热导检测器的原理
热导检测器(TCD)工作原理、结构组成及检测条件
![热导检测器(TCD)工作原理、结构组成及检测条件](https://img.taocdn.com/s3/m/eb8816db81c758f5f61f678b.png)
热导检测器热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1•R3=R2•R4, 或写成R1/R4=R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm的小珠,密封在玻壳内。
热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。
可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。
tcd的工作原理
![tcd的工作原理](https://img.taocdn.com/s3/m/55f895750812a21614791711cc7931b765ce7bb9.png)
tcd的工作原理
TCD(Thermal Conductivity Detector,热导率检测器)是一种常用的气相色谱检测器,它通过测量样品中的热传导性能来检测分析物。
TCD主要由焦亥桥电路、检测电阻、两个热电偶和加热元件组成。
TCD的工作原理基于气体的热导率与其组分的浓度成正比。
当气体进入TCD的检测室时,首先通过加热元件进行加热,并通过加热元件引起的温度差在气体中建立一个热传导梯度。
然后,气体中的分析物(主要是可燃和可氧化性气体)与检测电阻表面发生化学反应,改变检测电阻的电阻值,从而影响热传导梯度。
这些变化会导致热电偶间的电势差发生变化,进而被接收和放大。
TCD的检测电阻通常由两块金属片组成,金属片之间涂有一层含有催化剂的绝缘层。
当检测电阻表面发生化学反应时,会产生温度的变化,从而造成电阻值的改变。
这种变化会影响热传导梯度,因此可以通过测量热电偶电势差的变化来检测样品中的分析物。
TCD通常与气相色谱仪结合使用,通过分离混合物中的化合物,并将它们送入TCD进行检测。
TCD对可燃和可氧化性气体具有较好的选择性和灵敏度,因此广泛用于环境监测、工业过程控制和石油化工等领域。
热导检测器(TCD)原理及操作注意事项
![热导检测器(TCD)原理及操作注意事项](https://img.taocdn.com/s3/m/7247d1fc852458fb760b5640.png)
【资料】—热导检测器(TCD)原理及操作注意事项热导检测器热导检测器(TCD )是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或 Catherometer ),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
图3-?」TCD工件原譚便]j多右池曲二at样肚3 测址池腔当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E 流出之电流I在A点分成二路i1、i2至B点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温 Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100 C以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3= R2?R4,或写成R1/R4 = R2/R3 。
M、N二点电位相等,土£电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钻等氧化物半导体制成直径约为 0.1〜1.0mm 的小珠,密圭寸在玻壳内。
热导检测器(TCD)原理及操作注意事项
![热导检测器(TCD)原理及操作注意事项](https://img.taocdn.com/s3/m/7247d1fc852458fb760b5640.png)
【资料】—热导检测器(TCD)原理及操作注意事项热导检测器热导检测器(TCD )是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或 Catherometer ),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
