导数复习经典例题分类(含答案)说课讲解
导数专题(含答案
![导数专题(含答案](https://img.taocdn.com/s3/m/9ca136e80b4e767f5bcfceef.png)
说明:导数的几何意义
可以简记为"k= ",
强化这一句话"斜率导数,导数斜率"
导数的物理意义:s=s<t>是物体运动的位移函数,物体在t= 时刻的瞬时速度是 .可以简记为 =
例1、已知函数 的图象在点 处的切线方程是 ,则 .
2、若函数 的导函数在区间[a,b]上是增函数,则函数 在区间[a,b]上的图像可能是〔〕
〔2〕设函数 则 〔〕
A.有最大值B.有最小值C.是增函数D.是减函数
3〕设 分别是定义在R上的奇函数和偶函数,当 时,
的解集为▲.
3>已知函数的单调性求参数范围
方法:常利用导数与函数单调性关系:即
"若函数单调递增,则 ;若函数单调递减,则 "来求解,注意此时公式中的等号不能省略,否则漏解.从而转化为不等式恒成立问题或利用数形结合来求参数〔 是二次型〕
[例]1函数y = f < x > = x3+ax2+bx+a2,在x = 1时,有极值10,则a = ,b =.
15.已知函数f<x>=-x3+3x2+9x+a.
〔I〕求f<x>的单调递减区间;
〔II〕若f<x>在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
解:〔I〕f’<x>=-3x2+6x+9.令f‘<x><0,解得x<-1或x>3,
综上,
4某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x〔x 10〕层,则每平方米的平均建筑费用为560+48x〔单位:元〕.为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
导数知识点总结及经典习题解答
![导数知识点总结及经典习题解答](https://img.taocdn.com/s3/m/bb2a9bdecfc789eb162dc81b.png)
导数知识点总结及经典习题解答导数知识点总结及经典习题解答导数知识点及习题讲解1.导数(导函数的简称)的定义:设x0是函数yf(x)定义域的一点,如果自变量x在x0处有增量x,则函数值y也引起相应的增量yf(x0x)f(x0);比值 yf(x0x)f(x0)称为函数yf(x)在点x0到x0x之间的平均变化率;如果极xx 限limf(x0x)f(x0)y存在,则称函数yf(x)在点x0处可导,并把这个limx0xx0x 极限叫做yf(x)在x0处的导数,记作f”(x0)或y”|xx0,即f”(x0)=limf(x0x)f(x0)y.limx0xx0x②已知函数yf(x)定义域为A,yf”(x)的定义域为B,则A与B关系为AB.2.函数yf(x)在点x0处连续与点x0处可导的关系:⑴函数yf(x)在点x0处连续是yf(x)在点x0处可导的必要不充分条件.可以证明,如果yf(x)在点x0处可导,那么yf(x)点x0处连续.事实上,令xx0x,则xx0相当于x0.于是limf(x)limf(x0x)lim[f(xx0)f(x0)f(x0)]xx0x0x0lim[x0f(x0x)f(x0)f(x0x)f(x0)xf(x0)]limlimlimf(x0)f”(x0)0f(x0) f(x0).x0x0x0xx⑵如果yf(x)点x0处连续,那么yf(x)在点x0处可导,是不一定成立的.例:f(x)|x|在点x00处连续,但在点x00处不可导注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数yf(x)在点x0处的导数的几何意义就是曲线yf(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线yf(x)在点P(x0,f(x))处的切线的斜率是f”(x0),切线方程为yy0f”(x)(xx0).4.求导数的四则运算法则:(uv)”u”v”yf1(x)f2(x)...fn(x)y”f1”(x)f2”(x)...fn”(x)(uv)”vu”v”u(cv)”c”vcv”cv”(c为常数)vu”v”uu(v0)2vv”②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.)”coxs(arcsx)i”nI.C”0(C为常数)(sixnx)o”s(xn)”nxn1(nR)(cosx)”sinx(arcc11x211x21”11”(arctx)anII.(lnx)(loagx)loagexxx21”(ex)”ex(ax)”axlna(arccoxt)”5.复合函数的求导法则:fx”((x))f”(u)”(x)或y”xy”uu”x6.函数单调性:1x21⑴函数单调性的判定方法:设函数yf(x)在某个区间内可导,如果f”(x)>0,则yf(x)为增函数;如果f”(x)<0,则yf(x)为减函数注:①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)=0,同样f(x)0是f(x)递减的充分非必要条件.7.极值的判别方法:(极值是在x0附近所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的极大值,极小值同理)当函数f(x)在点x0处连续时,①如果在x0附近的左侧f”(x)>0,右侧f”(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f”(x)<0,右侧f”(x)>0,那么f(x0)是极小值yf(x)x2例1.x11处可导,则abaxbx1在x例2.已知f(x)在x=a处可导,且f′(a)=b,求下列极限:(1)limf(a3h)f(ah)f(ah2)2h;(2)limf(a)0hh0h1.(全国卷10)函数y=xcosx-sinx在下面哪个区间内是增函数()A(32,2)B(π,2π)C(32,52)D(2π,3)2.已知函数f(x)=ax2+c,且f(1)=2,则a的值为()A.1B.2C.-1D.03f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f”(x)g”(x),则f(x)与g(x)满足()Af(x)2g(x)Bf(x)g(x)为常数函数Cf(x)g(x)0Df(x)g(x)为常数函数4.函数y=x3+x的递增区间是()A(,1)B(1,1)C(,)D(1,)7.曲线f(x)=x3+x-2在p0处的切线平行于直线y=4x-1,则p0点的坐标为(A(1,0)B(2,8)C(1,0)和(1,4)D(2,8)和(1,4)8.函数y13xx3有()A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-1,极大值3D.极小值-2,极大值29对于R上可导的任意函数f(x),若满足(x1)f”(x)0,则必有()Af(0)f(2)2f(1)Bf(0)f(2)2f(1)Cf(0)f(2)2f(1)Df(0)f(2)2f(1)11.函数yx3x2x的单调区间为___________________________________. 3)13.曲线yx4x在点(1,3)处的切线倾斜角为__________.17.已知f(x)axbxc的图象经过点(0,1),且在x1处的切线方程是yx2,请解答下列问题:(1)求yf(x)的解析式;(2)求yf(x)的单调递增区间。
导数基础典型题归类与解析
![导数基础典型题归类与解析](https://img.taocdn.com/s3/m/1fbe177031b765ce050814bd.png)
导数基础典型题归类与解析对基础典型题进行归类解析,并辅之以同类变式题目进行巩固练习,是老师教学笔记的核心内容与教学精华所在,也是提高学生好题本含金量的试题秘集。
当学生会总结数学题,会对所做的题目分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了学数学的窍门,才能真正做到"任它千变万化,我自岿然不动"。
一、题型一:利用导数概念求导数例1.已知s=221gt ,求t=3秒时的瞬时速度。
解析:由题意可知某段时间内的平均速度t s ∆∆随t ∆变化而变化,t ∆越小,ts∆∆越接近于一个定值,由极限定义可知,这个值就是0→∆t 时,ts∆∆的极限。
V=0lim →∆x t s ∆∆=0lim →∆x =∆-∆+t s t s )3()3(0lim →∆x t g t g ∆-∆+22321)3(21=g 21lim →∆x (6+)t ∆=3g=29.4(米/秒)。
变式练习:求函数y=24x 的导数。
解析:2222)()2(44)(4x x x x x x x x x y ∆+∆+∆-=-∆+=∆22)(24x x x xx x y ∆+∆+⋅-=∆∆ ∴00lim lim→∆→∆=∆∆x x x y ⎥⎦⎤⎢⎣⎡∆+∆+⋅-22)(24x x x x x =-38x 2、例2已知函数y =f (x )在x =x 0处的导数为11,则li mΔx →f (x 0-2Δx )-f (x 0)Δx=____ 解析:li mΔx →0 f (x 0-2Δx )-f (x 0)Δx =-2li m-2Δx →0 f (x 0-2Δx )-f (x 0)-2Δx=-2f ′(x 0)=-2×11=-22. 变式练习:若f ′(x 0)=2,求lim k →0f (x 0-k )-f (x 0)2k 的值.解:令-k =Δx ,∵k →0,∴Δx →0.则原式可变形为 lim Δx →0 f (x 0+Δx )-f (x 0)-2Δx=-12lim Δx →0 f (x 0+Δx )-f (x )Δx =-12f ′(x 0)=-12×2=-1. 二、题型二:深入领会导数的几何意义导数的几何意义: 导数值对应函数在该点处的切线斜率。
导数综合讲义(含答案)
![导数综合讲义(含答案)](https://img.taocdn.com/s3/m/d2e44ba0c67da26925c52cc58bd63186bceb9213.png)
导数综合讲义第1讲导数的计算与几何意义....... 3第2讲函数图像......... 4第3讲三次函数...... 7第4讲导数与单调性......... 8第5讲导数与极最值..... 9第6讲导数与零点………10第7讲导数中的恒成立与存在性问题.・・・・・・・・11第8讲原函数导函数混合还原(构造函数解不等式).... 13第9讲导数中的距离问题.........17第10讲导数解答题.. (18)10.1导数基础练习题 (21)10.2分离参数类 (24)10.3构造新函数类 (26)10.4导数中的函数不等式放缩 (29)10.5导数中的卡根思想 (30)10.6洛必达法则应用 (32)10.7先构造,再赋值,证明和式或积式不等式 (33)10.8极值点偏移问题 (35)10.9多元变量消元思想 (37)10.10导数解决含有Inx与e,的证明题(凹凸反转) (39)10.11导数解决含三角函数式的证明 (40)10.12隐零点问题 (42)10.13端点效应 (44)10.14其它省市高考导数真题研究 (45)导数【高考命题规律】2014年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2(川年文理试卷分।、复合函数的单调性:./\(g(x)) r(〃)g'a)别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;20P文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2012年高考考查了导数判断函数的单调性,含参零点的分类讨论。
近四年的高考试题基本形成了一个模式,第一间求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。
(完整版)导数及其应用最全教案(含答案),推荐文档
![(完整版)导数及其应用最全教案(含答案),推荐文档](https://img.taocdn.com/s3/m/8a16202b941ea76e59fa04c7.png)
g (x ) ⎥导数及其应用一、知识点梳理1. 导数:当∆x 趋近于零时,f (x 0 + ∆x ) - f (x 0 )趋近于常数 c 。
可用符号“ → ”记作:∆x当∆x → 0 时, f (x 0 + ∆x ) - f (x 0 ) → c 或记作 lim f (x 0 + ∆x ) - f (x 0 ) = c ,符号∆x∆x →0∆x“ → ”读作“趋近于”。
函数在 x 0 的瞬时变化率,通常称作 f (x ) 在 x = x 0 处的导数,并记作 f '(x 0 ) 。
即 f ' (x ) = lim f (x 0 + ∆x ) - f (x 0 )∆x →0 ∆x2. 导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。
即若点 P (x 0 , y 0 ) 为曲线上一点,则过点 P (x 0 , y 0 ) 的切线的斜率k = f ' (x ) = lim f (x 0 + ∆x ) - f (x 0 ) 切 0∆x →0 ∆x由于函数 y = f (x ) 在 x = x 0 处的导数,表示曲线在点 P (x 0 , f (x 0 )) 处切线的斜率, 因此,曲线 y = f (x ) 在点 P (x 0 , f (x 0 )) 处的切线方程可如下求得:(1)求出函数 y = f (x ) 在点 x = x 0 处的导数,即曲线 y = f (x ) 在点 P (x 0 , f (x 0 )) 处 切线的斜率。
