人教课标版高中数学选修1-1《双曲线的简单几何性质(第1课时)》导学案

合集下载

高中数学 1-1.2.2.2双曲线的简单几何性质学案 新人教A版选修1-1

高中数学 1-1.2.2.2双曲线的简单几何性质学案 新人教A版选修1-1

双曲线的简单几何性质学案新人教A版选修1-1【学习目标】掌握双曲线的简单几何性质。

一、课前预习案:王渊超《悲伤的双曲线》中,如果我是双曲线,你就是那渐近线…虽然我们有缘,能够生在同一个平面…无限接近不能达到。

这首歌就提到了双曲线的一个性质。

双曲线的性质在建筑、工业生产中都有着广泛的应用。

请你回忆一下对于椭圆的几何性质,我们研究了哪些方面?利用什么思想研究的?研究双曲线的几何性质你准备如何进行?二、课堂探究案:(一)几何性质由椭圆的哪些几何性质出发,类比探究双曲线22221x ya b-=的几何性质。

先画出图形1.范围:x y你能从代数的角度解释吗?2.对称性:双曲线关于轴、轴及都对称.你能从代数的角度解释吗?双曲线的中心:3.顶点:叫做双曲线的顶点,坐标为(),().实轴,其长为,半实轴长为;虚轴,其长为,半虚轴长为;实轴与虚轴等长的双曲线叫等轴双曲线.焦点坐标,焦距。

4.离心率:cea =.范围:刻画双曲线的什么几何特性?如何刻画的呢?5.渐近线:双曲线22221x ya b-=的渐近线有什么特征?你能写出其渐近线的方程吗?双曲线22221y xa b-=的几何性质你能试着写出来吗?(二)课堂反馈1.双曲线221168x y-=实轴和虚轴长分别是().A.8、.8、C .4、.4、2.双曲线224x y -=-的顶点坐标是( ).A .(0,1)±B .(0,2)±C .(1,0)±D .(2,0±) 3.双曲线22148x y -=的离心率为( ). A .1 B.24.双曲线2241x y-=的渐近线方程是 .(三)典型例题 求双曲线2214925x y -=的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

高二数学 2.2.2双曲线的简单几何性质导学案(1)新人教A版选修1-1

高二数学     2.2.2双曲线的简单几何性质导学案(1)新人教A版选修1-1

高中数学 2.2.2双曲线的简单几何性质(1)导学案 【自主学习】(预习教材P49~ P51) 问题1:由椭圆的哪些几何性质出发,类比探究双曲线22221x y a b-=的几何性质?范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( ).实轴,其长为 ;虚轴,其长为 .离心率:1c e a=>. 渐近线:双曲线22221x y a b -=的渐近线方程为:0x y a b±=.问题2:双曲线22221y x a b-=的几何性质? 图形:范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( )实轴,其长为 ;虚轴,其长为 .离心率:1c e a=>. 渐近线:双曲线22221y x a b-=的渐近线方程为: .新知:实轴与虚轴等长的双曲线叫 双曲线.【合作探究】例1.(教材P51例3)求双曲线22916144y x-=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.例2求双曲线的标准方程:⑴实轴的长是10,虚轴长是8,焦点在x轴上;⑶渐近线方程为23y x=±,经过点9(,1)2M-.【目标检测】1.双曲线221168x y-=实轴和虚轴长分别是().A.8、42 B.8、22 C.4、42 D.4、22 2.双曲线224x y-=-的顶点坐标是().A.(0,1)± B.(0,2)± C.(1,0)± D.(2,0±)3.双曲线22148x y-=的离心率为().A.1 B.2 C.3D.2 4.双曲线2241x y-=的渐近线方程是.5、已知双曲线的离心率2e=(5,3)M-,求其标准方程。

双曲线的简单几何性质教案

双曲线的简单几何性质教案

选修2-1 】§ 2.3.2 双曲线的简单几何性质(第一课时)一、课标要求掌握双曲线的定义、几何图形和标准方程,理解其简单的几何性质;了解圆锥曲线的简单应用。

二、教材分析本节教学内容是普通高中课程标准实验教科书(人民教育出版社)数学选修2-1 第二章圆锥曲线与方程第三节第二部分:双曲线的简单几何性质。

由曲线方程研究曲线的几何性质,是高中阶段解析几何所研究的主要问题之一。

学生已经学习了椭圆及其标准方程、椭圆的简单几何性质,从而探究、归纳出双曲线类似于椭圆的几何性质(范围、对称性、顶点、离心率);并且进一步探究出双曲线独有的几何性质(实轴、虚轴、渐近线);也为后续研究抛物线的几何性质打下了基础。

因此这节课在教材中起承上启下的作用,是培养学生利用曲线方程讨论曲线性质(即由数到形)的思想方法以及概括、归纳能力和逻辑思维能力的重要内容,同时本节内容也是高考的高频考点。

