小学奥数同余问题
五年级奥数同余问题
1.两数相除商37余73,求被除数的最小值。
解析:28812.两数相除,商4余8,被除数、除数、商和余数的和为415,则被除数是多少?解析:被除数是424,除数是79.3.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,求原来的除数。
解析:除数是10.4.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,余数也比原来大了3.求原来的除数。
解析:除数是9.5.求算式3218+26-757除以9的余数。
解析:3.6.求413除以5的余数。
解析:1.7. 2461×135×6047÷11的余数是多少?解析:5.8. 19992000÷7的余数是多少?解析:0.9.……199200除以9的余数是________;解析:3.10. 数11…1(2007个1),被13除余多少?解析:711.已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .解析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.12.有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?解析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313——2=238(个) ,313—7=306(个) ,(238,306)=34(人) .因数与倍数:两数的最大公因数乘最小公倍数等于这两数的乘积。
小学奥数之 同余问题(含详细解析)
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
同余问题的奥数题
同余问题的奥数题同余问题是一个数学中的问题,它涉及到整数除以某个数后的余数的性质和关系。
具体来说,给定一个整数n和一个正整数m,同余问题就是研究关于a 的同余方程a ≡b (mod m) 的性质和解的情况。
其中,a是被除数,b是余数,"≡"表示同余关系,即a除以m的余数等于b,而mod表示取模运算。
这个问题可以进一步扩展为求解满足特定条件的整数解的数量或者找到所有满足条件的整数解等。
以下是一些常见的同余问题奥数题:1. 一个数除以5的余数是4,除以6的余数是3,除以7的余数是2,求这个数是多少?解答:我们可以使用中国剩余定理来解决这个问题。
首先,我们设这个数为x,则有x ≡4 (mod 5),x ≡3 (mod 6) 和x ≡2 (mod 7)。
根据中国剩余定理,我们有:x = 5 * k1 + 6 * k2 + 7 * k3,其中k1、k2、k3是整数。
由于5、6和7互质,所以可以分别求解得到:k1 = (4 - 2) / 5 = 0k2 = (3 - 0) / 6 = 1/2k3 = (2 - 0) / 7 = 2/7将k1、k2和k3代入x的表达式中,得到x = 5 * 0 + 6 * (1/2) + 7 * (2/7) = 19。
所以这个数是19。
2. 求方程x^2 - y^2 = 1999的所有正整数解。
解答:我们可以使用费马小定理来解决这个问题。
根据费马小定理,如果p 是一个素数且a是模p的一个原根,那么a^(p-1) ≡1 (mod p)。
在本题中,我们考虑模p=n,即要求满足x^2 - y^2 = n的正整数解的数量。
根据费马小定理,有:当n是完全平方数时,若n的质因数分解形式为p^2,且存在整数a使得a^((p-1)/2) ≡±1 (mod p),则n有一个非平凡的正整数解;当n不是完全平方数时,不存在满足条件的正整数解。
对于本题中的n=1999,它是一个完全平方数,因为1999 = 13 * 153。
小学奥数同余定理单选题100道及答案
小学奥数同余定理单选题100道及答案1. 下列算式中,余数相同的是()A. 24÷5 35÷6B. 39÷5 27÷4C. 48÷7 45÷6答案:B解析:39÷5 = 7......4,27÷4 = 6......3,余数都是4。
2. 一个数除以8 余5,除以9 余6,这个数最小是()A. 69B. 72C. 77答案:C解析:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数是72 - 3 = 69。
3. 11÷4 = 2......3,如果被除数和除数都扩大10 倍,那么余数是()A. 3B. 30C. 0.3答案:B解析:被除数和除数都扩大10 倍,商不变,余数扩大10 倍,3×10 = 30。
4. 有一个数,除以5 余数是2,除以7 余数是3,这个数最小是()A. 22B. 23C. 27答案:B解析:通过列举,可得23 除以5 余数是2,除以7 余数是3。
5. 47 除以一个数,余数是7,这个数最小是()A. 8B. 9C. 10答案:B解析:除数要大于余数,所以这个数最小是9。
6. 一个数除以6 余4,除以8 余6,这个数最小是()A. 22B. 20C. 26答案:A解析:这个数加上2 就能被 6 和8 整除,6 和8 的最小公倍数是24,所以这个数是24 - 2 = 22。
7. 35÷()= 4......3,括号里应填()A. 8B. 7C. 9答案:A解析:(35 - 3)÷4 = 8。
