概率统计的MATLAB求解
matlab在概率统计中的计算
4.1 计算组合数、验证概率的频率定义,计算古典概率
4.1.1 计算nk.
P
P
使用语句n^k
4
第4章 概率统计
例如计算 511
N=5^11 N=
48828125
如计算 5−2.8
N=5^(-2.8) N=
0.0110
4.1.2 计算组合数 Cnk
计算组合数 Cnk 时,使用语句nchoosek(n,k).
1
MATLAB6.0数学手册
光驱:8倍速以上; 内存:至少64MB,但推荐128MB以上; 硬盘:视安装方式不同要求不统一,但至少留1GB用于安装(安装后未必有1GB); 显卡:8位; MATLAB 6对软件的要求 Windows95 、Window98、Windows NT或Windows2000; Word97或word2000等,用于使用MATLAB Notebook; Adobe Acrobat Reader 用于阅读MATLAB的PDF的帮助信息。 MATLAB 6的安装和其它应用软件类似,可按照安装向导进行安装,这里不再赘述。 MATLAB的启动和退出 与常规的应用软件相同,MATLAB的启动也有多种方式,首先常用的方法就是双击桌面的 MATLAB图标,也可以在开始菜单的程序选项中选择MATLAB组件中的快捷方式,当然也可 以在MATLAB的安装路径的子目录中选择可执行文件“MATLAB.exe”。 启动MATLAB后,将打开一个MATLAB的欢迎界面,随后打开MATLAB的桌面系统(Desktop) 如图2-1所示。
在MATLAB命令行操作中,有一些键盘按键可以提供特殊而方便的编辑操作。比如:“↑” 可用于调出前一个命令行,“↓”可调出后一个命令行,避免了重新输入的麻烦。当然下 面即将讲到的历史窗口也具有此功能。 历史窗口(Command History) 历史命令窗口是MATLAB6新增添的一个用户界面窗口,默认设置下历史命令窗口会保留自 安装时起所有命令的历史记录,并标明使用时间,以方便使用者的查询。而且双击某一 行命令,即在命令窗口中执行该命令。 当前目录窗口(Current Directory )
matlab正态分布概率计算
要在MATLAB中计算正态分布概率,您可以使用内置的统计函数如normpdf, normcdf, 和norminv。
以下是一些常见示例:
1. 使用normpdf计算正态分布的概率密度函数(probability density function, PDF):
mu = 0; % 均值
sigma = 1; % 标准差
x = 0; % 要计算概率密度的点
pdf_value = normpdf(x, mu, sigma); % 返回概率密度
2. 使用normcdf计算正态分布的累积分布函数(cumulative distribution function, CDF):
mu = 0; % 均值
sigma = 1; % 标准差
x = 0; % 要计算累积分布的点
cdf_value = normcdf(x, mu, sigma); % 返回累积分布
3. 使用norminv计算正态分布的逆累积分布函数(inverse cumulative distribution function, inverse CDF):
mu = 0; % 均值
sigma = 1; % 标准差
p = 0.5; % 概率
x_value = norminv(p, mu, sigma); % 返回对应概率的值
上述示例中的mu 和sigma 分别表示正态分布的均值和标准差,x表示要计算其概率密度或累积分布的点,p表示要计算其值的概率。
不同的函数可以用于不同的计算需求。
matlab在概率统计中的应用
实验八matlab在概率统计中的应用一、实验目的1、掌握利用MATLAB处理简单的概率问题;2、掌握利用MATLAB处理简单的数理统计问题。
二、实验内容1、对下列问题,请分别用专用函数和通用函数实现。
(1)X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。
(2) X服从正态分布N(2, 9),计算P{|X|≤1},P{|X|>5};已知P{X<b}=0.9,求b。
(3) X服从自由度为9的t分布,计算P{-2<X≤1};已知P{X<c}=P{X>c},求c。
2、绘制下列图形,并比较参数变化对图形的影响。
(1)()2μσ,为(-1,1),(0,0.4),(0,6),(1,1)时正态分布的概率密度函数图形;(2)参数n为1,2,3,4,5时2χ分布的概率密度函数图形。
3、设样本数据为110.1,25.2,39.8,65.4,50.0,98.1,48.3,32.2,60.4,40.3,求该样本的均值、方差、标准差、中位数、几何均值、最大值、最小值、极差并绘出数据的直方图及圆饼图。
4、下表一列出某高校自动化专业研究生招生规模及生源情况请用常用的MATLAB统计作图函数,分析表一中的数据,能否得出近四年招生规模缩小, 总体生源质量下降的结论?5、某高校自动化学院现有教师80人。
其中,教授24人,副教授32人;博士生导师18人,硕士生导师40人;教师队伍中具有博士学位的39人。
请用三维圆饼图描述教师的组成,并在图中显示相应的人数及所占比例。
6、有两组(每组100个元素)正态随机数据,其均值为10,均方差为2,求95%的置信区间和参数估计值。
7、分别使用金球和铂球测定引力常数。
(1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672;(2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664。
如何在Matlab中进行概率统计分析
如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。
Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。
本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。
一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。
Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。
例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。
在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。
Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。
二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。
Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。
下面以一个示例来说明如何使用Matlab进行描述性统计分析。
假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。
Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。
常见的概率分布包括正态分布、指数分布、泊松分布等。
下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。
第8章 matlab 概率论与数理统计问题的求解
8.1.3 概率问题的求解
图4-9
• 例:
>> b=1; p1=raylcdf(0.2,b); p2=raylcdf(2,b); P1=p2-p1 P1 = 0.8449
>> p1=raylcdf(1,b); P2=1-p1 P2 = 0.6065
• 例:
>> syms x y; f=x^2+x*y/3; >> P=int(int(f,x,0,1/2),y,0,1/2) P= 5/192 >> syms x y; f=x^2+x*y/3; P=int(int(f,x,0,1),y,0,2) P= 1
8.1.2.3
பைடு நூலகம்
分布
• 例:
>> x=[-0.5:.02:5]‘; %x=[-eps:-0.02:-0.5,0:0.02:5]; x=sort(x’);替代 >> y1=[]; y2=[]; a1=[1,1,2,1,3]; lam1=[1,0.5,1,2,1]; >> for i=1:length(a1) y1=[y1,gampdf(x,a1(i),lam1(i))]; y2=[y2,gamcdf(x,a1(i),lam1(i))]; end >> plot(x,y1), figure; plot(x,y2)
8.1.2.2 正态分布
正态分布的概率密度函数为:
• 例:
>> x=[-5:.02:5]'; y1=[]; y2=[]; >> mu1=[-1,0,0,0,1]; sig1=[1,0.1,1,10,1]; sig1=sqrt(sig1); >> for i=1:length(mu1) y1=[y1,normpdf(x,mu1(i),sig1(i))]; y2=[y2,normcdf(x,mu1(i),sig1(i))]; end >> plot(x,y1), figure; plot(x,y2)
matlab 正态分布概率计算
正态分布是概率论和统计学中非常重要的分布之一。
在实际的科学研究和工程应用中,经常需要对正态分布进行概率计算。
Matlab作为一种功能强大的科学计算软件,提供了丰富的工具和函数用于正态分布的概率计算。
本文将介绍在Matlab中进行正态分布概率计算的方法和步骤。
一、正态分布概率密度函数正态分布的概率密度函数是$$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^2}}$$其中,$\mu$是均值,$\sigma$是标准差。
二、Matlab中生成正态分布随机数在Matlab中,可以使用`randn`函数生成符合标准正态分布(均值为0,标准差为1)的随机数,也可以使用`normrnd`函数生成符合指定均值和标准差的正态分布随机数。
生成均值为2,标准差为3的100个正态分布随机数的代码如下:```matlabdata = normrnd(2, 3, 100, 1);```三、Matlab中计算正态分布的累积概率在Matlab中,可以使用`normcdf`函数计算正态分布的累积概率。
计算正态分布随机变量小于2的概率的代码如下:```matlabp = normcdf(2, 0, 1);```这将得到随机变量小于2的概率,即标准正态分布的累积概率。
四、Matlab中计算正态分布的百分位点在Matlab中,可以使用`norminv`函数计算正态分布的百分位点。
计算标准正态分布上侧5分位点的代码如下:```matlabx = norminv(0.95, 0, 1);```这将得到标准正态分布上侧5分位点的值。
五、Matlab中绘制正态分布概率密度函数图和累积概率图在Matlab中,可以使用`normpdf`函数绘制正态分布的概率密度函数图,使用`normcdf`函数绘制正态分布的累积概率图。
绘制均值为1,标准差为2的正态分布的概率密度函数图和累积概率图的代码如下:```matlabx = -5:0.1:7;y_pdf = normpdf(x, 1, 2);y_cdf = normcdf(x, 1, 2);figure;subplot(2,1,1);plot(x, y_pdf);title('Normal Distribution Probability Density Function'); xlabel('x');ylabel('Probability Density');subplot(2,1,2);plot(x, y_cdf);title('Normal Distribution Cumulative Probability Function'); xlabel('x');ylabel('Cumulative Probability');```六、总结本文介绍了在Matlab中进行正态分布概率计算的方法和步骤,包括生成正态分布随机数、计算正态分布的累积概率、计算正态分布的百分位点、绘制正态分布概率密度函数图和累积概率图等内容。
实验5(1)-概率统计问题的Matlab求解.
参数估计
例2. 分别使用金球和铂球测定引力常数 (1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672 (2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664 设测定值总体为 ,μ和σ为未知。对(1)、 (2)两种情况分别求μ和σ的置信度为0.9的置信区 间。
解:需要检验假设 H 0 : 1 2 0 H1 : 1 2 0 X=[78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3]; Y=[79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1]; [h,sig,ci]=ttest2(X,Y,0.05,-1) 结果显示为: h= 1 sig = 2.1759e-004 %说明两个总体均值相等的概率很小 ci = -Inf -1.9083 结果表明:h=1表示在 0.05 水平下,应该拒绝原假设,即 认为建议的新操作方法提高了产率,因此,比原方法好。
由上可知,金球测定的μ估计值为6.6782,置信 区间为[6.6750,6.6813]; σ的估计值为0.0039,置信区间为[0.0026, 0.0081]。 泊球测定的μ估计值为6.6640,置信区间为 [6.6611,6.6669]; σ的估计值为0.0030,置信区间为[0.0019, 0.0071]。