三、学情分析本班学生是平行班的学生,因此教师在引导的基础上还需要适当的讲解。

在此之前,学生已经学习了椭圆的标准方程和它的几何性质,并且类比、推导、归纳出了双曲线的标准方程,这节课将进一步研究、归纳出类似于椭圆几何性质的双曲线的几何性质(范围、对称性、顶点、离心率)和双曲线独有的几何性质(实轴、虚轴、渐近线)。

通过对双曲线性质的探究学习,可使学生在已有的知识结构的基础上,拓展延伸,构建新的知识体系;同时对由方程讨论曲线性质(即由数到形)的思想方法有更深刻的认识。

四、教学目标一、知识与技能1.了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。

2.能用双曲线的简单几何性质解决一些简单问题。

二、过程与方法通过观察、类比、探究来认识双曲线的简单几何性质。

三、情感态度与价值观通过类比旧知识,探索新知识,培养我们学习数学的兴趣,探索新知识的能力及勇于创新的精神。

五、教学重难点重点:探究双曲线的简单几何性质及应用难点:双曲线的渐近线和离心率六、教具准备:多媒体课件、几何画板七、教学过程板书设计:焦点在x轴上在y轴上标准方程x、y的范围对称性顶点渐近线离心率。

高中数学选修1,1《双曲线》教案

高中数学选修1,1《双曲线》教案

高中数学选修1,1《双曲线》教案高中数学选修1-1《双曲线》教案【一】教学准备教学目标教学目标: 1.能用与椭圆对比的方法分析并掌握双曲线的范围、对称性、顶点等几何性质;2.掌握双曲线的渐近线的概念和证明;3.明确双曲线标准方程中a、b、c的几何意义;4.能根据双曲线的几何性质确定双曲线的方程, 并解决简单问题.教学重难点教学重点: 双曲线的几何性质教学难点: 双曲线的渐近线教学过程教学过程:一、知识回顾:1. 双曲线的标准方程;2. 椭圆的几何性质及其研究方法.二、课堂新授:1. 要求学生按照研究椭圆几何性质的方法, 研究双曲线的几何性质.(1) 范围: 双曲线在不等式x≤-a与x≥a所表示的区域内.(2) 对称性: 双曲线关于每个坐标轴和原点都是对称的. 这时, 坐标轴是双曲线的对称轴, 原点是双曲线的对称中心. 双曲线的对称中心叫做双曲线的中心.(3) 顶点: 双曲线和它的对称轴有两个交点, 它们叫做双曲线的顶点.顶点坐标A1 (-a, 0), A2 (a, 0)① 线段A1A2叫做双曲线的实轴, 它的长等于2a, a叫做双曲线的实半轴长.② 双曲线与y轴没有交点, 取点B1 (0,-b)、 B2 (0, b), 线段B1B2叫做双曲线的虚轴, 它的长等于2b, b叫做双曲线的虚半轴长.(4) 离心率: 双曲线的焦距与实轴长的比e = , 叫做双曲线的离心率.双曲线的离心率的取值范围是(1, +∞).2. 双曲线的渐近线(1) 观察: 经过A2、A1作y轴的平行线x = ±a, 经过B2、B1作x 轴的平行线y = ±b, 四条直线围成一个矩形. 矩形的两条对角线所在直线的方程是y =±x, 观察可知: 双曲线的各支向外延伸时, 与这两条直线逐渐接近.(2) 证明: 取双曲线在第一象限内的部分进行证明. 这一部分的方程可写为高中数学选修1-1《双曲线》教案【二】教学准备教学目标1、熟练掌握曲线的方程和方程的曲线概念;2、掌握坐标法和解析几何的概念3、掌握根据已知条件求平面曲线方程的基本步骤;4、学会根据已知条件求简单的平面曲线的方程。