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:y - y 0 = f ' (x 0)(x - x )03. 导数的四则运算法则:1) ( f (x ) ± g (x ))' = f '(x ) ± g '(x )2)[ f (x )g (x )]' = f '(x )g (x ) + f (x )g '(x )3) ⎢⎡ f (x ) ⎤'= g (x ) f '(x ) - f (x )g '(x ) ⎣ ⎦4. 几种常见函数的导数:g 2 (x )(1) C'= 0(C为常数) (2)(x n)'=nx n-1(n ∈Q) (3)(sin x)'= cos x (4)(cos x)'=-sin x (7)(e x )'=e x (5) (ln x)'=1x(8)(a x )'=a x ln a(6) (log ax)'=1log ex a5.函数的单调性:在某个区间(a, b) 内,如果f ' (x) > 0 ,那么函数y = f (x) 在这个区间内单调递增;如果f ' (x) < 0 ,那么函数y =6.函数的极值求函数f (x) 极值的步骤:①求导数f '(x) 。
导数典型例题讲解(精编文档).doc
![导数典型例题讲解(精编文档).doc](https://img.taocdn.com/s3/m/b9b43c0e1a37f111f0855b8a.png)
【最新整理,下载后即可编辑】资料一 :导数.知识点 1.导数的概念例1.已知曲线y =3x 上的一点P (0, 0),求过点P 的切线方程·解析:如图,按切线的定义,当x →0时,割线PQ 的极限位置是y 轴(此时斜率不存在),因此过P 点的切线方程是x =0.例2.求曲线y =x 2在点(2,4)处的切线方程·解析:∵ y =x 2, ∴ ∆y =(x 0+∆x )2-x 02=2x 0∆x +(∆x )2 =4∆x +(∆x )2∴ k =00lim lim(4)4x x yx x∆→∆→∆=+∆=∆. ∴ 曲线y =x 2在点(2,4)处切线方程为y -4=4(x -2)即4x -y -4=0.例3.物体的运动方程是 S =1+t +t 2,其中 S 的单位是米,t 的单位是秒,求物体在t =5秒时的瞬时速度及物体在一段时间[5,5+∆t ]内相应的平均速度.解析:∵ S =1+t +t 2, ∴ ∆S =1+(t +∆t )+(t +∆t )2-(1+t +t 2)=2t ·∆t +∆t +(∆t )2,∴21St t t∆=++∆∆, 即()21v t t t =++∆, ∴ (5)11v t =∆+,即在[5,5+∆t ]的一段时间内平均速度为(∆t +11)米/秒∴ v (t )=S ’=0limlim(21)21t t St t t t ∆→∆→∆=++∆=+∆ 即v (5)=2×5+1=11.∴ 物体在t =5秒时的瞬时速度是11米/秒. 例4.利用导数的定义求函数y =x在x =1处的导数。
解析:∆y =11111xx x-+∆-=+∆+∆, ∴ y x ∆∆=1(11)x x +∆++∆,∴0lim x yx ∆→∆∆=01lim 21(11)x x x ∆→=-+∆++∆.例5.已知函数f (x )=21sin00x x x x ⎧≠⎪⎨⎪=⎩, 求函数f (x )在点x =0处的导数解析:由已知f (x )=0,即f (x )在x =0处有定义,∆y =f (0+∆x )-f (0)=21()sinx x ∆∆, y x ∆∆=1sin x x ∆⋅∆, 0limx yx ∆→∆∆=01lim sin x x x∆→∆⋅∆=0, 即 f ’(0)=0.∴ 函数f (x )在x =0处导数为0.例6.已知函数f (x )=21(1)121(1)12x x x x ⎧+⎪⎪⎨⎪+>⎪⎩≤, 判断f (x )在x =1处是否可导?解析:f (1)=1, 20001[(1)1]112lim lim lim (1)12x x x x y x x x ---∆→∆→∆→+∆+-∆==+∆=∆∆,001(11)112lim lim 2x x x y x x ++∆→∆→+∆+-∆==∆∆, ∵00lim lim x x y y x x -+∆→∆→∆∆≠∆∆, ∴ 函数y =f (x )在x =1处不可导.例7.已知函数 y =2x 3+3,求 y ’.解析:∵ y =2x 3+3, ∴ ∆y =2(x +∆x )3+3-(2x 3+3)=6x 2·∆x +6x ·(∆x )2+2(∆x )3,∴y x∆∆=6x 2+6x ·∆x +2(∆x )2, ∴ y ’=0limx y x∆→∆∆=6x 2. 例8.已知曲线y =2x 3+3上一点P ,P 点横坐标为x =1,求点P 处的切线方程和法线方程.解析:∵ x =1, ∴ y =5, P 点的坐标为(1, 5), 利用例7的结论知函数的导数为y ’=6x 2,∴ y ’1|x ==6, ∴ 曲线在P 点处的切线方程为y -5=6(x -1)即6x -y -1=0, 又曲线在P 点处法线的斜率为-61, ∴ 曲线在P 点处法线方程为y -5=-61( x -1),即 6y +x -31=0.例9.抛物线y =x 2在哪一点处切线平行于直线y =4x -5?解析:∵y ’=0limx yx ∆→∆∆=220()lim 2x x x x x x∆→+∆-=∆, 令2x =4.∴ x =2, y =4, 即在点P (2,4)处切线平行于直线y =4x -5.例10.设mt ≠0,f (x )在x 0处可导,求下列极限值 (1)000()()limx f x m x f x x∆→-∆-∆;(2) 000()()limx xf x f x t x∆→∆+-∆. 解析:要将所求极限值转化为导数f ’(x 0)定义中的极限形式。
导数在函数中的应用知识点讲解+例题讲解(含解析)
![导数在函数中的应用知识点讲解+例题讲解(含解析)](https://img.taocdn.com/s3/m/71917804a4e9856a561252d380eb6294dd882280.png)
导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。
人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第三章 导数
![人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第三章 导数](https://img.taocdn.com/s3/m/7ab28c16eefdc8d376ee32be.png)
第三章 导 数1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数y =C (C 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数.4.能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.①常见的基本初等函数的导数公式:(C )′=0(C 为常数); (x n )′=nx n -1(n ∈N +); (sin x )′=cos x; (cos x )′=-sin x ; (e x )′=e x; (a x )′=a xln a (a >0,且a ≠1);(ln x )′=1x ; (log a x )′=1xlog a e (a >0,且a ≠1).②常用的导数运算法则:法则1:[u (x )±v (x )]′=u ′(x )±v ′(x ). 法则2:[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ).法则3: ⎣⎢⎡⎦⎥⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )v 2(x )(v (x )≠0).5.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).7.会用导数解决实际问题. 8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.9.了解微积分基本定理的含义.§3.1 导数的概念及运算1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx就叫函数y =f (x )从x 0到x 0+Δx之间的平均变化率,即ΔyΔx=f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处____________,并把这个极限叫做f (x )在点x 0处的导数,记作____________或y ′|x =x 0,即f ′(x 0)= 0lim →∆x Δy Δx =0lim →∆x f (x 0+Δx )-f (x 0)Δx(2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=0lim →∆xf (x +Δx )-f (x )Δx.(3)求函数y =f (x )在点x 0处导数的方法 ①求函数的增量Δy = ;②求平均变化率ΔyΔx= ;③取极限,得导数f ′(x 0)=0lim →∆x ΔyΔx.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 .3.基本初等函数的导数公式 (1)c ′= (c 为常数), (x α)′= (α∈Q *);(2)(sin x )′=____________, (cos x )′=____________;(3)(ln x )′= , (log a x )′= ;(4)(e x )′=____________, (a x)′= .4.导数运算法则(1)[f (x )±g (x )]′=__________________. (2)[f (x )g (x )]′=____________________; 当g (x )=c (c 为常数)时,即[cf (x )]′=________.(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为______________.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.自查自纠:1.(1)可导 f ′(x 0) (3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.f ′(x 0) y -y 0=f ′(x 0)(x -x 0)3.(1)0 αx α-1(2)cos x -sin x (3)1x1x ln a(4)e x a xln a4.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x )(3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x函数f (x )=a 3+5a 2x 2的导数f ′(x )=( )A .3a 2+10ax 2B .3a 2+10ax 2+10a 2xC .10a 2x D .以上都不对解:f ′(x )=10a 2x .故选C.曲线y =1ln x在x =e 处的切线方程为( )A .x +ey -e =0B .ex +y -e =0C .x -ey -2e =0D .x +ey -2e =0解:y ′=-1x (ln x )2=-1x (ln x )2,y ′|x =e =-1e ,故所求方程为y -1=-1e(x -e ),整理得x +ey -2e =0.故选D .已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1D .12解:y ′=x 2-3x ,令x 2-3x =-12,解得x =2或x=-3(舍去).故选B.物体的运动方程是s =-13t 3+2t 2-5,则物体在t =3时的瞬时速度为 .解:v (t )=s ′(t )=-t 2+4t ,t =3时,v =3,故填3.(2014·新课标Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =________.解:y ′=a -1x +1,根据已知,当x =0时,y ′=2,代入解得a =3.故填3.类型一 导数的概念已知函数f (x )=x 2+1.用定义的方法求:(1)f (x )在x =2处的导数; (2)f (x )在x =a 处的导数.解:(1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2+1-(22+1)Δx=4+Δx ,当Δx →0时,4+Δx →4, 所以f (x )在x =2处的导数是4.(2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2+1-(a 2+1)Δx=2a +Δx ,当Δx →0时,2a +Δx →2a , 所以f (x )在x =a 处的导数是2a .点拨:利用导数定义求函数在某一点处的导数,首先写出函数在该点处的平均变化率ΔyΔx ,再化简平均变化率,最后判断当Δx →0时,ΔyΔx无限趋近于哪一常数,该常数即为所求导数,这是定义法求导数的一般过程.航天飞机发射后的一段时间内,第t s时的高度h (t )=5t 3+30t 2+45t +4(单位:m ).