图3-?」TCD工件原譚便]j多右池曲二at样肚3 测址池腔当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E 流出之电流I在A点分成二路i1、i2至B点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温 Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100 C以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3= R2?R4,或写成R1/R4 = R2/R3 。
M、N二点电位相等,土£电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钻等氧化物半导体制成直径约为 0.1〜1.0mm 的小珠,密圭寸在玻壳内。
热导检测器TCD原理及操作注意事项
![热导检测器TCD原理及操作注意事项](https://img.taocdn.com/s3/m/17e3948d08a1284ac850437b.png)
【资料】-热导检测器(TCD)原理及操作注意事项热导检测器热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E 流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温Tw。
一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~的小珠,密封在玻壳内。
热敏电阻有三个优点..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。
热导检测器(TCD)原理及操作注意事项
![热导检测器(TCD)原理及操作注意事项](https://img.taocdn.com/s3/m/865b04cd1eb91a37f1115cbf.png)
热导检测器(TCD)原理及操作注意事项TCD热导检测器(TCD)是,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100?以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1•R3=R2•R4, 或写成R1/R4=R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm....的小珠,密封在玻壳内。
热敏电阻有三个优点:?热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏..度相当高。
可直接作μg/g级的痕量分析;?热敏电阻体积小,可作成0.25mm 直径的小球,这样池腔可小至50μL;?热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。
tcd检测器工作原理
![tcd检测器工作原理](https://img.taocdn.com/s3/m/697d397cdc36a32d7375a417866fb84ae55cc371.png)
tcd检测器工作原理
TCD检测器工作原理:
①TCD即热导检测器常用于气相色谱分析中检测气体或挥发性液体样品;
②基本原理基于不同物质热导率差异当载气携带待测组分流经检测池时会引起电阻变化;
③检测池内装有两个完全相同的钨丝或铼钨合金丝其中一个作为参比另一个与样品接触;
④两者均被加热至恒定温度并保持在热平衡状态任何扰动都会导致不平衡;
⑤当样品组分随载气进入测量池后因其热导率不同于载气引起热量分配发生变化;
⑥这种变化反映为测量池中电阻丝阻值的变化进而转化为电信号输出;
⑦放大器接收此信号经过处理后在记录仪上显示出峰形图谱供分析人员解读;
⑧为提高灵敏度通常采用高纯氦气作为载气因其热导系数较大易于检测微量物质;
⑨在农药残留检测环境监测等领域TCD凭借其通用性强线性范围宽等优点得到广泛应用;
⑩实验过程中需定期校准检测器清洗气路防止污染干扰结果准确性;
⑪新型TCD正朝着微型化智能化方向发展以适应便携式现场快速检测需求;
⑫掌握TCD工作原理有助于科研工作者更好地利用该技术解决实际问题。
热导检测器的原理和应用
![热导检测器的原理和应用](https://img.taocdn.com/s3/m/3e5be623cbaedd3383c4bb4cf7ec4afe05a1b14e.png)
热导检测器的原理和应用1. 简介热导检测器(Thermal Conductivity Detector,简称TCD)是一种常用的气体检测仪器,广泛应用于化学、环境、制药等领域。
本文将介绍热导检测器的工作原理和应用。