(教师用书)高中数学 2.2.2 双曲线的简单几何性质教案 新人教A版选修1-1

(教师用书)高中数学 2.2.2 双曲线的简单几何性质教案 新人教A版选修1-1

2.2.2 双曲线的简单几何性质(教师用书独具)●三维目标1.知识与技能(1)使学生理解和掌握双曲线的范围、对称性、顶点等性质.(2)理解渐近线的证明方法.(3)理解离心率和双曲线形状间的变化关系.2.过程与方法培养学生的观察能力、想象能力、数形结合能力和逻辑推理能力,以及类比的学习方法.3.情感、态度与价值观培养学生对待知识的科学态度和探索精神,而且能够运用运动的、变化的观点分析理解事物.●重点、难点重点:由方程导出性质及其应用.难点:渐近线的理解.从学生的认知水平来看,对渐近线分析方法的理解和掌握有一定的困难.同时渐进线概念如何顺应学生思维的自然呈现,是教法中的一个困惑.因此,将渐近线的呈现与分析设置为本课时的难点.为突破该难点,从“如何画双曲线草图”入手,分析作草图必须的条件,以“双曲线的走向”为切入口,通过复习反比例函数图象,以旧引新,使双曲线的概念自然呈现.并通过学生讨论与交流,充分暴露思维过程,完成分析和证明过程.(教师用书独具)●教学建议本节课宜采用的教学方法和手段:类比、启发、探索相结合的教学方法,体现学生的主体地位.●教学流程提出问题:类比椭圆的几何性质,你能得到双曲线的哪些几何性质?⇒引导观察双曲线图形,分析其几何性质,导出范围、对称性、顶点、离心率等几何性质.⇒通过引导学生回答所提问题,引出渐近线的概念,理解渐近线的特征.⇒通过例1及其变式训练,使学生掌握已知双曲线方程求几何性质的方法.⇒通过例2及其变式训练,使学生掌握由几何性质求双曲线标准方程的方法.⇒错误!⇒错误!⇒错误!(对应学生用书第32页)类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y 2b2=1(a >0,b >0)的哪些几何性质?【提示】 范围、对称性、顶点、离心率、渐近线.椭圆中,离心率可以刻画椭圆的扁平程度,在双曲线中,离心率描述怎样的特征? 【提示】 双曲线的离心率描述双曲线“开口”的大小,离心率越大,双曲线的“开口”越大.1.双曲线的对称中心叫做双曲线的中心.2.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e =2.(对应学生用书第32页)求双曲线25y 2-4x 2+100=0的实半轴长、虚半轴长、焦点坐标、顶点坐标、离心率、渐近线方程.【思路探究】【自主解答】 双曲线的方程25y 2-4x 2+100=0可化为x 225-y 24=1.∴实半轴长a =5,虚半轴长b =2,顶点坐标为(-5,0),(5,0). 由c =a 2+b 2=29,焦点坐标为(29,0),(-29,0). 离心率e =c a =295,渐近线方程y =±25x .1.已知双曲线的方程求其几何性质时,若不是标准形式的先化为标准方程,确定方程中a 、b 的对应值,利用c 2=a 2+b 2得到c ,然后确定双曲线的焦点位置,从而写出双曲线的几何性质.2.写渐近线方程时要特别注意焦点在x 轴上还是在y 轴上,以免写错.求双曲线16x 2-9y 2=-144的实轴长、虚轴长、焦点坐标、离心率、顶点坐标和渐近线方程.【解】 把方程16x 2-9y 2=-144化为标准方程得y 242-x 232=1,由此可知,实轴长2a =8,虚轴长2b =6,c =a 2+b 2=5. 焦点坐标为(0,-5),(0,5).离心率e =c a =54.顶点坐标为(0,-4),(0,4). 渐近线方程为:y =±43x .双曲线的方程分别求适合下列条件的双曲线的标准方程.(1)虚轴长为12,离心率为54;(2)顶点间距离为6,渐近线方程为y =±32x ;(3)求与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).【思路探究】 (1)双曲线的焦点位置确定了吗?如果不确定该怎么办?(2)与双曲线x 2-2y 2=2有公共渐近线的双曲线有什么特点?如何设出方程?【自主解答】 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a >0,b >0). 由题意知2b =12,c a =54且c 2=a 2+b 2,∴b =6,c =10,a =8,∴双曲线标准方程为x 264-y 236=1或y 264-x 236=1. (2)当焦点在x 轴上时,由b a =32且a =3得b =92.∴所求双曲线标准方程为x 29-4y 281=1. 当焦点在y 轴上时,由a b =32且a =3得b =2.∴所求双曲线标准方程为y 29-x 24=1.(3)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=k ,将点(2,-2)代入得k =222-(-2)2=-2,∴双曲线标准方程为y 22-x 24=1.1.利用待定系数法求双曲线方程应先“定形”(确定标准方程的形式),再“定量”(求出a ,b 的值).由于双曲线的标准方程有两种形式,因此,根据相关几何特征确定焦点的位置是很重要的,其次,在解题过程中应熟悉a ,b ,c ,e 等元素的几何意义及它们之间的联系,并注意方程思想的应用.2.若已知双曲线的渐近线方程为Ax ±By =0,为避免讨论,可设双曲线方程为A 2x 2-B 2y2=λ(λ≠0)或x 2B 2-y 2A2=λ(λ≠0)的形式,从而使运算更简捷.3.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).已知双曲线的一条渐近线方程是x -2y =0,且双曲线过点P (4,3),求双曲线的标准方程.【解】 法一 ∵双曲线的一条渐近线方程为x -2y =0,当x =4时,y =2<y P =3.∴双曲线的焦点在y 轴上.从而有a b =12,∴b =2a .设双曲线方程为y 2a 2-x 24a2=1,由于点P (4,3)在此双曲线上,∴9a 2-164a2=1,解得a 2=5. ∴双曲线方程为y 25-x 220=1.法二 ∵双曲线的一条渐近线方程为x -2y =0, 即x 2-y =0,∴双曲线的渐近线方程为x 24-y 2=0. 设双曲线方程为x 24-y 2=λ(λ≠0),∵双曲线过点P (4,3),∴424-32=λ,即λ=-5.∴所求双曲线方程为x 24-y 2=-5,即y 25-x 220=1.