磁控溅射设备构造及其沉积薄膜原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁控溅射设备构造及其沉积薄膜原理
1. 实验目的:
了解磁控溅射设备的构造,熟悉磁控溅射沉积薄膜的基本原理。
2. 实验内容:
2.1 了解磁控溅射设备的构造
总体来讲,磁控溅射薄膜沉积系统包括:气路、真空系统、循环水冷却系统、控制系统。其中
(1) 气路系统:与PECVD系统类似,磁控溅射系统应包括一套完整的气路系统。但是,与PECVD系统不同的是,PECVD系统中,气路中为反应气体的通道。而磁控溅射系统气路中一般为Ar、N2等气体。这些气体并不参与成膜,而是通过发生辉光放电现象将靶材原子轰击下来,使靶材原子获得能量沉积到衬底上成膜。
(2) 真空系统:与PECVD系统类似,磁控溅射沉积薄膜前需要将真空腔室抽至高真空。因此,其真空系统也包括机械泵、分子泵这一高真空系统。
(3) 循环水冷却系统:工作过程中,一些易发热部件(如分子泵)需要使用循环水带走热量进行冷却,以防止部件损坏。
(4) 控制系统:综合控制PECVD系统各部分协调运转完成薄膜沉积,一般集成与控制柜。
2.2 磁控溅射沉积薄膜原理
在阳极(除去靶材外的整个真空室)和阴极溅射靶材(需要沉积的材料)之间加上一定的电压,形成足够强度的静电场。然后再在真空室内通入较易离子化的惰性Ar气体,在静电场E的作用下产生气体离子化辉光放电。Ar气电离并产生高能的Ar+离子和二次电子e。高能的Ar+阳离子由于电场E的作用会加速飞向阴极溅射靶表面,并以高能量轰击靶表面,使靶材表面发生溅射作用。被溅射出的靶原子(或分子)沉积在基片上形成薄膜。
由于磁场B的作用,一方面在阴极靶的周围,形成一个高密度的辉光等离子区,在该区域电离出大量的Ar+离子来轰击靶的表面,溅射出大量的靶材粒子向工件表面沉积;另一方面,二次电子在加速飞离靶表面的同时,受到磁场的洛伦兹力作用,以摆线和螺旋线的复合形式在靶表面作圆周运动。随着碰撞次数的
增加,电子的能量逐渐降低,到达基片后的能量很小,故基片的温升较低。当溅射量达到一定程度后,靶表面的材料也就被消耗掉,形成拓宽的溅蚀环凹状区。