例 5 一道工序用自动化车床连续加工某种零件,由于刀具 损坏等会出现故障.故障是完全随机的,并假定生产任一零 件时出现故障机会均相同 .工作人员是通过检查零件来确定 工序是否出现故障的 . 现积累有 100 次故障纪录,故障出现 时该刀具完成的零件数如下:
459 612 926 527 775 402 699 447 621 764 362 452 653 552 859 960 634 654 724 558 624 434 164 513 755 885 555 564 531 378 542 982 487 781 49 610 570 339 512 765 509 640 734 474 697 292 84 280 577 666 584 742 608 388 515 837 416 246 496 763 433 565 428 824 628 473 606 687 468 217 748 706 1153 538 954 677 1062 539 499 715 815 593 593 862 771 358 484 790 544 310 505 680 844 659 609 638 120 581 645 851
MATLAB计算概率
一、实验名称已知随机向量(X ,Y )独立同服从标准正态分布,D={(x,y)|a<x<b ,c<y<d},用四种方法计算概率)),((D Y X P ∈。
二、实验目的(1) 培养编程与上机调试能力;(2) 熟悉matlab6.5.1软件环境;(3) 了解概率计算的方法。
三、实验要求(1) 用input ()语句输入常数a,b,c,d;(2) 用菜单选择计算方法:.第一种是用matlab 的二重积分计算语句计算;第二种是用等距网格法,把区域分成n 2个小区域,在每个小区域中随机地取一个点),(j i ηξ,计算二重积分的近似值ij j i f σηξ∆∑),(,其中f 是密度函数;第三种是用正态分布的分布函数计算;第四种是蒙特卡罗方法计算。
(3) 把四种不同方法计算出的结果打印在屏幕上。
(4) 用三维图像表示在平面区域D 上的f(x,y)。
(5) 每种计算法都要有计算框图,且每种计算法都要编成一个自定义函数.五、程序及其运行结果程序Function gailvsyms a b c d e n;a=input('输入值a=');b=input('\n 输入值b=');c=input('\n 输入值c=');d=input('\n 输入值d=');e=input('\n 请选择:\n1用二重积分计算语句计算概率:\n2等距网格法计算概率;\n3用分布函数计算概率;\n4蒙特卡罗法计算概率.\n5三维图像在D 上表示f(x,y)\n');while e>0&&e<6if e==1p=erchong(a,b,c,d)endif e==2p=wangge(a,b,c,d);endif e==3p=fenbu(a,b,c,d);endif e==4p=mente(a,b,c,d);endif e==5[X,Y]=meshgrid(-3:0.2:3);Z=1/(2*pi)*exp(-1/2*(X.^2+Y.^2));meshz(X,Y,Z);ende=input('请选择: \n');end% ===============================用二重积分计算function p=erchong(a,b,c,d)syms x y;f0=1/(2*pi)*exp(-1/2*(x^2+y^2));f1=int(f0,x,a,b); %对x积分f1=int(f1,y,c,d); %对y积分p=vpa(f1,9);% ================================等距网格法function p=wangge(a,b,c,d)syms x y ;n=100;r1=(b-a)/n; %求步长r2=(d-c)/n;za(1)=a;for i=1:n,za(i+1)=za(i)+r1;end %分块zc(1)=c;for j=1:n,zc(j+1)=zc(j)+r2;endfor i=1:n x(i)=unifrnd(za(i),za(i+1));end %随机取点for i=1:n y(i)=unifrnd(zc(i),zc(i+1));ends=0;for i=1:nfor j=1:ns=1/(2*pi)*exp(-1/2*(x(i)^2+y(j)^2))+s;%求和endendp=s*r1*r2;p=vpa(p,9)% ============================用正态分布的分布函数计算function p=fenbu(a,b,c,d)syms x y;f0=1/(2*pi)*exp(-1/2*(x.^2+y.^2));%联合密度函数F=int(f0,x);F=int(F,y); %分布函数F=simple(F);F1=subs(F,{x,y},{b,d}); %F(b,d)F2=subs(F,{x,y},{a,d}); %F(a,d)F3=subs(F,{x,y},{b,c}); %F(b,c)F4=subs(F,{x,y},{a,c}); %F(a,c)p=F1-F2-F3+F4 %P=F(b,d)-F(a,d)-(b,c)+(a,c)% ===========================蒙特卡罗法function p=mente(a,b,c,d)syms x y;N=10000000;%取点数h=0.5;%¸高度x=a+(b-a)*rand(N,1); %随机生成点y=c+(d-c)*rand(N,1);z=h*rand(N,1);F=1/(2*pi)*exp(-1/2*(x.^2+y.^2));%联合密度函数i=z<F;k=sum(i); %求和p=k*(b-a)*(d-c)*h/N。
MATLAB在概率统计中的应用
norminv(0.025,0,1) tinv(0.025,10) 9.3.1 正态分布参数估计 例 假设某种清漆的9个样品,其干燥时间(以小时计)
分别为6.0.5.7,5.8,6.5,7.0,6.3,5.6,6.1,5.0.设干燥时 间总体服从正态分布。 N(, 2),求和的 解置:t信im度e=为[60...9055的.7置5.信8 6区.5间7.(06未.3 知5.6)6.1 5.0] ; [MUHAT,SIGMAHAT,MUCI,SIGMACI]=normfit( time,0.05)
例 求参数为6的泊松分布的期望和方差
[m,v]=poisstat(6)
9.2.2 概率密度函数
pdf(name,x,a,b,c)
例 计算正态分布N(0,1)下的在点0.7733的值。
pdf(‘norm’,0.7733,0,1)
normpdf(0.7733,0,1)
例 绘制卡方分布密度函数在 n分别等于1,5,15的图.