分别求适合下列条件的双曲线的离心率.(1)双曲线的渐近线方程为y =±32x ;(2)双曲线x 2a 2-y 2b2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,且原点到直线l 的距离为34c . 【思路探究】 (1)由渐近线方程能得到a 、b 、c 的关系吗?利用这种关系能求出离心率吗?(2)由题意你能得到关于a 、b 、c 的什么关系式?【自主解答】 (1)若焦点在x 轴上,则b a =32,∴e =b 2a 2+1=132; 若焦点在y 轴上,则a b =32,即b a =23,∴e =b 2a 2+1=133. 综上可知,双曲线的离心率为132或133. (2)依题意,直线l :bx +ay -ab =0. 由原点到l 的距离为34c ,得ab a 2+b2=34c , 即ab =34c 2,∴16a 2b 2=3(a 2+b 2)2, 即3b 4-10a 2b 2+3a 4=0,∴3(b 2a 2)2-10×b 2a 2+3=0.解得b 2a 2=13或b 2a 2=3.又∵0<a <b ,∴b 2a2=3.∴e =1+b 2a2=2.求双曲线的离心率,通常先由题设条件得到a ,b ,c 的关系式,再根据c 2=a 2+b 2,直接求a ,c 的值.而在解题时常把c a 或b a 视为整体,把关系式转化为关于c a 或b a的方程,解方程求之,从而得到离心率的值.在本题的(2)中,要注意条件0<a <b 对离心率的限制,以保证题目结果的准确性.已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.【解】 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a .∴|PF 1|=b 2a.由双曲线对称性,|PF 2|=|QF 2|且∠PF 2Q =90°. 知|F 1F 2|=12|PQ |=|PF 1|,∴b 2a=2c ,则b 2=2ac . ∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a2-2×c a-1=0.即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). ∴所求双曲线的离心率为1+ 2.(对应学生用书第35页)忽略点在双曲线上的位置致误已知双曲线方程为x 2-y 2=1,双曲线的左支上一点P (a ,b )到直线y=x 的距离是2,求a +b 的值.【错解】 ∵P (a ,b )到直线y =x 的距离是 2. 故|a -b |2=2,∴a -b =±2. 又∵a 2-b 2=1,∴(a +b )(a -b )=1,∴a +b =±12.【错因分析】 错解中忽略了点P 在双曲线的左支上,此时,a -b <0,∴a -b =-2. 【防范措施】 由于双曲线有两支,解题时要特别留意所给点是在哪一支上,以防因判断不准导致增根产生.【正解】 ∵点P (a ,b )到直线y =x 的距离为2, 故|a -b |2=2,∴a -b =±2. 又∵P 在双曲线的左支上,故a -b <0,则有a -b =-2. 又∵a 2-b 2=1,即(a -b )(a +b )=1,∴a +b =-12.1.通过双曲线的方程可以讨论双曲线的几何性质,由双曲线的几何性质也可以得到双曲线的方程.2.双曲线的渐近线和离心率都可以描述其“张口”的大小、渐近线是双曲线特有的性质,应注意以下三点:(1)当焦点在x 轴上时,渐近线为y =±b a x ;当焦点在y 轴上时,渐近线为y =±a bx .(2)当渐近线为y =b a x 时,可设双曲线标准方程为x 2a 2-y 2b 2=λ(λ≠0).(3)与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线标准方程可设为x 2a 2-y 2b2=λ(λ≠0).(对应学生用书第35页)1.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 【解析】 由题意:a =5,b =3,且焦点不确定,应选B. 【答案】 B2.双曲线x 24-y 29=1的渐近线方程是( )A .y =±23xB .y =±49xC .y =±32xD .y =±94x【解析】 由题意,焦点在x 轴上,且a =2,b =3,故渐近线方程为y =±32x .【答案】 C3.下列曲线中离心率为62的是( ) A.x 22-y 24=1 B.x 24-y 22=1 C.x 24-y 26=1 D.x 24-y 210=1 【解析】 选项B 双曲线中a =2,b =2,∴c =6,e =62. 【答案】 B4.若双曲线的顶点在x 轴上,两顶点的距离为8,离心率是54,求双曲线的标准方程.【解】 由题设,设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). ∵2a =8,∴a =4, 由e =54=ca ,得c =5,∴b 2=c 2-a 2=52-42=9.因此所求双曲线标准方程为x 216-y 29=1.一、选择题1.等轴双曲线的一个焦点是F 1(-6,0),则它的标准方程是( ) A.y 218-x 218=1 B.x 218-y 218=1 C.x 28-y 28=1 D.y 28-x 28=1 【解析】 设等轴双曲线方程为x 2a 2-y 2a2=1(a >0).∴a 2+a 2=62,∴a 2=18. 故双曲线方程为x 218-y 218=1.【答案】 B2.(2012·湖南高考)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 【解析】 由2c =10得c =5,∵点P (2,1)在直线y =b ax 上,∴2b a=1,又∵a 2+b 2=25,∴a 2=20,b 2=5,故双曲线的方程为x 220-y 25=1.【答案】 A3.(2013·泰安高二检测)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62 D.52【解析】 ∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).又其一条渐近线过点(4,-2),∴b a =24,∴a =2b . 因此c =a 2+b 2=5b . ∴离心率e =c a =52. 