2. 工作原理热导检测器基于气体的导热性质进行测量。
其工作原理如下:1.传感器模块:热导检测器通常由传感器模块和控制电路组成。
传感器模块包括热导元件和传热元件。
热导元件通常由一对恒温线圈组成,将恒定的热量输入到传热元件中。
2.空气流通:待测气体通常通过一个进样口进入热导检测器,并被空气流通系统带走。
空气流通的速度和压力经过调节,以确保精确的测量。
3.热导差异:当待测气体流经传热元件时,其导热性质会与纯净载气(通常为氮气)导热性质有所差异。
差异的大小与待测气体的浓度成正比。
4.检测信号:热导元件测量待测气体与纯净载气之间的热导差异,并将其转化为电信号。
这个信号经过放大和处理,最终通过控制电路输出。
3. 应用领域热导检测器在以下领域中得到了广泛的应用:3.1 环境监测热导检测器可以用于监测空气中的有害气体浓度,如二氧化碳、一氧化碳、甲醛等。
通过检测这些气体的浓度变化,可以评估环境的空气质量,并采取相应的措施进行改善。
3.2 工业过程控制在工业生产过程中,热导检测器可以用于监测和控制气体的浓度。
例如,在化学反应中,通过监测反应器中气体的浓度变化,可以调节进料量和温度,以确保反应的效果和安全性。
3.3 制药工业热导检测器可以用于制药工业中药品的质量控制。
通过检测药物中微量气体的浓度变化,可以判断药品的纯度和稳定性,以保证药品的质量。
3.4 气体分析热导检测器也可以用于气体分析。
通过检测不同气体的热导差异,可以对气体进行鉴别和分析。
这在研究领域和实验室中特别有用。
4. 优势和局限性热导检测器具有以下优势:•灵敏度高:热导检测器对待测气体浓度的变化非常敏感,可以检测到极低浓度的气体。
•快速响应:热导检测器的响应速度非常快,可以实时监测气体的浓度变化。
热导检测器(TCD)原理及操作注意事项之欧阳法创编
![热导检测器(TCD)原理及操作注意事项之欧阳法创编](https://img.taocdn.com/s3/m/12bc973419e8b8f67d1cb91c.png)
【资料】-热导检测器(TCD)原理及操作注意事项热导检测器热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1•R3=R2•R4, 或写成R1/R4=R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导....体制成直径约为 0.1~1.0mm的小珠,密封在玻壳内。
:①热敏电阻阻值大(5~50kΩ热敏电阻有三个优点..),温度系数亦大,故灵敏度相当高。
热导池检测器的检测原理
![热导池检测器的检测原理](https://img.taocdn.com/s3/m/b166792a0a1c59eef8c75fbfc77da26925c596c4.png)
热导池检测器的检测原理
热导池检测器是一种常见的温度测量设备,其检测原理基于热导率差异的原理。
热导池检测器由一个热导体构成,通常是一根金属或合金丝。
热导池的一端被称为热源,另一端被称为冷端,而中间则是被测量的环境部分。
当电流通过热导体时,热源端会产生热量,并通过热传导逐渐传递到冷端。
在传热过程中,热导率是物质传递热量的能力的度量。
不同物质的热导率通常不同,这是热导池检测器工作的基础。
当环境部分的温度高于热源温度时,热量会由热源流向环境部分。
这导致热源端的温度降低,而冷端的温度保持稳定。
热导池检测器通过测量热源端和冷端之间的温差来确定环境部分的温度。
它可以使用热电偶、热电阻或热电偶作为温度传感器来测量这个温差。
根据热导率的差异,温差的大小与环境部分的温度成正比。
为了提高测量的精度,热导池检测器通常会进行校准。
这可以通过在已知温度下进行测量,然后绘制热导池响应的标准曲线来实现。
根据标准曲线,可以使用热导池检测器测量未知温度,并通过曲线插值来确定实际温度值。
总之,热导池检测器利用热传导中不同物质热导率的差异来测量温度。
通过测量热源端和冷端之间的温差,并使用校准曲线进行插值,可以确定环境部分的温度。
这种检测方法在工业、实验室和家用设备中广泛应用。
热导检测器(TCD)工作原理、结构组成及检测条件
![热导检测器(TCD)工作原理、结构组成及检测条件](https://img.taocdn.com/s3/m/a5a287f7a8956bec0875e314.png)
热导检测器热导检测器(TCD )是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD )或热导计、卡他计(katherometer 或Catherometer ),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
