难点运用向量法解题

合集下载

专题5.4 平面向量的综合应用(重难点突破)(解析版)

专题5.4 平面向量的综合应用(重难点突破)(解析版)

专题5.4 平面向量的综合应用一、考情分析1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题及其他一些实际问题.二、经验分享考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。

考点二 向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体。

考点三 向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题。

三、题型分析重难点题型突破1 平行与垂直例1、.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 故答案为:22. 【变式训练1-1】、(山东省德州一中2018-2019学年期中)若,且,则实数的值是( )A .-1B .0C .1D .-2【答案】D 【解析】由得,,∴,故.【变式训练1-2】、(河北省示范性高中2019届联考)已知向量a ,b 满足2(1,2)a b m +=,(1,)b m =,且a 在b 25,则实数m =( ) A 5B .5±C .2 D .2±【答案】D【解析】向量a ,b 满足()21,2a b m +=,()1,b m =,所以0,2m a ⎛⎫= ⎪⎝⎭,22m a b ⋅=,()2225cos 152m b a m θ=+=,所以42516160m m --=,即()()225440m m +-=, 解得2m =±.重难点题型突破2 平面向量与三角形例2、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【答案】C【解析】由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.【变式训练2-1】、在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形.( ) A . 等边 B . 等腰 C . 直角 D . 等腰直角 【答案】C .【解析】 由(BC →+BA →)·AC →=|AC|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|,故△ABC 一定是直角三角形. 【变式训练2-2】、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A . 内心B . 外心C . 重心D . 垂心 【答案】C .【解析】 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD(D 为BC 的中点)所对应向量AD →的2倍,∴点P 的轨迹必过△ABC 的重心.【变式训练2-3】、如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O . 若6AB AC AO EC ⋅=⋅,则ABAC的值是___________.【答案】3.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3ABAC= 重难点题型突破3 平面向量与三角函数结合例3.(河北省保定市2018-2019学年期末调研)过ABC ∆内一点M 任作一条直线,再分别过顶点,,A B C 作l 的垂线,垂足分别为,,D E F ,若0AD BE CF ++=恒成立,则点M 是ABC ∆的( )A .垂心B .重心C .外心D .内心【答案】B【解析】因为过ABC ∆内一点M 任作一条直线,可将此直线特殊为过点A ,则0AD =,有0BE CF +=. 如图:则有直线AM 经过BC 的中点,同理可得直线BM 经过AC 的中点,直线CM 经过AB 的中点, 所以点M 是ABC ∆的重心,故选B 。

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。

立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。

但是,通过向量方法解题是一种很好的解决立体几何问题的方法。

本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。

一、向量的基本概念及运算向量的表示法是用箭头表示。

箭头的长度代表向量的大小,箭头的方向代表向量的方向。

一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。

向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。

向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。

向量的运算有向量加法和向量数乘。

向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。

其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。

向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。

其中,$\lambda$是一个实数。

二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。

此外,还需要了解空间中的直线、平面、空间角、平行线等概念。

了解这些概念是建立解题基础的必要条件。

2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。

因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。

专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.8  立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。

向量法解立体几何的几个难点解读

向量法解立体几何的几个难点解读

向量法解立体几何的几个难点解读
向量法解立体几何的几个难点解读
作者:向正银
作者机构:湖北省兴山县第一中学443700
来源:数理化学习(高一二版)
ISSN:2095-218X
年:2017
卷:000
期:010
页码:16-18
页数:3
正文语种:chi
关键词:坐标系;法向量;二面角
摘要:在立体几何问题中,通过建立恰当的空间直角坐标系,利用空间向量的坐标运算证明空间中的线、面的平行与垂直关系,计算空间角及空间距离,常与空间几何体的结构特征,空间线、面位置关系的判定定理与性质定理等综合,以解答题出现[1].有时个别点的坐标不能直接写出来,需要借助向量间的关系来转化;有时已知条件不能直接写坐标,需要借助参数来写坐标;有时结论是开放性问题,需要借助条件列方程,通过方程是否有解来判断结论是否成立;有时是折叠问题要注意折叠前后中变化与不变量,合理建系写坐标是解答此类问题的前提.。

平面向量的应用重难点解析版

平面向量的应用重难点解析版

突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。

考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。

《用向量法求直线与平面所成的角》教案

《用向量法求直线与平面所成的角》教案

《用向量法求直线与平面所成的角》教案一、教学目标1. 让学生掌握向量法求直线与平面所成的角的基本概念和原理。

2. 培养学生运用向量法解决直线与平面所成角的能力。

3. 提高学生对空间几何向量知识的运用和解决问题的能力。

二、教学内容1. 直线与平面所成的角的定义。

2. 向量法求直线与平面所成的角的原理。

3. 向量法求直线与平面所成的角的步骤。

4. 实例分析:求直线与平面所成的角。

三、教学重点与难点1. 教学重点:直线与平面所成的角的定义,向量法求直线与平面所成的角的原理和步骤。

2. 教学难点:向量法求直线与平面所成的角的步骤和实例分析。

四、教学方法1. 采用讲解法,讲解直线与平面所成的角的定义、向量法求直线与平面所成的角的原理和步骤。

2. 采用案例分析法,分析实例,让学生更好地理解向量法求直线与平面所成的角的应用。

3. 采用互动教学法,引导学生提问、讨论,提高学生对知识点的理解和运用能力。

五、教学准备1. 教学课件:制作相关的教学课件,包括直线与平面所成的角的定义、向量法求直线与平面所成的角的原理和步骤等内容。

2. 实例:准备一些直线与平面所成的角的实例,用于讲解和分析。

3. 教学工具:准备黑板、粉笔等教学工具,以便进行板书和讲解。

六、教学过程1. 导入:通过复习前期学习的直线与平面基础知识,引导学生进入本节课的主题——用向量法求直线与平面所成的角。

2. 讲解直线与平面所成的角的定义,解释其意义。

3. 讲解向量法求直线与平面所成的角的原理,阐述其适用范围和优势。

4. 讲解向量法求直线与平面所成的角的步骤,通过板书和课件演示每个步骤的操作。

5. 分析实例,引导学生运用向量法求直线与平面所成的角,解答过程中注意引导学生思考和讨论。

七、课堂练习1. 布置一些直线与平面所成的角的练习题,让学生运用向量法求解。

2. 引导学生独立思考和解决问题,及时给予指导和解答疑问。

3. 强调练习过程中需要注意的问题和方法,提醒学生巩固知识点。

运用向量法解题典型例题总结

运用向量法解题典型例题总结

2009年高考数学难点突破专题辅导三难点3 运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求:(1)BC 边上的中线 AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值.●案例探究[例1]如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(1)求证:C 1C ⊥BD .(2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD =a , CB =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、1CC 中两两所成夹角为θ,于是DB CD BD -==a -b ,BD CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cosθ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由)()(1111CC CD AA CA D C CA -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得 当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD=1时,A 1C ⊥平面C 1BD . [例2]如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值;(3)求证:A 1B ⊥C 1M .命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属 ★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C 为原点建立空间直角坐标系O -xyz . 依题意得:B (0,1,0),N (1,0,1)∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1×0+(-1)×1+2×2=3 |1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅<∴CB BC CB BA CB BA (3)证明:依题意得:C 1(0,0,2),M (2,21,21))2,1,1(),0,21,21(11--==B A M C∴,,00)2(21121)1(1111M C B A M C B A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M .●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考: (1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论? ●歼灭难点训练 一、选择题1.(★★★★)设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC 中,AB =a ,AC =b ,a ·b <0,S △ABC =415,|a |=3,|b |=5,则a 与b 的夹角是( )A.30°B.-150°C.150°D.30°或150° 二、填空题3.(★★★★★)将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x -5的图象只有一个公共点(3,1),则向量a =_________.4.(★★★★)等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________.三、解答题5.(★★★★★)如图,在△ABC 中,设AB =a ,AC =b ,AP =c ,AD =λa ,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c .6.(★★★★)正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.7.(★★★★★)已知两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与PN 的夹角,求tan θ.8.(★★★★★)已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41OD OC OB OA OM +++=.参考答案难点磁场解:(1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+-.2221)291()05(||22=--+-=∴AM5)21()15(||,10)71()15(||)2(2222=--+-==--++=AC ABD 点分BC 的比为2. ∴x D =31121227,3121121=+⨯+==+⨯+-D y.2314)3111()315(||22=--+-=AD(3)∠ABC 是BA 与BC 的夹角,而BA =(6,8),BC =(2,-5).1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅⋅=∴BC BA BC BA ABC 歼灭难点训练一、1.解析:AB =(1,2),DC =(1,2),∴AB =DC ,∴AB ∥DC ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB |=5,AC =(5,3),|AC |=34,∴|AB |≠|AC },∴ABCD 不是菱形,更不是正方形;又BC =(4,1),∴1·4+2·1=6≠0,∴AB 不垂直于BC ,∴ABCD 也不是矩形,故选D. 答案:D2.解析:∵21415=·3·5sin α得sin α=21,则α=30°或α=150°.又∵a ·b <0,∴α=150°.答案:C二、3.(2,0) 4.13 cm三、5.解:∵BP 与BE 共线,∴BP =m BE =m (AE -AB )=m (μb -a ), ∴AP =AB +BP =a +m (μb -a )=(1-m )a +m μb①又CP 与CD 共线,∴CP =n CD =n (AD -AC )=n (λa -b ), ∴AP =AC +CP =b +n (λa -b )=n λa +(1-n )b②由①②,得(1-m )a +μm b =λn a +(1-n )b .∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即③解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ].6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23aa 2a ). (2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1MC =(-23a ,0,0), 且AB =(0,a ,0),1AA =(0,02a )由于1MC ·AB =0,1MC ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.∵1AC =),2,2,0(),2,2,23(a aAM a a a =-a a a AM AC 49240221=++=⋅∴a a a AM a a a a AC 2324||,324143||22221=+==++=而 2323349,cos 21=⨯>=<∴aa aAM AC所以AM AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得,PM =-MP =(-1-x ,-y ),NP PN -= =(1-x ,-y ),MN =-NM =(2,0),∴MP ·MN =2(1+x ), PM ·PN =x 2+y 2-1,NP NM ⋅ =2(1-x ).于是,NP NM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,210220002020*******πθθθ<≤≤<∴≤<-=⋅⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PNPM PN PM x x x y x y x PN PM y x PN PM||3cos sin tan ,411cos 1sin 02022y x x =-==∴--=-=∴θθθθθ 8.证明:(1)连结BG ,则EH EF EH BF EB BD BC EB BG EB EG +=++=++=+=)(21 由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21BD =EH ) (2)因为BD AB AD AB AD AE AH EH 21)(212121=-=-=-=. 所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG 由(2)知BD EH 21=,同理BD FG 21=,所以FG EH =,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以).(41)](21[21)](21[212121)(21OD OC OB OA OD OC OB OA OG OE OG OE OM +++=+++=+=+=.。

