQ=AB=5,于是得到 Q3(8,0),Q4(-2,0),③当∠PAQ=90°时,这种情况不存
在.
【详解】(1)在 y=- 4 x+4 中, 3
令 y=0,则 0=- 4 x+4, 3
【答案】(1)见解析;(2)y=−7x−21;(3)D(4,−2)或( 20 , 22 ). 33
【解析】(1)根据△ ABC 为等腰直角三角形,AD⊥ED,BE⊥ED,可判定 BEC CDA ;
(2)①过点 B 作 BC⊥AB,交 l2 于 C,过 C 作 CD⊥y 轴于 D,根据△ CBD≌△ BAO,得出 BD=AO=3, CD=OB=4,求得 C(−4,7),最后运用待定系数法求直线 l2 的函数表达式; (3)根据△ APD 是以点 D 为直角顶点的等腰直角三角形,当点 D 是直线 y=−2x+6 上的动点且在第四象 限时,分两种情况:当点 D 在矩形 AOCB 的内部时,当点 D 在矩形 AOCB 的外部时,设 D(x,−2x+6), 分别根据△ ADE≌△DPF,得出 AE=DF,据此列出方程进行求解即可. 【详解】解:(1)证明:∵△ABC 为等腰直角三角形, ∴CB=CA,∠ACD+∠BCE=90°, 又∵AD⊥ED,BE⊥ED, ∴∠D=∠E=90°,∠EBC+∠BCE=90°, ∴∠ACD=∠EBC,

2020年(河南)中考数学压轴题全揭秘精品专题15 最短路径问题(含答案解析)

2020年(河南)中考数学压轴题全揭秘精品专题15 最短路径问题(含答案解析)

专题15最短路径问题模型一. 两点之间,线段最短模型二. “将军饮马”模型三. 双动点模型四. 垂线段最短【例1】(2019·河南南阳一模)如图,已知一次函数y=12x+2的图象与x轴、y轴交于点A、C,与反比例函数y=kx的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9.(1)点A的坐标为,点C的坐标为,点P的坐标为;(2)已知点Q在反比例函数y=kx的图象上,其横坐标为6,在x轴上确定一点M,是的△PQM的周长最小,BA'O求出点M的坐标.【分析】(1)根据一次函数的解析式求得A、C坐标,由S△ABP=12·AB·BP=9,设P点坐标为(m,12m+2),代入得到点P坐标;(2)先根据反比例函数解析式求得Q点坐标,作Q点(或P点)关于x轴的对称点Q’(P’),连接PQ’(QP’)与x轴的交点即为点M,用待定系数法求出直线PQ’(QP’的解析式).【解析】解:(1)在y=12x+2中,当x=0时,y=2;y=0时,x=-4,∴A点坐标为(-4,0),C点坐标为(0,2),设P点坐标为(m,12m+2),m>0,则AB=m+4,BP=12m+2,∵S△ABP=12·AB·BP=9,即12×(m+4)(12m+2)=9,解得:m=2或m=-10(舍),∴点P的坐标为(2,3);(2)如图,作点Q关于x轴的对称点Q’,连接PQ’交x轴于点M,此时,△PQM的周长最小,6,-1),设直线PQ’的解析式为:y=mx+b,得:23 61m bm b+=⎧⎨+=-⎩,解得:15mb=-⎧⎨=⎩,即直线PQ’的解析式为:y=-x+5,当y=0时,x=5,即M点坐标为(5,0),∴当△PQM的周长最小时,M点坐标为(5,0).【变式1-1】(2017·新野一模)已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴20 4220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,将A(﹣1,0)代入得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12,∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,舍去.故点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).∵A、C关于直线DE对称,∴连接AM交直线DE与点G,连接CG、CM,此时,△CMG的周长最小,设直线AM的函数解析式为y=kx+b,将A(﹣1,0),M(12,94)代入并解得:k=32,b=32,∴直线AM的函数解析式为y=32x+32,∵D为AC的中点,∴D(﹣12,1).可得直线AC的解析式为:y=2x+2,直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在点G,使△CMG的周长最小,G(﹣38,1516).【变式1-2】(2019·三门峡二模)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D 是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD =m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.图1 图2【答案】见解析.【解析】解:(1)证明:由旋转性质,得:∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=∴△BDE的周长最小值为:+4.1.(2018·焦作一模)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为,点C的坐标;(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标;(3)如图2,当点P位于抛物线的对称轴的右侧,若将△APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标.图1 图2【答案】(1)y=﹣x2+3x+4,(﹣1,0);(2)(3)见解析.【解析】解:(1)∵抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),∴-16a+4b+c=0,c=4,解得:b=3,c=4,∴抛物线解析式为y=﹣x2+3x+4,当y=0时,﹣x2+3x+4=0,解得x=﹣1,x=4,即C(﹣1,0);答案为:y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴AQ AOPQ CO=4,即AQ=4PQ,设P(m,﹣m2+3m+4),则PQ=|4﹣(﹣m2+3m+4|=|m2﹣3m|,∴4|m2﹣3m|=m,解得:m1=0(舍去),m2=134,m3=114,∴P点坐标为(134,5116)或(114,7516).(3)设P(m,﹣m2+3m+4),∵抛物线对称轴为:x =32, ∴m >32, ①当点Q ′落在x 轴上时,延长QP 交x 轴于H ,则PQ =m 2﹣3m ,由折叠性质知:∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m , ∵∠AQ ′O =∠Q ′PH , ∴△AOQ ′∽△Q ′HP , ∴'''OA AQ Q B PQ =, 即24'3m Q B m m=-,得:Q ′B =4m ﹣12, ∴OQ ′=12﹣3m ,在Rt △AOQ ′中,由勾股定理得:42+(12﹣3m )2=m 2, 解得:m 1=4,m 2=5,即P 点坐标为(4,0),(5,﹣6); ②当点Q ′落在y 轴上,此时以点A 、Q ′、P 、Q 所组成的四边形为正方形, ∴PQ =PQ ′, 即|m 2﹣3m |=m ,得m 1=0(舍去),m 2=4,m 3=2, P 点坐标为(4,0),(2,6), 综上所述,点P 的坐标为(4,0)或(5,﹣6)或(2,6).2.(2019·中原名校大联考)如图,直线y =﹣x +5与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 与直线y =﹣x +5交于B ,C 两点,已知点D 的坐标为(0,3)(1)求抛物线的解析式;(2)点M ,N 分别是直线BC 和x 轴上的动点,则当△DMN 的周长最小时,求点M ,N 的坐标.【答案】见解析.【解析】解:(1)在y=﹣x+5中,当x=0,y=5,当y=0,x=5,点B、C的坐标分别为(5,0)、(0,5),将(5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5即二次函数表达式为:y=﹣x2+bx+5.(2)在y=﹣x2+bx+5中,当y=0时,x=﹣1或5,∴A(﹣1,0),OB=OC=2,∴∠OCB=45°;过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,∵∠OCB=45°,∴CD″∥x轴,点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,设直线D’D’’的解析式为:y=mx+n将D′(0,﹣3),D″(2,5),代入解得:m=4,n=-3,直线D’D’’的解析式为:y=4x﹣3,∴N(34,0).联立y=4x﹣3,y=﹣x+5得:x=85,y=175,即M(85,175).3.(2017·预测卷)已知,在平面直角从标系中,A点坐标为(0,4),B点坐标为(2,0),C(m,6)为反比例函数123y=图象上一点.将△AOB绕B点旋转至△A′O′B处.(1)求m的值;(2)求当AO′最短和最长时A′点的坐标.【答案】见解析.【解析】解:(1)∵C(m,6)为反比例函数123y=图象上一点,∴m=23;(2)当AO′最短时A′点的坐标(2+65,85),当AO′最长时A′点的坐标(2﹣65,﹣85).①当点O′在线段AB上时,AO′最短,过点O′作O′N⊥x轴于N,过点A′作A′M⊥O′N于M,∵O′N∥OA,∴''BN O N O B OB OA AB==,即'2425 BN O N==∴BN=25,O′N=45.由∠A′MO′=∠A′O′B=∠O′NB=90°,得:∠MA′O′=∠NO′B,∴△A′MO′∽△O′NB,∴''2 'A M O MO N BN==,∴A′M,O′M即A’();②当点O′在线段AB延长线上时,AO′最长,同理可得:(2).4.(2017·郑州一模)如图,⊙O的半径为2,点O到直线l距离为3,点P是直线l上的一个动点,PQ切⊙O 于点Q,则PQ的最小值为()A B C.2D.3【答案】A.【解析】解:由垂线段最短知,当OP⊥l时,OP取最小值,而由PQ PQ取最小值,过点O作OP⊥l于P,过P作⊙O的切线PQ,切点为Q,连接OQ,则OP=3,OQ=2,∵PQ切⊙O于点Q,∴∠OQP=90°,由勾股定理得:PQ,即PQ,故答案为:A .5.(2019·许昌月考)如图,在菱形ABCD 中,∠ABC =60°,AB =2,点P 是这个菱形内部或边上的一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为 .【答案】 2.【解析】解:(1)BC 为腰,且∠PCB 为顶角时,以C 为圆心,以BC 为半径画弧,点P 在弧上,由题意知,点P 在菱形外或与A 、D 重合,不符合题意;(2)以BC 为腰,且∠PBC 为顶角时,点P 在以B 为圆心,以AB 为半径的圆上,则PD 的最小值为:BD -BC BC -BC ﹣2;(3)BC 为底时,则点P 在线段BC 的垂直平分线上,由垂线段最短知,PD 最小为:1+1=2;∵2<2,∴PD 的最小值为:﹣2.6.(2019·郑州外国语模拟)在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点A 、B 、C ,已知A (-1,0),C (0,3).(1)求抛物线的解析式;(2)如图,抛物线的顶点为E ,EF ⊥x 轴于F ,N 是直线EF 上一动点,M (m ,0)是x 轴上一个动点,请直接写出CN +MN +12MB 的最小值.【答案】见解析.【解析】解:(1)将A (-1,0),C (0,3)代入y =-x 2+bx +c 得:103b c c --+=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,即抛物线的解析式为:y =-x 2+2x +3;(2)首先构造出12MB ,将AB 绕点B 顺时针旋转30°,交y 轴于H ,过M 作MG ⊥BH 于G ,则MG =12MB ,CN +MN +12MB 的最小值即CN +MN +MG 的最小值, 由图可知,当C 、N 、M 、G 共线,且CG ⊥BH 时,取得最小值,即∠HCG =30°,∵OB =3,∠ABH =30°,∴AH H (0),∴CH∴CG =CH ·cos ,即CN +MN +12MB 的最小值为32. 7.(2019·郑州实验中学模拟)如图,已知抛物线y =﹣x 2+bx +c 与一直线相交于A (1,0)、C (﹣2,3)两点,与y 轴交于点N ,其顶点为D .(1)求抛物线及直线AC 的函数关系式;(2)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值;(3)在对称轴上是否存在一点M ,使△ANM 的周长最小.若存在,请求出△ANM 周长的最小值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数解析式为:y =﹣x 2﹣2x +3;设直线AC 的解析式为:y =kx +n ,将A (1,0),C (﹣2,3)代入y =kx +n ,得:k +n =0,-2k +n =3,解得:k =-1,n =1,即直线AC 的解析式为y =﹣x +1.(2)过点P 作PF ∥y 轴交直线AC 于点F ,设点P (x ,﹣x 2﹣2x +3),则点F (x ,﹣x +1),(﹣2<x <1)∴PF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2.∴S △APC =12(x A -x C )•PF =﹣32x 2﹣32x +3 =﹣32(x +12)2+278. ∴当x =﹣12时,△APC 的面积取最大值,最大值为278. (3)当x =0时,y =﹣x 2﹣2x +3=3,∴点N 的坐标为(0,3).由y =﹣x 2﹣2x +3=﹣(x +1)2+4,得:抛物线的对称轴为x =﹣1.∴点C ,N 关于抛物线的对称轴对称,设直线AC 与抛物线的对称轴的交点为点M ,∴MN=CM,∴AM+MN=AM+MC=AC,此时△ANM周长有最小值.由勾股定理得:AC=,AN=∴C△ANM=AM+MN+AN=AC+AN=∴△ANM周长的最小值为8.(2018·郑州预测卷)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线的解析式;(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH +HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.【答案】见解析.【解析】解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴C (0,3),E (2,3).将C (0,3),E (2,3)代入y=-x2+bx+c得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3;(2)在y=-x2+2x+3中,当y=0时,x1=-1,x2=3,∴A(-1,0),B(3,0),∵AO=1,CO=3,∴在Rt△AOC中,由勾股定理得:AC ∵CO=BO=3,∴∠OBC=∠OCB=45°,∴FM=BF=1,∵RO∥MF,∠RAO=∠MAF,∴△ARO∽△AMF,∴RO AOMF AF=,得RO=13,∴CR=OC-OR=3-13=83,AR,∴△ACR的周长为:AC+CR+AR=83+;(3)取OF中点A′,连接A′G交直线EF的延长线于点H,过点H作HP′⊥y轴于点P′,连接AP′,当P在P′处时,AP+PH+HG最小,A′(1,0),设直线A′G的解析式为:y=kx+m,将G(4,-5),A′(1,0)代入得:k=53-,b=53,∴直线A′G的解析式为:y=53-x+53.当x=2时,y=53 -,即点H的坐标为(2,53 -),∴符合题意的点P的坐标为(0,53 -).9. (2019·郑州联考)如图,在平面直角坐标系中,抛物线y2x-与x轴交于A,C(A在C 的左侧),点B 在抛物线上,其横坐标为1,连接BC ,BO ,点F 为OB 中点.(1)求直线BC 的函数表达式;(2)若点D 为抛物线第四象限上的一个动点,连接BD ,CD ,点E 为x 轴上一动点,当△BCD 的面积的最大时,求点D 的坐标,及|FE ﹣DE |的最大值.【答案】见解析.【解析】解:(1)在y2x -y =0,解得:x 1=32,x 2=72, ∴A (32,0),C (72,0) 当x =1时,y =即B (1,,设直线BC 的解析式为y =kx +b得:702k b k b ⎧+=⎪⎨+=⎪⎩,解得5k b ⎧=⎪⎪⎨⎪=⎪⎩, 直线BC 的解析式为y=x. (2)设点D (m,255-+),则点H (m,5-m+5) 过点D 作DH ⊥x 轴交BC 于点H ,HD =5-m +5﹣(255-+)=294m ⎫-+⎪⎝⎭ S △BCD =12×DH ×(x C -x B ) =54DH , ∴当m =94时,HD 取最大值,此时S △BCD 的面积取最大值.此时D (94. 作D 关于x 轴的对称点D ′则D ′(94), 连接D ′H 交x 轴于一点E ,此时|D ′E ﹣FE |最大,最大值为D ′F 的长度,∵F (12)∴D ′F ,即|FE ﹣DE |. 10.(2019·三门峡一模)反比例函数k y x=(k 为常数,且k ≠0)的图象经过点A (1,3),B (3,m ). (1)求反比例函数的解析式及点B 的坐标;(2)在x 轴上找一点P ,使P A +PB 的值最小,求满足条件的点P 的坐标.【答案】见解析.【解析】解:(1)将点A(1,3)代入kyx=得:k=3,即反比例函数解析式为:3yx =,将点B(3,m)代入3yx=得:m=1,即B(3,1).(2)作点A关于x轴的对称点A’(1,-3),连接A’B交x轴于点P,此时P A+PB最小,如图所示,设直线A’B的解析式为:y=kx+b,∴331k bk b+=-⎧⎨+=⎩,解得:25kb=⎧⎨=-⎩,即直线A’B的解析式为:y=2x-5,当y=0时,x=52,即P(52,0).ABO x y。