BS3-2-1 TCDTfESW®1—¥靜池睨;2—址样曙;〕一色19柱皿一测量池腔当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E流出之电流I在A点分成二路i1、i2至B点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100 C以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3 = R2?R4,或写成R1/R4 = R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1 )热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为0.1〜1.0mm的小珠,密封在玻壳内。
热敏电阻有三个优点:①热敏电阻阻值大( 5〜50k Q),温度系数亦大,故灵敏度相当高。
热导池检测器检测原理
![热导池检测器检测原理](https://img.taocdn.com/s3/m/4454b19b77a20029bd64783e0912a21615797f4f.png)
热导池检测器检测原理
热导池检测器是一种将光信号转化为电信号的光电器件,其工作原理主要基于反射光和吸收光之间的热传导过程。
在热导池检测器中,红外辐射通过反射光和吸收光的方式被探测和转化。
首先,热导池检测器包含一个光电池芯片和一个集成的导热导盘。
导热导盘的作用是将所探测到的光辐射均匀地传递到光电池芯片上。
当红外辐射照射到热导池检测器上时,有一部分光被光电池芯片反射,另一部分光被光电池芯片吸收。
被吸收的光会导致光电池芯片温升,而反射光则会传播到周围环境中。
由于光电池芯片与导热导盘紧密接触,被吸收的光能迅速通过热传导方式传递给导热导盘,从而使导热导盘的温度升高。
导热导盘的温度变化进一步引起导盘材料的电阻变化,最终形成一个电势差。
电势差随着导热导盘温度的变化而变化,而导热导盘温度又与被吸收的红外辐射有关。
因此,通过测量电势差的变化,可以间接地推断出红外辐射的强度。
总的来说,热导池检测器的工作原理是利用红外辐射光被吸收而引起光电池芯片温升,进而导致导热导盘温度变化,最终形成电势差。
通过检测电势差的变化,可以实现对红外辐射的探测和测量。
TCD热导检测器的原理和应用
![TCD热导检测器的原理和应用](https://img.taocdn.com/s3/m/9ad3f24c6d85ec3a87c24028915f804d2a168775.png)
TCD热导检测器的原理和应用1. 简介热导检测器(Thermal Conductivity Detector,TCD)是一种常用的气体检测方法,主要用于分析气体样品中的成分和浓度。
本文将介绍TCD的原理和应用。
2. 原理TCD基于热传导原理进行气体检测。
其主要原理如下:•当气体进入TCD检测单元时,检测单元中的加热电阻加热,产生一个恒定的温度差。
•气体样品通过检测单元时,会带走热量,使检测单元的温度下降。
•温度的下降程度与气体样品的热导率成正比关系。
•TCD通过测量检测单元温度的变化来间接测量气体样品的成分和浓度。
3. 应用TCD在各个领域都有广泛的应用,以下是一些主要的应用场景:3.1 环境监测TCD可用于监测空气中的污染物,如二氧化硫、氮氧化物等。
通过测量TCD 的输出信号变化,可以分析空气中不同污染物的浓度水平,为环境保护提供数据支持。
3.2 石油化工行业TCD在石油化工行业中广泛用于气体分析和过程监测。
例如,可以使用TCD 检测炼油过程中的杂质气体,优化生产工艺并保证产品质量。
3.3 医药领域TCD在医药领域中也有一定的应用,例如气体分析、呼气分析等。
通过TCD 的测量,可以监测患者呼出气体中的成分,进行疾病诊断和治疗监测。
3.4 科研实验TCD也被广泛应用于科研实验中,用于分析和检测实验中产生的气体。
例如,在化学实验中,TCD可用于监测反应过程中产生的气体,评估反应的进行程度和产物的质量。
4. 优点和限制TCD具有以下一些优点和限制:4.1 优点•灵敏度高:TCD对许多气体具有很高的检测灵敏度。
•可检测性广:TCD可用于检测很多不同种类的气体。
•稳定性好:TCD的检测结果稳定可靠。
4.2 限制•不能检测惰性气体:TCD在检测惰性气体时灵敏度较低。
•温度影响:TCD的温度需要精密控制,否则可能影响检测结果。
•不能区分混合气体成分:TCD无法准确确定混合气体中各个组分的比例和浓度。
