最新制冷和低温技术原理—第2章-制冷方法(1)课件ppt

合集下载

第1章制冷方法-PPT课件

第1章制冷方法-PPT课件

2.4.1
布雷顿制冷循环
一、等熵膨胀制冷 高压气体绝热可逆膨胀过程,称为等 熵膨胀。气体等熵膨胀时,有功输出, 同时气体的温度降低,产生冷效应。 常用微分等熵效应 α s 来表示气体等熵 膨胀过程中温度随压力的变化
T αs p s
因 α s 总为正值,故气体等熵膨胀时温度总 是降低,产生冷效应。
2.1 物质相变制冷
气体
凝华
升华 冷凝 凝固 熔解 蒸发
固体
液体
液体蒸发制冷
NEXT
2.1.1 蒸气压缩式制冷
包含: 压缩机 冷凝器 节流阀 蒸发器
2.1.2 蒸气吸收式制冷
包含: 吸收器 发生器 溶液泵 热交换器 冷凝器 节流阀 蒸发器
工作原理:一定的液体对某种制冷剂气 体的吸收能力随温度不同而变化
吸收工质对∶水-氨;溴化锂水溶液-水
消耗热能
2.1.3 吸附式制冷
工作原理:一定的固体吸附剂对某种制 冷剂气体的吸附能力随温度不同而变化

间歇制冷,可采用两个以上吸附器实现 连续制冷
吸附工质对∶沸石-水;硅胶-水;活性炭
-甲醇;氯化锶-氨;氯化钙-氨
有物理吸附和化学吸附两种方式
如果将电源极性互换,则电偶对的制冷端 与发热端也随之互换。
NEXT
多级热电堆
一对电偶的制冷量是很小的,如φ 6xL7 的电偶对,其制冷量仅为3.3~4.2kJ/h
为了获得较大的冷量可将很多对电偶对 串联成热电堆,称单级热电堆
单级热电堆在通常情况下只能得到大约 50℃的温差。为了得到更低的冷端温度,可 用串联、并联及串并联的方法组出多级热电 堆,图2-166示出多级热电堆的结构型式。
顺磁体:不同的磁介质产生的附加磁

制冷基本原理PPT课件可修改全文

制冷基本原理PPT课件可修改全文

写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
三、其他换热器
作用:提高工作效率,或用于较低蒸 发温度的系统.
类型:回热器、中间冷却器、冷凝蒸发器和 板式换热器等.
1.回热器
进气
1 进液
出液
2
图4-13 盘管式回热器结构
1-壳体 2-盘管 3-进、出气接管及法兰
出气 3
2、板式换热器
第六章 节流机构
1. 节流机构

降压降温,保证压差:PK P0,TK它是利用蒸发器出口制冷剂蒸气的过热 度调节阀孔开度以调节供液量的.根据 热力膨胀阀内膜片下方引入蒸发器进口 或出口压力,分为内平衡式或外平衡式 两种。
14
1
13
2
12
3
4 5
6 7
8
11 10
9
图 4 -2 0 内 平 衡 式 热 力 膨 胀 阀 结 构
1 -气 箱 座 2 -阀 体 3 、 1 3 -螺 母 4 -阀 座 5 -阀 针 6 调 节 杆 座 7 -填 料 8 -阀 帽 9 -调 节 杆 1 0 -填 料 压 盖 1 1 -感 温 包 1 2 -过 滤 网 1 4 -毛 细 管
漏。
❖ 3.具有自动补偿功能。
第7章 辅助设备
辅助设备 作用:完善制冷系统的技术性能,保证可靠的
运行. 分类:制冷剂的贮存、分离、净化设备和润滑
油的分离收集设备