【答案】 D4.(2013·天门高二检测)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3D .6【解析】 双曲线的渐近线方程为y =±22x ,圆心坐标为(3,0),由点到直线的距离公式与渐近线与圆相切得,圆心到渐近线的距离为r ,且r =|32+0|2+4= 3.【答案】 A5.(2013·临沂高二检测)双曲线x 2a 2-y 2b 2=1和椭圆x 2m 2+y 2b2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【解析】 双曲线的离心率e 1=a 2+b 2a ,椭圆的离心率e 2=m 2-b 2m,由e 1e 2=1得(a2+b 2)(m 2-b 2)=a 2m 2,故a 2+b 2=m 2,因此三角形为直角三角形.【答案】 B 二、填空题6.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =________.【解析】 ∵2a =2,2b =2-1m,∴-1m=2,∴m =-14.【答案】 -147.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为________,渐近线方程为________.【解析】 双曲线的焦点为(-4,0),(4,0),∴c =4, 离心率e =c a=2,∴a =2,∴b =c 2-a 2=2 3.∴双曲线方程为x 24-y 212=1.令x 24-y 212=0,得渐近线方程为3x ±y =0. 【答案】 (±4,0)3x ±y =08.(2013·北京高二检测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的取值范围为________.【解析】 由双曲线的定义有|PF 1|-|PF 2|=2a , 又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .容易知道|PF 1|+|PF 2|≥|F 1F 2|,即103a ≥2c ,∴e ≤53,又e >1,故e ∈(1,53]. 【答案】 (1,53]三、解答题9.根据下列条件,求双曲线的标准方程.(1)与双曲线x 29-y 216=1有共同渐近线,且过点(-3,23);(2)与双曲线x 216-y 24=1有公共焦点,且过点(32,2).【解】 (1)设所求双曲线方程为x 29-y 216=λ(λ≠0),则由题意可知-29-3216=λ,解得λ=14.∴所求双曲线的标准方程为x 294-y 24=1.(2)设所求双曲线方程为x 216-k -y 24+k=1(16-k >0,4+k >0), ∵双曲线过点(32,2),∴2216-k -224+k =1,解得k =4或k =-14(舍).∴所求双曲线的标准方程为x 212-y 28=1. 10.双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线离心率的取值范围.【解】 ∵l 的方程为:bx +ay -ab =0. 由点到直线距离公式且a >1,得 点(1,0)到直线l 的距离d 1=b a -a 2+b 2,点(-1,0)到直线l 的距离d 2=b a +a 2+b2. s =d 1+d 2=2ab c ≥45c . 即5a c 2-a 2≥2c 2,即5e 2-1≥2e 2, ∴4e 4-25e 2+25≤0,解得54≤e 2≤5,∵e >1,∴52≤e ≤ 5. 即e 的取值范围为[52,5]. 11.若原点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,求OP →·FP →的取值范围.【解】 由双曲线方程x 2a2-y 2=1(a >0)知b =1.又F (-2,0),∴c =2. ∴a 2+1=c 2=4,∴a 2=3, ∴双曲线方程为x 23-y 2=1.设双曲线右支上点P (x ,y ),且x ≥ 3. OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2 =43x 2+2x -1=43⎝⎛⎭⎪⎫x +342-74.∵x ≥3,∴当x =3时,上式有最小值3+2 3. 故OP →·FP →的取值范围为[3+23,+∞).(教师用书独具)已知双曲线x 2-y 2=4,直线l :y =k (x -1),试讨论实数k 的取值范围,使直线l 与双曲线有两个公共点;直线l 与双曲线有且只有一个公共点;直线l 与双曲线没有公共点.【解】 由⎩⎪⎨⎪⎧x 2-y 2=4y =k x -消去y ,得(1-k 2)x 2+2k 2x -k 2-4=0.(*)(1)当1-k 2=0,即k =±1时,直线l 与双曲线的渐近线平行,方程化为2x =5,故此时方程(*)只有一个实数解,即直线与双曲线相交,且只有一个公共点,交点在双曲线右支上.(2)当1-k 2≠0,即k ≠±1时,Δ=(2k 2)2-4(1-k 2)·(-k 2-4)=4(4-3k 2).①⎩⎪⎨⎪⎧ 4-3k 2>0,1-k 2≠0,即-233<k <233,且k ≠±1时,方程(*)有两个不同的实数解,即直线与双曲线有两个公共点.②⎩⎪⎨⎪⎧4-3k 2=0,1-k 2≠0,即k =±233时,方程(*)有两个相同的实数解,即直线与双曲线相交于一个公共点.综上所述:当-233<k <233,且k ≠±1时,直线l 与双曲线有两个公共点,当k =±1或k =±233时,直线l 与双曲线有且只有一个公共点,当k <-233或k >233时,直线l 与双曲线没有公共点.已知双曲线3x 2-y 2=3,直线l 过右焦点F 2,且倾斜角为45°,与双曲线交于A 、B 两点,试问A 、B 两点是否位于双曲线的同一支上?并求弦AB 的长.【解】 双曲线3x 2-y 2=3化为x 2-y 23=1,则a =1,b =3,c =2.∵直线l 过点F 2且倾斜角为45°, ∴直线l 的方程为y =x -2, 代入双曲线方程,得2x 2+4x -7=0. 设A (x 1,y 1)、B (x 2,y 2), ∵x 1·x 2=-72<0,∴A 、B 两点分别位于双曲线的左、右两支上. ∵x 1+x 2=-2,x 1·x 2=-72,∴|AB |=1+12|x 1-x 2|=2·x 1+x 22-4x 1x 2=2·-2--72=6. 因此弦AB 的长为6.。