5. 结论TCD作为一种常用的气体检测方法,在环境监测、石油化工、医药领域以及科研实验中都有广泛的应用。
热导检测器原理及使用注意事项
![热导检测器原理及使用注意事项](https://img.taocdn.com/s3/m/84cecbb283d049649a665813.png)
热导检测器原理及使用注意事项
答:原理:热导检测器的信号检测部分为一热导池,有池体和热敏元件组成,给热导池通电,热丝升温,所产生的热量被载气带走,并以热导的方式通过载气传给池体,当热量产生与散热建立平衡动态平衡时,热丝的温度恒定,其电阻值也恒定。
若参考臂和测量臂均通载气,两个热导池热丝温度相同,电桥处于平衡状态。
当柱后在其携带样品组分进入测量臂时,若组分与载气热导率不等,热丝温度即变化,检流计指针偏转,将此微小电流通过电阻转化成电压并放大,就成为检测信号。
注意:
①常用氢气作载气,
②不通载气不加桥电流;
③尽量采用低电流;
④浓度型检测器采用峰面积定量时,需保持流速恒定。
⑤检测器温度不得低于柱温,以防样品在检测室中冷凝引起基线不稳。
热导检测器(TCD)原理及操作注意事项
![热导检测器(TCD)原理及操作注意事项](https://img.taocdn.com/s3/m/efc91a27effdc8d376eeaeaad1f34693daef10af.png)
热导检测器(TCD)原理及操作注意事项热导检测器(TCD)原理及操作注意事项TCD热导检测器(TCD)是,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测⽅法。
⼀、⼯作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及⾊谱柱的连接⽰意图,上部为惠斯顿电桥检测电路图。
载⽓流经参考池腔、进样器、⾊谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载⽓流速、桥电流及TCD温度⾄⼀定值后,TCD处于⼯作状态。
从电源E流出之电流I 在A 点分成⼆路i1、i2 ⾄ B 点汇合,⽽后回到电源。
这时,两个热丝均处于被加热状态,维持⼀定的丝温Tf,池体处于⼀定的池温 Tw。
⼀般要求Tf与Tw差应⼤于100?以上,以保证热丝向池壁传导热量。
当只有载⽓通过测量臂和参考臂时,由于⼆臂⽓体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。
M、N⼆点电位相等,电位差为零,⽆信号输出。
当从2进样,经柱分离,从柱后流出之组分进⼊测量臂时,由于这时的⽓体是载⽓和组分的混合物,其热导系数不同于纯载⽓,从热丝向池壁传导的热量也就不同,从⽽引起两臂热丝温度不同,进⽽使两臂热丝阻值不同,电桥平衡破坏。
M、N⼆点电位不等,即有电位差,输出信号。
⼆、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化⽽改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm....的⼩珠,密封在玻壳内。
热敏电阻有三个优点:?热敏电阻阻值⼤(5~50kΩ),温度系数亦⼤,故灵敏..度相当⾼。
可直接作µg/g级的痕量分析;?热敏电阻体积⼩,可作成0.25mm 直径的⼩球,这样池腔可⼩⾄50µL;?热敏电阻对载⽓流的波动不敏感,它耐腐蚀性和抗氧化。
热导检测器(TCD)原理及操作注意事项之欧阳史创编
![热导检测器(TCD)原理及操作注意事项之欧阳史创编](https://img.taocdn.com/s3/m/8e293088af1ffc4ffe47acf1.png)
【资料】-热导检测器(TCD)原理及操作注意事项热导检测器热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1•R3=R2•R4, 或写成R1/R4=R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm的小珠,密封在玻壳内。
热敏电阻有三个优点..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热导检测器的原理热导检测器的原理及注意事项热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(kat herometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。