(1)求航天飞机在第1 s 内的平均速度; (2)用定义方法求航天飞机在第1 s 末的瞬时速度.解:(1)航天飞机在第1 s 内的平均速度为 h (1)-h (0)1=5+30+45+4-41=80 m /s .(2)航天飞机第1 s 末高度的平均变化率为 h (1+Δt )-h (1)Δt=错误!=5Δt 3+45Δt 2+120Δt Δt=5Δt 2+45Δt +120,当Δt →0时,5Δt 2+45Δt +120→120, 所以航天飞机在第 1 s 末的瞬时速度为120 m /s .类型二 求导运算求下列函数的导数: (1)y =5x 2-4x +1; (2)y =x ln x ;(3)y =sin(πx +φ)(其中φ为常数);(4)y =x +3x +2(x ≠-2).解:(1)y ′=10x -4;(2)y ′=ln x +x ·1x=ln x +1;(3)y ′=cos(πx +φ)·(πx +φ)′=πcos(πx +φ);(4)y ′=⎝⎛⎭⎪⎫1+1x +2′=-1(x +2)2.点拨:求导运算,一是熟记公式及运算法则,二是掌握求复合函数导数的步骤,遵从“由外到内”的原则,三是要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.求下列函数的导数:(1)y =(x +1)(x +2); (2)y =xe x-1(x ≠0); (3)y =cos2x ;(4)y =ln x +3x +1(x >-1).解:(1)y ′=(x +1)′(x +2)+(x +1)(x +2)′=x +2+x +1=2x +3;(2)y ′=x ′(e x -1)-x (e x -1)′(e x -1)2=(1-x )e x-1(e x -1)2; (3)y ′=-sin2x ·(2x )′=-2sin2x ;(4)y ′=[ln(x +3)-ln(x +1)]′=1x +3-1x +1=-2(x +1)(x +3).类型三 导数的几何意义已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程.解:(1)y ′=x 2,设切点为(x 0,y 0),故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝ ⎛⎭⎪⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)∵y ′=x 2,且P (2,4)在曲线y =13x 3+43上,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,又∵切线的斜率k =y ′|x =x 0=x 20,∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x -y -4=0或x -y +2=0.点拨:曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.已知函数f (x )=x 3+x -16.(1)求满足斜率为4的曲线的切线方程;(2)求曲线y =f (x )在点(2,-6)处的切线方程;(3)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程.解:(1)设切点坐标为(x 0,y 0),∵f ′(x 0)=3x 20+1=4,∴x 0=±1, ∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18. ∴切线方程为y =4x -18或y =4x -14.(2)∵f ′(x )=3x 2+1,且(2,-6)在曲线f (x )=x 3+x -16上, ∴在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线方程为y =13x -32.(3)解法一:设切点为(x 0,y 0),∵直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得x 0=-2, ∴斜率k =13.∴直线l 的方程为y =13x . 解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则斜率k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1, ∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2,∴k =13.∴直线l 的方程为y =13x .1.弄清“函数在一点x 0处的导数”“导函数”“导数”的区别与联系(1)函数在一点x 0处的导数f ′(x 0)是一个常数,不是变量;(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x );(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.2.求函数y =f (x )在x =x 0处的导数f ′(x 0)通常有以下两种方法(1)利用导数的定义:即求lim →∆x f (x 0+Δx )-f (x 0)Δx 的值;(2)利用导函数的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.正确区分“曲线在某点处的切线”与“过某点的曲线的切线”的含义,前者的“某点”即切点,后者的“某点”是否为切点则须检验.4.求曲线在某一点处的切线方程时,可以先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.如果切点未知,要先求出切点坐标.1.函数f (x )=x 3+sin2x 的导数f ′(x )=( )A .x 2+cos2xB .3x 2+cos2xC .x 2+2cos2xD .3x 2+2cos2x解:f ′(x )=3x 2+(2x )′cos2x =3x 2+2cos2x .故选D.2.已知f (x )=(x -2)(x -3),则f ′(2)的值为( )A .0B .-1C .-2D .-3 解:∵f ′(x )=(x -3)+(x -2)=2x -5,∴f ′(2)=-1.故选B.3.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15解:由y ′|x =1=3,得在点P (1,12)处的切线方程为3x -y +9=0,令x =0,得y =9,故选C.4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞) B.(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)解:∵f ′(x )=2x -2-4x =2(x -2)(x +1)x>0,x >0,∴x -2>0,解得x >2.故选C.5.(2014·湖北八市高三3月调考)设a ∈R ,函数f (x )=e x+a ·e -x 的导函数是f ′(x ),且f ′(x )是奇函数,则a 的值为( )A .1B .-12C .12D .-1解:因为f ′(x )=e x -ae -x,由奇函数的性质可得f ′(0)=1-a =0,解得a =1.故选A .6.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278 B .-2 C .2 D .-278解:设切点坐标为(t ,t 3-at +a ).切线的斜率为k =y ′|x =t =3t 2-a ,①所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ),②将点(1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解之得t =0或t =32.分别将t =0和t=32代入①式,得k =-a 或k =274-a ,由它们互为相反数得a =278.故选A.7.(2014·江西)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.解:设点P 的坐标为(x 0,y 0),y ′=-e -x.又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln2,此时y =2,所以点P 的坐标为(-ln2,2).故填(-ln 2,2).8.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x,则f ′(1)=________.解:令e x =t ,则x =ln t .∵f (e x )=x +e x,∴f (t )=ln t +t ,∴f ′(t )=1t+1,∴f ′(1)=1+1=2.故填2.9.求函数f (x )=x 3-4x +4图象上斜率为-1的切线的方程.解:设切点坐标为(x 0,y 0),∵f ′(x 0)=3x 20-4=-1,∴x 0=±1. ∴切点为(1,1)或(-1,7).切线方程为x +y -2=0或x +y -6=0.10.设函数f (x )=13x 3-ax (a >0),g (x )=bx2+2b -1.若曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,求实数a ,b 的值,并写出切线l 的方程.解:因为f (x )=13x 3-ax (a >0),g (x )=bx 2+2b -1,所以f ′(x )=x 2-a ,g ′(x )=2bx .因为曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,所以f (1)=g (1),且f ′(1)=g ′(1),即13-a =b +2b -1,且1-a =2b , 解得a =13,b =13,得切点坐标为(1,0).切线方程为y =23(x -1),即2x -3y -2=0.11.已知函数f (x )=x -1+a ex (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)当a =1时,若直线l :y =kx -1与曲线y =f (x )相切,求l 的直线方程.解:(1)f ′(x )=1-a ex ,因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=1-a e=0,解得a =e .(2)当a =1时,f (x )=x -1+1e,f ′(x )=1-1ex .设切点为(x 0,y 0),∵f (x 0)=x 0-1+1ex 0=kx 0-1,①f ′(x 0)=1-1ex 0=k ,②①+②得x 0=kx 0-1+k ,即(k -1)(x 0+1)=0.若k =1,则②式无解,∴x 0=-1,k =1-e . ∴l 的直线方程为y =(1-e )x -1.(2014·安徽)若直线l 与曲线C 满足下列两个条件:(1)直线l 在点P (x 0,y 0)处与曲线C 相切;(2)曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号).①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x解:对于①,y ′=(x 3)′=3x 2,y ′|x =0=0,所以l :y =0是曲线C :y =x 3在点P (0,0)处的切线,画图可知曲线C :y =x 3在点P (0,0)附近位于直线l 的两侧,①正确;对于②,l :x =-1显然不是曲线C :y =(x +1)2在点P (-1,0)处的切线,②错误;对于③,y ′=(sin x )′=cos x ,y ′|x =0=1,曲线在点P (0,0)处的切线为l :y =x ,画图可知曲线C :y =sin x 在点P (0,0)附近位于直线l 的两侧,③正确;对于④,y ′=(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,y ′|x =0=1cos 20=1,曲线在点P (0,0)处的切线为l :y =x ,画图可知曲线C :y =tan x 在点P (0,0)附近位于直线l 的两侧,④正确;对于⑤,y ′=(ln x )′=1x,y ′|x =1=1,在点P (1,0)处的切线为l :y =x -1,令h (x )=x -1-ln x (x >0),可得h ′(x )=1-1x =x -1x,所以h (x )min=h (1)=0,故x -1≥ln x ,可知曲线C :y =ln x 在点P (1,0)附近位于直线l 的下方,⑤错误.故填①③④.§3.2 导数的应用(一)1.函数的单调性与导数在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内____________.2.函数的极值与导数(1)判断f (x 0)是极大值,还是极小值的方法: 一般地,当f ′(x 0)=0时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x 0附近的左侧_________,右侧_________,那么f (x 0)是极小值.(2)求可导函数极值的步骤: ①求f ′(x );②求方程_________的根;③检查f ′(x )在上述方程根的左右对应函数值的符号.如果左正右负,那么f (x )在这个根处取得_________;如果左负右正,那么f (x )在这个根处取得_________.3.