选修1-1双曲线性质导学案

选修1-1双曲线性质导学案

5.求满足下列条件的双曲线方程: (1) 离心率为 54,半虚轴长为 2; (2) 与椭圆 x2+ 5y2= 5 共焦点且一条渐近线方程为 y- 3x= 0.

§1.3.2
双曲线的简单几何性质
当堂训练
1.双曲线 2x2- y2= 8 的实轴长是 (
)
A. 2
B.22
C. 4
D. 42
2.双曲线 mx2+ y2= 1 的虚轴长是实轴长的 2 倍,则 m的值为 (
)
A.- 14
B.- 4
C. 4
D.14
3.若双曲线 x28- y2m=1 的渐近线方程为 y=± 2x,则实数 m等于 ( )
A.4 B.8
C.16 D.32
4.若直线 x= a 与双曲线 x24- y2= 1 有两个交点,则 a 的值可以是 (
)
A.4 B.2
C.1 D.- 2
5.设 a>1,则双曲线的离心率 e 的取值范围是 ( )
§ 1.3.2
双曲线的简单几何性质
编制:曹树建
审核:陈李琼
学习目标:
1. 掌握双曲线的简单几何性质.
2. 了解双曲线的渐近性及渐近线的概念.
曲线的简单几何性质
学习难点: 双曲线的渐近性及渐近线
课前预习案
教材助读:
阅读教材 56-58 页的内容,思考并完成下列问题:
()
A.x24 - y212 = 1
1
D.x26 -y210=1
B.x212 - y24 = 1
C.x210 - y26 =
3.双曲线的渐近线方程为 y=± 34x,则双曲线的离心率是 ( )
A.54
B.2
C.54 或 53

高中数学《2.2.1双曲线简单的几何性质》导学案 新人教A版选修1-1

高中数学《2.2.1双曲线简单的几何性质》导学案 新人教A版选修1-1

§2.2.1双曲线简单的几何性质 ( 第1课时)[自学目标]:掌握双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念。

[重点]:双曲线几何性质[难点]:双曲线几何性质的应用,双曲线第二定义。

教学过程一、课前准备:复习 1:写出满足下列条件的双曲线的标准方程:①a = 3,b = 4 ,焦点在x轴上;②焦点在y 轴上,焦距为 8,a = 2 .复习 2:前面我们学习了椭圆的哪些几何性质?二、新课导学:学习探究?问题 2:实轴与虚轴等长的双曲线叫___________ 双曲线.等轴双曲线a=b,渐近线方程为________,离心率=_________.[预习自测] 1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±32x B .y =±23x C .y =±94x D .y =±49x 2.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( )A 、192522=-y xB 、192522=-y x 或192522=-x y C 、13610022=-y x D 、13610022=-y x 或13610022=-x y 3.下列曲线的离心率为26的是( ) A 、14222=-y x B 、12422=-y x C 、16422=-y x D 、110422=-y x 4.双曲线204522-=-x y 的实轴长为 ,虚轴长为 ,渐近线方程为 ,离心率为 。

请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学探究解决。

[合作探究 展示点评]探究一:双曲线简单几何性质例1:求双曲线14491622=-y x 的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程。