平面向量重难点题型训练

平面向量重难点题型训练

平面向量重难点题型训练
平面向量作为高中数学的重要组成部分,其重难点题型主要包括以下几个方面:
1.向量的线性运算:
o向量的加法、减法和数乘运算,包括利用几何意义解决实际问题。

o平行四边形法则和三角形法则的应用。

2.向量的数量积与向量积:
o计算两个向量的数量积(点乘),并运用到求解夹角、垂直判断等问题上。

o利用向量积(叉乘)计算平面图形的面积、判断方向及解决立体几何中的相关问题。

3.向量在直线、平面中的应用:
o判断一个向量是否共线或垂直于另一个向量,或者是否与某直线或平面平行、垂直。

o通过向量方法解决直线、平面的位置关系问题,如求直线的方向向量、平面的法向量,以及判断直线与直线、直线与平面、平面与平面的位置关系。

4.向量参数方程:
o根据给定条件写出直线或曲线的向量参数方程,并通过参数方程进行相关计算和证明。

5.向量函数及其导数、积分:
o对向量函数进行微分和积分,结合物理背景理解速度向量、加速度向量等概念,并能解决有关物体运动轨迹的问题。

示例题型如下:
•题型一:已知向量OA=(1,2),OB=(-3,4),求向量AB,并判断OA与OB是否垂直?
•题型二:给出直线l的向量方程r = (1,1) + t(2,-1),求过点P(-1,2)且与直线l垂直的直线方程。

•题型三:设平面π过点A(1,1,2),其法向量为n=(1,2,-1),求经过点B(-1,0,3)且平行于平面π的平面方程。

通过以上各类题型的训练,学生可以深入理解和掌握平面向量的基本性质和应用技巧。

向量法求空间距离

向量法求空间距离

向量法求空间距离(教师用)淄博五中 孙爱梅一.重点:掌握空间各种距离概念,并能进行他们之间的转化,能通过向量计算求出这些距离.二.难点:异面直线及点面距离求法.三.知识点及例题【知识点一】 两点的距离公式应用空间中两点的距离公式:A (x 1,y 1,z 1),B (x 2,y 2,x 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.〖例1〗如图,在正方体OABC -O ′A ′B ′C ′中,棱长为1,|AN |=2|CN |, |BM |=2|MC ′|,求MN 的长.解:由题意得A (1,0,0),B (1,1,0),C (0,1,0),C ′(0,1,1)∵|AN |=2|CN |,∴N (13,23,0),又∵|BM |=2|MC ′|,∴M (13,1,23) ∴|MN |=(13-13)2+(1-23)2+(23-0)2=53,即MN 的长为53. 注:此类题目直接套用公式,准确、迅速找到空间两点坐标是解题关键.【知识点二】通过向量求空间线段的长.|a →|=a →2〖例2〗如图,在60°的二面角的棱上,有A 、B 两点,线段AC 、BD 分别在二面角的两个面内,且都垂直于AB ,已知AB =4,AC =6,BD =8,求CD 的长度.解:∵<AC →,BD →>=60°,∴<CA →,BD →>=120°,又∵CD →=CA →+AB →+BD →, 故有|CD →|2=CD →2=(CA →+AB →+BD →)·(CA →+AB →+BD →)=CA →2+AB →2+BD →2+2CA →·AB →+2AB →·BD →+2CA →·BD →∵CA ⊥AB ,BD ⊥AB ,则CA →·AB →=0,AB →·BD →=0,∴|CD →|2=62+42+82-2×6×8×12=68,∴|CD →|=217.注:使用向量法对此题计算时,由于考虑到未知条件CD ,故应用已知的AB →,AC →,BD→三个向量将未知向时CD →表示出来,再利用|CD →|2=CD →2这一知识解题.【知识点三】求点到平面距离|AB →|=|OA →||c os <OA →,n →>|=|OA →·n →||n →|=|OA →,e →|(其中n →为α的一→.〖例3〗正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、CD 的中点,求点F 到平面A 1D 1E的距离.解:以D 1为坐标原点,D 1A 1,D 1C 1,D 1D 所在直线分别x 轴、y 轴、z 轴建立空间直角坐标系D 1-xyz . F (0,1,2),D 1(0,0,0),A 1(2,0,0),E (2,2,1),D 1A →=(2,0,0),D 1E →=(2,2,1).设n →=(x ,y ,z )为平面A 1D 1E 的一个法向量,则n →·D 1A →=0,且n →·D 1E →=0, ⎩⎨⎧2x =0 2x +2y +z =0,则x =0,令z =2,y =-1,即n →=(0,-1,2), 又D 1F →=(0,1,2),∴点F 到平面A 1D 1E 的距离.【思考】若G 、H 分别为D 1D ,AA 1中点,如何求平面A 1D 1与平面HGB 距离? 思路:易证平面A 1D 1E ∥平面HGB ,只须求B 到平面AD 1E 的距离就可.d =|D 1F →·n →| |n →|=|(0,1,2)·(0,-1,2)|12+22=35=355,即F 到面A 1D 1E 的距离为355. 注:①用向量求点面距离可避免了过点向面作距离的麻烦.②注意面面距离与点面距离的转化.l 1,l 2为异面直线,AB 为l 1,l 2公垂线估,C 、D 分别为l 1,l 2上任意两点,则异面直线l 1,l 2的距离d =|AB →|=|CD →|·|c os <CD →·n →>|=|CD →·n →| |n →|=|CD →·e →|(其中n →为公垂线AB 的一个方向向量,e →为公垂线AB 的一个单位方向向量). 〖例4〗在直三棱柱ABD -A 1B 1C 1中,∠BAC =90°,AB =BB 1=1,直线B 1C 与平面ABC 所成的角为30°,试求异面直线A 1C 1与B 1C 距离.解:以A 为坐标原点,AB 、AC 、AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.∵B 1B ⊥平面ABC ,∴∠B 1CB 为B 1C 与平面ABC 所成角,∴∠B 1CB =30°, Rt △B 1BC 中,BB 1=1,∴BC =3,又AB =1,Rt △BAC 中,ACA 1(0,0,1),C 1(0,1,1),A 1C 1→=(0,1,0),B 1(1,0,1),C (0,1,0),B 1C →(-1,1,-1),且A 1B 1→=(1,0,0),设n →=(x ,y ,z )为异面直线A 1C 1与B 1C 公垂线的一个方向向量,则n →·A 1C 1→=0,n →·B1C →=0⎩⎨⎧y =0 -x +y -z =0,∴y =0,令x =1,则z =-1,∴n →=(1,0,-1), 则两异面直线A 1C 1与B 1C 是距离d =|A 1B 1→·n →| |n →|=|(0,1,2)·(0,-1,2)|2=22. 注:用向量求异面直线距离可避免做异面直线的公垂线段麻烦.课堂测试1、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且CG =14CD ,E 为C 1G 的中点,则EF 的长为( ) A .58 B .12 C .23 D .418,∠=A .62 B .6 C .12 D .1443、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线AC 与BC 1间距离.4、正四棱柱ABCD-A1B1C1D1,AB=1,AA1=2,点E为CC1中点,求点D1到BDE 的距离.1、如图,建立空间直角坐标系D-xyz,已知正方体ABCD-A1B1C1D1的棱长为1,点P是正方体对角线D1B的中点,点Q在棱CC1上.①当2|C1Q|=|QC|时,求|PQ|.②当点Q在棱CC1上移动时,探究|PQ|的最小值.2、在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2,⑴求证:平面A1BC1∥平面ACD1;⑵求⑴中两个平面距离.。

平面向量的应用重难点解析版

平面向量的应用重难点解析版

平面向量的应用重难点解析版平面向量是数学中的一个重要概念,广泛应用于各个学科和实际生活中。

本文将深入解析平面向量的应用中的一些重难点问题,并给出详细解答。

一、向量的加减法向量的加减法是平面向量应用中的基础操作,也是理解其他应用问题的前提。

在进行向量加减法时,需要注意以下几个重要问题:1. 向量共线和反向:如果两个向量的方向相同或相反,即它们的夹角为0度或180度,那么它们被称为共线向量。

共线向量相加的结果是一个与原来两个向量方向相同的向量,而相减的结果则是一个与原来两个向量方向相反的向量。

2. 向量平行四边形法则:向量加减法可以用平行四边形法则进行计算。

即将两个向量的起点放在一起,分别以两个向量为边构造平行四边形,连接对角线,这个对角线就是两个向量的和。

如果进行向量相减,只需要将其中一个向量反向后进行相加即可。

3. 向量投影的加减法:在实际问题中,我们常常需要考虑向量的投影问题。

当两个向量的方向不同,但又不方便使用平行四边形法则进行计算时,可以将向量投影到某个方向上进行计算。

向量投影的加减法可以通过将向量分解为垂直和平行于某个方向的分量,再进行加减操作。

二、向量的数量积和夹角数量积是指两个向量相乘得到的一个标量。

在向量的应用中,数量积常常用于计算两个向量的夹角以及判断两个向量的垂直性和平行性。

以下是一些重要的应用问题:1. 计算夹角的余弦值:通过向量的数量积可以计算出两个向量之间的夹角的余弦值。

具体而言,设两个向量为A和B,它们的数量积为AB,那么两个向量夹角的余弦值可以通过以下公式计算得到:cosθ = AB / (|A| * |B|) ,其中 |A| 和 |B| 分别是向量 A 和 B 的模长。