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则____________为函数在[a ,b ]上的最小值,_________为函数在[a ,b ]上的最大值;若函数f (x )在[a ,b ]上单调递减,则_________为函数在[a ,b ]上的最大值,_________为函数在[a ,b ]上的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与端点处的函数值______,______比较,其中最大的一个是最大值,最小的一个是最小值.自查自纠:1.单调递减2.(1)②f ′(x )<0 f ′(x )>0(2)②f ′(x )=0 ③极大值 极小值3.(2)f (a ) f (b ) f (a ) f (b ) (3)②f (a ) f (b )关于函数的极值,下列说法正确的是( )A .导数为0的点一定是函数的极值点B .函数的极小值一定小于它的极大值C .f (x )在定义域内最多只能有一个极大值,一个极小值D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数解:导数为0的点不一定是极值点(如y =x 3,在x =0处),而极值点的导数一定为0.极值是局部概念,因此极小值可能有多个且有可能大于极大值.极值点是单调性的转折点.故选D.已知函数f (x )=12x 2-x ,则f (x )的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)解:f ′(x )=x -1,令f ′(x )>0,解得x >1.故选D.若在区间[1,2]内有f ′(x )>0,且f (1)=0,则在[1,2]内有( )A .f (x )≥0B .f (x )≤0C .f (x )=0D .f (x )≥1 解:∵f ′(x )>0,∴f (x )在[1,2]内单调递增. ∵f (1)=0,∴在[1,2]内f (x )≥0.故选A.若函数f (x )的导函数f ′(x )=x 2-4x +3,则函数f (x -1)的单调递减区间是________.解:由f ′(x )=x 2-4x +3<0得1<x <3,所以函数f (x )的单调递减区间为(1,3),函数y =f (x -1)的图象由函数y =f (x )的图象向右平移1个单位得到,故函数f (x -1)的单调递减区间是(2,4).故填(2,4).函数f (x )=x +2cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解:f ′(x )=1-2sin x ,令f ′(x )=0得sin x =12,从而x =π6,当x ∈⎝⎛⎭⎪⎫0,π6时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫π6,π2时,f ′(x )<0,f (x )单调递减,所以f (x )在x =π6处取得极大值,即最大值π6+ 3.故填π6+ 3.类型一 导数法判断函数的单调性设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是()解:当x <0时,f (x )为增函数,f ′(x )>0,排除A ,C ;当x >0时,f (x )先增后减,再增,对应f ′(x )先正后负,再正.故选D.点拨:导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).(2014·北京联考)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是()A .在(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .当x =2时,f (x )取极大值D .当x =4时,f (x )取极大值 解:由y =f ′(x )的图象可得y =f (x )的大致图象如图.由图可知,A ,B ,D 均错.故选C .类型二 导数法研究函数的单调性已知函数f (x )=x 3-ax ,f ′(1)=0. (1)求a 的值; (2)求函数f (x )的单调区间. 解:(1)f ′(x )=3x 2-a ,由f ′(1)=3-a =0,得a =3.(2)∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3.令f ′(x )>0,得x <-1或x >1.所以f (x )的单调递增区间是(-∞,-1),(1, +∞),单调递减区间是[-1,1].点拨:①用导数求函数的单调区间,突破口是讨论导数的符号.②注意:区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.如,本例中[-1,1]也可以写成(-1,1).③写单调区间时,一般不要使用符号“∪”,可以用“,”“和”分开各区间,原因是各单调区间用“∪”连接的条件是在合并后的区间内函数单调性依然成立.如,本例中(-∞,-1),(1,+∞)不能写成(-∞,-1)∪(1,+∞),不妨取x 1=-32∈(-∞,-1),x 2=32∈(1,+∞),x 1<x 2,而f (x 1)=f ⎝ ⎛⎭⎪⎫-32=98,f (x 2)=-98,这时f (x 1)<f (x 2)不成立.(2014·山东)设函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x (k ≤0,k 为常数,e =2.71828…是自然对数的底数),求函数f (x )的单调区间.解:函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2xe x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=xe x -2e x x 3-k (x -2)x 2=(x -2)(e x-kx )x 3.由k ≤0可得e x-kx >0, 所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).类型三 导数法研究函数的极值问题已知函数f (x )=12x 3+cx 在x =1处取得极值.(1)求函数f (x )的解析式; (2)求函数f (x )的极值. 解:(1)f ′(x )=32x 2+c ,当x =1时,f (x )取得极值,则f ′(1)=0,即32+c =0,得c =-32. 故f (x )=12x 3-32x .(2)f ′(x )=32x 2-32=32(x 2-1)=32(x -1)(x +1),令f ′(x )=0,得x =-1或1.f (1)=-1.点拨:找函数的极值点,即先找导数的零点,但并不是说导数为零的点就是极值点(如y =x 3),还要保证该零点为变号零点.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线斜率为2.(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解:(1)f ′(x )=2a (x -5)+6x,依题意,f ′(1)=6-8a =2,得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x.令f ′(x )=0,得x =2或3.单调减区间为(2,3).f (x )的极大值f (2)=92+6ln2,极小值f (3)=2+6ln3.类型四 导数法研究函数的最值问题已知函数f (x )=ax 2+2,g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线.(1)求a ,b 的值;(2)求函数f (x )+g (x )的单调区间,并求其在区间(-∞,1]上的最大值.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , ∵f (1)=g (1),f ′(1)=g ′(1),∴a +2=1+b ,且2a =3+b ,解得a =4,b =5.(2)设h (x )=f (x )+g (x )=x 3+4x 2+5x +2,则h ′(x )=3x 2+8x +5=(3x +5)(x +1).所以f (x )在⎝⎛⎭⎪⎫-∞,-3,(-1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-53,-1上单调递减. ∵h ⎝ ⎛⎭⎪⎫-53=427,h (1)=12,12>427,∴f (x )+g (x )在(-∞,1]上的最大值为12.点拨:函数在限定区间内最多只有一个最大值和一个最小值,如果存在最大或最小值,最大值一般是在端点或极大值点取得,最小值一般是在端点或极小值点取得.已知函数f (x )=2x 3+ax 2+bx +1,若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值;(2)求函数f (x )在区间[-2,2]上的最大值和最小值.解:(1)f ′(x )=6x 2+2ax +b , 函数y =f ′(x )的图象的对称轴为x =-a6.∵-a 6=-12,∴a =3.∵f ′(1)=0,∴6+2a +b =0,得b =-12.故a =3,b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, f ′(x )=6x 2+6x -12=6(x -1)(x +2).∴所以f (x )在[-2,2]上的最大值为21,最小值为-6.类型五 实际应用问题(优化问题)请你设计一个包装盒,如图所示,ABCD是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,x 应取何值?(2)若厂商要求包装盒容积V (cm 3)最大,x 应取何值?解:(1)根据题意有S =602-4x 2-(60-2x )2=240x -8x 2,0<x <30,S ′=240-16x ,令S ′=0,得x =15. 当0<x <15时,S ′>0,S 递增; 当15<x <30时,S ′<0,S 递减. 所以x =15 cm 时包装盒侧面积S 最大. (2)根据题意有V =(2x )2·22(60-2x )=22x 2(30-x ),0<x <30,V ′=62x (20-x ),当0<x <20时,V ′>0,V 递增; 当20<x <30时,V ′<0,V 递减. 所以x =20 cm 时包装盒容积V 最大.点拨:本题主要考查学生的空间想象能力、阅读能力、运用数学知识解决实际问题的能力及建立函数模型的能力,属于中档题.注意用导数求解实际问题中的最大(小)值时,如果函数在区间只有一个极值点,那么依据实际意义,该极值点也就是最值点.用长为15 cm ,宽为8 cm 的长方形铁皮做一个无盖的容器,先在四角分别裁去一个边长为x cm 的小正方形,然后把四边翻转90°角,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?解:依题意,0<x <4,容积V =(15-2x )·(8-2x )·x =4x 3-46x 2+120x ,V ′=12x 2-92x +120=4(3x -5)(x -6).令V ′=0,得x =53或6(舍去).当0<x <53时,V ′>0,V 递增;当53<x <4时,V ′<0,V 递减. 所以高x =53cm 时容器的容积最大.1.用导数判断单调性用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.2.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,一个连续函数在闭区间内的最值一定存在且是唯一的,而极值可以同时存在若干个或不存在,且极大(小)值并不一定比极小(大)值大(小).(3)从位置上看,极值只能在定义域内部取得,而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,连续函数的最值只要不在端点处必定是极值.3.实际问题中的最值在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.1.(2014·新课标Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解:由条件知由q 可推出p ,而由p 推不出q .故选C .2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象有可能是()解:当x <0时,f ′(x )>0,f (x )单调递增; 当0<x <1时,f ′(x )<0,f (x )单调递减.故选C.3.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解:f ′(x )=(x -3)′e x +(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.4.设函数f (x )=2x+ln x ,则( )A . x =12为f (x )的极大值点B . x =12为f (x )的极小值点C . x =2为 f (x )的极大值点D . x =2为 f (x )的极小值点解:f ′(x )=x -2x2,令f ′(x )=0,得x =2.当x <2时,f ′(x )<0,f (x )为减函数;当x >2时,f ′(x )>0,f (x )为增函数,所以x =2为f (x )的极小值点,故选D.5.函数f (x )=x 3-3x 2+m 在区间[-1,1]上的最大值是2,则常数m =( )A .