《制冷技术》PPT课件

《制冷技术》PPT课件

(5)等焓线—过热区内及两相区内,均为向右下方倾斜的线,但 两相区内的等焓线的斜率大,过冷区的焓值可近似用同温度下 饱和液体的焓值代替(粗白线)
(6)等干度线—只存在于湿蒸气区,其方向大致与饱和线相近
T
K
h
4
S
第一章 蒸汽压缩式制冷循环
第一节 逆向可逆循环
1、工质的正向循环
它使高温热源的工质通过动力装置对外作功,然后再流向低温 热源,亦称动力循环
h
12
2、理论循环热力过程:
图中点1表示蒸发器中蒸气的状态,且取为蒸发压力下的饱和蒸气。 1—2表示制冷剂蒸气在压缩机中的等熵压缩过程。点2表示压缩机的排气状态,已是冷 凝压力pk下的过热蒸气。 2—3—4表示等压冷却及冷凝过程,其中点3表示pk压力下的饱和蒸气状态,点4表示冷 凝后的饱和液体状态。 4—5表示绝热节流流过程,这一过程在两相区内进行,节流前后制冷剂的焓值相等。 5—1表示蒸发器中的等压蒸发过程,在这一过程中制冷剂液体全部转化为蒸气,并对外 提供冷量。
2)当吸气过热度增加,排气温度T2上升,过高的排气温度不但使润滑油粘度变稀,影响 压缩机的正常运行,但适当增加过热度能使润滑油较顺利返回压缩机;
3)当压缩机吸入的蒸气具有一定的过热度能防止在气缸中产生液击现象。
h
19
三、回热循环
1、回热循环: 参照液体过冷和吸气过热在单级压缩制冷循环中所起的作用,可在制冷流程中加设一 个回热器,令节流前的液体同吸入压缩机前的蒸气进行热交换,同时达到实现液体过 冷和吸气过热的目的。这样便组成回热循环
q0 h1' h1
但单位理论功也增大:
w 0 (h 2 ' h 1 ') (h 2 h 1 )

制冷制冷技术讲座.ppt

制冷制冷技术讲座.ppt

5.氟利昂制冷剂
问世:
氟利昂制冷剂是1928年由美国杜邦公司发明的。后来,多 种不同型号氟里昂的出现,有力的促进了制冷空调业界的 发展。 氟利昂22是1936年问世的。
应用:
1974、77、87、91、92、07-9-17
一般性质:
R22 (F22) :分子式:CHCLF2 ,也可表示为 HCFC22 大气压力下的沸点:-40.8℃ 液体、气体都是无色、透明,没有气味,对人体无害, 不易燃烧和爆炸;与明火接触时会分解成有毒的光气;--冻伤,---窒息,---
作用:
• 压缩机:升压----把低压低温的气体变成高压高温的气体;
• 冷凝器:冷凝(液化)----把高压高温气体变成高压液体;
• 节流阀:降压----把高压液体变成低压低温液体(气体); • 蒸发器:蒸发----把低压低温的液体变成低压低温的气体。
制冷循环四个过程: • 压缩过程: • 冷凝过程: • 节流过程: • 蒸发过程: 分别由四大件来完成。 制冷循环两对矛盾:
6.氟利昂制冷剂的特性
1)溶油性:
氟利昂与油互溶。溶解度与种类、 温度有关。 由于溶油性,油将遍及所有的容器、 管道中。
R22与冷冻油溶解度图: K:溶油临界温度
A区:K点以上,任意比例混溶 B区:油溶于R22单项不饱和溶液 C区:R22溶于油单项不饱和溶液
D区:溶液分为两层
例:由点1(70/30,15℃)冷却到点2 时,均一的溶液--点3和点4,点3的含 油量为3%、点4为52%(富油层)。 富油层质轻浮在上面---两层分离。
等压P :水平线 等焓h :垂直线 等温t :过冷区----垂直; 两相区----水平; 过热区----向右下 方弯曲的倾斜线 等容v :向右上方倾斜的点 划线 等熵S :向右上方倾斜的实 线(斜率陡一点) 等干度x :只存在湿蒸汽区,方向与饱和液体线、干饱 和蒸汽线 相近。特例----。 上述参数中已知2个即可在压焓图上确定过热蒸汽或过冷液体的 状态点,其它参数便可直接从图中读出。