8. 下列算式中,余数最大的是()A. 38÷5B. 47÷8C. 59÷9答案:C解析:38÷5 = 7......3,47÷8 = 5......7,59÷9 = 6......5,5 < 7 < 9。
小学的奥数同余问题
同余问题(一)在平时解题中,我们经常会遇到把着眼点放在余数上的问题。
如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。
很明显这个问题的着眼点是放在余数上了。
1. 同余的表达式和特殊符号37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。
记作:(mod7)“”读作同余。
一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:2. 同余的性质(1)(每个整数都与自身同余,称为同余的反身性。
)(2)若,那么(这称作同余的对称性)(3)若,,则(这称为同余的传递性)(4)若,,则()(这称为同余的可加性、可减性)(称为同余的可乘性)(5)若,则,n为正整数,同余还有一个非常有趣的现象:如果那么(的差一定能被k整除)这是为什么呢?k也就是的公约数,所以有下面我们应用同余的这些性质解题。
【例题分析】例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?分析与解答:假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以,,说明a是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。
所以a最大是31。
例2. 除以19,余数是几?分析与解答:如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。
所以此题应用了同余的可乘性,同余的传递性。
例3. 有一个1997位数,它的每个数位都是2,这个数除以13,商的第100位是几最后余数是几分析与解答:这个数除以13,商是有规律的。
商是170940六个数循环,那么,即,我们从左向右数“170940”的第4个数就是我们找的那个数“9”,所以商的第100位是9。
余数是几呢?则所以商的个位数字应是“170940”中的第4个,商应是9,相应的余数是5。
小学奥数竞赛专题之同余问题
小学奥数竞赛专题之同余问题关于小学奥数竞赛专题之同余问题[专题介绍]:同余问题中我会经常遇到与余数有关的问题,比如:某年级有将近400名学生。
有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列,结果还是多余1人;聪名的你知道该年级共有学生多少名吗?假设有一名学生不参加演出,则结果一定是不管每列站8人或9人或10人都将刚好站齐。
因此此时学生人数应是8、9、10公倍数,而8、9、10的最小公倍数是360,因此可知该年级共有361人。
研究与余数有关的问题,能帮助我们解决很多较为复杂的问题。
[分析]1、两个整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm)2、同余的重要性质及举例。
〈1〉a≡a(modm)(a为任意自然)〈2〉若a≡b(modm),则b≡a(modm)〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm)〈4〉若a≡b(modm),则ac≡bc(modm)〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm)〈6〉若a≡b(modm)则an≡bm(modm)其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性"注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类:〈1〉用2来将整数分类,分为两类:1,3,5,7,9,……(奇数)0,2,4,6,8,……(偶数)〈2〉用3来将整数分类,分为三类:0,3,6,9,12,……(被3除余数是0)1,4,7,10,13,……(被3除余数是1)2,5,8,11,14,……(被3除余数是2)〈3〉在模6的情况下,可将整数分成六类,分别是:0(mod6):0,6,12,18,24,……1(mod6):1,7,13,19,25,……2(mod6):2,8,14,20,26,……3(mod6):3,9,15,21,27,……4(mod6):4,10,16,22,29,……5(mod6):5,11,17,23,29,……[经典例题]例1:求437×309×1993被7除的余数。
小学五年级奥数—数论之同余问题
一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式12341898189226789671789028899231234除以9的余数为 11898除以9的余数为818922除以9的余数为 4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为 2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
小学五年级奥数—数论之同余问题
一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:++++=例如:检验算式12341898189226789671789028899231234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