-2B .0C .2D .4解:f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x =0或x =2(舍去),当-1≤x <0时,f ′(x )>0; 当0<x ≤1时,f ′(x )<0.所以当x =0时,f (x )取得最大值为m ,m =2.故选C.6.已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列判断正确的是()A .a <0,b <0,c <0B .a >0,b >0,c <0C .a >0,b <0,c >0D .a >0,b >0,c >0 解:因为x >0时,f (x )>0恒成立,所以a >0;f ′(x )=3ax 2+2bx +c =0的两个根x 1、x 2均小于零,所以x 1+x 2=-2b 3a <0,则b >0;x 1x 2=c3a>0,则c >0,所以a ,b ,c 同为正.故选D.7.函数f (x )=x 3+2xf ′(-1),则函数f (x )在区间[]-2,3上的值域是____________.解:f ′(x )=3x 2+2f ′(-1),令x =-1,则f ′(-1)=3+2f ′(-1),得f ′(-1)=-3,因此f (x )=x 3-6x ,f ′(x )=3x 2-6=3(x +2)(x -2),∵f (-2)=4, f (-2)=42,f (2)=-42,f (3)=9,∴f (x )在区间[]-2,3上的值域为[-42,9].故填[-42,9].8.已知圆柱的体积为16π cm 3,则当底面半径r =________cm 时,圆柱的表面积最小.解:圆柱的体积为V =πr 2h =16π⇒r 2h =16,圆柱的表面积S =2πrh +2πr 2=32πr+2πr 2=2π⎝ ⎛⎭⎪⎫16r+r 2, 由S ′=2π·⎝ ⎛⎭⎪⎫-162+2r =0,得r =2.因此r(0,2) 2 (2,+∞)S′- 0+S↘极小值,也是最小值↗填2.9.(2014·重庆)已知函数f (x )=x 4+ax -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln5.10.已知函数f (x )=x 2+a ln x ,a ≠0. (1)若x =1是函数f (x )的极值点,求实数a 的值;(2)讨论f (x )的单调性.解:f ′(x )=2x +a x,x >0.(1)因为f ′(1)=0,所以2+a =0,得a =-2, 经检验,当a =-2时,x =1是函数f (x )的极值点.(2)①若a >0,则f ′(x )>0恒成立,f (x )在(0,+∞)上单调递增.②若a <0,令f ′(x )=0,得x =-a2, 当x ∈⎝⎛⎭⎪⎫0,-a 2时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎪⎫-a2,+∞时,f ′(x )>0,f (x )单调递增.11.(2014·天门、仙桃、潜江高三期末)某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地AOCB 规划建成一个矩形的高科技工业园区.已知AB ⊥BC ,OA ∥BC ,AB =BC =2AO =4 km ,曲线段OC 是以点O 为顶点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落在AB ,BC 上,且一个顶点P 落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到0.1 km 2).解:以O 为原点,AO 所在直线为x 轴建立直角坐标系(如图).依题意可设抛物线的方程为 x 2=2py ,且C (2,4).∴22=2p ·4,∴p =12.故曲线段OC 的方程为y =x 2(0≤x ≤2).设P (x ,x 2)(0≤x <2),则|PM |=2+x ,|PN |=4-x 2. ∴工业园区的用地面积S =|PM |·|PN |=(2+x )(4-x 2)=-x 3-2x 2+4x +8.∴S ′=-3x 2-4x +4,令S ′=0⇒x 1=23,x 2=-2(舍去),当x ∈⎣⎢⎡⎭⎪⎫0,23时,S ′>0,S 是x 的增函数; 当x ∈⎝ ⎛⎭⎪⎫23,2时,S ′<0,S 是x 的减函数. ∴x =23时,S 取到最大值,此时|PM |=2+x =83,|PN |=4-x 2=329,S max =83×329=25627≈9.5(km 2).答:把工业园区规划成长(PN )为329km ,宽(PM )为83km 时,矩形工业园区的用地面积最大,最大用地面积约为9.5 km 2.(2014·全国Ⅱ)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2.设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4,由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]上有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,所以g(x)>h(x)≥h(2)=0,所以g(x)=0在(0,+∞)上没有实根.综上,g(x)=0在R有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.§3.3 导数的应用(二)1.当f ′(x )在某个区间内个别点处为零,在其余点处均为正(或负)时,f (x )在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f (x )=x 3,当x =0时,f ′(x )=_________,当x ≠0时,f ′(x )>0,而f (x )=x 3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x )=0⇒x =x 1,x 2,…,x n ,x ∈[a ,b ]. 直接比较f (a ),f (b ),f (x 1),…,f (x n ),找出__________和____________即可.在此基础上还应注意:(1)结合____________可减少比较次数. (2)含参数的函数求最值可用: ①按____________分类; ②按____________分类. 3.实际问题中的导数,常见的有以下几种情形: (1)加速度是速度关于________的导数; (2)线密度是质量关于________的导数; (3)功率是功关于________的导数;(4)瞬时电流是电荷量关于________的导数; (5)水流的瞬时速度是流过的水量关于________的导数;(6)边际成本是成本关于________的导数. 4.N 型曲线与直线y =k 的位置关系问题如图,方程f (x )=0有三个根x 1,x 2,x 3时,极大值f (a )>0且极小值f (b )<0.曲线y =f (x )与直线y =k (k 是常数)有一个交点时,见图中的直线①或直线②,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有两个交点时,见图中的直线③或直线④,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有三个交点时,见图中的直线⑤.以上这些问题,常见于求参数的取值范围、讨论不等关系等形式的题目.自查自纠: 1.02.最小值 最大值 (1)单调性 (2)单调性极值点3.(1)时间 (2)长度 (3)时间 (4)时间 (5)时间 (6)产量 4.< > = =函数y =4x 2+1x的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎪⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎪⎫-∞,-12 解:y ′=8x -1x 2,令y ′>0,解得x >12,∴函数y =4x 2+1x 在⎝ ⎛⎭⎪⎫12,+∞上递增.故选B.函数f (x )=ax 3+x +1在x =-1处有极值,则a 的值为( )A .1B .0C .-13D .-12解:f ′(x )=3ax 2+1,∵f ′(-1)=3a +1=0,∴a =-13.故选C.已知函数f (x )=ax 3+bx +c (a ,b ,c ∈R ),若f ′(1)=2,则f ′(-1)=( )A .0B .3C .-1D .2解:f ′(x )=3ax 2+b ,f ′(-1)=f ′(1)=2.故选D.已知f (x )=sin x +2x ,x ∈R ,且f (2a )<f (a -1),则a 的取值范围是________.解:∵f ′(x )=cos x +2>0恒成立,∴f (x )在R 上单调递增.∵f (2a )<f (a -1),∴2a <a -1,得a <-1.故填(-∞,-1).若函数f (x )=ax 3+3x 2+3x (a <0)在区间(1,2)是增函数,则a 的取值范围是________.解:f ′(x )=3ax 2+6x +3,当a <0时,f (x )在区间(1,2)是增函数,当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.故填⎣⎢⎡⎭⎪⎫-54,0.类型一 函数单调性的进一步讨论 已知实数a >0,函数f (x )=a (x -2)2+2ln x .(1)当a =1时,讨论函数f (x )的单调性; (2)若f (x )在区间[1,4]上是增函数,求实数a 的取值范围.解:(1)当a =1时,f (x )=x 2-4x +4+2ln x ,f ′(x )=2x -4+2x =2(x -1)2x,∵x >0,∴f ′(x )≥0,∴f (x )在区间(0,+∞)上单调递增.(2)∵f ′(x )=2ax -4a +2x =2ax 2-4ax +2x,又f (x )在区间[1,4]上是增函数,∴f ′(x )=2ax 2-4ax +2x≥0对x ∈[1,4]恒成立,即2ax 2-4ax +2≥0对x ∈[1,4]恒成立,令g (x )=2ax 2-4ax +2,则g (x )=2a (x -1)2+2-2a ,∵a >0,∴g (x )在[1,4]上单调递增,只要使g (x )min =g (1)=2-2a ≥0即可,∴0<a ≤1.点拨:函数f (x )在限定区间是单调函数,求参数范围的问题,可以转化为恒成立问题求解.设函数f (x )=xe kx(k ≠0).(1)若k >0,求函数f (x )的单调区间;(2)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围.解:(1)f ′(x )=(1+kx )e kx.若k >0,令f ′(x )>0,得x >-1k,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-1k,+∞,单调递减区间是⎝ ⎛⎭⎪⎫-∞,-1k .(2)∵f (x )在区间(-1,1)内单调递增, ∴f ′(x )=(1+kx )e kx≥0在(-1,1)内恒成立,∴1+kx ≥0在(-1,1)内恒成立, 即⎩⎪⎨⎪⎧1+k ·(-1)≥0,1+k ·1≥0, 解得-1≤k ≤1. 因为k ≠0,所以k 的取值范围是[-1,0)∪(0,1].类型二 极值与最值的进一步讨论(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.解:(1)∵当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x.∴f (1)=1,f ′(1)=-1.∴所求切线方程为y -1=-(x -1),即x +y -2=0.(2)f ′(x )=1-a x =x -ax,x >0.若a ≤0,则f ′(x )>0恒成立,f (x )不存在极值.若a >0,则x ,f ′(x ),f (x )的变化情况如下点拨:本题要求掌握运用导数研究函数的单调性、极值的一般步骤.分类与整合思想是解这类题目常用的数学思想方法,注意:①分类标准统一,层次分明;②不重不漏.已知函数f (x )=(x -k )e x.(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x, 令f ′(x )=0,得x =k -1.;单调递增区间是(k -1,+∞),(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e .类型三 方程根的讨论已知函数f (x )=e x,x ∈R .(1)求f (x )的图象在点(0,f (0))处的切线方程;(2)证明:曲线y =f (x )与直线y =ex 有唯一公共点.解:(1)∵f ′(0)=e 0=1,f (0)=1,∴切线方程为y -1=1·(x -0),即x -y +1=0.(2)证法一:设g (x )=e x-ex ,曲线y =e x与y =ex 的公共点的个数等于函数g (x )=e x -ex 零点的个数.∵g ′(x )=e x-e ,令g ′(x )=0,得x =1, ∴g (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,∴g (x )的最小值g (1)=e 1-e =0,g (x )=e x -ex ≥0(仅当x =1时,等号成立). ∴曲线y =f (x )与直线y =ex 有唯一公共点.