2020年河南中考数学压轴百题大赏简版答案

2020年河南中考数学压轴百题大赏简版答案

15 3
<tan
<2
;(4)2.
47.(1)略;(2)略;(3)不是. 48.(1) 2 5 ; 2 5 ; 2 13 , 2 7 ;(2) a2 b2 5c2 ;(3)4.
49.(1)
12 5
;(2)略;(3)略;(4)90°.
50.(1)略;(2)
DE

5 6
;(3)
2
2 2.
第七讲 函数之几何性质综合——“另辟蹊径”
3
3
35
第十讲 函数之三角形存在性问题——“代几综合”
72.(1) y x2 2x 3 ,C 点坐标为 0 ,3 ;(2) F 2 ,1 ;
(3)① t 1;②当 t 3 或 6 3 2 秒时, △BOQ 为等腰三角形.
4
4
73.(1) y 1 x2 1 x 2 ;(2) P 1 5 ,1 或 P 1 5 ,1 ; 42
6.(1) GH EH ,取 PF,PC 中点 M、N,证明 △GMH≌△ENH 即可; (2)成立,证法同上.
第二讲 垂直结构——“改斜归正”
7.(1)
3 ;(2)
3 ;(3)不变,恒为
3 2

8.(1)证 ABF COE , BAF C ,即证;(2)2;(3)n.
9.(1) EF EG ;(2) EF 1 ;(3) EF 1 .
(2)① S1 的最大值是 4 ;②点 D 的横坐标为 2 或 29 .
S2
5
11
69.(1) y x2 6x 5 ;
(2)① P 点的横坐标为 4 或 5 41 或 5 41 ;
2
2
②点

河南省2020年中考考前名师押题压轴卷 数学试题+答案+全解全析

河南省2020年中考考前名师押题压轴卷 数学试题+答案+全解全析

河南省2020年中考考前名师押题压轴卷数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.12的相反数等于A.2B.–2C.2D.–22.2020年是具有里程碑意义的一年,我们将全面建成小康社会,全面建设小康社会的基本标准包括:人均国内生产总值超过3000美元、城镇居民人均可支配收入1.8万元等十个方面.数据“1.8万元”用科学技术法表示为.A.1.8×103元B.1.8×104元C.0.18×105元D.18000元3.如图所示为一个几何体的三视图,那么这个几何体是A .B .C .D .4.下列计算正确的是A .235x y xy +=B .()2239m m +=+C .()326xy xy =D .1055a a a ÷= 5.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是年龄13 14 15 16 人数2 3 4 1 A .15,14.5 B .14,15 C .14,14.5 D .15,156.关于x 的方程220--=x x k 有实数根,则k 的值的范围是A .1k >-B .1k ≥-C .1k <-D .1k ≤-7.抛物线y =4(x +3)2+12的顶点坐标是A .(4,12)B .(3,12)C .(﹣3,12)D .(﹣3,﹣12)8.如图,4×2的正方形的网格中,在A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概率为A .12B .13C .14D .19.某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元,求该小区新建1个地上停车位和1个地下停车位各需多少万元?设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,列二元一次方程组得 A .632 1.3x y x y +=⎧⎨+=⎩ B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩10.如图①,在矩形ABCD 中,AB AD <,对角线,AC BD 相交于点O ,动点P 由点A 出发,沿AB BC CD →→向点D 运动.设点P 的运动路程为x ,AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AD 边的长为A .3B .4C .5D .6第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.计算:()02180.52----=___________________.12.一副直角三角板如上图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,则∠DBC =_____°.13.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 14.⊙O 的半径OA =4,以OA 为直径作⊙O 1交⊙O 的另一半径OB 于点C ,当C 为OB 的中点时,图中阴影部分的面积S =________.15.如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)。