小学奥数知识讲解:余数问题
小学奥数知识讲解:余数问题
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
六年级奥数:第38讲 应用同余问题
第38講應用同餘問題一、知識要點同餘這個概念最初是由偉大的德國數學家高斯發現的。
同餘的定義是這樣的:兩個整數a,b,如果它們除以同一自然數m所得的餘數想同,則稱a,b 對於模m同餘。
記作:a≡b(modm)。
讀做:a同餘於b模m。
比如,12除以5,47除以5,它們有相同的餘數2,這時我們就說,對於除數5,12和47同餘,記做12≡47(mod5)。
同餘的性質比較多,主要有以下一些:性質(1):對於同一個除數,兩個數之和(或差)與它們的餘數之和(或差)同餘。
比如:32除以5餘數是2,19除以5餘數是4,兩個餘數的和是2+4=6。
“32+19”除以5的餘數就恰好等於它們的餘數和6除以5的餘數。
也就是說,對於除數5,“32+19”與它們的餘數和“2+4”同餘,用符號表示就是:32≡2(mod5),19≡4(mod5),32+19≡2+4≡1(mod5)性質(2):對於同一個除數,兩個數的乘積與它們餘數的乘積同餘。
性質(3):對於同一個除數,如果有兩個整數同餘,那麼它們的差就一定能被這個除數整除。
性質(4):對於同一個除數,如果兩個整數同餘,那麼它們的乘方仍然同餘。
應用同餘性質幾萼體的關鍵是要在正確理解的基礎上靈活運用同餘性質。
把求一個較大的數除以某數的餘數問題轉化為求一個較小的數除以這個數的餘數,使複雜的題變簡單,使困難的題變容易。
二、精講精練【例題1】求1992×59除以7的餘數。
應用同餘性質(2)可將1992×59轉化為求1992除以7和59除以7的餘數的乘積,使計算簡化。
1992除以7餘4,59除以7餘3。
根據同餘性質,“4×3”除以7的餘數與“1992×59”除以7的餘數應該是相同的,通過求“4×3”除以7的餘數就可知道1992×59除以7的餘數了。
因為1992×59≡4×3≡5(mod 7)所以1992×59除以7的餘數是5。
小学奥数 同余问题 精选练习例题 含答案解析(附知识点拨及考点)
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学六年级奥数第38讲 应用同余问题(含答案分析)
第38讲应用同余问题一、知识要点同余这个概念最初是由伟大的德国数学家高斯发现的。
同余的定义是这样的:两个整数a,b,如果它们除以同一自然数m所得的余数想同,则称a,b对于模m同余。
记作:a≡b(mod m)。
读做:a同余于b模m。
比如,12除以5,47除以5,它们有相同的余数2,这时我们就说,对于除数5,12和47同余,记做12≡47(mod 5)。
同余的性质比较多,主要有以下一些:性质(1):对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。
比如:32除以5余数是2,19除以5余数是4,两个余数的和是2+4=6。
“32+19”除以5的余数就恰好等于它们的余数和6除以5的余数。
也就是说,对于除数5,“32+19”与它们的余数和“2+4”同余,用符号表示就是:32≡2(mod 5),19≡4(mod 5),32+19≡2+4≡1(mod 5)性质(2):对于同一个除数,两个数的乘积与它们余数的乘积同余。
性质(3):对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。
性质(4):对于同一个除数,如果两个整数同余,那么它们的乘方仍然同余。
应用同余性质几萼体的关键是要在正确理解的基础上灵活运用同余性质。
把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单,使困难的题变容易。
二、精讲精练【例题1】求1992×59除以7的余数。
应用同余性质(2)可将1992×59转化为求1992除以7和59除以7的余数的乘积,使计算简化。
1992除以7余4,59除以7余3。
根据同余性质,“4×3”除以7的余数与“1992×59”除以7的余数应该是相同的,通过求“4×3”除以7的余数就可知道1992×59除以7的余数了。
因为1992×59≡4×3≡5(mod 7)所以1992×59除以7的余数是5。
小学奥数―同余问题
04
同余问题的应用实例
数字问题
数字的整除问题
密码学中的同余问题
计算机算法中的同余问题
数字的余数问题
图形问题
棋盘问题:在棋盘上利用同余原理解决相关问题,如象棋、围棋等棋局的胜负判断
图形问题:同余问题在几何图形中的应用,如计算图形的面积、周长等
拼图问题:利用同余原理解决拼图问题,如拼凑出指定的图形
03
同余问题的解题方法
枚举法
定义:通过一一列举所有可能的情况来解决问题的方法
适用范围:适用于问题较简单、答案个数较少的情况
解题步骤:逐一列举所有可能的情况,并逐一验证每种情况是否符合题目的要求,从而找到符合条件的答案
注意事项:列举时要注意全面、不遗漏,同时要善于总结规律,提高解题效率
代数法
定义:通过代数运算和等式性质解决同余问题的方法
计算机科学:同余定理在计算机科学中的应用,如模运算和取模运算
物理学:同余定理在物理学中的应用,如量子力学和相对论
05
同余问题的练习题及解析
同余问题的练习题
题目:从1至100的所有自然数中,不含有数字4的自然数有多少个?