证法二:⎝⎛⎭⎪⎫由于方程e x =ex 等价于x ex =1e .设h (x )=x ex ,分析方法类似证法一.点拨:本题通过作差或作商构造出新的函数,求出新函数的单调区间、极值点、区间端点处的函数值、特殊点(如图象与x 轴,y 轴交点),来判断交点的个数,这是函数与方程思想的体现.若a >1e,则方程ln x -ax =0的实根的个数为( )A .0个B .1个C .2个D .无穷多个解法一:由于方程ln x -ax =0等价于ln xx=a .设f (x )=ln xx.∵f ′(x )=1x·x -ln xx 2=1-ln xx2, 令f ′(x )=0,得x =e ,∴f (x )在(0,e )上单调递增;在(e ,+∞)上单调递减.∴f (x )的最大值f (e )=1e,f (x )=ln x x ≤1e(仅当x =e 时,等号成立).∵a >1e,∴原方程无实根.解法二:设g (x )=ln x -ax ,分析单调性、极值可得结论.故选A.类型四 导数法证明不等式已知函数f (x )=e x,当x ∈[0,1]时,求证:(1)f (x )≥1+x ;(2)(1-x )f (x )≤1+x .证明:(1)设g (x )=e x-x -1,x ∈[0,1].∵g ′(x )=e x-1≥0,∴g (x )在[0,1]上是增函数,g (x )≥g (0)=1-0-1=0. ∴e x≥1+x ,即f (x )≥1+x .(2)设h (x )=(1-x )e x-x -1,x ∈[0,1].∵h ′(x )=-xe x-1<0,∴h (x )在[0,1]上是减函数,h (x )≤h (0)=1-0-1=0.∴(1-x )e x-x -1≤0, 即(1-x )f (x )≤1+x .点拨:①用导数证明不等式问题的关键在于构造函数;②由作差或者作商来构造函数是最基本的方法;③本题通过作差构造函数,分析其单调性、最值,得出函数值恒大于或小于0,使问题得证.(2013·江西模拟)设函数f (x )=x 1+x ,g (x )=ln x +12.求证:当0<x ≤1时,f (x )≥g (x ).证明:设h (x )=x 1+x -ln x -12,0<x ≤1.∵h ′(x )=1+x -x (1+x )2-1x =1(1+x )2-1x=-x 2-x -1(1+x )2x<0,∴h (x )在(0,1]上单调递减.∵h (1)=12-0-12=0,h (x )≥0(仅当x =1时,等号成立). ∴当0<x ≤1时,f (x )≥g (x ).1.证明不等式问题可通过作差或作商构造函数,然后用导数证明.2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值.3.方程根的问题:可化为研究相应函数的图象,。
(word完整版)导数及其应用最全教案(含答案),推荐文档
![(word完整版)导数及其应用最全教案(含答案),推荐文档](https://img.taocdn.com/s3/m/14fd1dafe2bd960590c67796.png)
导数及其应用一、知识点梳理1.导数:当x ∆趋近于零时,xx f x x f ∆-∆+)()(00趋近于常数c 。
可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c xx f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。
函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。
即 xx f x x f x f x ∆-∆+=→∆)()(lim)(0000'2.导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。
即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率xx f x x f x f k x ∆-∆+==→∆)()(lim)(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率。
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:))((00'0x x x f y y -=-3.导数的四则运算法则:1))()())()((x g x f x g x f '±'='± 2))()()()(])()([x g x f x g x f x g x f '+'='3))()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡4.几种常见函数的导数:(1))(0为常数C C =' (2))(1Q n nx x n n ∈='-)((3)x x cos )(sin ='(4)x x sin )(cos -=' (5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)xxe e =')( (8)a a a xxln )(=' 5.函数的单调性:在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)
![2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)](https://img.taocdn.com/s3/m/40ad023511a6f524ccbff121dd36a32d7375c725.png)
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
导数高中试题及解析答案
![导数高中试题及解析答案](https://img.taocdn.com/s3/m/c1becf5d03020740be1e650e52ea551810a6c9a8.png)
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
高中数学导数典型例题精讲(详细版)
![高中数学导数典型例题精讲(详细版)](https://img.taocdn.com/s3/m/65dd2e71f11dc281e53a580216fc700abb685275.png)
高中数学导数典型例题精讲(详细版)导数经典例题精讲导数知识点导数是一种特殊的极限几个常用极限:(1)1lim0n n→∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →=.两个重要的极限:(1)0sin lim 1x x x →=;(2)1lim 1xx e x →∞??+=(e=2.718281845…). 函数极限的四则运算法则:若0lim ()x x f x a →=,0lim ()x xg x b →=,则 (1)()()0lim x x f x g x a b →±=±;(2)()()0lim x x f x g x a b →?=;(3)()()()0lim 0x xf x ab g x b→=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞=?(3)()lim 0n n n a ab b b→∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c是常数))(x f 在0x 处的导数(或变化率或微商)00000()()()limlim x x x x f x x f x yf x y x x=?→?→+?-?''===??. .瞬时速度:00()()()lim limt t s s t t s t s t t tυ?→?→?+?-'===??. 瞬时加速度:00()()()lim limt t v v t t v t a v t t t→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.几种常见函数的导数(1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -='(4)x x 1)(ln =';e a x xa log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 复合函数的求导法则设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u xy y u =?,或写作'''(())()()x f x f u x ??=.【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是. [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()22()2,(1)12 3.f x x f ''=+∴-=-+=Q故填3.例2.设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P ,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------??=∴===> ?--??--∴>Q 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点.(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.思路启迪:用求导来求得切线斜率.解答过程:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤.于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+.因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x=++-+ ? ?????,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =?++=,所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例4.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为()A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5.过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222?-由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x --++= ∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程. 思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+?-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式. 典型例题例7.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点()A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8 .设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.思路启迪:利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值.解答过程:(Ⅰ)2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=??++=?,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞U ,,.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。
(word版)高二数学导数及其应用复习讲义有答案
![(word版)高二数学导数及其应用复习讲义有答案](https://img.taocdn.com/s3/m/5e2cbe3e84254b35effd3414.png)
高二数学复习讲义—导数及其应用知识归纳1.导数的概念 函数y=f(x), 如果自变量x 在x 0处有增量x ,那么函数y 相应地有增量 y =f 〔x 0+x 〕 -f 〔x 0〕,比值 y 叫做函数y=f 〔x 〕在x 0x到x 0+x 之间的平均变化率,即y f(x 0 x) f(x 0)。
如果当x0时, x =xy 有极限,我们就说函数 y=f(x)在点x 0处 x可导,并把这个极限叫做f 〔x 〕在点x 0处的导数,记作f ’〔x 0〕或y ’|xx 0。
即f 〔x 0 〕=limy=lim f(x 0 x)f(x 0)。
x 0xx0x说明:〔1〕函数f 〔x 〕在点x 0处可导,是指 x 0时,y 有极限。
如果y不存在极限,x x就说函数在点x 0处不可导,或说无导数。
〔2〕x 是自变量x 在x 0处的改变量,x0时,而y 是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f 〔x 〕在点x 0处的导数的步骤:〔1〕求函数的增量 y =f 〔x 0+x 〕-f 〔x 0〕;〔2〕求平均变化率yf(x 0x)f(x 0);x =x〔3〕取极限,得导数f ’(x 0)=lim y 。