《制冷方法》课件

《制冷方法》课件
压缩机、冷凝器、蒸发器和控制系统是制冷系 统的核心组件。
制冷系统的运行原理
通过循环流动的制冷剂,在不同的部件间传递 热量,实现制冷效果。
制冷系统的维护和故障排除
• 定期清洁和更换滤网,确保系统正常运行。 • 注意排气和排水管道的疏通,避免堵塞。 • 定期检查制冷剂的压力和流量,及时发现并修复故障。
《制冷方法》PPT课件
制冷的原理和重要性 • 制冷的定பைடு நூலகம்和基本原理 • 制冷的应用领域和重要性
常见的制冷方法
压缩式制冷
通过压缩、冷凝、膨胀和蒸发来实现制冷的过 程。
热泵制冷
利用外部能源将低温热量转移到高温环境中。
吸收式制冷
利用溶液的吸热和放热作用,在吸收剂和制冷 剂之间交换热量。
朗肯制冷
通过将气体迅速膨胀来实现制冷效果。
制冷效率和能源消耗
1 制冷效率的评估指标
冷量比、能效比和制冷剂流速等是评估制冷效率的重要指标。
2 节能制冷技术的发展
利用高效压缩机、换热器和控制系统等技术来提高制冷效率。
3 减少能源消耗的方法
优化制冷系统的设计、使用可再生能源和改进维护措施等可以降低能源消耗。
制冷系统的组成和运行原理
制冷系统的主要组成部分

制冷方法PPT课件

制冷方法PPT课件
制冷方法
第1页,共73页。
制冷原理及设备课程内容
1. 制冷方法
2. 单级蒸气压缩式制冷循环
3. 制冷剂 4. 两级压缩和复叠式制冷循环
5. 液体吸收式制冷机
6. 固体吸附式制冷
7. 热电制冷 8. 制冷压缩机
9. 制冷机的热交换设备 10. 制冷机的其它辅助设备及管道 11. 小型制冷装置 12. 制冷站工艺设计
有定压循环,回热定压循环和定容循环。
37
第37页,共73页。
定压循环
定压循环由两个等压过程和两个等熵过程组成,又称 为布雷顿循环。
38
第38页,共73页。
定压循环热力计算
单位制冷量:
单位耗功率:
制冷系数: 压缩比:
39
第39页,共73页。
有回热的定压循环
由于这种情况下透平压缩机的入口温度升高,在相同的工作条件下 ,有回热的定压循环可以降低压力比。
0.3K以下,超低温制冷。
3
第3页,共73页。
* 制冷技术研究的内容 ①研究获得低温的方法、有关机理以及与此相应的制冷循 环,并对制冷循环进行热力学的分析和计算;
②研究制冷剂的性质; ③研究实现制冷循环所必须的各种机械和技术设备。
*制冷技术的主要理论基础是什么? 热力学——热能与其它形式能量之间相互转换的规律以
吸收式制冷与蒸气压缩式制冷一样,都是利用液体在 汽化时要吸收热量这一物理特性来实现制冷的,不同的是 蒸气压缩式制冷是以消耗机械能作为补偿,而吸收式制冷 是消耗热能作为补偿,完成热量从低温热源转移到高温热 源这一过程的。
与蒸气压缩式制冷不同,吸收式制冷的工质是两种 沸点相差较大的物质组成的二元溶液,其中沸点低的物质 为制冷剂,沸点高的物质为吸收剂,通常称为“工质对”。