mean1=mean(w)
std1=std(w)
skewness1=skewness(w)
kurtosisl=kurtosis(w)
5
9.1.6 协方差和相关系数
协方差 cov(x,y)=E{[x-E(x)][y-E(y)]}
相关系数 cof (x, y) cov(x, y)
cov(x,y)
cov(Dx(,x0)) D(y) cov(x,1)
b=[6.661,6.661,6.667,6.667,6.664];
[MUHAT,SIGMAHAT,MUCI,SIGMACI]=normfit(
j,0.1)
[MUHAT,SIGMAHAT,MUCI,SIGMACI]=normfit(
Matlab第4章概率统计
Matlab 第4章概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。
4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数binornd格式R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
R = binornd(N,P,m) %m指定随机数的个数,与R同维数。
R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数normrnd格式R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA 的正态分布的随机数据,R可以是向量或矩阵。
R = normrnd(MU,SIGMA,m) %m指定随机数的个数,与R同维数。
R = normrnd(MU,SIGMA,m,n) %m,n分别表示R的行数和列数例4-2>>n1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827>>n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462>>n3 = normrnd([1 2 3;4 5 6],0.1,2,3) %mu为均值矩阵n3 =0.9299 1.9361 2.96404.12465.0577 5.9864>> R=normrnd(10,0.5,[2,3]) %mu为10,sigma为0.5的2行3列个正态随机数R =9.7837 10.0627 9.42689.1672 10.1438 10.59554.1.3 常见分布的随机数产生常见分布的随机数的使用格式与上面相同表4-1 随机数产生函数表4.1.4 通用函数求各分布的随机数据命令求指定分布的随机数函数random格式y = random('name',A1,A2,A3,m,n) %name的取值见表4-2;A1,A2,A3为分布的参数;m,n指定随机数的行和列例4-3 产生12(3行4列)个均值为2,标准差为0.3的正态分布随机数>> y=random('norm',2,0.3,3,4)y =2.3567 2.0524 1.8235 2.03421.9887 1.94402.6550 2.32002.0982 2.2177 1.9591 2.01784.2 随机变量的概率密度计算4.2.1 通用函数计算概率密度函数值命令通用函数计算概率密度函数值函数pdf格式Y=pdf(name,K,A)Y=pdf(name,K,A,B)Y=pdf(name,K,A,B,C)说明返回在X=K处、参数为A、B、C的概率密度值,对于不同的分布,参数个数是不同;name为分布函数名,其取值如表4-2。
概率论问题MATLAB仿真求解程序
clc; clear; close all; a=10; b=3; p=0.55; S=0; N=10000; m=6; %甲的赌本 %乙的赌本 %甲赢的概率 % 计数设置为0 % 模拟次数 %设定随机数状态值(1 2 3 4 5 6 ),改变这个值可以进行不同的实验
%针与线相交则记数
运行结果
Pi_m_mean=mean(Pi_m)%显示 N 次迭代之后的圆周率 pi 均值
P_mean =0.318250000000000 Pi_m_mean =3.142648986529731
赌徒输光问题
两个赌徒甲、乙两人将进行一系列赌博。在每一局中甲获胜的概率为 p , 而乙获胜的概率为 q ( p + q = 1 )。在每一局后,失败者都要支付一元线给 胜利者。在开始时甲拥有赌本 a 元,而乙拥有赌本 b 元,两个赌徒直到甲 输光或乙输光为止。求甲输光的概率。
MATLAB实现Buffon问题仿真求解程序
程序1பைடு நூலகம்
clear all; L=1; d=2; m=0; n=10000; for k=1:n x=unifrnd(0,d/2); p=unifrnd(0,pi); if x<=L*sin(p)/2 m=m+1; else end end p=vpa(m/n,4) %针的长度; %平行线间的距离(d>L); %统计满足针与线相交条件的次数并赋初值; %投针试验次数 %迭代次数 %随机产生数的长度,即投针之后针中点与平行线的距离 %随机产生的针与线相交的角度 %针与线相交的条件 %针与线相交则记数
P =0.0676 Po =0.0656
Binomial(二项分布)的使用
Matlab在概率统计中的应用
H1 μ1≠μ2
x=[20.5 18.8 20.9 21.5 19.5 21.6 21.8]; y=[17.7 19.2 20.3 20 18.6 19 19.1 20 18.1];
corrcoef(X) ans =
1.0000 0.9563 -0.1259 -0.3706 0.2186 0.9563 1.0000 -0.0434 -0.2201 0.3524 -0.1259 -0.0434 1.0000 0.5273 0.1414 -0.3706 -0.2201 0.5273 1.0000 -0.4423 0.2186 0.3524 0.1414 -0.4423 1.0000
MATLAB中,协方差和相关系数函数cov和coffcoef实现 协方差 调用格式 cov(x)
当x是向量时,返回此向量的协方差;当x是矩阵时,返 回此矩阵的协方差矩阵,其中x的每一行是一个观测值, x的每一列是一个变量。由Cov(x)的对角元素为构成的向 量是x的各列的方差所构成的向量,diag(cov(x)是) 标准差向量
H=0 表示“在显著性水平a的情况下,不能拒绝原假设”。 H=1 表示“在显著性水平a的情况下,可以拒绝原假设”。
P为显著性概率;ci表示置信水平为1-a的置信区间。 zval是检验统计量。
例如 某糖厂用自动包装机将糖果装箱,已知规定每箱的 标准重量为100公斤。设每箱重服从正态分布。由以往经 验知重量的均方差为0.9公斤。某天开工后检验包装机是 否正常,随机抽取该包装机所包装的9箱,称得净重为 (公斤)99.3,98.7,100.5,101.2,98.3,99 .7, 105.1,102.6,100.5。取a=0.05,问机器是否正常?