2. 判断向量的垂直性和平行性:通过向量的数量积,可以判断两个向量是否垂直或平行。

如果两个向量 A 和 B 的数量积等于0,则说明它们是垂直的;如果两个向量 A和B 的数量积不等于0且夹角为0度或180度,则说明它们是平行的。

专题2.2.1-2 向量加法、减法运算及其几何意义重难点题型(举一反三)(解析版)

专题2.2.1-2 向量加法、减法运算及其几何意义重难点题型(举一反三)(解析版)

专题2.2.1-2向量加法、减法运算及其几何意义重难点题型【举一反三系列】【知识点1 向量加法的三角形法则与平行四边形法则】1.向量加法的概念及三角形法则已知向量,a b ,在平面内任取一点A ,作,AB a BC b ==,再作向量AC ,则向量AC 叫做a 与b 的和,记作a b +,即a b AB BC AC +=+=.如图本定义给出的向量加法的几何作图方法叫做向量加法的三角形法则.2.向量加法的平行四边形法则已知两个不共线向量,a b ,作,AB a AD b ==,则,,A B D 三点不共线,以,AB AD 为邻边作平行四边形ABCD ,则对角线AC a b =+.这个法则叫做两个向量求和的平行四边形法则.求两个向量和的运算,叫做向量的加法.对于零向量与任一向量a ,我们规定00a a a +=+=.两个向量的和与差仍是一个向量,可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点.【知识点2 向量求和的多边形法则及加法运算律】1.向量求和的多边形法则的概念已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的起点为起点,第n 个向量的终点为终点的向量叫做这n 个向量的和向量.这个法则叫做向量求和的多边形法则.112231n n n A A A A A A A A -=++⋅⋅⋅+特别地,当1A 与n A 重合,即一个图形为封闭图形时,有1223110n n n A A A A A A A A -++⋅⋅⋅++=2.向量加法的运算律(1)交换律:a b b a +=+;(2)结合律:()()a b c a b c ++=++【知识点3 向量的减法】1.向量的减法(1)如果b x a +=,则向量x 叫做a 与b 的差,记作a b -,求两个向量差的运算,叫做向量的减法.此定义是向量加法的逆运算给出的.相反向量:与向量a 方向相反且等长的向量叫做a 的相反向量.(2)向量a 加上b 的相反向量,叫做a 与b 的差,即()a b a b -=+-.求两个向量差的运算,叫做向量的减法,此定义是利用相反向量给出的,其实质就是把向量减法化为向量加法.2.向量减法的作图方法(1)已知向量a ,b ,作,OA a OB b ==,则BA a b =-=OA OB -,即向量BA 等于终点向量(OA )减去起点向量(OB ).利用此方法作图时,把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点的,被减向量的终点为终点的向量.(2)利用相反向量作图,通过向量加法的平行四边形法则作出a b -.作,,OA a OB b AC b ===-,则()OC a b =+-,如图.由图可知,一个向量减去另一个向量等于加上这个向量的相反向量.【考点1 向量的加减法运算】【例1】化简:(1)AB AC BD CD -+-;(2)AB MB BO OM +++;(3)MB AC BM ++;(4)OA OC BO CO +++.【分析】根据向量加法、减法的几何意义,用有向线段的起点和终点表示向量,以及相反向量的概念进行向量的加法和减法的运算从而化简每个式子即可.【答案】解:(1)0AB AC BD CD CB BD DC -+-=++=;(2)AB MB BO OM AB MB BM AB +++=++=;(3)MB AC BM MB BM AC AC ++=++=;(4)0OA OC BO CO BO OA OC CO MA MA +++=+++=+=【点睛】考查向量、向量加法,以及向量减法的几何意义,相反向量和零向量的概念.【变式1-1】化简:(1)AB DC BD AC ++-;(2)OA OD AD -+;(3)MN MP NQ QP -++;(4)AB AD DC --.【分析】利用向量三角形法则及其交钱加法减法法则即可得出.【答案】解:(1)0AB DC BD AC AB BC AC AC AC ++-=+-=-=;(2)0OA OD AD DA AD -+=+=;(3)0MN MP NQ QP PN NP -++=+=;(4)AB AD DC DB DC CB --=-=.【点睛】本题考查了向量三角形法则及其交钱加法减法法则,考查了推理能力与计算能力,属于基础题.【变式1-2】化简下列各式:(1)OA OB OC CO -+--;(2)()()AB CD BC AD ++-.【分析】使用向量加减混合运算的法则进行计算.【答案】解:(1))()()OA OB OC CO OB OA CO CO AB -+--=-+-=.(2))()()0AB CD BC AD AB CD BC AD AB BC CD AD AD AD ++-=++-=++-=-=.【点睛】本题考查了平面向量的加减混合运算,属于基础题.【变式1-3】化简:(1)AB BC CA ++(2)()AB MB BO OM +++(3)OA OC BO CO +++(4)AB AC BD CD -+-(5)OA OD AD -+(6)AB AD DC --(7)NQ QP MN MP ++-.【分析】根据平面向量的加法与减法的运算法则,对每一个小题进行化简计算即可.【答案】解:(1)0AB BC CA AC CA AC AC ++=+=-=;(2)()()AB MB BO OM AB MB BO OM AB MO MO AB +++=+++=+-=;(3)()()0OA OC BO CO OA OB OC OC BA BA +++=-+-=+=;(4)()()0AB AC BD CD AB AC BD DC CB BC -+-=-++=+=;(5)()0OA OD AD OA OD AD DA AD DA DA -+=-+=+=-=;(6)()--=--=-=;AB AD DC AB AD DC DB DC CB(7)()()0 ++-=++-=+=.NQ QP MN MP NQ QP MN MP NP PN【点睛】本题考查了平面向量的加法与减法的运算问题,是基础题目.【考点2 利用向量的加减法法则作图】【例2】对下图中各组向量a、b,求作a b+.【分析】将两向量首尾相接,则a b+表示从起点到指向终点的向量.【答案】解:(1)(2)(3)【点睛】本题考查了平面向量加法的集合意义.属于基础题.【变式2-1】对图中各组向量a、b,求作a b-【分析】将两向量的起点平移到一起,则a b-表示由b的终点指向a的终点的向量.【答案】解:(1)(2)(3)【点睛】本题考查了利用平面向量的三角形法则作图,属于基础题.【变式2-2】根据已知向量a、b,求作a b-.+、a b(1(2(3【分析】利用向量加减运算的三角形法则作图.【答案】解:(1)作出a b+,如图所示:作出a b-如图所示:(2)作出a b+,如图所示:作出a b-如图所示:(3)作出a b+,如图所示:作出a b-如图所示:【点睛】本题考查了平面向量加减运算的几何意义,属于基础题.【变式2-3】已知(1)(2)(3)(1)求作:a十b;(2)求作:a十b;(3)求作:a十b十c.【分析】利用向量的平行四边形法则即可作出.【答案】解:如图所示,(1)先把向量a平移到OB,以OA,OB为邻边作平行四边形OACB,则OC a b=+.(2)同理可得:OB a b=+;(3)OA a b=,=+,BO c则BA a b c=++.【点睛】本题考查了向量的平行四边形法则,考查了推理能力与计算能力,属于基础题.【考点3 用已知向量表示相关向量】【例3】(2019春•东城区期末)如图,向量AB a=,AC b=,则向量BD可以表示为()=,CD cA.a b c-+D.b a c--+-B.a b c-+C.b a c【分析】通过向量的加法减法的运算法则,表示出结果即可.【答案】解:如图,向量AB a=+,=,则向量BD BA AD=,CD c=,AC b+=++=-++.BA AD BA AC CD a b c故选:C.【点睛】本题考查向量的基本运算,考查计算能力.【变式3-1】如图所示,在四边形ABCD 中,AC AB AD =+,对角线AC 与BD 交于点O ,设O A a =,OB b =,用a 和b 表示AB 和AD .【分析】由题意得AB AO OB OA OB b a =+=-+=-,由AC AB AD =+可得四边形ABCD 是平行四边形,从而求得()AD AO OD b a =+=-+. 【答案】解:OA a =,OB b =,∴AB AO OB OA OB b a =+=-+=-,AC AB AD =+,∴四边形ABCD 是平行四边形,∴OB OD b =-=,∴()AD AO OD b a =+=-+.【点睛】本题考查了平面向量的加法及其几何意义的应用.【变式3-2】如图所示,已知OA a =,OB b =,OC c =,OD d =,OF f =,试用a ,b ,c ,d ,f 表示下列向量.(1)AC ;(2)AD ;(3)AD AB -;(4)AB CF +;(5)BF BD -.【分析】利用平面向量线性运算的三角形法则进行表示.【答案】解:(1)AC OC OA c a=-=-;(2)AD OD OA d a=-=-;(3)AD AB BD OD OB d b-==-=-;(4)AB CF OB OA OF OC b a f c+=-+-=-+-;(5)BF BD DF OF OD f d-==-=-.【点睛】本题考查了平面向量线性运算的三角形法则,属于基础题.【变式3-3】向量a,b,c,d,e如图所示,解答下列各题:(1)用a,d,e表示DB;(2)用b,c表示DB;(3)用a,b,e表示EC;(4)用d,c表示EC.【分析】利用平面向量加法的三角形法则及相反向量求解即可.【答案】解:(1)DB DE EA AB d e a=++=++;(2)DB DC CB c b=+=--;(3)EC EA AB BC e a b=++=++;(4)EC ED DC d c =+=--.【点睛】本题考查了平面向量加法的三角形法则及相反向量,加法比减法更简单一些.【考点4 向量的加减法的几何意义】【例4】(2019春•水富县校级期中)已知O 是四边形ABCD 所在平面上任一点,//||||AB CD OA OB OC OD -=-且则四边形ABCD 一定为( )A .菱形B .任意四边形C .平行四边形D .矩形 【分析】根据OA OB OC OD -=-和//AB CD 可得//AB CD 且AB CD =即可判断该四边形.【答案】解:由OA OB OC OD -=-得||||AB CD =,又//AB CD 所以//AB CD 且AB CD =,∴四边形ABCD 为平行四边形.故选:C .【点睛】本题考查了平面向量的运算性质和向量的平行,属基础题.【变式4-1】(2019秋•沧州期末)O 为四边形ABCD 所在平面内任意一点,若OA OC OB OD +=+,则四边形ABCD 为( )A .平行四边形B .矩形C .菱形D .正方形【分析】根据OA OC OB OD +=+即可得出BA CD =,从而得出四边形ABCD 为平行四边形.【答案】解:OA OC OB OD +=+;∴OA OB OD OC -=-;∴BA CD =;//BA CD ∴,且BA CD =;∴四边形ABCD 为平行四边形.故选:A .【点睛】考查向量减法的几何意义,相等向量的概念,以及平行四边形的定义.【变式4-2】(2019•海淀区一模)在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上C .点D 在线段BC 上 D .点D 在CB 的延长线上 【分析】据条件,容易得出AD AB CB =+,可作出图形,并作BD CB '=,并连接AD ',这样便可说明点D 和点D '重合,从而得出点D 在CB 的延长线上.【答案】解:2AD AB AC =-AB AB AC =+-AB CB =+;如图,作BD CB '=,连接AD ',则:AB CB AB BD AD AD +=+'='=;D ∴'和D 重合;∴点D 在CB 的延长线上.故选:D .【点睛】考查向量减法的几何意义,向量的几何意义,相等向量的概念,以及向量加法的三角形法则.【变式4-3】(2019秋•昌平区期末)在平行四边形ABCD 中,若||||AB AD AB AD -=+,则平行四边形ABCD 是( )A .矩形B .梯形C .正方形D .菱形【分析】根据向量的基本运算,利用平方法进行判断即可.【答案】解:由||||AB AD AB AD -=+,平方得222222AB AB AD AD AB AB AD AD -+=++,得得0AB AD =,即得AB AD ⊥,则平行四边形ABCD 是矩形,故选:A .【点睛】本题主要考查平行四边形的形状的判断,根据向量的基本运算,是解决本题的关键.【考点5 利用向量的加减法证明几何问题】【例5】P ,Q 是三角形ABC 边BC 上两点,且BP QC =,求证:AB AC AP AQ +=+.【分析】根据题意,画出图形,结合图形,利用平面向量的加法与减法的几何意义,即可得出结论.【答案】证明:P ,Q 是三角形ABC 边BC 上两点,且BP QC =,如图所示;=-,∴BP AP AB=-;QC AC AQ又BP QC=,-=-,∴AP AB AC AQ+=+;∴AP AQ AC AB即AB AC AP AQ+=+.【点睛】本题考查了平面向量的加法与减法的几何意义的应用问题,是基础题目.【变式5-1】(2019•广东模拟)如右图,已知点D、E、F分别是ABC∆三边AB、BC、CA的中点,求证:0++=.EA FB DC【分析】由题意先证明ADEF为平行四边形,再由向量加法的平行四边形法则得ED EF EA+=,同理求出FB,DC再把三个式子加起来,重新组合利用向量加法的首尾相连法则求解.【答案】证明:连接DE、EF、FD,如图,D、E、F分别是ABC∆三边的中点,DE AF,∴,////EF AD∴四边形ADEF为平行四边形,由向量加法的平行四边形法则,得ED EF EA+=①,同理在平行四边形BEFD中,FD FE FB+=②,在平行四边形CFDE在中,DF DE DC+=③,将①②③相加,得(EA FB DC ED EF FD FE DE DF++=+++++=+++++()()()EF FE ED DE FD DF=【点睛】本题的考点是向量的加法及其几何意义,根据图中的中点构成的中位线证明四边形是平行四边形,利用四边形法则,把所要证明的向量和转化为其他向量的和,由加法的首尾相连法则证出.【变式5-2】O是平行四边形ABCD外一点,求证:OA OC OB OD+=+.【分析】将OA OC和表达,找关系即可.和放在三角形中,由向量加法的三角形法则用OB OD【答案】解:OA OC OB BA OD DC+=+++因为ABCD是平行四边形,所以0+=BA DC所以OA OC OB OD+=+【点睛】本题考查向量加法的几何意义,向量的三角形法则.【变式5-3】点D,E,F分别是ABC∆三边AB,BC,CA的中点,求证:(1)AB BE AC CE+=+.(2)0++=.EA FB DC【分析】(1)利用图形和向量加法的三角形法则,证明左边等于右边;(2)利用图形和向量加法的三角形法则,分别求出EA、FB和DC,再把它们加在一起,由中点和向量相等证明出左边等于0.【答案】证明:(1)由向量加法的三角形法则得,AB BE AE +=,同理可得,AC CE AE +=,∴AB BE AC CE +=+,(2)由向量加法的三角形法则得,EA EB BA =+,同理可得,FB FC CB =+,DC DB BC =+,∴左边EA FB DC EB BA FC CB DB BC EB BA FC DB =++=+++++=+++①,点D ,E ,F 分别是ABC ∆三边AB ,BC ,CA 的中点,∴FC AF =,代入①得,左边EB BF DB EF DB =++=+, 又EF BD =,∴左边0==右边,故等式成立.【点睛】本题的考点是向量加法以及几何意义,主要考查了三角形法则以及向量相等的应用,注意利用图形进行化简和证明.【考点6 用向量解决实际问题】【例6】在水流速度为10/km h 的河中,如果要使船以/h 的速度与河岸成直角地横渡,求船行驶速度的大小与方向.【分析】由题意,画出示意图,然后利用向量的加法运算解答.【答案】解:如图,OA 表示水流方向,OB 表示垂直于对岸横渡的方向,OC 表示船航行的方向,有OB OC OA =+可知BC OA =,所以||||10BC OA ==,||OB =||20OC =,且120AOC ∠=︒. 所以船行驶速度的大小20/km h ,与水流方向成120︒角行驶.【点睛】本题考查了向量加法的实际应用,关键是明确水流方向与船的航行方向的合成为船实际航行方向.【变式6-1】已知桥是南北方向,受落潮影响,海水以12.5/km h 的速度向东流,现有一艘工作艇,在诲面上航行检查桥墩的状况,已知艇的速度是25/km h ,若艇要沿着与桥平行的方问由南向北航行,则艇的航向如何确定?【分析】根据题意分别用向量表示船速、水流速度,由向量加法的四边形法则画出图形,根据条件在直角三角形中求出船航行的角度.【答案】解:如图,设渡船速度为OB ,水流速度为OA ,则船实际垂直过江的速度为OD ,由题意知,||12.5OA =,||25OB =,四边形OADB 为平行四边形,||||BD OA ∴=,又OD BD ⊥,∴在Rt OBD ∆中,30BOD ∠=︒,则航向为北偏西30︒.【点睛】本题考查了向量的加法几何意义的实际应用,即用向量来表示题中的矢量,根据向量的知识进行求解.【变式6-2】一艘轮船从码头出发驶向河对岸,已知轮船的速度为6/km h ,河水的流速为2/km h ,轮船的实际航行路线与对岸的岸边垂直.(1)试用向量表示河水速度、轮渡速度以及轮渡实际航行的速度;(2)求轮船航行的实际速度的大小(精确到0.01 1.414)≈.【分析】(1)设河水速度为0v 、轮渡速度为1v ,轮渡实际航行的速度为v ,由题意能用向量表示河水速度、轮渡速度以及轮渡实际航行的速度.(2)由16/v km h =,0/v km h =,0v v ⊥,利用勾股定理能求出轮船航行的实际速度.【答案】解:(1)设河水速度为0v 、轮渡速度为1v ,轮渡实际航行的速度为v ,由题意用向量表示河水速度、轮渡速度以及轮渡实际航行的速度如下图:(2)16/v km h =,0/v km h =,0v v ⊥,∴轮船航行的实际速度262 5.656(/)v km h =-==.【点睛】本题考查向量表示河水速度、轮渡速度以及轮渡实际航行的速度,考查轮船航行的实际速度的大小的求法,是基础题,解题时要注意向量三角形法则的合理运用.【变式6-3】为了调运急需物资,如图所示,一艘船从长江南岸A 点出发,以/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东5/km h .(1)试用向量表示江水的速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与江水的速度方向间的夹角表示).【分析】(1)根据方向和速度大小作图;(2)利用向量加法的平行四边形法则求出矩形的对角线和DAC ∠. 【答案】解:(1)作出向量如图所示:其中AC 表示江水速度,AB 表示船速,AD 表示船实际航行速度.(2)AB AC ⊥,AD AB AC =+,∴四边形ABDC 是矩形,2||510AD ∴=.tan DAC ∠==60DAC ∴∠=︒. ∴船实际航行的速度为10/km h ,实际航行方向与江水速度方向夹角为60︒.【点睛】本题考查了平面向量线性运算的几何意义,属于基础题.。