制冷培训制冷技术ppt课件

制冷培训制冷技术ppt课件
度的关系,冷凝温度升高不利,蒸发温度降低单位 能耗增加,总能耗有最大值。
二十一、冷(热)水机组特点
产品结构紧凑; 配置齐全、使用方便; 具有因使用载冷剂带来的优点:远距输送、多用户、
制冷剂充注量少、安装场所灵活; 产品系列化; 整机自动化。
二十二、冷(热)水机组种类
按功能:单冷、冷热、热回收 按冷却方式:风冷、水冷、蒸发冷却 按组织结构:单机头、多机头、模块式 按压缩机类型:活塞、螺杆、蜗旋、离心
二十七、溴化锂吸收式冷热水机组
蒸汽型,直燃型; 单效、双效; 单冷、冷热、卫生热水; 组成:(高压、低压)发生器、冷凝器、U型管、蒸发器、吸
收器、溶液换热器(高温、低温)、自动抽气装置、溶液泵、 吸收泵、蒸发泵、燃烧机 特点:用热制冷、真空、腐蚀、冷量衰减、结晶; 参数:名义制冷(制热)量;名义能耗(热水、蒸汽、燃气、 燃油);名义工况性能系数;冷(热)水、冷却水压力损失; 部份负荷性能;变工况性能。
十五、双螺杆式制冷压缩机的特点
品种多:开启式、半封闭、全封闭、单级、多级 体积小、质量小、振动小; 结构简单、易损件少; 单机制冷量大,容积效率高; 无液击危险; 能量调节方便,滑阀调节法,通常四级,也有连续10%~100
%; 可以代节能器; 油膜密封; 加工精度高。
十六、单螺杆压缩机的特点
四大部件:蒸发器、冷凝器、膨胀阀、压缩机
五、蒸汽压缩制冷循环( 2、过冷循环)
方法:设置过冷器、增大冷凝器面积、采用回热循环 目的:提高制冷量、减小节流损失
五、蒸汽压缩制冷循环(3、过热循环)
方法:增大蒸发器面积、采用回热 目的:增大制冷量,保护压缩机
五、蒸汽压缩制冷循环(4、回热循环)
方法:采用回热器 目的:提高可靠性, 提高循环效率

《制冷技术》课件(1)

《制冷技术》课件(1)

1.1 概述1.1.1 什么是制冷技术?是研究和处理低温工程问题、满足人们对低于环境温度的空间或低温条件的需要而产生和发展起来的一门学科。

1.1.2 制冷技术应用范畴1. 空调制冷技术2. 普通制冷技术3. 冷藏冷冻技术4. 低温制冷技术5. 超低温制冷技术1.1.3 制冷技术面临挑战1. 实现CFCs和HCFs的完备替代,保护大气臭氧层免遭破坏和抑制温室效应2. 改善制冷空调设备和系统效率, 提高节能减排效果3. 高新技术在制冷和空调系统中应用1.2 制冷技术内容1.2.1制冷定义制冷(refrigeration)是用人工的方法在一定时间和一定空间内将某物体或流体降温,使其温度降到环境温度以下,并保持这个低温。

注意:1.制冷是将被冷却物体温度降到低于环境温度的过程。

2.制冷是将热量由低温转移到高温的过程。

3.制冷是消耗能量的过程。

4. 制冷由制冷机械和制冷剂循环来实现。

1.2.2 制冷技术重点1.制冷方方式多样化及其特点2.制冷循环热力学分析和计算(log-p图使用)3.制冷剂特性4.制冷机械设备性能及节能5.制冷装置自动化和智能化技术(机电一体化)1.2.3 制冷温度划分1.普通制冷: 温度高于120K深度制冷:温度在120 ~20K低温制冷:温度在20 ~O.3K超低温制冷: 温度低于0.3K2. 作用:(1)根据制冷技术学科的温度特点去探索和应用。

(2)表明制冷温度范围不同,制冷方式,原理、制冷工质和设备性能间有差别。

1.3 制冷方法简介本课程简要介绍以下几种制冷方式:(1)蒸气压缩式制冷(2)蒸气喷射式制冷(3)吸收式制冷(4)吸附式制冷(5)空气膨胀制冷(6)热电制冷1.3.1 蒸气压缩式制冷1.工作原理:(1)利用制冷剂气、液相变完成热量转移;(2)利用机械式地压缩和膨胀完成制冷剂相变而制冷。