x 0 x 2.导数的几何意义函数y=f 〔x 〕在点x 0处的导数的几何意义是曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率。
也就是说,曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率是f ’〔x 0〕。
/〕〔x -x 0 〕。
相应地,切线方程为y -y 0=f 〔x 0 3.几种常见函数的导数:①C0; ②x nnx n1;③(sinx)cosx ;④(cosx)sinx ;⑤(e x ) e x ;⑥(a x ) a x lna ;4.两个函数的和、差、积的求导法那么法那么1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(u v)' u ' v '. 2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:(uv)' u 'vuv '.假设C 为常数,(Cu)' C 'uCu ' 0Cu ' Cu '. 即常数与函数的积的导数等于常数乘以函数 的导数:(Cu)' Cu '. 法那么 3:两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子的积再除以分母的平方:u‘=u'v uv'v v 2 v0〕。
导数典型例题(含答案)回顾【创意版】
![导数典型例题(含答案)回顾【创意版】](https://img.taocdn.com/s3/m/94d54d28cec789eb172ded630b1c59eef8c79a89.png)
导数典型例题导数作为考试内容的考察力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最〔极〕值等等,考察的题型有客观题〔选择题、填空题〕、主观题〔解答题〕、考察的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考察成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim 0=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=〔-1〕〔-2〕…〔-100〕=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,那么f '(0)= a 1,而a 1=〔-1〕〔-2〕…〔-100〕=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四那么运算求导法那么使问题获解.【例2】 函数f (x )=nn n k k nn n nx c nx c k x c x c c 11212210++++++ ,n ∈N *,那么 xx f x f x ∆∆--∆+→∆)2()22(lim 0= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim 0=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim 0=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k kn n n x c x c x c c ,∴f '(2)=21〔2nn n k n k n n c c c c 222221+++++ 〕=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx 〞有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim ,也可以是00)()(lim x x x f x f x --→∆〔令Δx =x -x 0得到〕,此题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,那么圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的〔R 是中间变量〕,此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s 〞的错误.此题考察导数的物理意义及复合函数求导法那么,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考察导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,那么直线l 的倾斜角的范围是A.⎥⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎥⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.应选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点〔x 0,f (x 0)〕处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.此题假设不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点〔0,1〕,且过点〔0,1〕的切线有两条,求实数a 的值.解 ∵点〔0,1〕不在曲线上,∴可设切点为〔m ,m 3-am 2〕.而y '=3x 2-2ax , ∴k 切=3m 3-2am ,那么切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过〔0,1〕,∴2m 3-am 2+1=0.(*)设〔*〕式左边为f (m ),∴f (m )=0,由过〔0,1〕点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0〞.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 此题解答关键是把“切线有2条〞的“形〞转化为“方程有2个不同实根〞的“数〞,即数形结合,然后把三次方程〔*〕有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0〞.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最〔极〕值有关的问题【例6】以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,应选C.点评f'(x)>0〔或<0〕只是函数f'(x)在该区间单递增〔或递减〕的充分条件,可导函数f'(x)在(a,b)上单调递增〔或递减〕的充要条件是:对任意x∈(a,b),都有f'(x)≥0(或≤0)且f'(x)在(a,b)的任意子区间上都不恒为零.利用此充要条件可以方便地解决“函数的单调性,反过来确定函数解析式中的参数的值域范围〞问题.此题考察函数的单调性可谓新颖别致.【例7】函数y=f(x)定义在区间〔-3,7〕上,其导函数如下图,那么函数y=f(x)在区间〔-3,7〕上极小值的个数是个.解如图,A、O、B、C、E这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O点、C点是极小值点,故在区间〔-3,7〕上函数y=f(x)的极小值个数是2个.点评导数f'(x)=0的点不一定是函数y=f(x)的极值点,如使f'(x)=0的点的左、右的导数值异号,那么是极值点,其中左正右负点是极大值点,左负右正点是极小值点.此题考察函数的极值可以称得上是匠心独运.【例8】设函数f(x)与数列{a n}满足关系:①a1>α,其中α是方程f(x)=x的实数根;②a n+1=f(a n),n∈N*;③f(x)的导数f'(x)∈〔0,1〕.〔1〕证明:a n>α,n∈N*;〔2〕判断a n与a n+1的大小,并证明你的结论.〔1〕证明:〔数学归纳法〕当n=1时,由题意知a1>α,∴原式成立.假设当n=k时,a k>α,成立.∵f'(x)>0,∴f(x)是单调递增函数.∴a k+1= f(a k)> f(α)=α,〔∵α是方程f(x)= x的实数根〕即当n=k+1时,原式成立.故对于任意自然数N *,原式均成立.〔2〕解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由〔1〕知,a n >α,∴a n >f (a n )=a n+1.点评 此题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比拟A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),那么f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,那么当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A 〔x =0时等号成立〕.点评 运用导数比拟两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),那么只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用屡次,2004年全国卷Ⅱ的压轴题就考察了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.〔1〕求y =f (x )的解析式及定义域;〔2〕求出产品的增加值y 的最大值及相应的x 值. 解:〔1〕由,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a·42a ,∴k =8,那么f (x )=8-(a -x )x 2.∵0<)(2x a x -≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at.〔2〕∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,那么x =0〔舍去〕,32ax=,当0<x <32a 时,f '(x )>0,此时f (x )在〔0,32a 〕上单调递增; 当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a . 点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。
高二数学导数及其应用复习讲义有答案.docx
![高二数学导数及其应用复习讲义有答案.docx](https://img.taocdn.com/s3/m/81aa8827fab069dc512201a4.png)
高二数学复习讲义一导数及其应用知识归纳1.导数的概念函数y二f(x),如果自变量x在x()处有增量A A•,那么函数y相应地有增量Ay=f(x0 + A.v ) -f (x0),比值空叫做函数y二f (x)在X。
Ax到X 0 +心之间的平均变化率,即Ay =/(x0+ZU)-/(x Q)o如果当心T O时,级有极限,我们就说函数y=f(x)在点x°处可导,并把这个极限叫做f(x)在点X。
处的导数,记作f'(x())或y' |“曲。
即f(x。
)二lim 型二lim /代+心)7(心)。
山TO Ax zto A X说明:(1)函数f(X)在点X。
处可导,是指心TOU寸,生有极限。
如果0不存在极限, ArAx就说函数在点X。
处不可导,或说无导数。
(2)心是自变量x在X。
处的改变量,A XH O 时,而△);是函数值的改变量,可以是零。
由导数的定义可知,求函数y二f (x)在点x0 处的导数的步骤:(1)求函数的增量Ay二f (x0 + Ax ) —f(x0 );(2)求平均变化率冬二+空)_于(兀0);Ar Ar(3)取极限,得导数f' (x0)=lim^-oAmo心2.导数的几何意义函数y=f (x)在点x°处的导数的几何意义是曲线y二f (x)在点p (x0, f (x0))处的切线的斜率。
也就是说,曲线y=f (x)在点p (x0, f (x0))处的切线的斜率是f' (x0)o 相应地,切线方程为y—y0=f/(x0)(x—x0)o3.几种常见函数的导数;①C Z = O; ②(打=十;③(sin x)' = cos x ; ④(cosx)z = -sinx ;⑤(e x y = e x;®(a x y = a" In a ;⑦(In ;⑧(log a xf=-log a e.JC X4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),艮卩: (《±u) = u ± v .法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:・■I(MV)= W V + UV ・若C 为常数,(Cu) = Cu + Cu =Q + Cu = Cu . 即常数与函数的积的导数等于常数乘以函数的导数:(Cu) = Cu\法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积再除以分母的平方:化]7":川3丿V (VH 0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数复习经典例题分类(含答案)导数解答题题型分类之拓展篇(一)编制:王平审阅:朱成2014-05-31题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立;经验1:此类问题提倡按以下三个步骤进行解决:第一步:令f'(x) 0得到几个根;第二步:列表如下;第三步:由表可知;经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值;题型特征(f(x) g(x)恒成立h(x) f(x) g(x) 0恒成立);参考例4;1例「已知函数f(x)3x3bx22x a,x 2是f (x)的一个极值点.(I)求f(x)的单调递增区间;(U)若当围.2 2x [1, 3]时,f (x) a —恒成立,求a的取值范32x例 2.设 f (x) , g(x) ax 5 2a(a 0)。