利用向量法求空间角》教案

利用向量法求空间角》教案

利用向量法求空间角一、教学目标1. 让学生掌握空间向量的基本概念和性质。

2. 让学生学会使用向量法求解空间角。

3. 培养学生解决实际问题的能力。

二、教学内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

三、教学方法1. 采用讲授法,讲解空间向量的基本概念和性质。

2. 采用演示法,展示向量法求解空间角的步骤。

3. 采用案例教学法,分析实际问题中的应用。

四、教学步骤1. 引入空间向量的概念,讲解其基本性质。

2. 讲解向量法求解空间角的基本步骤。

3. 分析实际问题中的应用案例,引导学生运用向量法解决问题。

五、课后作业1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,巩固所学知识。

3. 选择一个实际问题,尝试运用向量法解决。

六、教学评价1. 课堂讲解:观察学生对空间向量概念和性质的理解程度。

2. 课后作业:检查学生对向量法求解空间角的掌握情况。

3. 实际问题解决:评估学生在实际问题中的应用能力。

七、教学资源1. 教案、PPT、教材等相关教学资料。

2. 计算机、投影仪等教学设备。

3. 实际问题案例库。

八、教学时间1课时(45分钟)九、教学重点与难点1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十、教学PPT内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十一、教学案例案例一:求解空间直角坐标系中两向量的夹角。