2.制冷设备与制冷剂相匹配:3.蒸气压缩式制冷系统:1—蒸发器2—节流装置3—冷凝器4—压缩机5—原动机4. 特点:(1)系统结构简单,使用方便(2)制冷循环效率较高(3)能量调节灵活,制冷温度范围广(4)机电一体化程度较高(5)各种压缩机适应性能好(6)制冷温度过低时单级制冷循环效率较低1.3.2 蒸气喷射式制冷1. 工作原理:(1)高压工作蒸气引射制冷剂低压蒸发而制冷(2)低压工作蒸气与制冷剂蒸气混合后扩压冷凝(3)消耗热能产生高压工作蒸气(4)工作蒸气与制冷剂为相同工质2. 蒸气喷射式制冷循环示意图1—喷射器(a一喷嘴b一扩压器c一吸人室),2—冷凝器3—压力锅炉,4—制冷剂泵,5—节流装置6—冷媒水泵7—蒸发器,8—空调用户末端系统3.特点:(1)制冷循环结构简单,加工方便(2)没有运动部件,可靠性高(3)能利用一次能源(4)不足之处是所需工作蒸气的压力高,喷射器流动损失大而效率低(5)喷射器增压与蒸气压缩式循环相结合使用,提高效率1.3.3 吸收式制冷1. 吸收原理:利用吸收剂吸收气化的制冷剂蒸气,制冷剂气化带走气化潜热而产生制冷效应。

制冷与低温原理_图文

制冷与低温原理_图文

(1-13) (1-14)
(1-15)
闭口系完成一循环后,循环中与外界交换的 热量等于与外界交换的净功量
(1-16)
4.2 开口系统的能量平衡
图1-2 开口系统流动过程中的能量平衡
图示开口系统,dτ 时间内,质量
的微
元工质流入截面1-1,质量
的微元工质流出
2-2,系统从外界得到热量 ,对机器设备作功 。
热力完善度
(1-34) (1-35)
(1-36) (1-37)
(1-38)
(1-39)
温度 T
3.热源温度可变时的逆向可逆循环—洛伦兹循环
图1-10 洛伦兹循环的T-s图
洛伦兹循环工作 在二个变温热源 间。
与卡诺循环不同 之处主要是蒸发 吸热和冷却放热 均为变温过程
熵S
(假设制冷过程和冷却过程传热温差均为Δ T )
作为制冷剂应符合的要求
1.热力学性质方面
(1) 工作温度范围内有合适的压力和压力比。 蒸发压力≧大气压力 冷凝压力不要过高 冷凝压力与蒸发压力之比不宜过大
(2) 单位制冷量q0和单位容积制冷量qv较大。 (3) 比功w和单位容积压缩功wv小,循环效率高。 (4) 等熵压缩终了温度t2不能太高,以免润滑条件恶化
是系统为维持工质流动所需的功 , 称为流动功
3.焓

用符号H表示,单位是焦耳 (J)
H= U+pV
(1-5)
比焓
用符号h表示,单位是焦耳/千克 (J/kg

(1-6)
焓是一个状态参数。
焓也可以表示成另外两个独立状态参数的函数 。 如:h=f(T,v) 或 h=f(p,T); h=f(p,v) (1-9)
借传热来传递能量无需物体的宏观移动。