题目:在黑板上写有一串数:1、2、3、…、2011、2012,任意擦去几个数,写上被擦去的几个数的和被11除所得的余数(如:擦去8、9、10、11、12,因为(8+9+10+11+12)/11=4…6),如:写上6,这样操作下去,一直到黑板上只剩下一个数,则这个数是多少?
同余问题的应用:同余问题在数论、代数、组合数学等领域有广泛的应用。
同余问题的基本性质:同余问题具有一些基本性质,如模运算的消去律、模运算的交换律和结合律等。
同余问题的解题方法:解决同余问题的方法包括利用同余式的性质进行变形、利用模的性质进行推导、利用代数方程的解法等。
【小学精品奥数】同余问题.学生版
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;知识点拨教学目标5-5-3.同余问题⑶整数N被8或125除的余数等于N的末三位数被8或125除的余数;⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.【例 3】有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?【例 4】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【例 5】两位自然数ab与ba除以7都余1,并且a b⨯.>,求ab ba【例 6】现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子。
小学奥数竞赛专题之同余问题
小学奥数竞赛专题之同余问题[专题介绍]:同余问题生活中我会经常遇到与余数有关的问题,比如:某年级有将近400名学生。
有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列,结果还是多余1人;聪名的你知道该年级共有学生多少名吗?假设有一名学生不参加演出,则结果一定是不管每列站8人或9人或10人都将刚好站齐。
因此此时学生人数应是8、9、10公倍数,而8、9、10的最小公倍数是360,因此可知该年级共有361人。
研究与余数有关的问题,能帮助我们解决很多较为复杂的问题。
[分析]1、两个整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m 同余或称a和b在模m下同余,即a≡b(modm)2、同余的重要性质及举例。
〈1〉a≡a(modm)(a为任意自然)〈2〉若a≡b(modm),则b≡a(modm)〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm)〈4〉若a≡b(modm),则ac≡bc(modm)〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm)〈6〉若a≡b(modm)则an≡bm(modm)其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性"注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类:〈1〉用2来将整数分类,分为两类:1,3,5,7,9,……(奇数)0,2,4,6,8,……(偶数)〈2〉用3来将整数分类,分为三类:0,3,6,9,12,……(被3除余数是0)1,4,7,10,13,……(被3除余数是1)2,5,8,11,14,……(被3除余数是2)〈3〉在模6的情况下,可将整数分成六类,分别是:0(mod6):0,6,12,18,24,……1(mod6):1,7,13,19,25,……2(mod6):2,8,14,20,26,……3(mod6):3,9,15,21,27,……4(mod6):4,10,16,22,29,……5(mod6):5,11,17,23,29,……[经典例题]例1:求437×309×1993被7除的余数。
小学奥数教程:同余问题_全国通用(含答案)
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711-()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题 【难度】1星 【题型】解答【解析】 (法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12例题精讲知识点拨教学目标5-5-3.同余问题【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学五年级奥数课件 同余问题
1. 带余除法表达式 2、复习余数定理. 3、同余问题初步.
本讲主线
1、带余除法被除数÷除数=商…余数 一般地,A÷B=c…d d=0 整除 D≠0 余数 2. 被除数-余数=除数×商.
小练习(ቤተ መጻሕፍቲ ባይዱ ★ )
1013除以一个两位数,余数是12. 求所有符合条件的两位数.