案例二:求解空间四边形的对角线夹角。

案例三:求解空间旋转体的主轴与旋转轴的夹角。

十二、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对空间向量法的理解和应用能力。

十三、教学拓展1. 研究空间向量在几何中的应用。

2. 探索向量法在物理学、工程学等领域的应用。

十四、教学建议1. 注重学生空间想象能力的培养。

2. 鼓励学生积极参与课堂讨论,提高课堂氛围。

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

高二数学教案-空间向量

高二数学教案-空间向量

个性化教学辅导教案学科: 数学任课教师:授课时间:2013 年12月28日(星期六) 08:00---10:00姓名年级:高二教学课题空间向量阶段基础(√)提高(√)强化()课时计划第()次课共()次课教学目标知识点:空间向量的基本运算及运用空间向量解题方法:引导法,复习法。

重点难点重点:运用空间向量解题难点:运用空间向量解题教学内容与教学过程课前检查作业完成情况:优□良□中□差□建议__________________________________________空间向量及其加减运算⒈空间向量:定义:空间中具有大小和方向的量叫做向量.表示方法:1)空间向量的表示方法和平面向量一样;2)方向相同且等长的有向线段表示同一向量或相等的向量;3)空间任意两个向量都可以用同一平面内的两条有向线段表示.aOB OA AB b=+=+CA OA OC a b=-=-⒉空间向量加法运算律⑴法交换律:a + b = b + a⑵加法结合律:(a + b) + c =a + (b + c);平面向量空间向量加法减法运算加法:三角形法则或平行四边形法则减法:三角形法则加法:三角形法则或平行四边形法则减法:三角形法则运算律加法交换律a b b a+=+加法结合律:加法交换律a b b a+=+加法结合律()()a b c a b c++=++注:两个空间向量的加、减法与两个平面向量的加、减法实质是一样的. 结论,1)空间中任意两个向量都是共面向量。

2)涉及空间任意两个向量问题,平面向量中结论仍然成立数乘空间向量的运算法则与平面向量一样,实数λ与空间向量a 的乘积a λ仍然是一个向量. (1)当0λ>时,a λ与向量a 的方向相同; (2)当0λ<时,a λ与向量a 的方向相反; (3)当0λ=时,a λ是零向量.显然,空间向量的数乘运算满足分配律及结合律()()()a b a b a a a a aλλλλμλμλμλμ+=++=+=即: ()共线向量及其定理定义:表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量.(或平行向量) 对于空间任意两个向量a ,b (0b ≠),a //b ⇔∃R λ∈,a b λ=.1.共线向量: 如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作//a b .规定:o 与任一向量a 是共线向量.2.共线向量定理:空间任意两个向量a 、b(b ≠0),a //b 的充要条件是存在实数λ,使a b λ=.推论:如果l 为经过已知点A 且平行已知非零向量的直线,那么对任一点O,点P 在直线 l 上的充要条件是存在实数t,满足等式 OP OA ta =+ 其中向量a 叫做直线l 的方向向量.若OP OA t AB =+()AP t AB =或则A 、B 、P 三点共线。

巧用向量解难题

巧用向量解难题

二、空间向量的运用
对 于 立 体 几 何 题 ,现 在 的 绝 大 部 分 学 生 首 先 想 到 的 是 利 用 向 量 的 方 法 来 解 决 .的 确 ,向 量 方 法 是 解 决 立 体 几 何 问 题 的 一 大 利 器 ,它 的 最 大 好 处 是 极 大 地 降 低 了 学 生 对 于 空 间 想 象 能 力 的 要 求 ,这 样 一 来 对 于 传 统 立 体 几 何 的 教 学 也 是 一 种 挑 战 ,这 需 要 我 们 必 须 有 意 识 地 加 强 传统内容的教学与训练,下面举例说明.
题.
单 位 向 量 在 数 学 中 的 应 用 广 泛 ,除 以 上 应 用 外 ,还
常构造单位向量解决三角求值,探求函数的最值及值域
等 问 题 ,其 特 点 是 方 法 新 颖 、运 算 简 捷 .总 之 ,向量是
“数 ”与“形 ”的最佳载体,而适当挖掘单位向量的潜在功
能 ,无论对解题还是对教材的处理都大有裨益.
\O A +O B \
**
V T ). 妙用单位向量的性质,避 繁 就 简 ,一气呵
向 量 的 夹 角 公 式 是 c o s 〈a
\a \\b \ -'2,其中'1,'2
分别是与a ,b 同向的单位向量,这也说明可选取向量的
9 2 十 •?炎 ,? 高中版
简 便 . 作 向 量 冬 ,及菱形%' ( ) ,由〇(为
\a\
\b\
$ % 0 ' 的 平 分 线 ,知 # / / $ ( ,即# / / ( $ % + $ # ) ,故
的边长 为/ ,则 可 得 \ ^ " % & " % & ,

专题01 空间向量及其运算(重难点突破)(解析版)

专题01 空间向量及其运算(重难点突破)(解析版)