热导检测器的原理及注意事项从以下几个方面给予阐述。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E流出之电流I 在A 点分成二路i1、i2至 B 点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温T f,池体处于一定的池温 T w。
一般要求T f与T w差应大于100℃以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1·R3=R2·R4, 或写成R1/R4=R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm的小珠,密封在玻壳内。
热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。
可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。
热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。
使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。
例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。
目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。
其他情况很少用热敏电阻,而多用热丝。
而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。
(2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。
①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作微TCD。
③、④是为了获得高稳定性。
表 3 -2-3 列出了商品TCD中常用的热丝性能。
钨丝电阻率低,相同长度之阻值只有铁铼丝的一半,灵敏度难以提高。
另外,钨丝强度差,高温下易氧化,致使噪声增加、信!噪比下降。
铼-钨丝与钨丝相比,电阻率高,电阻温度系数略低。
因S值大体上正比于α√ρ。
3%、5%铼-钨丝和钨丝的α√ρ值分别为12. 2×103、11.7×103、10.29 ×103。
可见铼钨丝之α√ρ值均高于钨丝。
故前者有利于提高灵敏度。
另外,铼钨丝与钨丝相比,拉断力显著提高,且高温特性好,故性能稳定。
但它仍存在高温下易氧化的问题。
现在高性能TCD均用铼钨丝。
如HP6890型,岛津GC-17A型的μ-TCD热丝。
铼钨丝有两种系列:纯钨加铼(W-Re)合金丝和掺杂钨加铼(Wal2-Re)合金丝。
在电阻率、加工成型性能和高温强度等方面,后者均优于前者。
因此,在相同结构设计和操作条件下,选用后者可获得较高电阻值。
掺杂钨加铼合金丝中,其阻值和TCD灵敏度均随掺铼量的增加而提高,见表 3-2-4。
可以看出,简单地改变Re的配比,可使灵敏度提高一倍。
镀金铼钨丝是指先在支架上焊未镀金铼钨丝,经严格清洗后,再在电解槽中直接镀金的铼钨丝。
阻值虽约下降11%,在相同桥流下灵敏度下降约30%,但其抗氧化性和耐腐蚀性显著提高,兼顾了灵敏度和稳定性。
先镀金后焊至支架上的镀金铼钨丝,效果较差。
近年Valco公司推出了铁镍合金丝,据称可极大地提高灵敏度,且避免了铼-钨丝的氧化问题。
热丝的安装通常是将其固定在一支架上,放入池体的孔道中。
支架可做成各种形式,见图3-2-3。
2. 池体池体是一个内部加工成池腔和孔道的金属体。
池材料早期多用铜,因它的热传导性能好,但它防腐性能差。
故近年已为不锈钢形式示意图所取代。
通常将内部池腔和孔道的总体积称池体积。
早期TCD的池体积多为 500-800μL,后减小至100-500μL,仍称通常TCD。
它适用于填充柱。
近年发展了微TCD,其池体积均在100μL以下,有的达3.5μL,它适用于毛细管柱。
(1)通常TCD池通常TCD池按载气对热丝的流动方式(见图3-2-4)可分直通式(a)、扩散式(b)和半扩散式(c),三种流型性能比较见表3-2-5。
(2)微型TCD池由于池体积已减小至几微升,甚至200nL,故在μ-TCD中,载气流动方式已不像通常TCD那样明显,基本上可分成直通和准直通式两种,图3-2-5 列出了几种μ-TCD池结构。
可以看出,μ-TCD池腔体积仅数微升或数十微升,标准毛细管柱可直接与之相连,基本上不会造成峰扩张。
当然在灵敏度许可的情况下,适当加尾吹气,对改善峰形还是十分有利的。