第3章 概率统计实例分析及MatlAb求解
第3章概率统计实例分析及MatlAb求解3.1 随机变量分布与数字特征实例及MATLAB求解3.1.1 MATLAB实现用mvnpdf和mvncdf函数可以计算二维正态分布随机变量在指定位置处的概率和累积分布函数值。
利用MATLAB统计工具箱提供函数,可以比较方便地计算随机变量的分布律(概率密度函数)、分布函数及其逆累加分布函数,见附录2-1,2-2,2-3。
MATLAB中矩阵元素求期望和方差的函数分别为mean和var,若要求整个矩阵所有元素的均方差,则要使用std2函数。
随机数生成函数:rand( )和randn( )两个函数伪随机数生成函数:A=gamrnd(a,lambda,n,m) % 生成n*m的 分布的伪随机矩阵B=raylrnd(b,n,m) %生成rayleigh的伪随机数3.1.2 相关实例求解例2-1计算服从二维正态分布的随机变量在指定范围内的累积分布函数值并绘图。
程序:%二维正态分布的随机变量在指定范围内的累积分布函数图形mu=[0 0];sigma=[0.25 0.3;0.3 1];%协方差阵x=-3:0.1:3;y=-3:0.2:3;[x1,y1]=meshgrid(x,y);%将平面区域网格化取值f=mvncdf([x1(:) y1(:)],mu,sigma);%计算累积分布函数值F=reshape(f,numel(y),numel(x));%矩阵重塑surf(x,y,F);caxis([min(F(:))-0.5*range(F(:)),max(F(:))]);%range(x)表示最大值与最小值的差,即极差。
axis([-3 3 -3 3 0 0.5]);xlabel('x'); ylabel('y');zlabel('Probability Density');图1 二维正太分布累积分布函数值图例2-2 设X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<<-≤≤=其他。
matlab中对一维数据进行计算概率分布的方法
matlab中对一维数据进行计算概率分布的方法在MATLAB中,计算一维数据的概率分布可以通过多种方法实现。
这里将介绍一些常用的方法。
1. 直方图法:直方图是一种常用的统计图形,可以将数据按照一定的区间划分,并统计每个区间中数据出现的频次。
MATLAB提供了hist和histogram两个函数来计算一维数据的直方图。
其中,hist函数用于计算直方图的频次,而histogram函数可以直接绘制频率直方图。
使用这两个函数,可以很容易地计算数据的概率分布。
例如,给定一个一维数据向量x,可以使用hist函数计算其直方图:```[counts, edges] = hist(x, num_bins);```其中,counts是每个区间的频次,edges是每个区间的边界。
由于直方图是通过对数据进行离散化处理得到的,因此需要指定区间的数量num_bins。
然后,可以通过除以总的数据点数得到每个区间的概率分布。
2. 核密度估计法:核密度估计是一种非参数估计方法,可以通过估计概率密度函数来计算一维数据的概率分布。
MATLAB提供了ksdensity函数来实现核密度估计。
该函数使用高斯核函数来估计概率密度函数,默认情况下会自动选择带宽。
```[f, xi] = ksdensity(x);```其中,f是估计得到的概率密度函数,xi是相应的自变量。
通过对概率密度函数进行积分,可以得到概率分布。
3. 参数分布拟合法:除了直方图法和核密度估计法外,还可以使用参数分布拟合法来计算一维数据的概率分布。
该方法假设数据服从某种已知的统计分布(如正态分布、指数分布等),然后通过最大似然估计或最小二乘法来拟合参数。
MATLAB提供了fitdist函数来拟合参数,并提供了一系列常见的概率分布对象。
例如,假设数据服从正态分布,可以使用fitdist函数来拟合参数:```pd = fitdist(x, 'Normal');```其中,x是一维数据,‘Normal’表示正态分布。
概率统计在MATLAB中的实现方法解析
概率统计在MATLAB中的实现方法解析概率统计是一门研究随机现象的规律性和不确定性的学科,广泛应用于各个领域。
而MATLAB是一种强大的科学计算软件,可以在概率统计领域中提供很多实用的工具和方法。
本文将探讨概率统计在MATLAB中的实现方法,帮助读者更好地理解和应用于实践。
一、概率分布的生成和拟合在概率统计中,对于一些已知的概率分布,我们常常需要生成符合该分布的随机数,或者通过已有的样本数据对分布进行拟合。
在MATLAB中,可以使用一些函数来实现这些操作。
首先,对于已知的概率分布,例如正态分布(高斯分布),可以使用normrnd()函数生成符合该分布的随机数。
该函数的输入参数包括均值和标准差,输出为符合正态分布的随机数。
例如,我们可以生成100个符合均值为0,标准差为1的正态分布随机数:```MATLABx = normrnd(0, 1, 100, 1);```对于已有的样本数据,我们可以使用fitdist()函数对数据进行概率分布的拟合。
该函数可以自动选择合适的分布类型,并给出对应的参数估计值。
例如,我们有一组样本数据x,需要对其进行正态分布的拟合:```MATLABdist = fitdist(x, 'Normal');```通过fitdist()函数返回的dist对象,我们可以获取该分布的参数估计值、置信区间等信息。
二、假设检验和置信区间估计假设检验和置信区间估计是概率统计中常用的分析方法,用于判断样本数据是否符合某个假设、计算参数估计的可信度等。
在MATLAB中,可以使用一些函数来实现假设检验和置信区间估计。
对于假设检验,MATLAB提供了ttest2()和chi2gof()等函数,用于分别进行两样本t检验和卡方检验。
例如,我们有两组样本数据x和y,需要进行两样本t检验:```MATLAB[h, p] = ttest2(x, y);```通过ttest2()函数返回的h值可以判断是否拒绝原假设,p值则表示检验结果的显著性。
使用Matlab进行概率统计分析的方法
使用Matlab进行概率统计分析的方法概率统计是一门研究随机现象的规律性的数学学科,广泛应用于各个领域。
而Matlab作为一种高效的数值计算工具,也可以用来进行概率统计分析。
本文将介绍使用Matlab进行概率统计分析的一些常用方法和技巧。
一、概率统计的基本概念在介绍使用Matlab进行概率统计分析方法之前,首先需要了解一些基本概念。
概率是表示事件发生可能性的数值,通常用概率分布来描述。
而统计是通过收集、整理和分析数据来研究问题的一种方法,通过统计推断可以得到总体的一些特征。
二、Matlab中的概率统计函数在Matlab中,有许多内置的概率统计函数,可以直接调用来进行分析。
常用的概率统计函数有:1. 随机数生成函数:可以用来生成服从不同概率分布的随机数,如正态分布、均匀分布等。
2. 描述统计函数:可以用来计算数据的统计特征,如均值、方差、标准差等。
3. 概率分布函数:可以用来计算不同概率分布的概率密度函数、累积分布函数、分位点等。
4. 线性回归和非线性回归函数:可以用来拟合数据并进行回归分析。
5. 假设检验函数:可以用来进行参数估计和假设检验,如t检验、方差分析等。