专题01 空间向量及其运算重难点突破一、知识结构思维导图二、学法指导与考点梳理1.空间向量(1)定义:空间中既有大小又有方向的量称为空间向量. (2)模(或长度):向量的大小. (3)表示方法:①几何表示法:可以用有向线段来直观的表示向量,如始点为A 终点为B 的向量,记为AB →,模为|AB →|.②字母表示法:可以用字母a ,b ,c ,…表示,模为|a |,|b |,|c |,…. 【几类特殊的向量】(1)零向量:始点和终点相同的向量称为零向量,记作0. (2)单位向量:模等于1的向量称为单位向量.(3)相等向量:大小相等、方向相同的向量称为相等向量. (4)相反向量:方向相反,大小相等的向量称为相反向量.(5)平行向量:方向相同或者相反的两个非零向量互相平行,此时表示这两个非零向量的有向线段所在的直线平行或重合.通常规定零向量与任意向量平行.(6)共面向量:一般地,空间中的多个向量,如果表示它们的有向线段通过平移后,都能在同一平面内,则称这些向量共面.思考:空间中任意两个向量共面吗?空间中任意三个向量呢?【名师提醒】 空间中任意两个向量都是共面的,但空间中任意三个向量不一定共面. 2.空间向量的线性运算类似于平面向量,可以定义空间向量的加法、减法及数乘运算.图1 图2(1)如图1,OB →=OA →+AB →=a +b ,CA →=OA →-OC →=a -b .(2)如图2,DA →+DC →+DD 1→=DB 1→.即三个不共面向量的和,等于以这三个向量为邻边的平行六面体中,与这三个向量有共同始点的对角线所表示的向量.(3)给定一个实数λ与任意一个空间向量a ,则实数λ与空间向量a 相乘的运算称为数乘向量,记作λa .其中:①当λ≠0且a ≠0时,λa 的模为|λ||a |,而且λa 的方向:(ⅰ)当λ>0时,与a 的方向相同;(ⅰ)当λ<0时,与a 的方向相反. ②当λ=0或a =0时,λa =0. (4)空间向量的线性运算满足如下运算律:对于实数λ与μ,向量a 与b ,有①λa +μa =(λ+μ)a ;②λ(a +b )=λa +λb . 3.空间向量的数量积 (1)空间向量的夹角如果〈a ,b 〉=π2,那么向量a ,b 互相垂直,记作a ⊥b . (2)空间向量数量积的定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积(或内积),记作a·b . (3)数量积的几何意义 ①向量的投影如图所示, 过向量a 的始点和终点分别向b 所在的直线作垂线,即可得到向量a 在向量b 上的投影a ′.②数量积的几何意义: a 与b 的数量积等于a 在b 上的投影a ′的数量与b 的长度的乘积,特别地,a 与单位向量e 的数量积等于a 在e 上的投影a ′的数量.规定零向量与任意向量的数量积为0. (4)空间向量数量积的性质: ①a ⊥b ⇔a ·b =0; ②a ·a =|a |2=a 2; ③|a ·b |≤|a ||b |; ④(λa )·b =λ(a ·b ); ⑤a ·b =b ·a (交换律);5.共面向量定理如果两个向量a ,b 不共线,则向量a ,b ,c 共面的充要条件是存在唯一的实数对(x ,y ),使c =x a +y b .思考1:平面向量基本定理中对于向量a 与b 有什么条件,在空间中能成立吗? 【名师提醒】平面向量基本定理中要求向量a 与b 不共线,在空间中仍然成立. 6.空间向量基本定理如果空间中的三个向量a ,b ,c 不共面,那么对空间中的任意一个向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .特别地,当a ,b ,c 不共面时,可知x a +y b +z c =0时,x =y =z =0. 7.空间中向量的坐标一般地,如果空间向量的基底{e 1,e 2,e 3}中,e 1,e 2,e 3都是单位向量,而且这三个向量两两垂直,就称这组基底为单位正交基底,在单位正交基底下向量的分解称为向量的单位正交分解,而且,如果p =x e 1+y e 2+z e 3,则称有序实数组(x ,y ,z )为向量p 的坐标,记作p =(x ,y ,z ).其中x ,y ,z 都称为p 的坐标分量.思考1:若a =x e 1+y e 2+z e 3,则a 的坐标一定是(x ,y ,z )吗?【名师提醒】 不一定,当e 1,e 2,e 3是单位正交基底时,坐标是(x ,y ,z ),否则不是. 8.空间向量的运算与坐标的关系假设空间中两个向量a ,b 满足a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则有以下结论: (1)a +b =(x 1+x 2,y 1+y 2,z 1+z 2);(2)若u ,v 是两个实数,u a +v b =(ux 1+vx 2,uy 1+vy 2,uz 1+vz 2); (3)a·b =x 1x 2+y 1y 2+z 1z 2;(4)|a |=a ·a(5)当a ≠0且b ≠0时,cos 〈a ,b 〉=a·b|a|·|b|=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22.9.空间向量的坐标与空间向量的平行、垂直(1)当a ≠0时,a ∥b ⇔b =λa ⇔(x 2,y 2,z 2)=λ(x 1,y 1,z 1)⇔⎩⎪⎨⎪⎧x 2=λx 1y 2=λy 1z 2=λz 1,当a 的每一个坐标分量都不为零时,有a ∥b ⇔x 2x 1=y 2y 1=z 2z 1.(2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2+z 1z 2=0.10.空间直角坐标系(1)在空间中任意选定一点O 作为坐标原点,选择合适的平面先建立平面直角坐标系xOy ,然后过O 作一条与xOy 平面垂直的数轴z 轴.这样建立的空间直角坐标系记作Oxyz .(2)在空间直角坐标系Oxyz 中,x 轴、y 轴、z 轴是两两垂直的,它们都称为坐标轴,通过每两个坐标轴的平面都称为坐标平面.(3)z 轴正方向的确定:在z 轴的正半轴看xOy 平面,x 轴的正半轴绕O 点沿逆时针方向旋转90°能与y 轴的正半轴重合.(4)空间直角坐标系的画法:在平面内画空间直角坐标系Oxyz 时,一般把x 轴、y 轴画成水平放置,x 轴正方向与y 轴正方向夹角为135°(或45°),z 轴与y 轴(或x 轴)垂直.(5)空间中一点的坐标:空间一点M 的坐标可用有序实数组(x ,y ,z )来表示,有序实数组(x ,y ,z )叫做点M 在此空间直角坐标系中的坐标,其中x 叫做点M 的横坐标(或x 坐标),y 叫做点M 的纵坐标(或y 坐标),z 叫做点M 的竖坐标(或z 坐标).(6)三个坐标平面将不在坐标平面内的点分成了八个部分,每一部分都称为一个卦限,按逆时针方向,在坐标平面xOy 的上方,分别是第ⅰ卦限,第ⅰ卦限,第ⅰ卦限,第ⅰ卦限,在平面xOy 的下方,分别是第ⅰ卦限,第ⅰ卦限,第ⅰ卦限,第ⅰ卦限,根据点的坐标的特征,第ⅰ卦限的点集用集合可表示为{(x ,y ,z )|x >0,y >0,z >0}. 11.空间向量坐标的应用(1)点P (x ,y ,z )到坐标原点O (0,0,0)的距离OP(2)任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离P 1P 2三、重难点题型突破重难点1 空间向量的概念及其线性运算例1.(1)如图所示,空间四边形OABC 中,,,OA a OB b OC c ===,点在上,且2OM MA =,为中点,则等于( )A .B .C .D .【答案】B【解析】=-=(+)-=(b +c )-a =-a +b +c .故选B(2)给出以下结论:两个空间向量相等,则它们的起点和终点分别相同;若空间向量,,满足,则;在正方体中,必有;若空间向量,,满足,,则.其中不正确的命题的序号为________.【分析】本题考查的知识点是空间相等的定义,难度不大,属于基础题.根据相向相等的定义,逐一分析四个结论的真假,可得答案.【解析】若两个空间向量相等,则它们方向相同,长度相等,但起点不一定相同,终点也不一定相同,故错误;若空间向量,,满足,但方向不相同,则,故错误;在正方体中,与方向相同,长度相等,故,故正确;若空间向量,,满足,,则,故正确;故答案为.,,分别是,,的中点,则()【变式训练1】.在平行六面体,设,,,M N PA.B.C.D.【答案】A【解析】如图故选【变式训练2】.(多选题)已知平行六面体,则下列四式中其中正确的有()A .AB CB AC -= B .AC AB B C CC ''''=++ C .AA CC ''=D .【答案】ABC【解析】作出平行六面体的图像如图,可得,则A 正确;,则B 正确;C 显然正确;,则D 不正确.综上,正确的有ABC.【变式训练3】.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为的重心,则111333PQ PA PB PC =++C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若四面体P ABC -各棱长都为2,M ,N 分别为,的中点,则 【答案】ABC 【解析】对于,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- ,2BD DC ∴=,3BD BD DC ∴=+即,故正确;对于,若Q 为的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=3PQ PA PB PC ∴=++即111333PQ PA PB PC =++,故正确;对于,若0PA BC ⋅=,0PC AB ⋅=,则PA BC PC AB ⋅=⋅0PA BC PC AB ∴⋅+⋅=,()0PA BC PC AC CB ∴⋅+⋅+= 0PA BC PC AC PC CB ∴⋅+⋅+⋅=,0PA BC PC AC PC BC ∴⋅+⋅-⋅=()0PA PC BC PC AC ∴-⋅+⋅=,0CA BC PC AC ∴⋅+⋅=0AC CB PC AC ∴⋅+⋅=,()0AC CB PC ∴⋅+=,,故正确;对于,12MN PA PB PC ∴=--==故错误.重难点2 空间向量的基本定理例2.(1)为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是( )A .B .C .D .【答案】C【解析】对于A ,因为,所以共面,不能构成基底,排除A ,对于B ,因为)()2a b a b b +--=(,所以,,b a b a b +-共面,不能构成基底,排除B ,对于D ,312()()22a b a b a b +=+--,所以,,2a b a b a b +-+共面,不能构成基底,排除D ,对于C ,若共面,则,则共面,与为空间向量的一组基底相矛盾,故可以构成空间向量的一组基底,故选C (2)已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内.【解析】(1)易知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →,∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,三个向量的基线又有公共点M ,∴M ,A ,B ,C 共面,即点M 在平面ABC 内.【变式训练1】.如图,在三棱柱ABC ­A ′B ′C ′中,已知AA ′→=a ,AB →=b ,AC →=c ,点M ,N 分别是BC ′,B ′C ′的中点,试用基底{a ,b ,c }表示向量AM →,AN →.【分析】(1)判断a +b ,b +c ,c +a 是否共面,若不共面,则可作为一个基底,否则,不能作为一个基底.(2)借助图形寻找待求向量与a ,b ,c 的关系,利用向量运算进行分析,直至向量用a ,b ,c 表示出来. 【解析】(1)假设a +b ,b +c ,c +a 共面.则存在实数λ、μ使得a +b =λ(b +c )+μ(c +a ), ∴a +b =λb +μa +(λ+μ)c .∵{a ,b ,c }为基底,∴a ,b ,c 不共面.∴⎩⎪⎨⎪⎧1=μ,1=λ,0=λ+μ.此方程组无解,∴a +b ,b +c ,c +a 不共面. ∴{a +b ,b +c ,c +a }可以作为空间的一个基底.(2)AM →=AB →+BM →=AB →+12BC ′→=AB →+12(BB ′→+BC →)=AB →+12BB ′→+12(AC →-AB →) =b +12a +12(c -b )=b +12a +12c -12b =12a +12b +12c .AN →=AA ′→+A ′B ′→+B ′N →=AA ′→+A ′B ′→+12B ′C ′→=a +b +12(A ′C ′→-A ′B ′→)=a +b +12(c -b )=a +12b +12c .【变式训练2】.如图所示,P 是平行四边形ABCD 所在平面外一点,连接P A ,PB ,PC ,PD ,点E ,F ,G ,H 分别是△P AB ,△PBC ,△PCD ,△PDA 的重心,分别延长PE ,PF ,PG ,PH ,交对边于M ,N ,Q ,R ,并顺次连接MN ,NQ ,QR ,RM .应用向量共面定理证明:E ,F ,G ,H 四点共面.【解析】∵E ,F ,G ,H 分别是所在三角形的重心, ∴M ,N ,Q ,R 为所在边的中点,顺次连接M ,N ,Q ,R ,所得四边形为平行四边形,且有PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →. ∵四边形MNQR 为平行四边形,∴EG →=PG →-PE →=23PQ →-23PM →=23MQ →=23(MN →+MR →) =23(PN →-PM →)+23(PR →-PM →)=23⎝⎛⎭⎫32PF →-32PE →+23⎝⎛⎭⎫32PH →-32PE →=EF →+EH →, ∴由共面向量定理得EG →,EF →,EH →共面, 所以E ,F ,G ,H 四点共面. 【变式训练3】.给出下列命题:①若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可作为空间的基底;②已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底;③A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,那么A ,B ,M ,N 共面;④已知向量组{a ,b ,c }是空间的一个基底,若m =a+c ,则{a ,b ,m }也是空间的一个基底.其中正确命题的个数是( )A .1B .2C .3D .4 【答案】D【解析】 根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底,否则就不能构成空间的一个基底,显然②正确.③中由BA →、BM →、BN →共面且过相同点B ,故A ,B ,M ,N 共面. 下面证明①④正确.①假设d 与a ,b 共面,则存在实数λ,μ,使d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使d =k c ,∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面与条件矛盾.∴d 与a ,b 不共面.同理可证④也是正确的.重难点3 空间向量的坐标与空间直角坐标系 例3.(1)已知点,向量,则点坐标是( ) A . B .C .D .【答案】D 【解析】设点,则向量,所以,所以点.故选:D(2)已知()1,2,3OA =,,()1,1,2OP =,点在直线上运动,则当取得最小值时,点的坐标为( ) A . B .C .D .【答案】B【解析】设(,,)Q x y z ,则(,,)OQ x y z =,因为点在直线上运动,所以, 所以,即,,所以,所以()()OA OQ OB OQ =-⋅-261610x x =-+,所以当时,取得最小值,此时点的坐标为.(3)(多选题)对于任意非零向量,,以下说法错误的有( ) A .若,则 B .若,则 C . D .若,则为单位向量【答案】BD()111,,a x y z =()222,,b x y z=cos ,a b =><1111===x y z【解析】对于A 选项,因为,则,A 选项正确; 对于B 选项,若,且,,若,但分式无意义,B 选项错误; 对于C 选项,由空间向量数量积的坐标运算可知,C 选项正确;对于D 选项,若,则,此时,不是单位向量,D 选项错误.故选:BD.【变式训练1】.若点为点在平面上的正投影,则记()N f M α=.如图,在棱长为的正方体中,记平面为,平面ABCD 为,点是棱上一动点(与、不重合)()1Q f f P γβ⎡⎤=⎣⎦,.给出下列三个结论:①线段长度的取值范围是; ②存在点使得平面; ③存在点使得12PQ PQ .其中,所有正确结论的序号是( ) A .①②③ B .②③C .①③D .①②【答案】D【解析】取的中点,过点在平面内作1PE C D ⊥,再过点在平面11CC D D 内作1EQ CD ⊥,垂足为点. 在正方体中,平面11CC D D ,平面11CC D D ,PE AD ⊥∴, 又1PE C D ⊥,1AD C D D =,平面,即,()f P E β∴=,同理可证,,则,.以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,设,则,,,,.对于命题①,,01a <<,则,则211024a ⎛⎫≤-< ⎪⎝⎭,所以,212PQ ⎡=⎢⎣⎭,命题①正确;1212120a b x x y y z z ⋅=++=cos ,a b =><1111===x y z对于命题②,2CQ β⊥,则平面的一个法向量为2110,,22CQ ⎛⎫=- ⎪⎝⎭,,令211130424a a aCQ PQ --⋅=-==,解得, 所以,存在点使得平面,命题②正确; 对于命题③,21120,,22a PQ -⎛⎫=-⎪⎝⎭,令, 整理得24310a a -+=,该方程无解,所以,不存在点使得12PQ PQ ,命题③错误.故选:D.【变式训练2】.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若AP →∥BC →,且|AP →|=214,求点P 的坐标; (2)求以AB →,AC →为邻边的平行四边形的面积. 【解析】(1)∵AP →∥BC →,∴设AP →=λBC →, 又BC →=(3,-2,-1),∴AP →=(3λ,-2λ,-λ), 又|AP →|= 9λ2+4λ2+λ2=214,得λ=±2, ∴AP →=(6,-4,-2)或AP →=(-6,4,2). 又A (0,2,3), 设P (x ,y ,z ), ∴⎩⎪⎨⎪⎧x -0=6,y -2=-4,z -3=-2或⎩⎪⎨⎪⎧x -0=-6,y -2=4,z -3=2,得⎩⎪⎨⎪⎧x =6,y =-2,z =1或⎩⎪⎨⎪⎧x =-6,y =6,z =5.∴P (6,-2,1)或(-6,6,5).(2)∵AB →=(-2,-1,3),AC →=(1,-3,2),cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=12,∴∠BAC =60°.∴以AB →,AC →为邻边的平行四边行的面积 S =|AB →||AC →|sin 60°=14×32=7 3.四、课堂定时训练(45分钟)1.已知a +b +c =0,|a |=2,|b |=3,|c |=4.则a 与b 的夹角〈a ,b 〉=( )A .30°B .45°C .60°D .以上都不对【答案】D【解析】[∵a +b +c =0,∴a +b =-c ,(a +b )2=|a |2+|b |2+2ab =|c |2, ∴a ·b =32,∴cos 〈a ·b 〉=a ·b |a ||b |=14.]2.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,下列各式中运算的结果为向量AC 1→的共有 ( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个 【答案】D【解析】[根据空间向量的加法法则以及正方体的性质逐一进行判断:①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→.②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→. ③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.④(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→. 所以,所给4个式子的运算结果都是AC 1→.]3.已知正方体ABCD ­A ′B ′C ′D ′,点E 是A ′C ′的中点,点F 是AE 的三等分点,且AF =12EF ,则AF →等于( )A .AA ′→+12AB →+12AD → B .12AA ′→+12AB →+12AD →C .12AA ′→+16AB →+16AD → D .13AA ′→+16AB →+16AD → 【答案】D【解析】[由条件AF =12EF 知,EF =2AF ,∴AE =AF +EF =3AF , ∴AF →=13AE →=13(AA ′→+A ′E →) =13(AA ′→+12A ′C ′→)=13AA ′→+16(A ′D ′→+A ′B ′→)=13AA ′→+16AD →+16AB →.]4.已知向量{a ,b ,c }是空间的一个基底,p =a +b ,q =a -b ,一定可以与向量p ,q 构成空间的另一个基底的是( )A .aB .bC .cD .无法确定【答案】C【解析】∵a =12p +12q ,∴a 与p ,q 共面,∵b =12p -12q ,∴b 与p ,q 共面,∵不存在λ,μ,使c =λp +μq ,∴c 与p ,q 不共面,故{c ,p ,q }可作为空间的一个基底, 5.对于空间一点O 和不共线的三点A ,B ,C 且有6OP →=OA →+2OB →+3OC →,则( )A .O ,A ,B ,C 四点共面 B .P ,A ,B ,C 四点共面 C .O ,P ,B ,C 四点共面D .O ,P ,A ,B ,C 五点共面 【答案】B【解析】[由6OP →=OA →+2OB →+3OC →得OP →-OA →=2(OB →-OP →)+3(OC →-OP →), 即AP →=2PB →+3PC →.∴AP →,PB →,PC →共面,又它们有同一公共点P ,∴P ,A ,B ,C 四点共面.]6.若向量a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255 D .2或-255【答案】C【解析】[由cos 〈a ,b 〉=a·b|a||b|=2-λ+45+λ2·9=89,解得λ=-2或λ=255.] 7.已知点A (1,a ,-5),B (2a ,-7,-2),则|AB |的最小值为( )A .33B .3 6C .23D .26 【答案】B【答案】[|AB →|=(2a -1)2+(-7-a )2+(-2+5)2=5a 2+10a +59 =5(a +1)2+54,当a =-1时,|AB →|min =54=36.]8.已知四棱柱的底面ABCD 是矩形,底面边长和侧棱长均为2,,则对角线的长为_____________. 【分析】本题考查空间向量的运算及模的求法,属于中档题. 【解答】 解:设 则,, , ,则对角线的长为. 故答案为.9.已知为空间的一个基底,且,,,能否以作为空间的一个基底______ 填“能”或“不能”. 【解析】解:为空间的一个基底, 且,,, 设向量,,共面,则存在实数m,n,使,, 解得,;因此不能作为空间的一个基底.故答案为:不能. 10.已知是平行六面体.(1)化简,并在图形中标出其结果;(2)设是底面ABCD 的中心,是侧面BCC B ''的对角线上的点,且:3:1BN NC '=,设MN AB AD AA αβγ'=++,试求,,的值.【解析】(1)如图所示,取线段中点E ,则, BC AD A D ''==, 取,∵AB D C ='',∴2233AB D C D F '''==. 则2 312AA BC AB EA A D D F EF '''''++=++=.(2)∵ M N MB BN +=124 3BC DB =+'314()()2DA AB BC CC '=+++ 113244AB AD AA '=++,∴,,. 11.已知长方体中, ,点N 是AB 的中点,点M 是的中点.建立如图所示的空间直角坐标系.(1)写出点的坐标;(2)求线段,MD MN 的长度;(3)判断直线与直线是否互相垂直,说明理由. 【答案】(1)(0,0,0)D ,(2,1,0)N ,(1,2,3)M ;(2)线段,MD MN 的长度分别为;(3)不垂直,理由见解析【解析】解:(1)两直线垂直,证明:由于为坐标原点,所以(0,0,0)D , 由得:,因为点N 是AB 的中点,点M 是的中点,(2,1,0)N ∴,(1,2,3)M ;(2)由两点距离公式得:||MD ==||MN ==(3)直线与直线不垂直, 理由:由(1)中各点坐标得:,(1,1,3)MN =--(2,1(1,1,)3)01,M D N N ∴⋅=-⋅-=, 与不垂直,所以直线与直线不垂直.。