μ-TCD池腔体积虽小,但是为使其工作稳定,池块还应有适当的质量,以保证恒温效果,从而使基线稳定。
三、检测条件的选择(一)、载气种类、纯度和流量1. 载气种类TCD通常用He或H2作载气,因为它们的热导系数远远大于其他化合物。
用He或H2作载气的TCD,其灵敏度高,且峰形正常,响应因子稳定,易于定量,线性范围宽。
北美多用氦作载气,因它安全。
其他地区因氦太昂贵,多用氢。
氢载气的灵敏度最高,只是操作中要注意安全,另外,还要防止样品可能与氢反应。
N2或Ar作载气,因其灵敏度低,且易出W峰,响应因子受温度影响,线性范围窄,通常不用。
但若分析He或H2时,则宜用N2或Ar作载气。
避免用He作载气测H2或用H2作载气测He。
用N2或Ar载气时需注意,因其热导系数小,热丝达到相同温度所需的桥流值,比He或H2载气要小得多。
毛细管柱接TCD时,最好都加尾吹气,即使是池体积为3.5µL的µ-TCD,HP公司也建议加尾吹气。
尾吹气的种类同载气。
降低TCD池的压力,不仅可避免加尾吹气。
而且还可提高TCD的灵敏度。
如140µL池体积TCD与50µm内径毛细管柱相连。
在约5 00Pa(4mmHg)低压下操作时,其池体积相当于0.7µL,灵敏度提高近200倍。
2. 载气纯度载气纯度影响TCD的灵敏度。
实验表明:在桥流 160-200mA范围内,用99.999%的超纯氢气比用99%的普氢灵敏度高6%-13%。
载气纯度对峰形亦有影响,用TCD作高纯气中杂质检测时,载气纯度应比被测气体高十倍以上,否则将出倒峰。
3. 载气流速TCD为浓度型检测器,对流速波动很敏感,TCD的峰面积响应值反比于载气流速。
因此,在检测过程中,载气流速必须保持恒定。
在柱分离许可的情况下,以低些为妥。
流速波动可能导致基线噪声和漂移增大。
对微TCD,为了有效地消除柱外峰形扩张,同时保持高灵敏度,通常载气加尾吹的总流速在10-20mL/min。
参考池的气体流速通常与测量池相等,但在作程升时,可调整参考池之流速至基线波动和漂移最小为佳。
(二)、桥电流桥流(I)与TCD的灵敏度(S),噪声(N)和检测限(D)的关系见图3-2-16A,B,C曲线。
由图3-2-16可见,桥电流可显著提高TCD的灵敏度。
一般认为S值与I2.8成正比。
所以,用增大桥流来提高灵敏度是最通用的方法。
但是桥流的提高又受到噪声和使用寿命的限制。
若桥流偏大,噪声即由逐渐增加变成急剧增大,见曲线B。
其结果是信噪比下降,检测极限变大,即曲线C又复上升。
另外,桥流越高,热丝越易被氧化,使用寿命越短。
过高的桥流甚至使热丝烧断。
所以,在满足分析灵敏度要求的前提下,选取桥流以低为好,这时噪声小,热丝使用寿命长。
在追求该TCD最大灵敏度的情况下,则选信/噪比最大时之桥流,这时检测极限最低,即曲线C之最低点。
但长期在低桥流下工作,可能造成池污染,这时可用溶剂清洗TCD池。
一般商品TCD使用说明书中,均有不同检测器温度时推荐使用的桥流值,见图 3-2-17。
通常参考此值设定桥流。
(三)、检测器温度TCD的灵敏度与热丝和池体间的温差成正比。
显然,增大其温差有二个途径:一是提高桥流,以提高热丝温度;二是降低检测器池体温度。
这决定于被分析样品的沸点。
检测器池体温度不能低于样品的沸点,以免在检测器内冷凝。
因此,对沸点不很低的样品,采用此法提高灵敏度是有限的,而对气体样品,特别是永久性气体,可达较好的效果。
四、使用注意事项为了充分发挥TCD的性能和避免出现异常,在使用中应注意以下几个方面。
1. 确保毛细管柱插入池深度合适柱相对于检测器池的插入位置十分重要,它影响到最佳灵敏度和峰形。
毛细管柱端必须在样品池的入口处,若毛细管柱插入池体内,则灵敏度下降,峰形差,若毛细管柱离池入口处太远,峰变宽和拖尾,灵敏度亦低。
装柱应按气相色谱仪说明书的要求操作。
如果说明书未明确装柱要求,即以得到最大的灵敏度和最好的峰形为最佳位置。
2. 避免热丝温度过高而烧断任何热丝都有一最高承受温度,高于此温度则烧断。
热丝温度的高低是由载气种类、桥电流和池体温度决定的。
如载气热导率小,桥电流和池体温度高,则热丝温度就高,反之亦然。
一般商品色谱仪在出厂时,均附有此三者之间的关系曲线(见图3-2-17),按此调节桥电流,就能保证热丝温度不会太高。
图3-2-17中推荐的最大桥电流值,是指在无氧存在的情况,如果有氧接触,则会急速氧化而烧断。
因此,在使用TCD时,务必先通载气,检查整个气路的气密性是否完好,调节TCD出口处的载气流速至一定值,并稳定10-15min后,才能通桥流。
工作过程中,如需要更换色谱柱、进样隔垫或钢瓶,务必先关桥流,而后换之。