x 1(1)求f(x)在x [0,1]上的值域;(2)若对于任意人[0,1],总存在x0 [0,1],使得g(x。
)f(xj成立,求a的取值范围_ 3 2例3.已知函数f(x) x ax 图象上一点P(1,b)的切线斜率为 3 , (t 1)x 3 (t 0)(U)当x [ 1,4]时,求f (x)的值域;ax 3 2ax 2 b(a 0)在区间 2,1上的最大值是5,最小值是(U)若t [ 1,1]时,f (x ) tx 0恒成立,求实数x 的取值x 3 2J10 例5.已知函数f (x) -y 图象上斜率为3的两条切线间的距离为 ----------- ,函数a5(、-、3bx 2 g(x) f(x) — 3.a(1) 若函数g(x)在x 1处有极值,求g(x)的解析式;(2) 若函数g(x)在区间[1,1]上为增函数,且b 2 mb 4 g(x)在区间[1,1]上都成立,求实 数m 的g(x)(I)求a,b 的值;(川)当x [1,4]时,不等式f (x)g(x)恒成立,求实数t 的取值范围例4.已知定义在R 上的函数f(x) —11.(I)求函数f(x)的解析式;范围•取值范围.题型二:已知函数在某个区间上的单调性求参数的范围及函数与x轴即方程根的个数问题;经验1已知函数在某个区间上的单调性求参数的范围的常用方法有三种:第一种:转化为恒成立问题即f'(x) 0或f'(x) 0在给定区间上恒成立,然后转为不等式恒成立问题;用分离变量时要特别注意是否需分类讨论(看是否在0的同侧),如果是同侧则不必分类讨论;若在0的两侧,则必须分类讨论,要注意两边同处以一个负数时不等号的方向要改变!有时分离变量解不出来,则必须用另外的方法;第二种:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;参考08年高考题;第三种方法:利用二次方程根的分布,着重考虑端点函数值与0的关系和对称轴相对区间的位置;可参考第二次市统考试卷;特别说明:做题时一定要看清楚“在(a,b )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别;经验2:函数与x轴即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6•已知函数f(x)】x3丄卫x2,g(x) 1kx,且f(x)在区间(2,)上为增函数.3 2 3(1)求实数k的取值范围;(2)若函数f (x)与g(x)的图象有三个不同的交点,求实数k的取值范围.3例7.已知函数f (x) ax3 3x2 1a(I )讨论函数f(x)的单调性。
(II )若函数y f(x)在A、B两点处取得极值,且线段AB与x轴有公共点,求实数a的取值范围。
例8.已知函数f(x) = x3—ax2—4x+ 4a,其中a为实数.(I )求导数f (x) ; ( n )若f ( —1) = 0,求f(x)在[—2, 2]上的最大值和最小值;(川)若f(x)在(一%,—2]和[2 , +^)上都是递增的,求a的取值范围例9.已知:函数f (x) x3 ax2 bx c(I )若函数f (x)的图像上存在点P,使点P处的切线与x轴平行,求实数a,b的关系式;(II )若函数f(x)在x 1和x 3时取得极值且图像与x轴有且只有3个交点,求实数c的取值范围•1例10.设y f(x)为三次函数,且图像关于原点对称,当x -时,f(x)的极小值为1 .2(I)求f (x)的解析式;(n)证明:当x (1,)时,函数f (x)图像上任意两点的连线的斜率恒大于0.例11.在函数f (x) ax3 bx(a 0)图像在点(1, f (1))处的切线与直线6x y 7 0.平行,导函数f'(x)的最小值为一12。
( 1)求a、b的值;(2)讨论方程f(x) m解的情况 (相同根算一根)。
导数解答题题型分类之拓展篇(二)编制:王平审阅:朱成2014-06-01例12.已知定义在R上的函数f(x) ax3 bx c(a,b,c R),当x 1时,f(x)取得极大值3, f(0) 1.(I)求f(x)的解析式;(U)已知实数t能使函数f(x)在区间(t, t 3)上既能取到极大值,又能取到极小值,记所有的实数t组成的集合为M.请判断函数g(x) 竺(x M)的零点个数•x例13.已知函数f (x) kx3 3(k 1)x2 2k2 4,若f(x)的单调减区间为(0, 4)(I )求k的值;(II )若对任意的t [ 1,1],关于x的方程2x2 5x a f(t)总有实数解,求实数a的取值范围。
例14.已知函数f(x) ax3 bx2 x(x R,a,b是常数),且当x 1和x 2时,函数f (x)取得极值•(I)求函数f (x)的解析式;(U)若曲线y f (x)与g(x) 3x m( 2 x 0)有两个不同的交点,求实数m的取值范围._ 3 2例15.已知 f (x) = x + bx + cx + 2.⑴若f(x)在x= 1时有极值—1,求b、c的值;⑵若函数y二x2+x —5的图象与函数y二匚的图象恰有三个不同的交点,求实数k的取值范x围.例16.设函数 f (x) x3 x2 ax , g(x) 2x b,当x 1 .2时,f(x)取得极值.3(1)求a的值,并判断f(1 . 2)是函数f (x)的极大值还是极小值;(2)当x [ 3,4]时,函数f(x)与g(x)的图象有两个公共点,求b的取值范围.题型三:函数的切线问题;经验1:在点处的切线,易求;经验2 :过点作曲线的切线需四个步骤;第一步:设切点,求斜率;第二步:写切线(一般用点斜式);第三步:根据切点既在曲线上又在切线上得到一个三次方程;第四步:判断三次方程根的个数;例17.已知函数f (x) ax3 bx2 cx在点x°处取得极小值一4,使其导数f'(x) 0的x的取值范围为(1,3),求:(1) f (x)的解析式;(2)若过点P( 1,m)可作曲线y f(x)的三条切线,求实数m的取值范围.例18.已知f (x) x3 ax2 4x ( a为常数)在x 2时取得一个极值,(1)确定实数t的取值范围,使函数f(x)在区间[t,2]上是单调函数;(2)若经过点A (2, c)( c 8 )可作曲线y f(x)的三条切线,求c的取值范围.题型四:函数导数不等式线性规划结合;例19.设函数g(x) -x3丄ax2 bx(a,b R),在其图象上一点F(x,y)处的切线的斜率记为3 2f (x) •(1)若方程f (x)有两个实根分别为-2和4,求f (x)的表达式;⑵若g(x)在区间1,3上是单调递减函数,求a2 b2的最小值。
1例20.已知函数 f (x) x3 ax2 bx(a, b R)311(1)若y f (x)图象上的是(1,-)处的切线的斜率为4,求y f (x)的极大值。
3(2)y f (x)在区间[1,2]上是单调递减函数,求a b的最小值。
例21.已知函数f (x) mx3 nx2( m , n R , m n且m 0)的图象在(2, f (2))处的切线与x轴平行.(I) 试确定m、n的符号;(II) 若函数y f (x)在区间[n,m]上有最大值为m n2,试求m的值.题型五:函数导数不等式的结合a例22.已知函数fx x b x 0,其中a,b R .x(I)若曲线y f x 在点P 2, f 2处的切线方程为y 3x 1,求函数f x 的解析式; (U)讨论函数f x 的单调性;(川)若对于任意的a -,2,不等式f x 10在-,1上恒成立,求b 的取值范围•24例23.已知函数f(x) -x 3 ax 2 bx 1(x R,a , b 为实数)有极值,且在x 1处的切线与直线3x y 10平行.(1) 求实数a 的取值范围;(2) 是否存在实数a ,使得函数f (x)的极小值为1,若存在,求出实数a 的值;若不存在, 请说明理由;1 -x2 cx d (a 、c 、d € R )满足 f(0) 0, f'(1) 0且 f'(x) 0在 R 4(1)求 a 、c 、d 的值;(2)若 h(x) - x 2 bx --,解不等式 f '(x) h(x) 0 ;42 4例 25.设函数 f(x) x(x a)2 (x R ),其中 a R(1) 当a 1时,求曲线y f (x)在点(2, f (2))处的切线方程; (2) 当a 0时,求函数f (x)的极大值和极小值;例24.已知函数f(x)上恒成立。
1 3 ax 3(3)当a 3时,证明存在k [ 1,0],使得不等式f (k cosx) f (k2 cos2x)对任意的x R恒成导数解答题题型分类之拓展篇答案2014-05-31题型一例1、解:(I) f '(x) x 2 2bx 2. I x 2是f (x)的一个极值点,••• x 2是方程x 22bx 2 0的一个根,解得b3.2令 f '(x)0,则 x 2 3x 2 0 ,解得 x 1 或x 2.•函数y f (x)的单调递增区间为(,1) , (2, + ).(n)v 当 x (1,2)时 f '(x) 0 , x (2,3)时 f '(x) 0 ,• f (x)在(1, 2) 上单调递减,f (x)在(2, 3) 上单调递增.• f(2)是f (x)在区间[1 , 3] 上的最小值,且f(2) - a . 若当x [1, 3]时,要使f(x) a 2 -恒成立,只需33f(2) a22,即2a a22,解得 0 a 1.333f(x)在[0,1]上增,• f(x)值域[0,1]f ( 1) 4, f (0) 0,{f(x)}min f(2) 4,{f(x)}max f (4) 16 • f(x)的值域是[4,16](川)令 h(x) f (x) g(x) x 2 (t 1)x 3 x [1,4]2•要使 f (x) g(x)恒成立,只需 h(x) 0 ,即 t(x 22x) 2x 62x 6(1)当 x [1,2)时 t 丁 一,解得 t 1 ;x 2x(2) 当 x 2 时 t R ;例2、解:(1)法 :(导数法)f (x)24x( x 1) 2x (x 1)222x 4x (x 1)20在x [0,1]上恒成立.法二:f(x)空x 1 法三:f(x)超⑵ f(x)值域[0,1] 0, x2 厂 x2(x 由条件,只须[0,1] ,x (0,1],复合函数求值域.21)4(x 1) 2 x 1,g(x) ax 5 2a(a5 a],5/[5 2a,5 例 3、解:(I) f /(x) 3x 2(U)由(I)知,f (x)在[2(x 1)0)在x 2a 01 a o • f()b 11,0]上单调递增,—4用对号函数求值域. x 1[0,1]上的值域[5 2a,5 a ].5 2 a 4.解得a3b2[0,2]上单调递减,在[2,4]上单调递减又2x 6(3)当x (2,4]时t 丁—解得t 8 ;综上所述所求t的范围是(,1]U[8,)x 2x例 4、解:(I) Q f(x) ax 3 2ax 2 b, f (x) 3ax 2 4ax ax(3x 4) 4令 f(x)=O,得 x i 0,X 2 — 2,13因为a 0,所以可得下表:因此 f(0)必为最大值,二 f (0) 5 因此 b 5 , Qf( 2) 163 5,f(1) a 5, f(1) f( 2), 即 f( 2) 16a 5 11 ,••• a1,二 f(x ) x 3 2x 2 5.(n)v f (x) 3x 2 4x , - f (x ) tx 0 等价于 3x 2 4x tx 0,令g(t) xt 3x 24x ,则问题就是g(t) 0在t [ 1,1]上恒成立时,求实数x 的取值范围,为此只例6解: (1)由题意f (x) x 2 (k 1)x v f(x)在区间(2,)上为增函数, • f (x) x 2 (k 1)x 0在区间(2,)上恒成立即k 1 x 恒成立,又x 2 , • k 1 2,故k 1 • k 的取值范围为k 1 x 3 (k 1) o 1 (2)设 h(x) f (x) g(x) x kx3 2 32h (x) x (k 1)x k (x k)(x 1)令h (x) 0得x k 或x 1由(1)知k 1 ,①当k 1时,h (x) (x 1)20 , h(x)在R 上递增,显然不合题意…②当k 1时,h(x),h (x)随x 的变化情况如下表:需 g ((;) 解得0•••切线方程为y .| 2a 2a|3x 2 5x 0,即2门,x x 01,所以所求实数x 的取值范围是[0 , f (x)3x 2,•由-4 x 2 3 有 xa aa 3(x a),或 y a ,解得a 1 , / 53(x a),f(x)32( 1)22g (x) 3x 3b , g (x) x 3 3x 3(2)v 函数g(x)在区间[1,1]上为增函数,二g(x)在x 1处有极值, b 0 ,又 I b 2mb b 2mb 44 3b ,题型二答案:1]-a ,即切点坐标为(a, a),(整理得3x y 2ax 3,二 g(x) x (1) 0,即 3 12 3bx 3b 0 a, a) 0或3x 3。