【精编版】2020年(河南)中考数学压轴题全揭秘精品专题02 折叠与图形存在性

【精编版】2020年(河南)中考数学压轴题全揭秘精品专题02 折叠与图形存在性

专题02 折叠与图形存在性【例1】(2019·郑州外国语模拟)如图,在Rt △ABC 中,△ACB =90°,AC =2,BC =4,CD 是△ABC 的中线,E 是边BC 上一动点,将△BED 沿ED 折叠,点B 落在点F 处,EF 交线段CD 于G ,当△DFG 是直角三角形时,则CE = .【答案】1. 【解析】解:在Rt △ABC 中,由勾股定理得:AB由折叠性质知△F =△B ≠90°,分两种情况讨论,(1)当△FDG =90°时,C△D是Rt△ABC斜边AB的中点,△CD=BD=AD△△B=△DCE=△F,△△DCE+△GEC=△F+△FDG,△△GEC=90°,在Rt△DFG中,tan△F=DG DF,△DG,△CG=CD-DG=2,在Rt△CEG中,CE=CG·cos△GCE;(2)当△FGD=90°时,由(1)知△B=△F=△DCB,由BD=DF△DG=DF·sin△F,△CG=CD-DG1,△CE=CG÷cos△DCB=1),故答案为:1【变式1-1】(2018·洛阳三模)如图,在菱形ABCD 中,∠DAB =45°,AB =8,点P 为线段AB 上一动点,过点P 作PE ⊥AB 交直线AD 于E ,沿PE 将∠A 折叠,点A 的对称点为点F ,连接EF 、DF 、CF ,当△CDF 是直角三角形时,AP = .【答案】4【解析】解:①如图,当DF ⊥AB 时,△CDF 是直角三角形,∵在菱形ABCD 中,AB =8,∴CD =AD =AB =8,在Rt △ADF 中,AD =8,∠DAN =45°,DF =AF ,∴AP ;②如图,当CF ⊥AB 时,△DCF 是直角三角形,在Rt △CBF 中,∠CFB =90°,∠CBF =∠A =45°,BC =8,∴BF =CF ,∴AF =AB +BF ,∴AP =12AF ,故答案为:4或.【例2】(2019·河南南阳一模)如图,矩形ABCD 中,AB =2,AD =4,点E 在边BC 上,将△DEC 沿DE 翻折后,点C 落在点C ’处. 若△ABC ’是等腰三角形,则CE 的长为.【分析】根据△ABC ’是等腰三角形,分△AB =AC ’=2;△AC ’=BC ’,即C ’落在AB 的垂直平分线上时;△AB =BC ’=2,三种情况讨论,逐一作出图形求解即可.【答案】2【解析】解:分三种情况讨论:△AB =AC ’=2,如图所示,可得:四边形CDC ’E 是正方形,即CE =2;△AC ’=BC ’,即C ’落在AB 的垂直平分线MN 上时,如图所示,△DM =1,C ’D =2,△△C ’DM =30°,即得:△C ’DC =60°,△EDC =30°,△CE =CD ·tan △EDC=2×3△AB =BC ’=2,DDD N此时作出C ’的运动轨迹,及以B 为圆心,2为半径的圆,发现二者不相交,如图所示,即此种情况不存在;综上所述,答案为:2或3. 【变式2-1】(2019·郑州外外国语测试)如图所示,在△ABC 中,△C =90°,AC ≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点,设EF 与AB 、AC 分别交于点E 、F ,如果折叠后△CDF 和△BDE 均为等腰三角形,那么△B = .【答案】45°或30°.【解析】解:若△CDF 是等腰三角形,△△C =90°,△△CDF =△CFD =45°,由折叠性质知,△A =△FDE ,△B =△EFD ,若△BDE 是等腰三角形,则:(1)若DE =BD ,设△B =△DEB =x °,则△A =△FDE =90-x ,△△CDE =△B +△DEB ,△45+90-x =x +x ,解得:x =45,即△B =45°,(2)若DE =BE ,△CDE =180°-△BDE =180°-△B ,△CDE =45°+△FDE =45°+△A =45°+90°-△B =135°-△B ,△不符合题意,(3)若BD =BE ,设△B =x ,则△BDE =△BED =90°-12x , △CDE =45°+△A =135°-x ,△CDE =△B +△DEB =90°+12x , △135°-x =90°+12x ,解得:x =30, 即△B =30°,综上所述,△B 的度数为:45°或30°.【例3】(2019·商丘二模)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,E 为斜边AB 的中点,点P 是射线BC 上的一个动点,连接AP 、PE ,将△AEP 沿着边PE 折叠,折叠后得到△EP A ′,当折叠后△EP A ′与△BEP 的重叠部分的面积恰好为△ABP 面积的四分之一,则此时BP 的长为 .【答案】2或【解析】解:∵∠ACB =90°,∠B =30°,AC =2,E 为AB 的中点,∴AB =4,AE =12AB =2,BC = (1)若点A ’落在BC 上方时,连接A ′B ,由折叠可得S △A ′EP =S △AEP ,A ′E =AE =2,.∵点E 是AB 的中点,∴S △BEP =S △AEP =12S △ABP . 由题可得:S △EFP =14S △ABP , ∴S △EFP =12S △BEP =12S △AEP =12S △A ′EP , ∴EF =BF ,PF =A ′F .∴四边形A′EPB是平行四边形,∴BP=A′E=2;②若点A’落在直线BC下方时,连接AA′,交EP与H,.可得:GP=BG,EG=1.∵BE=AE,∴EG=12AP=1,∴AP=2∴AP=AC,即此时点P与点C重合,∴BP=BC=.故答案为:2或【变式3-1】(2019·安阳二模)如图,在△ABC中,∠C=90°,AB=5,BC=4.点D是边AC的中点,点E在边AB上,将△ADE沿DE翻折,使点A落在点A′处,当线段AE的长为时,A′E∥BC.【答案】12或92.【解析】解:分两种情况:(1)当A'E∥BC时,∠A'EG=∠B,由折叠可得,∠A=∠A',∵∠B+∠A=90°,∴∠A'EG+∠A'=90°,∴∠A'GE=90°,∴△ABC∽△ADG,∴AG AD DG AC AB BC==,∵AD=12AC=32,∴AG=910,DG=65,A'G=310,设AE=A'E=x,则EG=910﹣x,则cos∠GEA’=4 '5 EGA E=,∴x=12,即AE=12;(2)当A'E∥BC时,∠AHE=∠C=90°,A'H⊥CD,设AE=y,由△AHE∽△ACB,得:AH AE EH AC AB BC==∴AH=35y,HE=45y,由折叠可得,A'E=AE=y,AD=A'D=32,∴A'H=15y,DH=35y﹣32,sin∠DA’H=4 '5 DHA D,可得:y=92,即AE=92,故答案为:12或92.1.(2017·郑州一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为.【答案】32或34.【解析】解:(1)当点E与点C′重合时,△BC′D是直角三角形,在Rt△ABC中,由勾股定理得:BC=4.由翻折的性质可知;AE=AC=3,DC=DE,EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,由勾股定理得:DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=32.(2)当∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.可得:四边形ACDC′为矩形.∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.DB=BC﹣DC=1.∵DE∥AC,∴14DE BDAC BC==,134DE=.解得:DE=34.(3)∵点D在BC上运动,∴∠DBC′<90°,即∠DBC′不可能为直角.故答案为:32或34.2.(2019·洛阳三模)如图,已知Rt△ABC中,△B=90°,△A=60°,AB=3,点M,N分别在线段AC,AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,若△DCM为直角三角形时,则AM的长为.【答案】2或3.【解析】解:△在△CDM中,△C=30°,△分两种情况讨论△CDM为直角三角形的情况,(1)当△CMD =90°时,如图所示,设AM =x ,则DM =x ,CM,△x=6,解得:x=3;(2)当△CDM =90°时,如图所示,设AM =x ,则CM =2x ,DM =x ,△x +2x =6,解得x =2,综上所述,答案为:3或2.3.(2019·周口二模)如图,在矩形纸片ABCD 中,已知AB =6,BC =8,E 是边AD 上的点,以CE 为折痕折叠纸片,使点D 落在点F 处,连接FC ,当△AEF 为直角三角形时,DE 的长为_________.【答案】3或6. 【解析】解:由题意知,△EAF ≠90°,(1)当△AEF =90°时,如下图所示,ACDA CDE DC BA由折叠知,CD =CF =DE =EF =6,即DE =6;(2)当△AFE =90°时,如下图所示,此时点F 落在对角线AC 上,AC =10,CF =6,AF =4,设DE =x ,则EF =x ,AE =8-x ,在Rt △AEF 中,由勾股定理得:x 2+42=(8-x )2,解得:x =3,故答案为:3或6.4.(2018·焦作一模)如图,在Rt △ABC 中,△A =90°,△B =30°,BC,点E 、F 分别是BC 、AC 边上的动点,沿E 、F 所在直线折叠△C ,使点C 的落对应点C '始终落在边AB 上,若△BEC '是直角三角形时,则BC '的长为 .或2. 【解析】解:△△B =30°,△分两种情况讨论:△当△BEC '=90°时,BBBE 'E ,△CE =C 'E ,BC ,△BE C 'E =1,△Rt △BEC '中,由勾股定理得:BC '=2;△当△BC 'E =90°时,BE =2C 'E =2CE ,BC +1,△BE =23×),C 'E =13+1),在Rt △BEC ’中,由勾股定理得:BC ;综上所述,BC '或2. 5.(2019·南阳毕业测试)如图,在Rt △ABC 中,AC =8,BC =6,点D 为斜边AB 上一点,DE △AB 交AC 于点E ,将△AED 沿DE 翻折,点A 的对应点为点F .如果△EFC 是直角三角形,那么AD 的长为 .【答案】75或5. 【解析】解:在Rt △ABC 中,AC =8,BC =6,由勾股定理得:AB=10,按直角顶点位置分类讨论,△若△CFE=90°,△在Rt△ABC中,△ACB=90°,△△CFB+△EFD=△B+△A=90°,由翻折知:△A=△EFD,AE=EF,△△CFB=△B,CF=BC=6,在Rt△CEF中,有CE2=EF2+CF2,即CE2=(8﹣CE)2+62,△CE=254,△AE=74,由△ADE=△ACB=90°,得△ADE△△ACB,△AE AD AB AC,得:AD=75;△当△ECF=90°时,点F与B重合,△AD=12AB=5;△当△CEF=90°时,则EF△BC,△AFE=△B,△△A=△AFE,△△A=△B,△AC=BC(与题设矛盾),这种情况不存在,综上所述:如果△EFC是直角三角形,AD的长为75或5.故答案为:75或5.6.(2019·开封二模)在Rt△ABC中,AC=3,AB=4,D为斜边BC中点,E为AB上一个动点,将△ABC 沿直线DE折叠,A、C的对应点分别为A′、C′,EA′交BC于点F,若△BEF为直角三角形,则BE的长度为.【答案】12或54.【解析】解:△△B≠90°,△分两种情况讨论:△当△BEF=90°时,过D作DM△AB于M,则△EMD=90°,DM△AC,D为BC中点,可得:M为AB的中点,△BM=12AB=2,DM=12AC=32,由折叠可得,△MED=12△AEF=45°,△△DEM是等腰直角三角形,△EM=DM=32,△BE =2﹣32=12; △当△BFE =90°时,连接AD ,A 'D ,根据对称性可得:△EAD =△EA 'D ,AD =A 'DRt △ABC 中,AC =3,AB =4,由勾股定理得:BC =5,Rt △ABC 中,D 为BC 的中点,△AD =BD =A 'D =12BC =52, △△B =△EAD =△F A 'D ,设BE =x ,则BF =BE ·cosB =45x , △DF =BD ﹣BF =52﹣45x , 由sin △F A 'D =sinB ,得:54532525x -=⨯, 解得:x =54,即BE =54, 综上所述,BE 的长度为12或54. 7.(2019·安阳一模)如图,在Rt △ABC 中,△C =90°,AC=BC =4,点D 是AC 的中点,点F 是边AB 上一动点,沿DF 所在直线把△ADF 翻折到△A ′DF 的位置,若线段A ′D 交AB 于点E ,且△BA ′E 为直角三角形,则BF 的长为_________.A′A B C DE F【答案】285或6. 【解析】解:由分析知△EBA ’≠90°,分两种情况讨论:(1)当△BA ’E =90°时,如图所示,连接BD ,过F 作FH △AC 于H ,可得:△BCD △△BA ’D ,△BDF =90°,设FH =x ,则AF =2x ,AHx ,DH-x ,BF =8-2x ,由勾股定理得:BD 2+DF 2=BF 2,DF 2=DH 2+FH 2,即BD 2+ DH 2+FH 2= BF 2,△()()2222882xx x ++=-, 解得:x =125, 即BF =285; (2)当△BEA ’=90°时,如下图所示,AC DA C DAC D由折叠性质知,△A=△ADF=△EDF=30°,△AD△DE AE=3,△EF=3DE=1,△AF=2,即BF=6,综上所述,BF的值为285或6.8.(2019·省实验一模)如图,在Rt△ABC中,AB=3,BC=4,点P为AC上一点,过点P作PD△BC 于点D,将△PCD沿PD折叠,得到△PED,连接AE.若△APE为直角三角形,则PC=.【答案】3532或12532.【解析】解:若△APE=90°,则△CPD=△EPD=45°,可得△C=45°,与题意不符,△△APE≠90°,在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5,△当△AEP=90°时,设PC=x,在Rt△PDC中,sinC=35,cosC=45,所以PD=35x,CD=45x,由折叠知DE=CD=45x,△BE=BC﹣CE=4﹣85 x,△△B=△PDE,△BAE+△AEB=90°,△PED+△AEB=90°,△△BAE=△PED=△C,tan△BAE=tan△C,即843534x-=,解得:x=35 32,即PC=35 32;△当△EAP=90°时,如下图,设PC=x,则PE=x,PD=35x,CD=45x,CE=85x,BE=85x-4,可证:△AEB=△C,△tan△AEB= tan△C,△34 BEAB=,即843534x-=,解得:x=125 32即PC=125 32,综上所述,答案为:3532或12532.9.(2019·叶县一模)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.【答案】1或94.ABD E【解析】解:由图可知,△ECF≠90°,所以分两种情况讨论:(1)当△CFE=90°时,由折叠可得,△PFE=△A=90°,AE=FE=DE,△△CFP=180°,即点P,F,C在一条直线上,△Rt△CDE△Rt△CFE,△CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=94,即AP=94;(2)当△CEF=90°时,过F作FH△AB于H,作FQ△AD于Q,则△FQE=△D=90°,△△FEQ+△CED=△ECD+△CED,△△FEQ=△ECD,△△FEQ△△ECD,△FQ QE EF DE CD CE==,△3 345 FQ QE==,△FQ=95,QE=125,△AQ=HF=3-QE=35,AH=QE=95,设AP=FP=x,则HP=95﹣x,在Rt△PFH中,HP2+HF2=PF2,即(95﹣x)2+(35)2=x2,解得x=1,即AP=1.综上所述,AP的长为1或94.10.(2019·濮阳二模)如图,已知Rt△ABC中,△B=90°,△A=60°,AC=,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.【解析】解:△△C=30°,即C不可能是直角顶点,△分两种情况讨论:(1)当△CDM=90°时,在Rt△ABC中,△B=90°,△A=60°,AC=,△△C=30°,AB+2,由折叠性质知,△MDN=△A=60°,△△BDN =30°,△BN =12DN =12AN ,△BN =13AB△AN =2BN =43, 由△DNB =60°,得:△ANM =△DNM =60°,△△AMN 是等边三角形,△AN =MN ; (2)当△CMD =90°时,由题可得,△CDM =60°,△A =△MDN =60°,△△BDN =60°,△BND =30°,△BD =12DN =12AN ,BN ,△AN =2,BN ,BD =1,△CD =BC -BD -BD ,△DM =AM =12CD ,△在Rt △ANH 中,AH =12AN =1,NH△HM =AM -AH ,在Rt △HNM 中,由勾股定理得:MN11.(2019·郑州联考)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.【答案】16或【解析】解:分三种情况讨论,(1)当B′D=B′C时,过B′作GH△AD交AB、CD于点G、H,则△B′GE=90°,可得:GH是CD、AB的垂直平分线,△AG=DH=12DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.△EG=AG﹣AE=8﹣3=5,在Rt△B’EG中,由勾股定理得:B′G=12,△B′H=GH﹣B′G=16﹣12=4,在Rt△DB’H中,由勾股定理得:DB′=(2)当DB′=CD时,则DB′=16.(3)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,△EC垂直平分BB′,△EF是线段BB′的垂直平分线,△点F与点C重合,此种情况不存在;故答案为:16或12.(2019·西华县二模)如图,在Rt△ABC中,△C=90°,BC=AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为.【答案】3或14 5.【解析】解:△△C=90°,BC=AC=2,△△B=30°,AB=2AC=4,△点D是BC的中点,△DB=DC,EB′=EB,△DB′E=△B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,由题意知∠B’AF≠90°,分两种情况讨论:(1)当△AFB′=90°时,BF=32,EF=32﹣(4﹣x)=x﹣52,在Rt△B′EF中,△EB′F=30°,△EB′=2EF,即4﹣x=2(x﹣52),解得:x=3,即AE=3;(2)当∠AB’F=90°时,过E作EH⊥AB’于H,△DC=DB′,AD=AD,△Rt △ADB ′△Rt △ADC ,△AB ′=AC =2,△△AB ′E =△AB ′F +△EB ′F =90°+30°=120°,△△EB ′H =60°,∠HEB ’=30°,∴B ′H =12B ′E =12(4﹣x ),EH ′H (4﹣x ), 在Rt △AEH 中,EH 2+AH 2=AE 2, △34(4﹣x )2+[12(4﹣x )+2]2=x 2,解得x =145, AE =145. 故答案为3或145.。

2020年中考数学专题突破专题十一:最短路径——造桥选址问题

2020年中考数学专题突破专题十一:最短路径——造桥选址问题

专题十一:最短路径——造桥选址问题【导例引入】导例:如图1,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是.【方法指引】(1)如图,在直线l 上找M 、N 两点(M 在左),使得AM+MN+NB 最小,且MN=d 。

方法:将点A 向右平移d 个单位到A ′,作A ′关于直线l 的对称点A",连接A"B 交直线l 于点N ,将点N 向左平移d 个单位到M ,点M 、N 即为所求,此时AM+MN+NB 最小为A"B 。

(2)如图,1l ∥2l ,1l ,2l 之间距离为d ,在1l ,2l 分别找M 、N 两点,使得MN ⊥1l ,且AM+MN+NB 最小。

方法:将点A 向下平移d 个单位到A ′,连接A ′B 交直线2l 于点N ,将点N 向上平移d 个单位到M ,点M ,N 即为所求,AM+MN+NB 的最小值为A ′B+d 。

(3)如图,点P ,Q 在∠AOB ,分别在OA ,OB 上找点C ,点D ,使四边形PCDQ 的周长最小.方法:分别作P,Q关于OA,OB的对称点P′,Q′,连接P′Q′分别交OA,OB与点C,D,则此时四边形PCDQ的周长最小本质为转化思想:(1)化同侧为异侧(对称变换),(2)平移定距离(平移变换),(3)化折线为直线(两点之间线段最短)“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。