这些函数可以通过Matlab的帮助文档来查找具体的使用方法和示例。
三、随机数生成和分布拟合随机数生成是概率统计分析的基础,Matlab提供了多种随机数生成函数。
例如,可以使用rand函数生成服从均匀分布的随机数,使用randn函数生成服从标准正态分布的随机数。
通过设置不同的参数,可以生成不同分布的随机数。
分布拟合是将实际数据与理论概率分布进行对比的方法,可以帮助我们判断数据是否符合某种分布。
Matlab提供了fitdist函数用于对数据进行分布拟合,可以根据数据自动选择合适的概率分布进行拟合,并返回相应的参数估计结果。
通过对数据拟合后的分布进行分析,可以更好地了解数据的性质。
四、描述统计和数据可视化描述统计是在数据收集和整理之后,对数据进行总结和分析的过程。
完整版Matlab概率论及数理统计
Matlab概率论与数理统计一、 matlab 基本操作1.画图【例】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b' );【例】填充,二维平均随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on ;plot(x,y0,'r',y0,x,'r',x,y60,'r' ,y60,x,'r' );plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');2.排列组合C=nchoosek(n,k) :C C n k,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2) :从 n1 到 n2 的连乘【例】最少有两个人寿辰相同的概率n!C N nN !( N n)!N(N1)(N n1)公式计算 p 111N nN n N n365 364 (365rs1)365364365rs 1 1365rs1365365365rs=[20,25,30,35,40,45,50];%每班的人数p1=ones(1,length(rs));p2=ones(1,length(rs));%用连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i);end%用公式计算(改进)for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;endp1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365));endp_r1=1-p1;p_r2=1-p2;Rs =[20253035404550 ]P_r=[0.4114 0.5687 0.7063 0.8144 0.8912 0.9410 0.9704]二、随机数的生成3.平均分布随机数rand(m,n); 产生 m 行 n 列的 (0,1) 平均分布的随机数rand(n); 产生 n 行 n 列的 (0,1)平均分布的随机数【练习】生成(a,b)上的平均分布4.正态分布随机数randn(m,n); 产生 m 行 n 列的标准正态分布的随机数【练习】生成N(nu,sigma.^2) 上的正态分布5.其他分布随机数函数名调用形式注释Unidrnd unid rnd (N,m,n)平均分布(失散)随机数binornd bino rnd (N,P,m,n)参数为 N, p的二项分布随机数Poissrnd poiss rnd (Lambda,m,n)参数为 Lambda的泊松分布随机数geornd geornd (P,m,n)参数为 p 的几何分布随机数hygernd hygernd (M,K,N,m,n)参数为 M, K, N 的超几何分布随机数Normrnd normrnd (MU,SIGMA,m,n)参数为 MU, SIGMA的正态分布随机数,SIGMA是标准差Unifrnd unif rnd ( A,B,m,n)[A,B] 上平均分布 ( 连续 ) 随机数Exprnd exprnd (MU,m,n)参数为 MU的指数分布随机数chi2rnd chi2 rnd(N,m,n)自由度为 N 的卡方分布随机数Trnd t rnd(N,m,n)自由度为 N 的 t分布随机数Frnd f rnd(N1, N2,m,n)第一自由度为N1, 第二自由度为 N2 的 F 分布随机数gamrnd gamrnd(A, B,m,n)参数为 A, B的分布随机数betarnd betarnd(A, B,m,n)参数为 A, B的分布随机数lognrnd lognrnd(MU, SIGMA,m,n)参数为 MU, SIGMA的对数正态分布随机数nbinrnd nbinrnd(R, P,m,n)参数为 R,P 的负二项式分布随机数ncfrnd ncfrnd(N1, N2, delta,m,n)参数为 N1, N2, delta 的非中心 F 分布随机数nctrnd nctrnd(N, delta,m,n)参数为 N,delta的非中心 t 分布随机数ncx2rnd ncx2rnd(N, delta,m,n)参数为 N,delta的非中心卡方分布随机数raylrnd raylrnd(B,m,n)参数为 B 的瑞利分布随机数weibrnd weibrnd(A, B,m,n)参数为 A, B的韦伯分布随机数三、一维随机变量的概率分布1.失散型随机变量的分布率(1)0-1 分布(2)平均分布(3) 二项分布: binopdf(x,n,p) ,若X ~ B(n, p),则P{ X k} C n k p k (1p) n k,x=0:9;n=9;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当 n 较大时二项分布近似为正态分布x=0:100;n=100;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')(4) 泊松分布: piosspdf(x, lambda) ,若X ~k e ( ) ,则 P{ X k}k !x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ](5) 几何分布: geopdf (x, p),则P{ X k} p(1p) k 1y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]C M k C N n k Mx=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数1a x b(1)平均分布: unifpdf(x,a,b) ,f ( x)b a0其他a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);112(2)正态分布: normpdf(x,mu,sigma) ,f ( x)e2 2 ( x)2x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产生 10000 个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;% 以 a 为横轴,求出 