制冷和低温技术原理—第2章 制冷方法

制冷和低温技术原理—第2章 制冷方法

高压液体流 经膨胀阀节 流,形成低 压低温的 气,液两相 混合物进入 蒸发器。
4. 应用: 蒸气压缩式制冷机是应用最广泛的制冷机。 是本课程的重点内容之一。 具有100多年的历史,相当完备,广泛应用 在空气调节,各种冰箱,食品冷藏,冷加工 方面。 制冷的温度范围为5℃ — -150℃。
2.1.5 吸附式制冷
1. 系统组成:
吸附床,冷凝器,蒸发器 用管道连成一个封闭系统。
太阳辐射 沸石 吸附床 (沸石密封盒)
2. 工作原理:
肋片 (冷凝器) 储水器
一定的固体吸附剂对某种 (蒸发器) 制冷剂气体具有吸附作用, 白天脱附 夜间吸附 而且吸附能力随吸附剂温 太阳能沸石-水吸附制冷原理 度的改变而不同。 通过周期性地冷却和加热吸附剂, 使之交替地吸附和解吸。 解吸时,释放制冷剂气体,使之凝结为液体。 吸附时,制冷剂液体蒸发,产生制冷作用。
热电制冷
气体绝热膨胀制冷
高压气体经绝热膨胀即可达到较低 温度,令低压气体复热即可制取冷量。 高压气体经涡流管膨胀后即可分离冷, 热两股气流,用冷气流的复热过程即 可制冷。
气体涡流制冷
2.1 物质相变制冷
2.1.1 相变制冷概述
液体蒸发制冷 固体相变制冷
以流体为制冷剂,通 过一定的机器设备构 成制冷循环,利用液 体汽化时的吸热效应 ,实现对被冷却对象 的连续制冷。
2.2.2 磁制冷
1. 工作原理: 是利用磁热效应的一种制冷方式。
既是固体磁性物质(磁性离子构成的系统)在受磁场 作用磁化时,系统的磁有序度加强(磁熵减小), 对外放出热量;再将其去磁,则磁有序度下降(磁熵 增大),又要从外界吸收热量。
2.2.3 声制冷
1. 工作原理: 是利用热声效应的一种制冷方式。

制冷方法

制冷方法

第一节 物质相变制冷
1.固体相变冷却 常用的制冷剂有: 冰盐、干冰,以及其他固体物 常用的制冷剂有:冰、冰盐、干冰,以及其他固体物 质。 (1) 冰冷却 冰融化或升华均可用于冷却,主要利用冰融化冷却。 冰融化或升华均可用于冷却,主要利用冰融化冷却。 常压下冰在0℃融化,冰的融化潜热为 冰的融化潜热为335kJ/kg。能够 冰的融化潜热为 满足0℃以上的制冷要求。 冰冷却时, 冰冷却时, 常借助空气或水作中间介质以吸收被冷却 对象的热量。 对象的热量。此时,换热过程发生在水或空气与冰表面之 间。被冷却物体所能达到的温度一般比冰的融化温度高 被冷却物体所能达到的温度一般比冰的融化温度高 5~ 10℃ 。 厚度10 cm左右的冰块,其比表面积在25~30 ~ ℃ m2/m3之间。为了增大比表面积,可以将冰粉碎成碎冰。
第一节 物质相变制冷
按照实现循环所采用的方式不同,液体蒸发制冷有蒸 液体蒸发制冷有蒸 液体蒸发制冷有 气压缩式制冷、蒸气吸收式制冷、蒸气喷射式制冷和 气压缩式制冷、蒸气吸收式制冷、蒸气喷射式制冷和吸附 式制冷等几种形式 等几种形式。 式制冷等几种形式。
第一节 物质相变制冷
二、蒸气压缩式制冷
蒸气压缩式制冷的基本系统如图2-3所示。 系统由压缩机 冷凝器、膨胀阀、蒸发器组成 压缩机、 组成, 系统由 压缩机、 冷凝器、 膨胀阀、蒸发器组成 ,用管 道将它们连接成一个密封的系统。 道将它们连接成一个密封的系统。 在蒸发器内处于低温低压的制冷剂液体与被冷却对象 发生热交换,吸收被冷却对象的热量并汽化。产生的低压 蒸气被压缩机吸入,经压缩后以高压排出。压缩机排出的 高压气态制冷剂进冷凝器,被常温的冷却水或空气冷却, 凝结成高压液体。高压液体流经膨胀阀时节流,变成低压 低温的气、液两相混合物,进入蒸发器,其中的液态制冷 剂在蒸发器中蒸发制冷,产生的低压气再次被压缩机吸入。 如此周而复始,不断循环。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工作蒸气 a
1
2
空调回水
cb
冷却水
3 冷水
6
4
5 去锅炉
蒸气喷射式制冷的基本原理
5. 特点: ➢ 工作介质:水,氟利昂(低沸点)。 ➢ 优点:使用热能,结构简单,加工方便, 没有运动部件,使用寿命长。 ➢ 缺点:工作蒸汽压力高,喷射器不可逆损失 大,效率很低。
6. 应用: ➢ 可用于制取空调用冷水。曾被应用过。 ➢ 在空调冷水机中采用溴化锂吸收式制冷机比 喷射式制冷机有明显优势。
蒸发器
压缩机
3 膨 胀 阀
4
冷却介质
冷凝器 蒸发器
2 压缩机
1 被冷却介质
蒸气压缩式制冷的基本系统图
冷凝器
膨胀阀
低温低压的 制冷剂液体 与被冷却对
象发生热交 换,吸收被 冷却对象的 热量并汽化
形成冷剂蒸 气。
低压蒸气被 压缩机吸入 ,经压缩后 形成高温高 压蒸气排 出。
压缩机排出 的高压制冷 剂气体进入 冷凝器,被 冷却水或空 气冷却、冷 凝,成高压 液体。
整 膨胀阀:对个制系冷统剂的起心到脏节。流降压的作用,并调节 进入蒸发器的制冷剂流量。
蒸发器:是输出冷量的设备。制冷剂在蒸发器中 吸收被冷却物体的热量,从而达到制取 冷量的目的。
冷凝器:是输出热量的设备。从蒸发器中吸取的 热量连同压缩机消耗的功所转化的热量 在冷凝器中被冷却介质带走。
3. 工作过程:
固态CO2
液态CO2
常压下,干冰的升华 温度-78.5℃,升华热 为573.6kJ/kg。
升华
气态CO2
课后问题3; 干冰的物理性质 。
吸热