【例题精讲】类型一:两定点两动点形成最短路径型例1 如图1,已知A(0, 2)、B(6, 4),E(a,0),F(a+1, 0),求a为何值时,四边形ABFE周长最小?请说明理由.【分析】四边ABFE的四条边中,AB,EF的长度固定,只要AE+BF最小,则四边形周长将取得最小值,将B点向左平移一个单位长(EF的长度),得到点M,再作A关于x轴的对称点A′,连接A′M,可得点E的位置,从而问题得解.类型二:两定点一定角形成最短路径型例2.如图,在∠POQ部有两点M,N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.【分析】分别作M关于射线OP的对称点M′,点N关于射线OQ的对称点N′,连接N′M,连接M′N,即可得到答案.【专题过关】1.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 .2, 2.如图,正方形的ABCD的边长为6,E,F是对角线BD上的两个动点,且,EF=2连接CE,CF,则△CEF周长的最小值为.3.在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E(0,1),将△AEO沿x轴向右平移得到△A′E′O′,连接A′B,BE′,则当A′B+BE′取最小值时,点E′的坐标为.4.直线l外有一点D,点D到直线l的距离为5,在△ABC中,∠ABC=90°,AB=6,tan∠CAB=,边AB在直线l上滑动,则四边形ABCD周长的最小值为.5.如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ 最小,此时PA+BQ=.6.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x +c的图象交x轴于另一点B.(1)二次函数的解析式为;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.7.矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为A (6,0)、C (O ,3),直线y=x 与与BC 边相交于点D .(1)求点D 的坐标;(2)若抛物线y=ax 2+bx 经过D 、A 两点,试确定此抛物线的解析式;(3)在(2)中抛物线的对称轴是否存在点P ,使四边形ABDP 的周长最小,并求出最小值;8. 如图,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF =2,EF =3.(1)求抛物线的解析式;(2)连接CB 交EF 于点M ,连接AM 交OC 于点R ,连接AC ,求△ACR 的周长;(3)设G (4,-5)在该抛物线上,P 是y 轴上一动点,过点P 作PH ⊥EF 于点H ,连接AP ,GH ,问AP +PH +HG 是否有最小值?如果有,求出点P 的坐标;如果没有,请说明理由.10. 已知,如图,二次函数()2230y ax ax a a =+-≠的图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :333y x =+对称. (1)求A ,B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M ,N 分别为直线AH 和直线l 上的两个动点,连接HN ,NM ,MK ,求HN+NM+MK 和的最小值.10(备用).在平面直角坐标系中,已知抛物线y =ax 2+bx +c 经过点A (-3,0)、B (0,3)、C (1,0)三点.(1)求抛物线的解析式和它的顶点坐标;(2)若点P 、Q 分别是抛物线的对称轴l 上两动点,且纵坐标分别为m ,m +2,当四边形CBQP 周长最小时,求出此时点P 、Q 的坐标以及四边形CBQP 周长的最小值.备用图答案:例1 .在四边形ABEF 中,AB ,EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图6-2,将线段BF 向左平移两个单位,得到线段ME .如图6-3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.例2.(1)图略,点A ,B 即为所求.画法:①作点M 关于射线OP 的对称点M ′;②连接M ′N 交OP 于点A ;③作点N 关于射线OQ 的对称点N ′;④连接N ′M 交OQ 于点B.(2)AM +AN =BM +BN.【专题过关】1.80°.2.2254 .3.(,1). 4.18 .5. 4 .作PE ⊥l 1于E 交l 2于F ,在PF 上截取PC=8,连接QC 交l 2于B ,作BA ⊥l 1于A ,此时PA+AB+BQ 最短.作QD ⊥PF 于D .在Rt △PQD 中,∵∠D=90°,PQ=4,PD=18, ∴DQ==,∵AB=PC=8,AB ∥PC ,∴四边形ABCP 是平行四边形,∴PA=BC ,∴PA+BQ=CB+BQ=QC===4 .6.(1)y =-x 2+4x +5;(2)如图①,图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的解析式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴505k bb+=⎧⎨=⎩,解得15kb=-⎧⎨=⎩,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)| . 由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-52)2+254,∴当n=52时,线段ND长度的最大值是25 4;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.图②设直线H1M 1的函数解析式为y=mx +n ,∵直线H1M1过点H1(-2,9),M1(4,-5),∴9254m nm n=-+⎧⎨-=+⎩,解得73133mn⎧=-⎪⎪⎨⎪=⎪⎩,∴y=-73x+133.∴当x=0时,y=133,即点E坐标为(0,133);当y=0时,x=137,即点F坐标为(137,0) .故所求点F,E的坐标分别为(137,0),(0,133).7.(1)由题知,直线y=x与BC交于点D(x,3).把y=3代入y=x中得,x=4,∴D(4,3);(2)抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把x=4,y=3;x=6,y=0,分别代入y=ax2+bx中,得解得∴抛物线的解析式为y=﹣x2+x;(3)如图1:作D(4,3)点关于对称轴x=3的对称点E(2,3),连接AE交对称轴于点P,直线AE的解析式为y=kx+b,图象经过点A,点E,得解得,直线AE的解析式为y=﹣x+. 当x=3时,y=﹣×3+,即P(3,).四边形ABDP周长的最小值=AB+DB+DP+AP=AB+DB+A E=3+2+=3+2+5=10.8. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线的解析式;(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴C点坐标为(0,3),E点坐标为(2,3).将C、E点坐标代入抛物线解析式y=-x2+bx+c得:解得∴抛物线的解析式为:y=-x2+2x+3;(2)由(1)得y=-x2+2x+3,令y=0,得-x2+2x+3=0.解得x1=-1,x2=3.∴A(-1,0),B(3,0) .∵AO=1,CO=3,在Rt△AOC中,AC==.∵CO=BO=3,∴∠OBC=∠OCB=45°.∴FM=BF=1.∵RO∥MF,∠RAO=∠MAF,∴△ARO∽△AMF.∴,即=.解得RO=.∴CR=OC-OR=3-=,AR===,∴△ACR的周长为:AC+CR+AR=++=;(3)如解图①,取OF中点A′,连接A′G交直线EF的延长线于点H,过点H作HP′⊥y 轴于点P′,连接AP′.图①则当P在P′处时,使AP+PH+HG最小,∵A′为OF中点,∴A′坐标为(1,0) . 设直线A′G的解析式为y=kx+a,将点G(4,-5),A′(1,0)分别代入,得解得∴直线A′G的解析式为:y=-x+.令x=2,得y=-+=-,∴点H的坐标为(2,-) .∴符合题意的点P的坐标为(0,-).9. (1)依题意,得ax2+2ax-3a=0(a≠0),解得x1=﹣3,x2=1,∵B点在A点右侧,∴A点坐标为(﹣3,0),B点坐标为(1,0)证明:∵直线l:333y x=+,当x=﹣3时,3-33y=⨯+(3)=0,∴点A在直线l上.(2)∵点H、B关于过A点的直线l:333y x=+对称,∴AH=AB=4.过顶点H作HC⊥AB交AB于C点,则AC=AB=2,HC=2. ∴顶点H(-1,2),代入二次函数解析式,解得a=-.∴二次函数解析式为2-3333-+22y x x =; (3)直线AH 的解析式为=333y x +.直线BK 的解析式为=33y x -,由3=33= 33y x y x ⎧+⎪⎨⎪-⎩ ,解得=3=23 x y ⎧⎪⎨⎪⎩,即()323K ,,则BK =4,∵点H 、B 关于直线AK 对称,()323K ,,∴HN +MN 的最小值是MB .过K 作KD ⊥x 轴于点D ,作点K 关于直线AH 的对称点Q ,连接QK ,交直线AH 于点E ,==23KD KE ,则QM =MK ,==23QE EK ,AE ⊥QK , ∴根据两点之间线段最短得出BM +MK 的最小值是BQ ,即BQ 的长是HN +NM +MK 的最小值,∵BK ∥AH ,∴∠BKQ =∠HEQ =90°.由勾股定理得()2222423238QB BK QK =+=++=,∴HN +NM +MK 的最小值为8.(备用)9.(1)将A ,B ,C 的坐标代入函数解析式,得,解得 ∴ 抛物线的解析式为y =-x 2-2x +3=-(x +1)2+4,即顶点坐标为(-1,4);(2)如解图②,将B 点向下平移两个单位,得D 点,连接AD 交对称轴于点P ,作BQ ∥PD 交对称轴于Q 点,∵PQ ∥BD ,BQ ∥PD ,∴四边形BDPQ 是平行四边形.∴BQ =PD ,PQ =BD =2.∴BQ +PC =PD +AP =AD .由勾股定理,得AD ===,BC ===. ∴四边形CBQP 周长的最小值为BC +BQ +PQ +PC =BC +PQ +(BQ +PC )=BC +PQ +AD=+2+=2+2.设AD 的解析式为y =kx +b ,将A ,D 点坐标代入得,301k b b -+=⎧⎨=⎩,解得131k b ⎧=⎪⎨⎪=⎩,∴直线AD 的解析式为y =x +1. 当x =-1时,y =,即P (-1,) .由|PQ |=2,且Q 点纵坐标大于P 点纵坐标得Q (-1,),故当四边形CBQP 周长最小时,点P 的坐标为(-1,),点Q 的坐标为(-1,),四边形CBQP 周长的最小值是2+2.。

中考数学考试题答案与解析之最短路径问题

中考数学考试题答案与解析之最短路径问题

中考数学考试题答案与解析之最短路径问题姓名:__________指导:__________日期:__________早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:将军每天从军营A 出发,先到河边饮马,然后再去河岸同侧的B 地开会,应该怎样走才能使路程最短?从此,这个被称为“将军饮马” 的问题广泛流传.知识储备:利用轴对称知识解决最短路径问题.典型解析:【例题1】如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为cm (杯壁厚度不计).【答案】20.【分析】解:如图,将杯子侧面展开,作点A 关于EF 的对称点A′,连接A′B,则A′B 即为最短距离,A′B = √(A′D²+BD²)=20(cm).当蚂蚁在一个几何体的表面上爬行时,通常情况下都会考虑将其展开成一个平面,运用勾股定理计算其最短路程,也就是运用“化曲为平” 或“化折为直” 的思想来解决问题.【例题2】如图,∠AOB = 60°,点P 是∠AOB 内的定点且OP = √3,若点M、N 分别是射线OA、OB 上异于点O 的动点,则△PMN 周长的最小值是()A.3√6/2B.3√3/2C.6D.3【答案】D.【分析】解:如图作P 点分别关于OA、OB 的对称点C、D,连接CD 分别交OA、OB 于M、N,则MP = MC,NP = ND,OP = OD = OC = √3,∠BOP = ∠BOD,∠AOP = ∠AOC,∴ PN + PM + MN = ND + MN + NC = DC,∠COD = ∠BOP + ∠BOD + ∠AOP + ∠AOC = 2∠AOB = 120°,∴ 此时△PMN 周长最小,作OH⊥CD 于H,则CH = DH,∵ ∠OCH = 30°,∴ OH = 1/2OC = √3/2,CH = √3OH= 3/2,∴ CD = 2CH = 3.【例题3】如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA⊥PB,且PA、PB 与x 轴分别交于A、B 两点,若点A、点B 关于原点O 对称,则AB 的最小值为()A.3B.4C.6D.8【答案】C.【分析】解:∵ PA⊥PB,∴ ∠APB = 90°,∵ AO=BO,∴ AB = 2PO,若要使AB 取得最小值,则PO 需取得最小值,连接OM,交⊙M 于点P′,当点P 位于P′ 位时,OP′ 取得最小值,过点M 作MQ⊥x 轴于点Q,则OQ = 3、MQ = 4,∴ OM = 5,又∵ MP′ = 2,∴ OP′ = 3,∴ AB = 2OP′ = 6.【例题4】如图,点P 是边长为1 的菱形ABCD 对角线AC 上的一个动点,点M、N 分别是AB、BC 边上的中点,则MP + PN 的最小值是()A.1/2B.1C.√2D.2【答案】B.【分析】解:如图,作点M 关于AC 的对称点M′,连接M′N 交AC 于P,此时MP + NP 有最小值,最小值为M′N 的长.∵ 菱形ABCD 关于AC 对称,M 是AB 边上的中点,∴ M′ 是AD 的中点,又∵ N 是BC 边上的中点,∴ AM′∥BN,AM′=BN,∴ 四边形ABNM′ 是平行四边形,∴ M′N = AB = 1,∴ MP + NP = M′N =1,即MP + NP 的最小值为1.。

2020届河南中考数学押题密卷参考答案

2020届河南中考数学押题密卷参考答案

2020届河南中考数学押题密卷参考答案【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。

答题:gbl210老师一、选择题(每小题3分,共30分)1.B2.C3.B4.D5.B6.A7.C8.A9.A 10.D二、填空题(每小题3分,共15分)11.2(a-1)² ; 12.m<1/5 ; 13.3π;14.﹣.15.2或5三、解答题(本题共8个小题,满分75分)16.(8分)解:(+)÷=[+]×x=(+)×x=2x﹣3--------5分∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5--------8分17. (9分)解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b=×100%=40%,故答案为:12,40;-------4分(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;--------6分(3)用A、B表示男生,用a、b表示女生,列表得:A B a b A AB Aa AbB BA Ba Bba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.---------9分18.(9分)解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;--------5分(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.--------------9分19.(9分)解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;--------4分(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).-------9分20.(9分)解:如图,作FG⊥AB于G,DH⊥AB于H.设AG=x.在Rt△AFG中,FG===x,--------3分在Rt△ADH中,DH==,---------6分∵FG﹣DH=EB﹣CB=EC,∴x ﹣=10,解得x=20.8,∴AB=AG+BG=AG+EF=20.8+1.8=22.6米,答:灯塔AB 的高度为22.6米.------------9分21.(10分)解:(1)设该果农今年收获樱桃x千克,根据题意得:400-x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;------5分(2)由题意可得:100(1-m%)×30+200×(1+2m%)×20(1-m%)=100×30+200×20,令m%=y,原方程可化为:3000(1-y )+4000(1+2y)(1-y)=7000,整理可得:8y2-y=0解得:y1=0,y 2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.-----10分22.(10分)(1)AF=CF(2)仍成立。