探究二:由性质求方程 例2:求双曲线的标准方程: (1)实轴的长是10,虚轴长是8,焦点在x 轴上;(2)焦距是10,虚轴长是8,焦点在y 轴上;例3: 点 M (x , y ) 到定点 F (5,0) 的距离和它到定直线l :516x 的距离的比是常数45,求点M 的轨迹。

高二数学(人教A版)选修1-1导学案设计:2.2.2双曲线的简单几何性质(无答案)

高二数学(人教A版)选修1-1导学案设计:2.2.2双曲线的简单几何性质(无答案)

编号:gswhsxxx1-1----02-04文华高中高二数学选修1-1§2.1《双曲线的简单几何性质》导学案学习目标初步掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质.重点难点重点:双曲线的简单几何性质 难点:对渐近线的理解 学习方法类比椭圆,数形结合 情感态度与价值观通过坐标系把数与形有机联系起来,通过研究双曲线等圆锥曲线的方程得到圆锥曲线的几何性质,形成研究曲线的一般方法学习过程一、自学探究(预习教材49页至51页)双曲线的简单几何性质:(1)焦点在x 轴上 :12222=-b y a x )0,0(>>b a (2)焦点在y 轴上122=-bx a y焦点:1F ( )、2F ( ) 焦点:1F ( )、2F ( ) 焦距: 12____F F = 焦距: 12______F F = 范围:R y a x a x ∈≥-≤,或 范围:R x a y a y ∈≥-≤,或 对称性:由图形可观察双曲线关于___轴、____轴成轴对称,关于_______成中心对称 实顶点:1A ( )、2A ( ) 实顶点:1A ( )、2A ( ) 虚顶点:1B ( )、2B ( ) 虚顶点:1B ( )、2B ( )轴:实轴长12_______A A = 虚轴长12______B B =(a 总表示实半轴长,b 总表示虚半轴长)离心率: 2222211()c a b b be a a a a+===+=+越大,开口越_____xyQ B 1B 2A 1A 2N M Oa 、b 、c 的关系:___________________ (数形结合记忆)渐近线:____________ 渐近线:__________等轴双曲线的离心率为 ;等轴双曲线的两条渐近线的夹角是 .二、例题探究(教材51页例3)例1求双曲线14416922=-x y 的顶点坐标、焦点坐标、实半轴长、虚半轴长、离心率和渐近线方程,并作出草图.三、合作探究例2 求满足下列条件的双曲线方程(1)顶点在x 轴上,两顶点的距离是8,54e =; (2)焦点在y 轴上,渐近线方程为034=±y x ,焦距为10.四、展示提升1.求下列双曲线的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程。

【精品教案】高中数学选修1-1第二章《双曲线的几何性质》学案1

【精品教案】高中数学选修1-1第二章《双曲线的几何性质》学案1
注意:从双曲线的方程如何验证?
2.对称性:是双曲线的对称轴,是双曲线 的对称中心,双曲线的对称中心叫做。
3.顶点:双曲线和 轴有两个交点是,他们是双曲线 的顶点。
4.渐近线:他们是如何确立的?
◇自学测试◇
1、叫做等轴双曲线;等轴双曲线的渐近线是。
2、双曲线的离心率是
3、求双曲线 的实半轴和虚半轴长、焦点坐标、渐近线方程。
2.2.2双曲线的几何性质(一)
课型:新授课 时间: 月 日
学习札记
◇预习目标◇
1、掌握双曲线标准方程中a、b、c、e之间的关系;
2、了解双曲线的渐近线的概念和证明;
3、尝试用对比的方法分析双曲线的范围、对称性、顶点等几何性质。
◇问题引导,自我探究◇
以双曲线标准方程 为例进行说明。
1.范围:观察双曲线的草图,可以直观看出曲线在坐标系中的范围:双曲线在两条直线 的外侧。
说明:①由c>a>0可得e>1;
②双曲线的离心率越大,它的开口越阔.
探究二:
课本51页例3
双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面(见课本),它的最小半径为 ,上口半径为 ,下口半径为 ,高 ,选择适当的坐标系,求出此双曲线的方程(精确到 )
探究三:
例3.求与双曲线 有共同渐近线,且过点 的双曲线的方程。
令 ,没有实根,因此双曲线和y轴没有交点。
1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),
双曲线的顶点分别是实轴的两个端点。
2)实轴:线段 叫做双曲线的实轴,它的长等于 叫做双曲线的实半轴长。
虚轴:线段 叫做双曲线的虚轴,它的长等于 叫做双曲线的虚半轴长。
在作图时,我们常常把虚轴的两个端点画上(为要确定渐进线),但要注意他们并非是双曲线的顶点。