明 干冰的制冷能力比冰和冰盐都大。
2. 液体蒸发制冷
共同特点: 是利用液体汽化 时的吸热效应而 实现制冷的。
常用方法: ✓ 蒸气压缩式制冷 ✓ 吸收式制冷 ✓ 蒸气喷射式制冷 ✓ 吸附式制冷
1. 系统组成: 蒸发器,冷凝器,节流阀,发生器,吸收器,
热交换器和溶液泵组成。
2. 制冷系统图:
两个回路
制冷剂回路 溶液回路
Qk
冷凝器
发生器

QH
流 阀
溶液热 交换器
蒸发器 溶

Qo QA 吸收器

蒸气吸收式制冷的基本系统
吸收式制冷的工质对: 名称
• 硫酸水溶液吸收式制冷机 • 氨水吸收式制冷机 • 溴化锂吸收式制冷机
一方面在吸收器中,吸 另一方面,发生后 收剂吸收来自蒸发器的 的溶液重新恢复到 低压制冷剂蒸气,形成 原来成分,经冷 富含制冷剂的溶液,再 却,节流后成为具 将该溶液用泵送到发生 有吸收能力的吸收 器,经加热使溶液中的 液,进入吸收器, 制冷剂重新以高压气态 吸收来自蒸发器的 发生出来,送入冷凝器。 低压制冷剂蒸气。
制冷剂 水 氨 水
吸收剂 浓硫酸 水 溴化锂