河南省信阳市,2020~2021年中考数学压轴题精选解析

河南省信阳市,2020~2021年中考数学压轴题精选解析

河南省信阳市,2020~2021年中考数学压轴题精选解析河南省信阳市中考数学压轴题精选~~第1题~~(2020信阳.中考模拟) 如图,抛物线y =ax +bx+c 经过A (﹣1,0)、C (0,3)、B (2,3)(1) 求抛物线的解析式;(2) 线段AB 上有一动点P ,过点P 作y 轴的平行线,交抛物线于点Q ,求线段PQ 的最大值;(3) 抛物线的对称轴上是否存在点M ,使△ABM 为直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由(4个坐标).~~第2题~~(2020潢川.中考模拟) 如图,抛物线 与直线AB 交于点A(-1,0),B(4, ).点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD.(1) 求抛物线的解析式;(2) 设点D 的横坐标为m ,则用m 的代数式表示线段DC 的长;(3) 在(2)的条件下,若△ADB 的面积为S ,求S 关于m 的函数关系式,并求出当S 取最大值时的点C 的坐标;(4) 当点D 为抛物线的顶点时,若点P 是抛物线上的动点,点Q 是直线AB 上的动点,判断有几个位置能使以点P ,Q ,C ,D 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.~~第3题~~(2020淮滨.中考模拟) 如图,直线与x 轴交于点A (3,0),与y 轴交于点B ,抛物线经过A,B.(1) 求抛物线解析式;(2) E (m ,0)是x 轴上一动点,过点E 作轴于点E ,交直线AB 于点D ,交抛物线于点P ,连接PB.①点E 在线段OA 上运动,若△PBD 是等腰三角形时,求点E 的坐标;②点E 在x 轴的正半轴上运动,若 ,请直接写出m 的值. 2~~第4题~~(2020商城.中考模拟) 如图,在平面直角坐标系中,直线y =kx﹣ 与抛物线y =ax +bx+ 交于点A 、C ,与y 轴交于点B ,点A 的坐标为(2,0),点C 的横坐标为﹣8.(1) 请直接写出直线和抛物线的解析式;(2) 点D 是直线AB 上方的抛物线上一动点(不与点A 、C 重合),作DE ⊥AC 于点E.设点D 的横坐标为m.求DE 的长关于m 的函数解析式,并写出DE 长的最大值;(3) 平移△AOB ,使平移后的三角形的三个顶点中有两个在抛物线上,请直接写出平移后的点A 对应点A′的坐标.~~第5题~~(2019信阳.中考模拟) 如图所示,已知抛物线y=ax +bx+c (a≠0)经过点A (﹣2,0)、B (4,0)、C (0,﹣8),与直线y=x ﹣4交于B ,D 两点(1) 求抛物线的解析式并直接写出D 点的坐标;(2) 点P 为直线BD 下方抛物线上的一个动点,试求出△BDP 面积的最大值及此时点P 的坐标;(3) 点Q 是线段BD 上异于B 、D 的动点,过点Q 作QF ⊥x 轴于点F ,交抛物线于点G ,当△QDG 为直角三角形时,直接写出点Q 的坐标.~~第6题~~(2018信阳.中考模拟) 如图,在矩形OABC 中,点O 为原点,边OA 的长度为8,对角线AC=10,抛物线y=x+bx+c 经过点A 、C ,与AB 交于点D .(1) 求抛物线的函数解析式;(2) 点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CP Q 的面积为S .①求S 关于m 的函数表达式并求出S 最大时的m 值;②在S 最大的情况下,在抛物线y= x +bx+c 的对称轴上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符2222合条件的点F 的坐标;若不存在,请说明理由.~~第7题~~(2017信阳.中考模拟) 如图,抛物线y=ax +bx ﹣4与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点C ,连接BC ,以BC 为一边,点O 为对称中心做菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q .(1) 求抛物线的解析式;(2) 当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N ,试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由.(3) 当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.~~第8题~~(2017信阳.中考模拟) 如图,已知抛物线y= (x+2)(x ﹣4)与x 轴交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C ,CD ∥x 轴交抛物线于点D ,M 为抛物线的顶点.(1) 求点A ,B ,C 的坐标;(2) 设动点N (﹣2,n ),求使MN+BN 的值最小时n 的值;(3) P 是抛物线上一点,请你探究:是否存在点P ,使以P ,A ,B 为顶点的三角形与△ABD 相似(△PAB 与△ABD 不重合)?若存在,求出点P 的坐标;若不存在,说明理由.~~第9题~~(2017罗山.中考模拟) 如图,在平面直角坐标系中,已知矩形OABC 的三个顶点A (0,10),B (8,10),C (8,0),过O 、C 两点的抛物线y=ax +bx+c 与线段AB 交于点D ,沿直线CD 折叠矩形OABC的一边BC ,使点B 落在OA 边上的点E 处.22(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.河南省信阳市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:~~第3题~~答案:解析:答案:解析:~~第5题~~答案:解析:答案:解析:~~第7题~~答案:解析:答案:解析:答案:解析:。

中考数学试题解析之最短路径问题

中考数学试题解析之最短路径问题

中考数学试题解析之最短路径问题知识储备:利用轴对称知识解决最短路径问题.典型解析:【例题 1】如图,圆柱形玻璃杯高为14 cm,底面周长为 32 cm,在杯内壁离杯底 5 cm 的点 B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 3 cm 与蜂蜜相对的点 A 处,则蚂蚁从外壁 A 处到内壁 B 处的最短距离为 cm(杯壁厚度不计).【答案】20.【分析】解:如图,将杯子侧面展开,作点 A 关于 EF 的对称点A′,连接A′B,则A′B 即为最短距离,A′B = √(A′D²+BD²)=20(cm).当蚂蚁在一个几何体的表面上爬行时,通常情况下都会考虑将其展开成一个平面,运用勾股定理计算其最短路程,也就是运用“化曲为平” 或“化折为直” 的思想来解决问题.【例题 2】如图,∠AOB = 60°,点 P 是∠AOB 内的定点且OP = √3,若点 M、N 分别是射线OA、OB 上异于点 O 的动点,则△PMN 周长的最小值是()A.3√6/2B.3√3/2C.6D.3【答案】D.【分析】解:如图作 P 点分别关于 OA、OB 的对称点 C、D,连接 CD 分别交 OA、OB 于 M、N,则 MP = MC,NP = ND,OP = OD = OC = √3,∠BOP = ∠BOD,∠AOP = ∠AOC,∴ PN + PM + MN = ND + MN + NC = DC,∠COD = ∠BOP + ∠BOD + ∠AOP + ∠AOC = 2∠AOB = 120°,∴ 此时△PMN 周长最小,作OH⊥CD 于 H,则 CH = DH,∵ ∠OCH = 30°,∴ OH = 1/2OC = √3/2,CH = √3OH= 3/2,∴ CD = 2CH = 3.【例题 3】如图,⊙M 的半径为 2,圆心 M 的坐标为(3,4),点 P 是⊙M 上的任意一点,PA⊥PB,且 PA、PB 与 x 轴分别交于 A、B 两点,若点 A、点 B 关于原点 O 对称,则AB 的最小值为()A.3B.4C.6D.8【答案】C.【分析】解:∵ PA⊥PB,∴ ∠APB = 90°,∵ AO=BO,∴ AB = 2PO,若要使 AB 取得最小值,则 PO 需取得最小值,连接 OM,交⊙M 于点P′,当点 P 位于P′ 位时,OP′ 取得最小值,过点 M 作MQ⊥x 轴于点 Q,则 OQ = 3、MQ = 4,∴ OM = 5,又∵ MP′ = 2,∴ OP′ = 3,∴ AB = 2OP′ = 6.【例题 4】如图,点 P 是边长为 1 的菱形 ABCD 对角线 AC 上的一个动点,点 M、N 分别是 AB、BC 边上的中点,则 MP + PN 的最小值是()A.1/2B.1C.√2D.2【答案】B.【分析】解:如图,作点 M 关于 AC 的对称点M′,连接M′N 交 AC 于 P,此时 MP + NP 有最小值,最小值为M′N 的长.∵ 菱形 ABCD 关于 AC 对称,M 是 AB 边上的中点,∴ M′ 是 AD 的中点,又∵ N 是 BC 边上的中点,∴ AM′∥BN,AM′=BN,∴ 四边形ABNM′ 是平行四边形,∴ M′N = AB = 1,∴ MP + NP = M′N =1,即 MP + NP 的最小值为 1.。

2020年中考数学专题突破专题十一:最短路径——造桥选址问题

2020年中考数学专题突破专题十一:最短路径——造桥选址问题
专题十一:最短路径——造桥选址问题
【导例引入】
导例:如图 1,已知正方形 ABCD 边长为 3,点 E 在 AB 边上且 BE=1,点 P,Q 分别是边 BC,CD 的动点(均不与顶点重合),当四边形 AEPQ 的周长取最小值时,四边形 AEPQ 的面积 是.
【方法指引】
(1)如图,在直线 l 上找 M、N 两点(M 在左),使得 A M+MN+NB 最小,且 MN= d 。
7.矩形 OABC 在直角坐标系 中的位置如图所示,A、C 两点的坐标分别为 A(6,0)、C (O,3),直线 y= x 与与 BC 边相交于点 D.
(1)求点 D 的坐标; (2)若抛物线 பைடு நூலகம்=ax2+bx 经过 D、A 两点,试确定此抛物线的解析式; (3)在(2)中抛物线的对称轴是否存在点 P,使四边形 ABDP 的周长最小,并求出最 小值;
【例题精讲】
类型一:两定点两动点形成最短路径型 例 1 如图 1,已知 A(0, 2)、B(6, 4),E(a, 0),F(a+1, 0),求 a 为何 值时,四边 形 ABFE 周长最小请说明理由.
【分析】四边 ABFE 的四条边中,AB,EF 的长度固定,只要 AE+BF 最小,则四边形周长 将取得最小值,将 B 点向左平移一个单位长(EF 的长度),得到点 M,再作 A 关于 x 轴的对 称点 A′,连接 A′M,可得点 E 的位置,从而问题得解.
连接 CE,CF,则 △CEF 周长的最小值为

3.在平面直角坐标系中,已知点 A(-2,0),点 B(0,4),点 E(0,1),将
△AEO 沿 x 轴向右平移得到△A′E′O′,连接 A′B,BE′,则当 A′B+BE′取最小

中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)

中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)