专题8.7 立体几何中的向量方法(一)—证明平行与垂直(重难点突破)(解析版)

专题8.7  立体几何中的向量方法(一)—证明平行与垂直(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(一)证明平行与垂直一、考纲要求1、空间向量的线性运算2、共线、共面向量定理的应用3、空间向量数量积的应用4、利用空间向量证明平行或垂直二、考点梳理考点1.空间向量及其有关概念考点2.数量积及坐标运算(1)两个空间向量的数量积:①a·b=|a||b|cos〈a,b〉;②a⊥b⇔a·b=0(a,b为非零向量);③设a=(x,y,z),则|a|2=a2,|a|=x2+y2+z2.(2)空间向量的坐标运算:垂直 a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0 夹角公式cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23三、题型分析(一) 平行的证明例1. (广西河池高级中学2019届期末)在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A.垂直B.平行C.异面D.相交但不垂直【答案】B【解析】由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),所以AB →=-3CD →,所以AB →与CD →共线,又AB 与CD 没有公共点,所以AB ∥CD .【变式训练1-1】、(江苏金陵中学2019届期中)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A.斜交B.平行C.垂直D.MN 在平面BB 1C 1C 内【答案】B【解析】建立如图所示的空间直角坐标系,由于A 1M =AN =2a3, 则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a 3,a ,MN →=⎝⎛⎭⎫-a 3,0,2a 3.又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a ,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .【变式训练1-2】、(黑龙江齐齐哈尔市实验中学2019届期中)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,1,1, 于是MN →=⎝⎛⎭⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1.所以n =(1,-1,-1). 又MN →·n =⎝⎛⎭⎫12,0,12·(1,-1,-1)=0,所以MN →⊥n . 又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD .(二) 垂直的证明例2. (江苏省丹阳高级中学2019届期末)如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →,∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .【变式训练2-1】、如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)23. 【解析】Ⅰ)如下图所示:在正方体1111ABCD A BC D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111AB C D =, 11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD , 1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A BC D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 【变式训练2-2】、如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【答案】(1)证明见解析;(2)255. 【解析】(1)由题设,知DAE △为等边三角形,设1AE =, 则32DO =,1122CO BO AE ===,所以6264PO DO ==, 222266,,44PC PO OC PB PO OB =+==+= 又ABC 为等边三角形,则2sin 60BAOA =,所以32BA =,22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;(2)过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则121313(,0,0),(0,0,(,(,244444E P B C ----, 132(,4PC =-,132(4PB =-,12(,0,2PE =-,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得111111320320x z x z ⎧-=⎪⎨-+=⎪⎩,令12x =111,0z y =-=,所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x=,得22z y ==,所以3(1,3m =故2cos ,||||3n mmn n m ⋅<>===⋅⨯设二面角B PC E --的大小为θ,则cos θ=。