明 吸收剂对制冷剂气体有很强的吸收能力。
3. 工作过程:
制冷剂回路
Qk 冷凝器
发生器

QH
流 阀
溶液热 交换器
蒸发器 溶

Qo
QA 吸收器

蒸气吸收式制冷的基本系统
பைடு நூலகம்溶液回路
高压制冷剂 气体在冷凝 器中冷凝, 产生的高压 制冷剂液体 经节流后到 蒸发器蒸发 制冷。
高压液体流 经膨胀阀节 流,形成低 压低温的 气,液两相 混合物进入 蒸发器。
4. 应用:
➢ 蒸气压缩式制冷机是应用最广泛的制冷机。 是本课程的重点内容之一。
➢ 具有100多年的历史,相当完备,广泛应用 在空气调节,各种冰箱,食品冷藏,冷加工 方面。
➢ 制冷的温度范围为5℃ — -150℃。
2.1.3 蒸气吸收式制冷
制冷和低温技术原理—第2 章-制冷方法(1)
第 2 章 制冷方法
内容要求 物质相变制冷 电,磁,声制冷 气体涡流制冷 气体膨胀制冷 绝热放气制冷
常见的制冷方法有四种:
物质相变制冷
利用液体在低温下的蒸发过程或固体 在低温下的融化或升华过程从被冷却 物体吸取热量以制取冷量。
热电制冷
气体绝热膨胀制冷
气体涡流制冷
4. 对比:蒸气吸收式制冷与蒸气压缩式制冷系统
(1)系统组成
a: 相同:冷凝器,节流阀,蒸发器。 b: 不同:吸收式制冷中,压缩机由吸收器,发生器,
溶液泵,热交换器,节流阀溶液回路所代替。
(2)制冷剂
a: 压缩式:只需要制冷剂工质。 b: 吸收式:吸收剂--制冷剂工质对。
(3)补偿能量
a: 压缩式:机械能或电能。 b: 吸收式:热能。
2.1.2 蒸气压缩式制冷
1. 系统组成: 压缩机,冷凝器,膨胀阀,蒸发器等主要设备
组成,用管道将其连接成一个封闭的系统。
2. 制冷系统图:
3
膨 胀 阀
4
冷却介质
冷凝器 蒸发器
2
压缩机
1
被冷却介质
蒸气压缩式制冷的基本系统图
压缩机:起着压缩和输送制冷剂蒸汽并造成蒸发器 中低压力,冷凝器中高压力的作用,是
冷却流体
降压
升压
被冷却流体 构成循环的原理
冷却流体
液体蒸发制冷循环必须 具备四个基本过程:
降压
升压
被冷却流体 构成循环的原理
制冷剂低压汽化 制冷剂液体在低温低压下 汽化, 产生低压蒸气。
蒸气升压
将低压蒸气抽出并提高压力 变成高压蒸气。
高压蒸气液化 将高压蒸气冷凝成高压液体。
高压液体降压 高压液体再降低压力回到 初始的低压状态。
热源: 煤(早期);蒸汽,水;燃油,燃天然气加热;
化学反应热,太阳能热。
5. 应用: ➢ 生产冷水。 可供集中式空气调节或提供生产 冷水。 ➢ 溴化锂制冷机只能制取0℃以上的冷量。 ➢ 氨水吸收式制冷机能够制取的温度可达 -20℃ 或更低。
2.1.4 蒸气喷射式制冷
1. 系统组成: 1- 喷射器(a- 喷嘴,b- 扩压室,c- 吸入室), 2- 冷凝器,3- 蒸发器,4- 节流阀,5,6 - 泵。
2. 制冷系统图: 3. 工作过程:
工作蒸气 a
1
2
空调回水
cb
冷却水
3 冷水
6
4
5 去锅炉
蒸气喷射式制冷的基本原理
4. 理论工作循环的 T-s 图表示
➢ 1-2: 工作蒸气在喷嘴内的膨胀过程; ➢ 4状态:工作蒸气与制冷剂水蒸气混合后状态; ➢ 4-5: 混合蒸气在扩压器中流动升压过程; ➢ 5-6: 冷凝器中气体的凝结过程; ➢ 6-7-3:凝结水经过节流进入蒸发器; ➢ 6-9-1:凝结水经过水泵进入锅炉,产生工作蒸气。
令直流电通过半导体热电堆,即可在 一端产生冷效应,另一端产生热效应。
高压气体经绝热膨胀即可达到较低 温度,令低压气体复热即可制取冷量。
高压气体经涡流管膨胀后即可分离冷, 热两股气流,用冷气流的复热过程即 可制冷。
(3)干冰冷却
吸热
融化
CO2的三相点参数: • 温度-56.6℃,
• 压力0.52MPa。
相关文档
最新文档