中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________1.如图所示,某乡镇A、B、C、D、E五个村庄位于同一条笔直的公路边,相邻两个村庄的距离分别为AB =1千米,BC=3千米,CD=2千米,DE=1.5千米.乡村扶贫改造期间,该乡镇打算在此间新建一个便民服务点M,使得五个村庄到便民服务点的距离之和最小,则这个最小值为千米.2.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万元,若在河流CD上选择水厂的位置M,使铺设水管的费用最节省,则总费用是万元.3.已知点A(2,-4),直线y=-x-2与y轴交于点B,在x轴上找一点P,使得P A+PB的值最小,则点P的坐标为.4.如图,长方体的长、宽、高分别为8、4、5,一只蚂蚁沿长方体表面从顶点A爬到顶点B,则它走过的路程最短为.5.如图,圆柱的底面半径为4cm,高为7cm,蚂蚁在圆柱侧面爬行,从A点到B点,最短的路程是厘米.(保留π)6.如图,在等腰△ABC中AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、AD上的动点,则MN+BN的最小值是.7.如图,在矩形ABCD中AB=4,AD=6点P在边AD上,点Q在边BC上,且AP=CQ,连接CP,QD则PC+QD 的最小值等于.8.如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF则DF+CF的最小值是.9.如图,在平行四边形ABCD中AB=6,BC=8,∠ABC=60°,在线段AD上取一点E,使得DE=2,连接BQ的最小值为.BE,在线段AE,BE上分别取一点P,Q,则PQ+1210.如图,在菱形ABCD中AB=4 ∠DAB=60° 点E是对角线AC上一个动点点F是边AB上一个动点连接EF EB则EB+EF的最小值为.11.等腰直角∠ABC中∠C=90° AC=BC=6 D为线段AC上一动点连接BD过点C作CH∠BD于H连接AH则AH的最小值为.12.如图1 一只蚂蚁从圆锥底端点A出发绕圆锥表面爬行一周后回到点A将圆锥沿母线OA剪开其侧面展开图如图2所示若∠AOA′=120° OA=√3则蚂蚁爬行的最短距离是.13.如图已知⊙O中直径AB=8√3半径OC⊥AB点D是半圆AB的三等分点点P是半径OC上的动点当PB+PD的值最小时PO的长为.14.如图矩形OABC在平面直角坐标系中的位置如图所示点B的坐标为(3,4)D是OA的中点点E在AB上当△CDE的周长最小时则点E的坐标为.15.如图等边△ABC和等边△A′B′C的边长都是4 点B,C,B′在同一条直线上点P在线段A′C上则AP+BP的最小值为.16.如图∠ABC=20∘点D E分别在射线BC BA上且BD=3BE=3点M N分别是射线BA BC上的动点求DM+MN+NE的最小值为.17.如图直线y=x+1与x轴y轴分别相交于点A和点B若点P(1 m)使得P A+PB的值最小点Q(1 n)使得|QA−QB|的值最大则m+n=.18.如图已知A(1 1)B(3 9)是抛物线y=x2上的两点在y轴上有一动点P当△P AB的周长最小时则此时△P AB的面积为.19.如图在四边形ABCD中∠BAD=∠B=∠D=90° AD=AB=4 E是AD中点M是边BC上的一个动点N是边CD上的一个动点则AM+MN+EN的最小值是.20.已知如图:抛物线y=12x2−32x−2与x轴的交点为A B.与y轴的交点为C.以AB为直径的⊙P交y轴于C D.点M为线段AB上一动点点N为线段BC一动点则MC+MN的最小值是.参考答案1.解:当便民服务点在A或E时由A E为两端点可知此时五个村庄到便民服务点的距离之和最长;当便民服务点M在B时五个村庄到便民服务点的距离之和为AB+BC+BD+BE=1+3+(3+2)+(3+2+1.5) =15.5千米;当便民服务点M在C时五个村庄到便民服务点的距离之和为AC+BC+CD+CE=(1+3)+3+2+ (2+1.5)=12.5千米;当便民服务点M在D时五个村庄到便民服务点的距离之和为AD+BD+CD+DE=(1+3+2)+(3+2) +2+1.5=14.5千米.综上可知当便民服务点M在C时五个村庄到便民服务点的距离之和最小最小值为12.5千米.故答案为:12.5.2.解:作点A关于CD的对称点A′连接A′B与CD交于点M过点A′作A′K⊥BD交BD延长线于点K∠A′C=AC=10千米AM=A′M∠AM+BM=A′M+BM≥A′B即AM+BM的最小值为A′B的长此时铺设水管的费用最节省∠BD⊥CD,AA′⊥CD,A′C⊥A′K∠∠A′CD=∠CDK=∠CA′K=90°∠四边形A′CDK是矩形∠DK=A ′C=10千米 A ′K=CD=30千米∠BK=BD+DK=40千米∠A ′B=√302+402=50千米∠此时总费用为50×3=150万元.故答案为:1503.解:作点B 关于x 轴的对称点B ′ 连接AB ′ 交x 轴于P 连接PB 此时P A +PB 的值最小.当x =2时 y =﹣2-2=﹣4∠点A (2 ﹣4)在直线y =﹣x -2上当x =0时,y =﹣2∠点B 的坐标是(0 ﹣2)∠点B ′的坐标是(0 2)设直线AB ′的解析式为y =kx +b把A (2 ﹣4) B ′(0 2)代入得到{b =22k +b =−4解得{k =−3b =2∠直线AB ′的解析式为y =﹣3x +2令y =0 得到x =23 ∠P (23 0)故答案为:(23 0).4.解:第一种情况:把我们所看到的前面和右面组成一个平面则这个长方形的长和宽分别是12和5则所走的最短线段是√122+52=13;第二种情况:把我们看到的右面与上面组成一个长方形则这个长方形的长和宽分别是13和4所以走的最短线段是√132+42=√185;第三种情况:把我们所看到的上面和后面组成一个长方形则这个长方形的长和宽分别是9和8所以走的最短线段是√92+82=√145;三种情况比较而言第三种情况最短.故答案为:√145.5.解:沿过A点和过B点的母线剪开展成平面连接AB则A B的长是蚂蚁在圆柱表面从A点爬到B点的最短路程×2×4π=4πcm BC = 7cm∠AC = 12∠AB=√AC2+BC2=√(4π)2+72=√49+16π2故答案为:√49+16π26.解:如图作BH⊥AC垂足为H交AD于N′点过N′点作M′N′⊥AB垂足为M′则BN′+M′N′为所求的最小值.∠AB=AC=6AD⊥BC∠AD是∠BAC的平分线∠N′H=M′N′∠BN′+M′N′=BN′+N′H=BH∠BH⊥AC∠BH是点B到直线AC的最短距离∠AB=AC=6∠ACB=75°∠∠ABC=∠ACB=75°∠∠BAC=180°−∠ABC−∠ACB=30°∠BH=12AB=12×6=3.∠MN+BN的最小值是3.故答案为:3.7.解:如图连接BP在矩形ABCD中AD∥BC AD=BC=6∠AP=CQ∠AD−AP=BC−CQ∠DP=QB DP∥BQ∠四边形DPBQ是平行四边形∠PB∥DQ PB=DQ则PC+QD=PC+PB则PC+QD的最小值转化为PC+PB的最小值在BA的延长线上截取AE=AB=4 连接PE则BE=2AB=8∠P A∠BE∠P A是BE的垂直平分线∠PB=PE∠PC+PB=PC+PE连接CE则PC+QD=PC+PB=PC+PE≥CE∠CE=√BE2+BC2=√82+62=10∠PC+PB的最小值为10即PC+QD的最小值为10故答案为:10.8.解:连接BF过点F作FG⊥AB交AB延长线于点G∵EF⊥DE ∴∠AED+∠FEG=90°∵∠AED+∠EDA=90°∴∠EDA=∠FEG在△AED和△GFE中{∠A=∠FGE∠EDA=∠FEGDE=EF∴ΔAED≌ΔGFE∴FG=AE ∴F点在射线BF上运动作点C关于BF的对称点C′∵EG=DA FG=AE∴AE=BG∴BG=FG∴∠FBG=45°∴∠CBF=45°∴C′点在AB的延长线上当D F C′三点共线时DF+CF=DC′最小在RtΔADC′中AD=4AC′=AB+BC′=AB+BC=8∴DC′=4√5∴DF+CF的最小值为4√5.故答案为:4√5.9.解:在平行四边形ABCD中AD∠BC AD=BC∠∠AEB=∠EBC∠AB=6 BC=8 DE=2∠AE=8-2=6∠AE=AB∠∠AEB=∠ABE∠∠ABE=∠EBC∠∠ABC=60°∠∠EBC=30°过点Q作QM∠BC于点M过点P作PN∠BC于点N过点A作AH∠BC于点H如图所示:BQ则QM=12BQ最小值即为PN的长∠PQ+12∠AD∠BC∠PN=AH∠∠BAH=30° AB=6∠BH=3根据勾股定理可得AH=PN=3√3BQ的最小值为3√3∠PQ+12故答案为:3√3.10.解:连接DE DF.∠四边形ABCD是菱形∠DE=BE∠EB+EF=ED+EF当D E F在同一直线上且DF⊥AB时EB+EF最短∠AB=4 ∠DAB=60°∠AFD=90°∠∠ADF=30°AD=2∠AF=12∠DF=√AD2−AF2=√42−22=2√3即EB+EF的最小值为2√3.故答案为:2√3.11.解:如图以BC为直径作圆∠CH∠BD∠CHB=90°∠点H在圆上OA=√62+32=3√5OH=3当点O,H,A三点共线时AH最小为OA−OH=3√5−3故答案为:3√5−312.解:如图连接AA′作OB⊥AA′于点B∠AA′即为蚂蚁爬行的最短距离∠OA =OA′ ∠AOA′=120°∠∠OAB =30°在△OAB 中OB ⊥AA′ ∠OAB =30°∠OB =12OA =12×√3=√32 ∠AB =√OA 2−OB 2=√(√3)2−(√32)2=32在△AOA′中OA =OA′ OB ⊥AA′∠AB =A′B∠AA′=2AB =2×32=3. ∠蚂蚁爬行的最短距离为3.故答案为:313.解:连接DO ,DA ,DA 与OC 交于点P∠OC ⊥AB 点O 为AB 的中点∠点B 关于OC 的对称点是点A∠DA 与OC 的交点P 使得PB +PD 的值最小∠点D 是半圆AB ⏜的三等分点∠∠DOB =60°∠∠DAB =30°∠∠AOP =90°,OA =12AB AB =8√3 ∠PAO =30°∠OA =4√3∠OP=OA·tan30°=4√3×√33=4故答案为:4.14.解:如图作点D关于直线AB的对称点H连接CH与AB的交点为E此时△CDE的周长最小.∠点B的坐标为(3,4)D OH=是OA的中点∠A(3,0)D(32,0)C(0,4)∠OH=3+32=92∠H(92,0)设直线CH的解析式为y=kx+4把H(92,0)代入得0=92k+4∠k=−89∠直线CH的解析式为y=−89x+4∠x=3时y=43∠点E坐标(3,43)故答案为:(3,43).15.解:如图连接PB′∠△ABC和△A′B′C都是边长为4的等边三角形∠AC=B′C,∠ACB=∠A′CB′=60°∠∠ACA′=60°∠∠ACA′=∠A′CB′在△ACP和△B′CP中{AC=B′C∠ACA′=∠A′CB′CP=CP∠△ACP≌△B′CP(SAS)∠AP=B′P∠AP+BP=BP+B′P∠当点P与点C重合时点A与点B′关于A′C对称AP+BP的值最小正好等于BB′的长∠AP+BP的最小值为4+4=8故答案为:8.16.解:如图所示:作点D关于AB的对称点G作点E关于BC的对称点H连接GH交AB于点M交BC于点N连接DM EN此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3∠GBE=∠DBE=20°BH=BE=3∠HBD=∠EBD=20°∠∠GBH=60°∠ΔBGH是等边三角形∠GH=GB=HB=3∠DM+MN+NE的最小值为3.故答案为:3.17.解:过点(1 0)作x轴的垂线l则点P(1 m)点Q(1 n)在直线l上直线l交直线AB于点Q此时|QA-QB|=AB的值最大∠直线AB 的解析式为y =x +1令x =1 则y =2∠Q 的坐标为(1 2)∠n =2作出A 点关于x 轴的对称点A ′ 连接A ′B 交直线l 于点P 此时P A +PB 的值最小; 设直线A ′B 的解析式为y =kx +b∠直线AB 的解析式为y =x +1∠A (-1 0) B (0 1)∠A ′(3 0)∠{3k +b =0b =1 解得{k =13b =1∠直线A ′B 的解析式为y =-13x +1 令x =1 则y =23∠P 的坐标为(1 23). ∠m =23 ∠m +n =2+23=83. 故答案为:83.18.解:如图 作出B 关于y 轴的对称点B ′ 则BB ′∠y 轴于点H 连接AB ′交y 轴于P则点P 就是使△P AB 的周长最小时的位置.∠抛物线y =x 2的对称轴是y 轴 B B ′关于y 轴对称∠点P 在抛物线y =x 2上 且PB =PB ′∠PA +PB =PA +PB ′=AB ′∠此时△P AB 的周长最小∠B (3 9)∠B ′(﹣3 9)∠BB ′=6 点H 的坐标是(0 9)∠A (1 1)∠点A 到BB ′的距离为9-1=8设直线A B ′的直线方程为y =kx +b 把点A 和点B ′的坐标代入后得到 ∠{−3k +b =9k +b =1解得{k =−2b =3∠直线A B ′的解析式为y =﹣2x +3当x =0时 y =3∠P 点的坐标为(0 3)∠PH =OH -OP =6此时S △PAB =S △ABB ′−S △PBB ′=12×6×8−12×6×6=6即△P AB 的面积为6故答案为:6.19.解:如图 作A 点关于BC 的对称点A 1 连接A 1M 作E 点关于DC 的对称点E 1连接E 1N∠∠B =∠D =90° 点A 和点A 1关于BC 对称 点E 和点E 1关于DC 对称 ∠AM =A 1M EN =E 1N∠AM +MN +EN =A 1M +MN +E 1N ≥A 1E 1∠AM +MN +EN 的最小值是A 1E 1∠AD=AB=4 E是AD中点∠AB=A1B=4ED=E1D=2∠AA1=8AE1=6∠∠BAD=90°∠A1E1=√62+82=10故答案为:10.20.解:当y=0时12x2−32x−2=0解得x1=−1x2=4∠A(−1,0)B(4,0)当x=0时y=−2∠C(0,−2)∠AB⊥CD∠OD=OC=2∠BC=√22+42=2√5过点D作DN′⊥BC于N′交AB于M′连接BD如图∠AB⊥CD∠M′C=M′D∠M′C+M′N′=M′D+M′N′=DN′此时MC+MN的值最小∠1 2BC·DN′=12CD·OB∠DN′=2√5=8√55即MC+MN的最小值为8√55故答案为:8√55.。