减余数,变整除, 1013-12=1001 1001=7×11×13 那么所有的两位数有11,13,77,91 因为“余数小于除数”, 所有,只有13,77,91符合
余5×余6+余0×余1,2007÷7=…5
例题【三】(★ ★ ★ ★ )
014年4月13日(星期日)是小学“希望杯”全国数学邀请赛举行 复赛的日子,那么这天以后的第2014+4×13天是星期
.
2014÷7,余数5 4÷7,余数是4 13÷7余数是6 根据余数定理, 5+4×6,除以7的余数是1 所以,之后的第2014+4×13天是一周。
知识链接
同余问题:
若a,b除以c的余数相同, 那么, (a-b)能被c整除 称a,b对于模c同余用 “同余式”表示为a≡b(modc)
例如,23、13除以5的余数都是3 那么,(23-13)可以被5整除.
例题【四】(★ ★ ★ )
学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将 这三种物品平分给每个班级,那么这三种物品剩下的数量相同. 请问学校共有多少个班?
拓展
用一个数除200余5,除300余1,除400余10,这个数是多 少?
13 195 299 390 15 23 30
200÷A=…5 300÷A=…1 400÷A=…10
知识链接
余数的三大性质: ⑴ 和的余数等于余数的和 ⑵ 差的余数等于余数的差 ⑶ 积的余数等于余数的积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同余问题(一)
在平时解题中,我们经常会遇到把着眼点放在余数上的问题。
如:现在时刻是7时30分,再
过52小时是几时几分?我们知道一天是24小时,少一二二:……-,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。
很明显这个问题的着眼点是放在余数上了。
1. 同余的表达式和特殊符号
37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。
记作:(mod7 “三”读作同余。
一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余, 记作.,一〔r ■
2. 同余的性质
(1)-,-•:丄-「一(每个整数都与自身同余,称为同余的反身性。
)
(2)若’一:°",那么- 一n ‘ (这称作同余的对称性)
(3)若:V,贝U - ■■■.(这称为同余的传递性)(4)若r- ': 1':,—「—,,贝U丄―二-(一")(这称为同余的可加性、可减性)
1- 」(称为同余的可乘性)
(5)若'-:-1-'-- ° ,则r ;- T'■- :,n为正整数,同余还有一个非常有趣的现象:
如果詔 -:1- ■- '■-
那么日瑤严的差一定能被k整除)
这是为什么呢?
® d;- 上)
a=充7〕4鬥
盘一B =切[+ 口一(舫2 +与)
二切-切-金)
k也就是■二的公约数,所以有…一-
■ k\(a -町
下面我们应用同余的这些性质解题。
【例题分析】
例1.用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?
分析与解答:
假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以诃(412-1羽,,|(412・笳6讷化57-1辺,
说明a是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。
(巧5, 124, 279) =31
所以a最大是31 o
例2. 除以19,余数是几?
分析与解答:
如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。
249.2(uodl9)
388 = 8(mod 19)
234要乳m初19)
234x 388x249 = 6x8x2(mod!93
6x8x2 =
所以一 I .: 1.:
此题应用了同余的可乘性,同余的传递性。
222 (2)
' ------ V ------ '
例3.有一个1997位数,它的每个数位都是2,于;这个数除以13,商的第100位是几?最后余数是几?
分析与解答:
222 (2)
吃这个数除以13,商是有规律的。
222 (2)
、-- V------- '
1997个2 亠13= 170940170940...
商是170940六个数循环,那么1 -:1- - - = 1 - ....... 4 ,即"1_4 1'.,我们从左向右数“ 170940'的第4个数就是
我们找的那个数“ 9”,所以商的第 100位是9o
余数是几呢?
222 (2)
' ----- V ------ '
® 199亍个2 -^13 = 170^40170940....
1995^ 6= 332 (4)
则'丄「」_
所以商的个位数字应是“ 170940'中的第 4个,商应是9,相应的余数是5
【模拟试题】(答题时间:20分钟)
1. 求下列算式中的余数。
111......1 222 (2)
J v、 _______________________________________ 晋 /
(1) (2) '.1.