高考数学专项练习3__运用向量法解题

高考数学专项练习3__运用向量法解题

专项3 运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求:(1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值.●案例探究[例1]如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD是菱形,且∠C 1CB =∠C 1CD =∠BCD .(1)求证:C 1C ⊥BD . (2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD =a , CB =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、1CC 中两两所成夹角为θ,于是DB CD BD -==a -b ,BD CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1,由)()(1111CC CD AA CA D C CA -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cosθ=0,得当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD=1时,A 1C ⊥平面C 1BD . [例2]如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C 为原点建立空间直角坐标系O -xyz . 依题意得:B (0,1,0),N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1×0+(-1)×1+2×2=3|1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅>=<∴CB BC CB BA (3)证明:依题意得:C 1(0,0,2),M (2,21,21))2,1,1(),0,21,21(11--==B A M C∴,,00)2(21121)1(1111C A C A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M . ●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考: (1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示? (3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论? ●歼灭难点训练 一、选择题1.(★★★★)设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC 中,AB =a ,AC =b ,a ·b <0,S △ABC =415,|a |=3,|b |=5,则a 与b 的夹角是( )A.30°B.-150°C.150°D.30°或150°二、填空题3.(★★★★★)将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x -5的图象只有一个公共点(3,1),则向量a =_________.4.(★★★★)等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________.三、解答题5.(★★★★★)如图,在△ABC 中,设AB =a ,AC =b ,AP =c ,AD =λa ,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c .6.(★★★★)正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.7.(★★★★★)已知两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与PN 的夹角,求tan θ.8.(★★★★★)已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41OD OC OB OA OM +++=.参考答案难点磁场解:(1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+- .2221)291()05(||22=--+-=∴AM5)21()15(||,10)71()15(||)2(2222=--+-==--++=AC ABD 点分BC 的比为2. ∴x D =31121227,3121121=+⨯+==+⨯+-D y .2314)3111()315(||22=--+-=AD(3)∠ABC 是BA 与BC 的夹角,而BA =(6,8),BC =(2,-5).1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅=∴BC BA BC BA ABC 歼灭难点训练一、1.解析:AB =(1,2),DC =(1,2),∴AB =DC ,∴AB ∥DC ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB |=5,AC =(5,3),|AC |=34,∴|AB |≠|AC },∴ABCD 不是菱形,更不是正方形;又=(4,1),∴1·4+2·1=6≠0,∴不垂直于,∴ABCD 也不是矩形,故选D.答案:D 2.解析:∵21415=·3·5sin α得sin α=21,则α=30°或α=150°.又∵a ·b <0,∴α=150°. 答案:C二、3.(2,0) 4.13 cm三、5.解:∵与共线,∴=m =m (-)=m (μb -a ), ∴=+=a +m (μb -a )=(1-m )a +m μb①又与共线,∴=n =n (-)=n (λa -b ), ∴=+=b +n (λa -b )=n λa +(1-n )b ②由①②,得(1-m )a +μm b =λn a +(1-n )b . ∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即③解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ].6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23aa 2a ). (2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1MC =(-23a ,0,0),且=(0,a ,0),1AA =(0,02a )由于1MC ·=0,1MC ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.∵1AC =),2,2,0(),2,2,23(a aa a a =-a a a AC 49240221=++=⋅∴a a a a a a a AC 2324||,324143||22221=+==++=而 2323349,cos 21=⨯>=<∴aa aAM AC 所以AM AC 1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得,PM =-=(-1-x ,-y ),-= =(1-x ,-y ), =-NM =(2,0),∴·=2(1+x ), PM ·PN =x 2+y 2-1,⋅ =2(1-x ).于是,⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,2102200020202022020πθθθ<≤≤<∴≤<-=⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PNPM x x x y x y x y x PM||3cos sin tan ,411cos 1sin 02022y x x =-==∴--=-=∴θθθθθ 8.证明:(1)连结BG ,则+=++=++=+=)(21由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21=EH )(2)因为BD AB AD AB AD AE AH EH 21)(212121=-=-=-=. 所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH 所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知BD EH 21=,同理BD FG 21=,所以FG EH =,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以).(41)](21[21)](21[212121)(21+++=+++=+=+=.。

向量法在解题中的应用

向量法在解题中的应用

理,勾股定理,三垂线定理,线面垂直等其它的
定理和命题.
2 向量法在平面几何中的应用
例 2 证明三角形的三条高交于一点.
证明如图 2,设 H 为△ ABC 中由 A、B 两
uuur r uuur ur uuur r
点所作的高线的交点, HA = x, HB = y, HC = z ,
uuur ur r uuur r ur uuur r r
斜率 k1, k2 为其两根. 又由 OA ⊥OB 及韦达定理得 1 = 1/ b ,
即b =1. 从而直线 AB 方程为 ax + y = 1 ,即 AB 过
定点 D(0,1) ,又由 OA、 OB 为直径知 A、 C 、
B 共线, 且 OC ⊥AB , 即 OC ⊥CD , 故点 C 的 轨迹是以 OD 为直径的圆:
相垂直的弦 OA、 OB ,若分别以 OA、 OB 为 直径作圆,求两圆除原点外的另一交点 C 的 轨迹方程.
分析 设直线 AB 的方程为 ax + by = 1 ,代
入抛物线方程 y 1 = x2 ,使其齐次化
y(ax + by) = x2 ,并整理为 b( y / x)2 + a( y / x) 1 = 0 ,则 OA、 OB 的
则 AB = y x , BC = z y , CA= x z ,由 HA
r r ur
ur r r
⊥BC, HB ⊥AC 可得: x (z y) = 0 , y ( x z)
r r ur
= 0 ,两式相加可得: z ( x y) = 0 ,
r uuur 即 z AB = 0 ,得证.
A
用向量法处理
平面几何中的一些
uAuu1uBr 1Cu1u中uur,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点3 运用向量法解题平面向量是新教材改革增加的容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分容的考查力度,本节容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求:(1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值.●案例探究 [例1]如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(1)求证:C 1C ⊥BD .(2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD =a , CB =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、1CC 中两两所成夹角为θ,于是DB CD BD -==a -b ,BD CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1,由)()(1111CC AA C CA -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD ,∴1CC CD=1时,A 1C ⊥平面C 1BD . [例2]如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属 ★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy 的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C 为原点建立空间直角坐标系O -xyz . 依题意得:B (0,1,0),N (1,0,1)∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1×0+(-1)×1+2×2=3|1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅<∴CB BC CB BA (3)证明:依题意得:C 1(0,0,2),M (2,21,21))2,1,1(),0,21,21(11--==A C∴,,00)2(21121)1(1111C A C A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M . ●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考: (1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示? (3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论? ●歼灭难点训练一、选择题1.(★★★★)设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC 中,AB =a ,AC =b ,a ·b <0,S △ABC =415,|a |=3,|b |=5,则a 与b 的夹角是( )A.30°B.-150°C.150°D.30°或150° 二、填空题3.(★★★★★)将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x -5的图象只有一个公共点(3,1),则向量a =_________.4.(★★★★)等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________.三、解答题5.(★★★★★)如图,在△ABC 中,设AB =a ,AC =b ,AP =c , AD =λa ,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c .6.(★★★★)正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a . (1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.7.(★★★★★)已知两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与PN 的夹角,求tan θ.8.(★★★★★)已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41+++=.参考答案难点磁场解:(1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+- .2221)291()05(||22=--+-=∴AM5)21()15(||,10)71()15(||)2(2222=--+-==--++=D 点分BC 的比为2.∴x D =31121227,3121121=+⨯+==+⨯+-D y.2314)3111()315(||22=--+-=AD(3)∠ABC 是BA 与BC 的夹角,而BA =(6,8),BC =(2,-5).1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅=∴BC BA BC BA ABC 歼灭难点训练一、1.解析:AB =(1,2),DC =(1,2),∴AB =DC ,∴AB ∥DC ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB |=5,AC =(5,3),|AC |=34,∴|AB |≠|AC },∴ABCD 不是菱形,更不是正方形;又BC =(4,1),∴1·4+2·1=6≠0,∴AB 不垂直于BC ,∴ABCD 也不是矩形,故选D. 答案:D2.解析:∵21415=·3·5sin α得sin α=21,则α=30°或α=150°. 又∵a ·b <0,∴α=150°. 答案:C二、3.(2,0) 4.13 cm三、5.解:∵BP 与BE 共线,∴BP =m BE =m (AE -AB )=m (μb -a ), ∴AP =AB +BP =a +m (μb -a )=(1-m )a +m μb①又CP 与CD 共线,∴CP =n CD =n (AD -AC )=n (λa -b ), ∴AP =AC +CP =b +n (λa -b )=n λa +(1-n )b ②由①②,得(1-m )a +μm b =λn a +(1-n )b .∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即③解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ].6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23aa 2a ). (2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1MC =(-23a ,0,0), 且AB =(0,a ,0),1AA =(0,02a )由于1MC ·=0,1MC ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.∵1AC =),2,2,0(),2,2,23(a aa a a =-a a a AC 49240221=++=⋅∴a a a a a a a AC 2324||,324143||22221=+==++=而 2323349,cos 21=⨯>=<∴aa aAM AC所以AM AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得,PM =-MP =(-1-x ,-y ),NP PN -==(1-x ,-y ),MN =-NM =(2,0),∴MP ·MN =2(1+x ), PM ·PN =x 2+y 2-1,NP NM ⋅ =2(1-x ).于是,NP NM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,210220002020*******πθθθ<≤≤<∴≤<-=⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PNPM x x x y x y x PM y x PM Θ||3cos sin tan ,411cos 1sin 02022y x x =-==∴--=-=∴θθθθθ 8.证明:(1)连结BG ,则+=++=++=+=)(21由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21=EH )(2)因为BD AB AD AB AD AE AH EH 21)(212121=-=-=-=.所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH 所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知BD EH 21=,同理21=,所以=,EHFG ,所以EG 、FH 交于一点M 且被M 平分,所以).(41)](21[21)](21[212121)(21+++=+++=+=+=.。

相关文档
最新文档