河南省周口市,2020~2021年中考数学压轴题精选解析

河南省周口市,2020~2021年中考数学压轴题精选解析

河南省周口市,2020~2021年中考数学压轴题精选解析河南省周口市中考数学压轴题精选~~第1题~~(2020武威.中考模拟) 如图,抛物线y=﹣x +bx+c 与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0).C (0,3),点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D .若OD=m ,△PCD 的面积为S ,试判断S 有最大值或最小值?并说明理由;(3)在MB 上是否存在点P ,使△PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.~~第2题~~(2020周口.中考模拟) 如图,已知二次函数 y =ax +bx 的图象与 x 轴交于点 O (0,0)和 点B ,抛物线的对称轴是直线 x=3.点 A 是抛物线在第一象限上的一个动点, 过点A 作 AC ⊥x 轴,垂足为 C.S =3S , AC =OC•BC.(1) 求该二次函数的解析式;(2) 抛物线的对称轴与 x 轴交于点 M.连接 AM ,点 N 是线段 OA 上的一点.当 ∠AMN =∠AOM 时,求点 N 的坐标;(3) 点 P 是抛物线上的一个动点.点Q 是 y 轴上的一动点.当以A ,B ,P,Q 四个点为顶点的四边形为平行四边形时,直接写出点 P 坐标.~~第3题~~(2020西华.中考模拟) 如图,直线与x 轴交于点 与y 轴交于点C ,抛物线 经过点B ,C,与x 轴的另一个交点为A.22△A OB △A BC 2(1) 求抛物线的解析式;(2) 点P是直线下方抛物线上一动点,求四边形 面积最大时点P 的坐标;(3) 若M是抛物线上一点,且 ,请直接写出点M 的坐标.~~第4题~~(2020洛川.九上期末) 如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x +bx+c 经过A 、B 两点.(1) 求抛物线的解析式;(2) 点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE 最大.①求点P 的坐标和PE 的最大值.②在直线PD 上是否存在点M ,使点M 在以AB 为直径的圆上;若存在,求出点M 的坐标,若不存在,请说明理由.~~第5题~~(2020台州.九上期末) 如图问题发现:(1) 如图1,在Rt △ABC 中,∠BAC=30°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC , ∠BCD 的度数是________;线段BD ,AC 之间的数量关系是________.(2) 在Rt △ABC 中,∠BAC=45°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC ,请问(1)中的2结论还成立吗?;(3) 如图3,在Rt △ABC 中,AB =2,AC =4,∠BDC =90°,若点P 满足PB =PC ,∠BPC =90°,请直接写出线段AP 的长度.~~第6题~~(2020鹿邑.中考模拟)抛物线交x 轴于两点,交y 轴于点C ,点P 为线段下方抛物线上一动点,连接 .(1) 求抛物线解析式;(2)在点P 移动过程中,的面积是否存在最大值?若存在,求出最大面积及点 的坐标,若不存在,请说明理由;(3)设点D 为上不与端点重合的一动点,过点D 作线段的垂线,交抛物线于点E ,若与 相似,请直接写出点E 的坐标.~~第7题~~(2019沈丘.中考模拟) 如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点 ,且,顶点为.(1) 求二次函数的解析式;(2) 点为线段上的一个动点,过点作轴的垂线,垂足为,若 ,四边形 的面积为,求关于的函数解析式,并写出的取值范围;(3) 探索:线段 上是否存在点 ,使 为等腰三角形?如果存在,求出点 的坐标;如果不存在,请说呀理由.~~第8题~~(2018西华.中考模拟) 已知在平面直角坐标系xOy 中(如图),已知抛物线y=﹣x +bx+c 经过点A (2,2),对称轴是直线x=1,顶点为B .(1) 求这条抛物线的表达式和点B 的坐标;(2) 点M 在对称轴上,且位于顶点上方,设它的纵坐标为m ,联结AM ,用含m 的代数式表示∠AMB 的余切值;(3) 将该抛物线向上或向下平移,使得新抛物线的顶点C 在x 轴上.原抛物线上一点P 平移后的对应点为点Q ,如果O P=OQ ,求点Q 的坐标.2~~第9题~~2(2017西华.中考模拟) 如图,抛物线y=ax+bx﹣3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=﹣1重合).,点P是抛物线上B,C之间的一个动点(点P不与点B,C(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)面积的最大值;若不存在,请说明理由.是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC~~第10题~~(2017个旧.中考模拟) 如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4.),连接AC,BC(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA ?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.河南省周口市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:答案:解析:答案:解析:~~第5题~~答案:解析:答案:解析:答案:解析:~~第8题~~答案:解析:~~第9题~~答案:解析:答案:解析:。

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总---------将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:1.定起点的最短路径问题:即已知起始结点,求最短路径的问题.2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.3.定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径.4.全局最短路径问题:求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”。

【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】直线、角、三角形、菱形、矩形、正方形、圆、坐标轴、抛物线等.【解题思路】“化曲为直”题型一:两定一动,偷过敌营。

题型二:两定一动,将军饮马。

例1:如图, AM ⊥EF ,BN ⊥EF ,垂足为M 、N ,MN =12m ,AM =5m ,BN =4m , P 是EF 上任意一点,则PA +PB 的最小值是______m .分析:这是最基本的将军饮马问题,A ,B 是定点,P 是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A 关于EF 的对称点A ’,根据两点之间,线段最短,连接A ’B ,此时A ’P +PB 即为A ’B ,最短.而要求A ’B ,则需要构造直角三角形,利用勾股定理解决. 解答:作点A 关于EF 的对称点A ’,过点A ’作A ’C ⊥BN 的延长线于C .易知A ’M =AM =NC =5m ,BC =9m ,A ’C =MN =12m ,在Rt △A ’BC 中,A ’B =15m ,即PA +PB 的最小值是15m .例2:如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27DB CD CBP E D C B A E D C B AA (3对应练习题1.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。

初中数学中考复习专题 最短路径问题 24张

初中数学中考复习专题 最短路径问题 24张
A●

A' ●
P
B ● l
最短路径问题是初中阶段图论研究中的经典算 法问题,旨在寻找图(有结点和路径组成的)中两 结点之间的最短路径算法形式包括:
一、确定起点的最短路径问题
二、确定终点的最短路径问题
三、确定起点、终点的最短路径问题
四、全局最短路径问题
问题原型 “将军饮马”,“造桥选址”,“费马点”
作B关于l 的对称点B ',作直线 A B'与l 交点即为P

图形
原理
三角形任意两边 之差小于第三边 ︱PA-PB︱≤AB'. ︱PA-PB︱最大值 =AB'
问题12 “费马点”
作法
图形
原理
所求点为“费马点”,
既满足
△ABC中每一 内角都小于
∠APB=∠BPC=∠ APC=1200.以AB、
1200,在 △ABC内求一
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的

问题9
作法
A
B l
在直线l上求一 点P,使︱PAPB︱的值最小
连AB, 作AB的 中垂线与 直线l的交 点即为P
AC为边向外作等边 △ABD、△ACE,连
点P,使