333......3 444 (4)
K. j »」
(3) 十二(4) ■■■ ■■ ■'"■■■ _二
2. 6254与37的积除以7,余数是几?
3. 如果某数除482, 992,1094都余74,这个数是几?
同余问题(二)
【例题分析】
例1. 除以7,余数是几?
分析与解答:
@ 1997^7= 285 (2)
..1997- 2(mod7)
1997100三0(1110(17) 性鄭
21 三2Cmod7)
22 =4(mod7)
23 ■ l(mod7)
W计x23x (X21)
_______________ __ /
劳个
=lx 1 xl x.... 乂2
-2(mod 7)
..1997100- 2(mod7)
例2. 一个自然数除以3余2,除以5余3,除以7余1,这个自然数最小是几?
分析:假设这个自然数为a
那么二;」丄1;
a - 3(tnod 5)
a = l(mod7)
这道题考虑的困难是它们的余数不相同。
如果把这道题改一下,使它们的余数相同,禾I」用整除的知识,便容易考虑了,先看下面一道题:一个自然数除以3余2,除以5余2,除以7余2,那么,这个自然数若减去2,便同时是3, 5, 7的倍数,这样的自然数有:
105, 210, 315,……
分别被3, 5, 7除余2的数是
2, 107, 212, 317,……
最小的自然数是2。
回过头来看刚才的题,能不能把它也变为余数相同的数呢?
稍加变式,可以写成:
” 5 ■ 8(mod 3)
d = S(tnod5)
3 (mod 7) 这样同时是3, 5, 7倍数的数有105, 210, 315,…… 那么同时被3, 5, 7余8的数有:
8, 113, 218, 323,……
其中最小的自然数为&
例3.在求51173526被7除的余数时,小明这样做:
51173526 ->5U26-^2126 ―
所以余数是5
刘老师说,小明的算法不仅正确,而且巧妙迅速,你知道其中的道理吗?分析与解答:
看了下面的算式,你就会明白的。
51173526= 51100026 + 70000 + 3500
=49000000 + 2100026+70000 + 3500
=49000000 + 2100000 +70000 + 3500 + 21 -h 5
二7的倍数+ 5
小明用的这种方法,有比较广泛的应用,常称之为“拼凑法”在解关于用几除的余数的问题时,常常“拼凑”出显然是几的倍数的部分,对于这部分,简直可以“置之不理”,这样可以使解答过程简化。
例4. 除以3的余数是几?为什么?
分析与解答:
在上式的加项中,*—炉显然可以被3整除,因此只须计算1 +,+屮+空+卩+护被3 除余数是几。
由于4 = 7 = 勺
5=8- 2(mod3)
因此「一「严FT
77-1T -IfmodJ)
5s E 2s (mod 3)
8s■ 2伽<辭
由此可知,只须计算-I -J■ - I I - 「被3除的余数,它又等于'、匚:被3除的
余数。
由于'_ 1'r'■,所以
,X(1+23+26)1x(1 +2+1) - IftnodJ)
所以余数是1
【模拟试题】
2.求二二「除以3所得的余数
8、求2001 X 2000除以7的余数。
1.今天是星期日,再过光于霜天又是星期几?7、1796被一个质数相除,余数是 24,求这个质数。
9、求 123 X 345+234 X 456 除以 11 的余数。
3. 某数除680, 970和1521,余数相同,这个数最大是几?
10、有一个大于 1的整数,它除 1000、1975、2001都
得到相同的余数,那么这个整数是多少?
4. 有一列数排成一行,其中第一个数是3,第二个数是7,从第三个数开始,每个数恰好是前两个数的和,
11、有三个数1989、901和306被同一个自然数除,得到
相同的余数,求这个自然数。
5.若将一批货物共尸千克装入纸箱,每箱装10 千克,
最后余多少千克?若每箱装17千克,最后还余多少
千克?
那么,第1997个数被3除,余数是几?
12、两个自然数相除,商15,余3,被除数、除数、商、余数的和是853,求被除数。
6、1309被一个质数相除,余数是 21,求这个质数。
13、有一个数除以 3余1,除以4余2,问这个数除以。