10000 个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3) 指数分布: exppdf(x,mu) ,f (x)1 e1xa x by= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n1(4)2分布: chi2pdf(x,n) , f (x; n)2n 2x2( n 2)hold on x=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(( n 1) 2) x 2(5) t 分布: tpdf(x,n) , f (x; n)(n 2)1nnhold on x=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue e 2n 1 2x 0x 0n=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');n1n1 2n1n222(6) F 分布: fpdf(x,n1,n2) ,f ( x; n1, n2)(( n1n2 ) 2) n1x 21n1x x 0 (n1 2)(n2 2) n2n20x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数 F (x) P{ X x}【例】求正态分布的累积概率值设 X ~ N(3,22),求P{2X 5},P{ 4 X 10},P{ X 2}, P{X3} ,4.逆分布函数,临界值y F (x) P{ X x} , x F 1 ( y) , x 称之为临界值【例】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例】求2 (9) 分布的累积概率值hold offy=[0.025,0.975];x=chi2inv(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0,n);plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n);x2=x(2):0.1:30;y2=chi2pdf(x2,n);hold onfill([x1, x(1)],[y1,0],'b');fill([x(2),x2],[0,y2],'b');5. 数字特色函数名调用形式注释sort sort(x),sort(A)排序 ,x 是向量, A 是矩阵,按各列排序sortrows sortrows(A) A 是矩阵,按各行排序mean mean(x)向量 x 的样本均值var var(x)向量 x 的样本方差std std(x)向量 x 的样本标准差median median(x)向量 x 的样本中位数geomean geomean(x)向量 x 的样本几何平均值harmmean harmmean(x)向量 x 的样本调停平均值skewness skewness(x)向量 x 的样本偏度max max(x)向量 x 的最大值min min(x)向量 x 的最小值cov cov(x), cov(x,y)向量 x 的方差,向量x,y 的协方差矩阵corrcoef corrcoef(x,y)向量 x,y 的相关系数矩阵【练习】二项分布、泊松分布、正态分布( 1)对n10, p 0.2 二项分布,画出 b(n, p) 的分布律点和折线;( 2)对np ,画出泊松分布( ) 的分布律点和折线;( 3)对np,2np(1 p) ,画出正态分布N ( , 2 )的密度函数曲线;( 4)调整 n, p ,观察折线与曲线的变化趋势。
第10章 用MATLAB解决概率问题
连续型随机变量的期望
• 应用举例 • 例 17 已知随机变量X的概率
3x , 0 x 1 P( x) 0, 其它
2
求EX和E(4X-1)。
• • • • • • • • • •
程序: 解:在Matlab编辑器中建立M文件LX0817.m: syms x p_x=3*x^2; EX=int(x*p_x,0,1) EY=int((4*x-1)*p_x,0,1) 运行结果为: EX = 3/4 EY = 2
指数分布
正态分布 卡方分布 T分布 F分布
expcdf(x,lambda)
normcdf(x,mu,sigma) chi2cdf(x,n) tcdf(x,n) fcdf(x,n1,n2)
应用举例
• 例7 某公共汽车站从上午7:00起每15分钟来一班 车。若某乘客在7:00到7:30间任何时刻到达此站 是等可能的,试求他候车的时间不到5分钟的概率。
应用举例
• 例16 随机抽取6个滚珠测得直径(mm)如下: 11.70 12.21 11.90 11.91 12.32 12.32 试求样本平均值。 • 程序: >> X=[11.70 12.21 11.90 11.91 12.32 12.32];
>> mean(X)
• 则结果显示如下: ans=12.0600
(2) 方差
• 离散型随机变量的方差及样本方差 • 方差 设X的分布律为 由
PX xk Pk , k 1.2,...
D( X ) E[(X EX ) ] E( X ) E ( X )
2 2 2
则方差 DX=sum(X.^2*P)-(EX).^2
• 标准差:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布B(n,p)
P{X k} C p (1 p)
k n k
n k
命令1:Fx=binocdf(x,n,p) 功能:计算二项分布的累积概率Fx=P{X≤x}=F(x) 命令2:x=binoinv(y, n,p) 功能:计算随机量x,使得y=P{X≤x} 命令3:X=binornd(n,p,M,N) 功能:产生M*N维符合二项分布的随机数矩阵X 命令4:Px=binopdf(x,n, p) 功能:计算试验中事件恰好发生x次的概率Px=P{X=x}
第10讲 MATLAB求解概率统计问题
1
一 随机变量及其分布 i K i C N C MN 超几何分布H(n,M,N) P{ X i} K CM 命令1:Fx=hygecdf(x,M,N,K)
功能:计算超几何分布的累积概率,总共 M件产品, 其中次品N 件,抽取K件检查,计算发现次品不 多于x件的概率Fx=P{次品数X≤x}=F(x) 命令2:x=hygeinv(p,M, N,K) 功能:在已知参数M、N 、 K和p的情况下计算随 机量x,使得p=P{0≤次品数X≤x} 命令3:X=hygernd(M,N,K,m,n) 功能:在已知参数M,N ,K的情况下产生m*n维符合 超几何分布的随机数矩阵X
9
Χ 2分布
k x 1 1 2 2 x e k k 密度函数:f 2 ( x) 2 2 ( ) 2 0
x0 x0
命令:chi2cdf(x, k), chi2inv(p, k),chi2pdf(x, k) chi2rnd(k,m,n)
10T分布 Nhomakorabeak 1 ( ) k 1 2 x 2 密度函数:f T ( x) (1 ) 2 k k k ( ) 2
EY= 1
22
随机变量的方差 1.统计数据的方差---D=var(X,1)