CD、BE相交于P,
PA+PB+PC最 点P即为所求点.
小.
两点之间 线段最
短.PA+PB+ PC最小值
=CD.
随堂练习一
如图,已知正方形ABCD,点M为BC边的中点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 15 最短路径问题模型一 . 两点之间,线段最短AA PB模型二 . “将军饮马”BAPA'模型三 . 双动点P''模型四 . 垂线段最短k2)已知点 Q 在反比例函数 y =k 的图象上,其横坐标为 6,在 x 轴上确定一点 M ,是的△ PQM 的周长x11分析】(1)根据一次函数的解析式求得 A 、C 坐标,由 S △ABP = · AB ·BP =9,设 P 点坐标为( m , m +2),22代入得到点 P 坐标;(2)先根据反比例函数解析式求得 Q 点坐标,作 Q 点(或 P 点)关于 x 轴的对称点 Q 'P '),连接 PQ '( QP ')与 x 轴的交点即为点 M ,用待定系数法求出直线 PQ '( QP '的解析式)1【解析】解: (1)在 y = x +2 中,当 x =0 时, y =2; y =0 时, x =-4, 2 ∴ A 点坐标为(- 4,0 ),C 点坐标为( 0,2 ),1设 P 点坐标为( m , 1 m +2), m >0,21则 AB =m +4, BP = m +2,21∵ S △ABP = ·AB · BP =9,211 即 ×( m +4)( m +2) =9,22解得: m =2 或 m =- 10(舍), ,连接 PQ '交 x 轴于点 M ,此时,△ PQM 的周长最小, 点 Q 的坐标为( 6,1 ),点 Q '的坐标为( 6 ,- 1),1)点 A 的坐标为,点 C 的坐标为,点 P 的坐标为∴点 P 的坐标为( 2,3 );x设直线 PQ '的解析式为: y =mx +b ,得: 2m b 3 ,6m b即直线 PQ '的解析式为: y =- x +5,当 y =0 时, x =5,即 M 点坐标为( 5,0 ), ∴当△ PQM 的周长最小时, M 点坐标为( 5,0 )变式 1-1 】(2017·新野一模) 已知抛物线 y =ax 2+bx +2 经过 A (﹣ 1,0),B ( 2,0),C 三点.直线 y =mx +2)如图①,当点 P 运动到什么位置时,线段 PN =2NF ,求出此时点 P 的坐标;3)如图②,线段 AC 的垂直平分线交 x 轴于点 E ,垂足为 D ,点 M 为抛物线的顶点,在直线 DE 上是否存在一点 G ,使△ CMG 的周长最小?若存在,请求出点 G 的坐标;若不存在,请说明理由.答案】见解析.解析】解: ( 1)∵抛物线 y =ax 2+bx +2 经过 A (﹣ 1, 0),B ( 2, 0),ab204a 2b 2 0解得 a =﹣ 1, b =1,∴抛物线的解析式为 y =﹣ x 2+x +2.1解得:m1b5F ,交 AQ 于点 N .(2)直线y=mx+ 1交抛物线与A、Q两点,2将A(﹣ 1, 0)代入得:m=1,211 ∴直线AQ的解析式为y=1x+1.222 1 1 设点P的横坐标为n,则P(n,﹣n 2+n+2),N(n,n+ ),F(n, 0),222 1 1 ∴ PN=﹣n +n+2﹣(1n+ 1)222 13 =﹣n + n+ ,2211 NF= n+ ,221 3 1 1∵ PN=2NF,即﹣n2+ n+ =2×(n+ ),2 2 2 21解得:n=﹣ 1 或1.2当n=﹣1 时,点P与点A重合,舍去.19故点P的坐标为(1,9).243)∵y=﹣x2+x+2,=﹣(x﹣1)2+9,2419∴M(1,9).24∵A、C关于直线DE对称,∴连接AM交直线DE与点G,连接CG、CM,此时,△ CMG的周长最小,设直线AM的函数解析式为y =kx+b,19将A(﹣ 1,0),M(21,94)代入并2∴直线AM的函数解析式为y= 3x+3,22∵ D为AC的中点,1∴D(﹣1, 1).2可得直线AC的解析式为:y=2x+2,直线DE的解析式为y=﹣1x+3.24 将y=﹣1x+ 3与y= 3x+ 3联立,2 4 2 2解得:x=﹣3,y=15.8 16315 ∴在直线DE上存在点G,使△ CMG 的周长最小,G(﹣3,15).8 16变式 1-2 】(2019·三门峡二模)已知△ ABC是边长为 4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A 重合时,将△ ACD绕点C 逆时针方向旋转 60°得到△ BCE,连接DE,设OD=m.( 1)问题发现如图 1,△ CDE的形状是三角形.(2)探究证明如图 2,当 6<m< 10 时,△ BDE的周长是否存在最小值?若存在,求出△ BDE周长的最小值;若不存在,图1【答案】见解析.【解析】解:( 1)证明:由旋转性质,得:∠ DCE=60°,DC=EC,∴△ CDE是等边三角形;故答案为:等边;(2)存在,当 6<t <10时,由旋转的性质得,BE=AD,∴ C△DBE=BE+DB+DE=AB+DE= 4+DE,由( 1)知,△ CDE是等边三角形,∴DE=CD,∴C△ DBE=CD+4,由垂线段最短可知,当CD⊥ AB时,△ BDE的周长最小,此时,CD=2 3 ,∴△ BDE的周长最小值为: 2 3+4.1. (2018·焦作一模)如图 1,已知抛物线y=﹣x2+bx+c 交y 轴于点A( 0,4),交x 轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.( 1)填空:抛物线的解析式为,点C的坐标;(2)点P在抛物线上运动,若△ AQP∽△ AOC,求点P的坐标;(3)如图 2,当点P 位于抛物线的对称轴的右侧,若将△ APQ沿AP对折,点Q的对应点为点Q' ,请直接写出当点Q' 落在坐标轴上时点P 的坐标.【答案】( 1)y=﹣x2+3x+4,(﹣ 1,0);(2)(3)见解析 .【解析】解:( 1)∵抛物线y=﹣x2+bx+c交y轴于点A( 0, 4),交x轴于点B( 4,0),∴ -16 a+4b+c=0,c=4,解得 : b=3,c=4,2∴抛物线解析式为y=﹣x2+3x+4,2当y=0 时,﹣x2+3x+4=0,解得x=﹣ 1,x=4,即C(﹣ 1, 0);答案为:y=﹣x2+3x+4;(﹣ 1,0);(2)∵△ AQP∽△ AOC,AQ AOPQ CO即AQ=4PQ,设P(m,﹣m2+3m+4),则PQ=|4 ﹣(﹣m2+3m+4|=| m2﹣ 3m| ,2∴4| m﹣ 3m|= m,13 11 m2= ,m3= ,443)设P(m,﹣m2+3m+4),3∵抛物线对称轴为:x=3,2∴m>3,2①当点Q′落在x轴上时,延长QP交x轴于H,2则PQ=m2﹣ 3m,由折叠性质2AQ′P=∠AQP=90°,AQ′=AQ=m,PQ′=PQ=m2∵∠ AQ′O=∠Q′PH,∴△ AOQ′∽△ Q′HP,OA AQ'Q'B PQ'4m即2,得:Q′ B=4m﹣ 12,Q'B m2 3m∴ OQ′=12﹣ 3m,在Rt△AOQ′中,由勾股定理得: 42+(12﹣ 3m)2=m2,13,,51)或(11,,75)4 16 4 16∴P 点坐标为解得:m1=0(舍去),解得:m1=4,m2=5,即P 点坐标为( 4, 0),( 5,﹣ 6);②当点Q′落在y 轴上,此时以点A、Q′、P、Q所组成的四边形为正方形,∴PQ=PQ′,2即| m2﹣ 3m|= m,得m1=0(舍去),m2=4,m3=2,P点坐标为( 4, 0),( 2, 6),综上所述,点P的坐标为( 4,0)或(5,﹣6)或( 2,6).2(. 2019·中原名校大联考)如图,直线y=﹣x+5 与x 轴交于点B,与y 轴交于点C,抛物线y =﹣x2+bx+c 与直线y=﹣x+5 交于B,C两点,已知点D的坐标为( 0, 3)(1)求抛物线的解析式;( 2)点M,N分别是直线BC和x 轴上的动点,则当△ DMN的周长最小时,求点M,N的坐标.【答案】见解析 .【解析】解:( 1)在y=﹣x+5 中,当x=0,y=5,当y=0,x=5,点B、C的坐标分别为( 5,0)、( 0,5),2将( 5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5 即二次函数表达式为:y =﹣x2+bx+5.2(2)在y=﹣x2+bx+5 中,当y=0 时,x=﹣ 1或 5,∴A(﹣ 1,0),OB=OC=2,∴∠ OCB=45°;过点D分别作x 轴和直线BC的对称点D′( 0,﹣ 3)、D″,∵∠ OCB=45°,∴CD″∥ x轴,点D″( 2,5),连接D′D″交x 轴、直线BC于点N、M,此时△ DMN的周长最小,设直线D'D''的解析式为:y=mx+n将D′( 0,﹣ 3),D″( 2,5),代入解得:m=4,n=-3,直线D'D''的解析式为:y= 4x﹣3,3 ∴N(3,0).4联立y=4x﹣3,y=﹣x+5得:x=8,y=17,55 即M(8,17).553.(2017·预测卷)已知,在平面直角从标系中,A点坐标为( 0,4),B点坐标为( 2,0),C(m,6)12 3 为反比例函数y 图象上一点.将△ AOB绕B点旋转至△ A′ O′ B处.x( 1)求m的值;( 2)求当AO′最短和最长时A′点的坐标.【答案】见解析.12 3【解析】解:(1)∵C(m,6)为反比例函数y 图象上一点,x∴m=2 3 ;(2)当AO′最短时A′点的坐标(2+ 6 5,8 5),当AO′最长时A′点的坐标(2﹣55①当点O′在线段AB上时,AO′最短,过点O′作O′N⊥x 轴于N,过点A′作A′ M⊥O′N于M,6 5,﹣8 5)55 ∵ O′ N∥OA,∴BN O'N O'B ,OB OA AB ,即BN O'N 2 2 4 2 5∴BN=2 5,O′N=4 5.55由∠ A′MO′=∠ A′O′B=∠O′NB=90°,得:∠ MA′O′=∠NO′B,∴△ A′MO′∽△ O′NB,A'M O'M∴ 2 ,O'N BN∴A′M=8 5,O′M=4 5,55即A'( 2+6 5,8 5);55②当点O′在线段AB延长线上时,AO′最长,同理可得:(2- 6 5,-85).554.(2017·郑州一模)如图,⊙ O的半径为 2,点O到直线l 距离为 3,点P 是直线PQ切⊙ O于点Q,则PQ的最小值为()l 上的一个动点,B.13 C.2 D.3A.5【答案】 A .【解析】解:由垂线段最短知,当 OP ⊥l 时, OP 取最小值,而由 PQ = OP 222可知,此时, PQ 取最小值, 过点O 作OP ⊥l 于P ,过P 作⊙ O 的切线PQ ,切点为 Q ,连接OQ ,则 OP =3, OQ =2, ∵PQ 切⊙ O 于点 Q , ∴∠ OQP =90°,由勾股定理得: PQ = 5 , 即 PQ 的最小值为 5 , 故答案为: A .5. (2019·许昌月考) 如图,在菱形 ABCD 中,∠ ABC =60°, AB =2,点 P 是这个菱形内部或边上的一点,【解析】解: (1)BC 为腰,且∠ PCB 为顶角时,以 C 为圆心,以 BC 为半径画弧,点 P 在弧上,由题意 知,点 P 在菱形外或与 A 、D 重合,不符合题意;( 2)以 BC 为腰,且∠ PBC 为顶角时, 点 P 在以 B 为圆心,以 AB 为半径的圆上,则 PD 的最小值BD -BC = 3 BC -BC =2 3 ﹣3) BC 为底时,则点 P 在线段 BC 的垂直平分线上,由垂线段最短知, PD 最小为: 1+1=2;是等腰三角形, 则 P 、D ( P 、D 两点不重合) 两点间的最短距离为答案】 2 3 ﹣2.∵2 3 ﹣2<2,∴PD 的最小值为: 2 3 ﹣2.即抛物线的解析式为: y =-x 2+2x +3;(2)首先构造出 1MB ,将 AB 绕点 B 顺时针旋转 30°,交y 轴于 H ,过 M 作 MG ⊥ BH 于G ,则MG = 1 MB ,22CN +MN +1 MB 的最小值即 CN +MN +MG 的最小值,2由图可知,当 C 、 N 、 M 、 G 共线,且 CG ⊥ BH 时,取得最小值, 即∠ HCG =30°, ∵ OB =3,∠ ABH =30°, ∴AH = 3,即 H (0, 3 ), ∴CH =3+ 3 ,6.(2019·郑州外国语模拟)在平面直角坐标系中, 抛物线 y =- x 2+bx +c 经过点 A 、B 、C ,已知 A (-1,0) ,C (0,3).(1) 求抛物线的解析式;2)如图,抛物线的顶点为 E ,EF ⊥x 轴于 F ,N 是直线 EF 上一动点, M ( m , 0)是 x轴上一个动点,请解: (1)将 A (-1,0)2, C (0,3) 代入 y =-x 2+bx +c1bc c3 0,解得: b2c31直接写出 CN +MN + MB 的最小解∴CG =CH · cos 30°=3 3 3 ,2即 CN +MN + 1 MB 的最小值为 3 3 3.227. (2019·郑州实验中学模拟)如图,已知抛物线 y =﹣ x 2+bx +c 与一直线相交于 A ( 1,0)、C (﹣2,3)两点,与 y 轴交于点 N ,其顶点为 D .( 1)求抛物线及直线 AC 的函数关系式;(2)若 P 是抛物线上位于直线 AC 上方的一个动点,求△ APC 的面积的最大值;(3)在对称轴上是否存在一点 M ,使△ ANM 的周长最小.若存在,请求出△ ANM 周长的最小值;若不存解析】解: ( 1)将 A (1,0),C (﹣2,3)代入 y =﹣ x 2+bx +c ,得:2∴抛物线的函数解析式为: y =﹣ x 2﹣2x +3; 设直线 AC 的解析式为: y =kx +n , 将 A (1,0),C (﹣ 2,3)代入 y =kx +n ,得: k +n =0,-2k +n =3,解得: k =-1 , n =1,即直线 AC 的解析式为 y =﹣ x +1.(2)过点 P 作 PF ∥y 轴交直线 AC 于点 F ,bc 2b c 0 ,解得:b2 c3∴AM +MN =AM +MC =AC , 此时△ ANM 周长有最小值. 由勾股定理得: AC =3 2,AN = 10 ,2设点 P (x ,﹣ x ﹣ 2x +3),则点 F (x ,﹣ x +1),( 2<x <1)∴ S △ APC = 1( x A -x C )? PF 3x 2﹣ 3x +322x+2)227+8 ∴当 x =﹣ 1 时,△ APC 的面积取最大值,最大值为 22(3)当 x =0时, y =﹣ x 2﹣2x +3=3, 27 8∴点 N 的坐标为( 0, 3). 由 y =﹣ x 2﹣ 2x +3=﹣得:抛物线的对称轴为 x =﹣1 . ∴点 C ,N 关于抛物线的对称轴对称, 设直线 AC与抛物线的对称轴的交点为点∴MN =∴ C △ ANM = AM +MN +AN = AC +AN = 3 2 + 10 . ∴△ ANM 周长的最小值为 3 2 + 10.8. (2018·郑州预测卷)如图,抛物线 y =- x 2+bx +c 与 x 轴交于 A 、B 两点,与 y 轴交于点C ,点 O 为坐标原点,点 D 为抛物线的顶点,点 E 在抛物线上,点 F 在x 轴上,四边形 OCEF 为矩形,且OF =2,EF =3.(1)求抛物线的解析式;( 2)连接 CB 交 EF 于点 M ,连接 AM 交 OC 于点 R ,连接 AC ,求△ ACR 的周长; (3)设 G (4 ,- 5)在该抛物线上, P 是 y 轴上一动点,过点 P 作PH ⊥EF 于点 H ,连接AP , GH ,问 AP + PH + HG 是否有最小值?如果有,求出点 P 的坐标;如果没有,请说明理由.【解析】解: (1)∵四边形 OCEF 为矩形, OF =2,EF =3, ∴C (0 ,3) ,E (2 ,3) .2将 C (0 ,3),E (2 ,3)代入 y =-x 2+bx +c 得:b =2,c =3,∴抛物线的解析式为: y =- x 2+2x +3;2(2) 在 y =-x 2+2x +3中,当 y =0时, x 1=- 1,x 2=3, ∴A ( -1,0),B (3,0), ∵AO =1,CO =3,∴在 Rt △AOC 中,由勾股定理得: AC = 10 , ∵CO =BO =3,∴∠ OBC =∠ OCB =45°, ∴FM =BF =1,答案】见解∵RO∥ MF,∠ RAO=∠ MAF,∴△ ARO∽△ AMF,RO AO,得RO =1 ,MF AF 3∴CR =OC -OR =3- 1=8 *,AR = 10,33 3∴△ ACR 的周长为: AC +CR +AR = 8 4 10;3设直线 A ′ G 的解析式为: y = kx +m , 将 G (4 ,- 5) , A ′(1 , 0) 代入得:C (A 在 C 的左侧),点 B 在抛物线上,其横坐标为 1,连接 BC ,BO ,点 F 为 OB 中点.∴直线 A ′ G 的解析式为: y =55x + .3)取 OF 中点 A ′,连接 A ′ G 交直线 EF 的延长线于点 H ,过点 H 作HP ′⊥ y 轴于点 P AP当 P 在 P ′处时, AP +PH +HG 最小, A ′(1,0),22( 1)求直线 BC 的函数表达式;(2)若点 D 为抛物线第四象限上的一个动点,连接 BD ,CD ,点 E 为 x 轴上一动点,当最大时,求点 D 的坐标,及 | FE ﹣ DE | 的最大值 .【答案】见解析 .【解析】解: ( 1)在 y =8 2x 28 2x 42 2中,当 y =0,解得: x 1= 3 ,x 2=7,55 2 2 37∴ A ( , 0), C ( , 0)22当 x =1时, y =2 2 即 B (1,2 2 ), 设直线 BC 的解析式为 y = kx +bkb 2 2 k42得:7 ,解得 57k b0 14 22b 5直线 BC 的解析式为 y = 8 9 x +10 2 .558 2 2 42 2(2)设点 D ( m , 8 2 m 8 2m 42 2 ),则点H (m ,55 过点 D 作 DH ⊥ x 轴交 BC 于点 H ,=5DH ,58 2 14 2 HD =4 2m+14 25 82852m 28 2m42 25)S △BCD = 1 ×DH ×( x C -x B ) BCD 的面积的4 2m +14 2)5542 2∴当 m = 9 时, HD 取最大值,此时 S △BCD 的面积取最大值.4 此时 D (9,﹣ 3 2 ).42 作 D 关于 x 轴的对称点 D ′ 则 D ′( 9 , 3 2 ),42连接 D ′H 交 x 轴于一点 E ,此时 | D ′E ﹣FE | 最大,最大值为 D ′F 的长度,k 【解析】解: ( 1)将点 A (1 ,3)代入 y 得: k =3,x 3 即反比例函数解析式为: y ,x3 将点 B (3,m )代入 y 得: m =1,x即 B (3 , 1).2)作点 A 关于 x 轴的对称点 A '(1,- 3) ,连接 A 'B 交x 轴于点 P ,此时 PA +PB 最小,如图所示,即| FE ﹣DE | 的最大值为 57 .410. (2019·三门峡一模)反比例函数 ky (k 为常数,且 k ≠ 0)的图象经过点 A (1,3),B1)求反比例函数的解析式及点 B 的坐标;2)在 x 轴上找一点 P ,使 PA +PB 的值最小,求满足条件的点 P 的坐标.1∵F ( 1, 2 )241 【例 1】(2019·河南南阳一模)如图,已知一次函数y = 1 2x +2 的图象与 x 轴、 y 轴交于点 A 、 C ,与反2 比例函数 y = k 的图象在第一象限内交于点 P ,过点 P 作 PB ⊥x 轴,垂足为 B ,且△ ABP 的面积为 9.x设直线 A ' B 的解析式为: y =kx +b ,∴kb 3k b 即直线 A ' 当 y =0 时, 3 3,解得:1 k2b5 B 的解析式为: y =2x -5,55 x = 5,即 P ( 5,0).22。

相关文档
最新文档