功能:当X为向量时,输出一个标量;当X为矩阵时,输出为行 向量,对应于矩阵每列的方差值;因此计算矩阵所有数的方 差值,应用嵌套:var(var(X))n 1 2 2 缺省1,计算: S ( x x ) i n 1 i 1 n 1 2 S ( xi x ) 2 否则计算: n i 1 2.统计数据的标准差---S=std(X,1) 功能:用法和1的解释同上 3. 一般随机变量的方差----DX=E(X2)-(EX)2 功能:用积分或级数编程计算
1 e P{ X x} 0
x
x0 x0
7
均匀分布X~U(a,b) 命令1:Fx=unifcdf(x, a,b) 功能:计算累积概率Fx=P{X≤x}=F(x) 命令2:x=unifinv(p, a,b) 功能:计算随机量x,使得p=P{X≤x} 命令3:X=unifrnd(a,b,M,N) 功能:产生M*N维随机数矩阵X 命令4:Px=unifpdf(x, a,b) 功能:计算分布密度p(x)在x的值 补充:rand()---(0,1)均匀分布随机数
19
例4设随机变量X的分布列,求期望。 X -1 0 2 3
P
1/8
1/4
3/8
1/4
程序:clear; x=[-1,0,2,3]; p=[1/8,1/4,3/8,1/4]; EX=sum(x.*p)
1.3750
20
例5设随机变量X的分布密度为:
a bx 2 f ( x) 0 0 x 1 其他
13
p2=binopdf(x,100,0.5);plot(x,p2,'*r');title('概率分布图')
14
例2设X~N(2,0.25) (1) 求概率P{1<X<2.5}; (2)绘制分布函数图象和分布密度图象; (3)画出区间[1.5,1.9]上的分布密度曲线下方区域。 程序:(1)p=normcdf(2.5,2,0.5)- normcdf(1,2,0.5) p = 0.8186 (2) x=0:0.1:4;px=normpdf(x,2,0.5); fx= normcdf(x,2,0.5); plot(x,px,'+b');hold on; plot(x,fx,'*r');legend('正态分布函数','正态分布密度'); (3) specs=[1.5,1.9]; pp=normspec(specs,2,0.5)
FY ( y ) P{Y y} P{g ( X ) y}
g ( X ) y
f X ( x)dx f Y ( y ) dFY ( y ) / dy
据此意思,计算随机变量函数的分布相当于编程
17
例3设随机变量X服从均匀分布U[0,1],求Y=eX的 分布。
程序:clear; x=solve('y=exp(x)') dy=diff(x,'y') fy= 1*abs(dy)
21
例6设随机变量X的分布密度为:
0.5e x f ( x) x 0 . 5 e x0 其他
求随机变量Y=|X|的期望。
程序:clear;syms x;
EY g ( x) f ( x)dx
fx1=0.5*exp(x); fx2=0.5*exp(-x); EY=int(-x*fx1,x,-inf,0) + int(x*fx2,x,0, inf)
24
例8设生成一组均值为15,方差为2.52的正态分布 的随机数据,然后对这组数据进行置信度97%的参 数估计。
程序:clear; w=normrnd(15,2.5,50,1); 或w=15+2.5*randn(50,1); alpha=0.03; [mh,sh,mc,sc]=normfit(w,alpha) 运行一次:mh=15.1076 sh=2.4038 mc=14.3478~15.8674 sc=1.9709~3.0703
23
例7设随机变量X的分布密度为:
2 cos 2 x f ( x) 0 | x |
2 其他
求随机变量X的期望和方差。
程序:clear;syms x;fx=2/pi*(cos(x))^2;
EX=int(x*fx,x,-pi/2,pi/2) E2X=int(x^2*fx,x,-pi/2,pi/2) DX=E2X-EX^2
x0 x0
命令:fcdf(x, p,q), finv(F,p,q),fpdf(x, p,q) frnd(p,q,m,n)
12
例1某人向空中抛硬币100次,落下为正面的概率 为0.5。这100次中正面向上的次数记为X: (1)试计算x=45的概率和x≤45的概率; (2)绘制分布函数图象和分布列图象。 程序:》clear; px=binopdf(45,100,0.5) % 计算x=45的概率 px = 0.0485 fx=binocdf(45,100,0.5) % 计算x≤45的概率 fx =0.1841 》x=1:100;p1=binocdf(x,100,0.5);plot(x,p1,'+'); title('分布函数图')
4
泊松分布X~P(λ)
P{ X k} e
命令1:Fx=poisscdf(x,lambda) 功能:计算累积概率Fx=P{X≤x}=F(x) 命令2:x=poissinv(p, lambda) 功能:计算随机量x,使得p=P{X≤x} 命令3:X=poissrnd(lambda,M,N) 功能:产生M*N维随机数矩阵X 命令4:Px=poisspdf(x,lambda) 功能:计算概率Px=P{X=x}
8
Γ 分布
a x a 1 x e 密度函数: f ( x) (a) 0 其中( a )
x0 x0
0
x a 1e x dx
1 满足: ( a ) a( a 1), (1) 1, ( ) 2
命令:gamcdf(x, a, lambda), gaminv(p, a, lambda) gampdf(x, a,lambda), gamrnd(a, lambda,m,n)
命令:tcdf(x, k), tinv(p, k),tpdf(x, k) trnd(k,m,n)
11
F分布
pq p q p pq ( 2 ) 2 1 p q 2 x 2 ( p qx) 2 密度函数:f F ( x) p q ( 2 ) ( 2 ) 0
30
四 参数估计
例9设从一大批产品中抽取100个产品,经检验知 有60个一级品,求这批产品的一级品率(置信度 95%)。
x=log(y) dy=1/y fy=1/|y|
注:取值区域需要自己确定,用积分求法作为练习!
18
三 随机变量的数字特征
随机变量的数学期望 1.数组的平均值---Y=mean(X)
功能:当X为向量时,输出一个平均数;当X为矩阵时,输出为 行向量,对应于矩阵每列的平均值;因此计算矩阵所有数的 平均值,应用嵌套:mean(mean(X))或m=mean(X(:)) 与此类似的有:求和(sum),最大(max),最小(min)等 2.离散型随机变量的期望----EX=sum(X.*P) 功能:计算随机值向量X与对应概率向量P的乘积之和 3.连续型随机变量的期望----EX=int(x*fx,x,a,b) 功能:用积分计算期望
且EX=3/5,求常数a,b的值。
程序:clear;syms a b x;fx=a+b*x^2; EX=int(x*fx,x,0,1) EX=1/4*b+1/2*a F=int(fx,x,0,1) F=a+1/3*b f1=EX-3/5;f2=f-1; [a,b]=solve(f1,f2) a=3/5,b=6/5