数学选修1-1人教A教案导学案:双曲线的几何性质

数学选修1-1人教A教案导学案:双曲线的几何性质

1. 1.2双曲线的几何性质课前预习学案一、预习目标理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.二、预习内容1、双曲线的几何性质及初步运用.类比椭圆的几何性质.2.双曲线的渐近线方程的导出和论证.观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、教学过程(一)复习提问引入新课1.椭圆有哪些几何性质,是如何探讨的?请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.2.双曲线的两种标准方程是什么?再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标下面我们类比椭圆的几何性质来研究它的几何性质.(二)类比联想得出性质(性质1~3)引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发)(三)问题之中导出渐近线(性质4)在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想.接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?下面,我们来证明它:双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线.(四)离心率(性质5)由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.(五)练习与例题1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.请一学生演板,其他同学练习,教师巡视,练习毕予以订正.由此可知,实半轴长a=4,虚半轴长b=3.焦点坐标是(0,-5),(0,5).本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:化简得:(c2-a2)x2-a2y2=a2(c2-a2).这就是双曲线的标准方程.由此例不难归纳出双曲线的第二定义.(六)双曲线的第二定义1.定义(由学生归纳给出)平面内点M与一定点的距离和它到一条直线的距离的比是常数e=叫做双曲线的准线,常数e是双曲线的离心率.2.说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结.五、布置作业1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程.点到两准线及右焦点的距离.六、板书设计1.1.2双曲线的几何性质学案一、课前预习目标理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.二、预习内容1、双曲线的几何性质及初步运用.类比椭圆的几何性质.2.双曲线的渐近线方程的导出和论证.观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究1、椭圆与双曲线的几何性质异同点分析2、描述双曲线的渐进线的作用及特征3、描述双曲线的离心率的作用及特征4、例、练习尝试训练:例1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解:解:5、双曲线的第二定义1).定义(由学生归纳给出)2).说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结.作业:1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程.点到两准线及右焦点的距离.。

高中数学 2.2.6双曲线的简单几何性质教案 新人教A版选修1-1最新修正版

高中数学 2.2.6双曲线的简单几何性质教案 新人教A版选修1-1最新修正版

甘肃省金昌市第一中学2014年高中数学 2.2.6双曲线的简单几何性质教案 新人教A 版选修1-1了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.◆ 过程与方法目标(1)复习与引入过程 引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过56P 的思考问题,探究双曲线的扁平程度量椭圆的离心率.〖板书〗§2.2.2双曲线的简单几何性质.(2)新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质①范围:由双曲线的标准方程得,222210y x b a=-≥,进一步得:x a ≤-,或x a ≥.这说明双曲线在不等式x a ≤-,或x a ≥所表示的区域;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心; ③顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴; ④渐近线:直线b y x a=±叫做双曲线22221x y a b -=的渐近线; ⑤离心率: 双曲线的焦距与实轴长的比ac e =叫做双曲线的离心率(1e >). (iii )例题讲解与引申、扩展例3 求双曲线22916144y x -=的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程. 分析:由双曲线的方程化为标准方程,容易求出,,a b c .引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在y 轴上的渐近线是a y x b=±. 扩展:求与双曲线221169x y -=共渐近线,且经过()3A -点的双曲线的标准方及离心率. 解法剖析:双曲线221169x y -=的渐近线方程为34y x =±.①焦点在x 轴上时,设所求的双曲线为22221169x y k k -=,∵()3A -点在双曲线上,∴214k =-,无解;②焦点在y 轴上时,设所求的双曲线为22221169x y k k -+=,∵()3A -点在双曲线上,∴214k =,因此,所求双曲线的标准方程为221944y x -=,离心率53e =.这个要进行分类讨论,但只有一种情形有解,事实上,可直接设所求的双曲线的方程为()22,0169x y m m R m -=∈≠. 例 4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为12m ,上口半径为13m ,下口半径为25m ,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m ).解法剖析:建立适当的直角坐标系,设双曲线的标准方程为22221x y a b-=,算出,,a b c 的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,a b c 的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在P 处堆放着刚购买的草皮,现要把这些草皮沿着道路PA或PB 送到呈矩形的足球场ABCD 中去铺垫,已知150AP m =,100BP m =,60BC m =,60APB ∠=.能否在足球场上画一条“等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则PA AM PB BM +=+,即50BM AM AP BP -=-=(定值),∴“等距离”线是以A 、B 为焦点的双曲线的左支上的一部分,容易“等距离”线方程为()2213525,0606253750x y x y -=-≤≤-≤≤.理由略. 例5 如图,设(),M x y 与定点()5,0F 的距离和它到直线l :165x =的距离的比是常数54,求点M 的轨迹方程.分析:若设点(),M x y ,则MF =,到直线l :165x =的距离165d x =-,则容易得点M 的轨迹方程. 引申:用《几何画板》探究点的轨迹:双曲线若点(),M x y 与定点(),0F c 的距离和它到定直线l :2a x c=的距离比是常数c e a =()0c a >>,则点M 的轨迹方程是双曲线.其中定点(),0F c 是焦点,定直线l :2a x c=相应于F 的准线;另一焦点(),0F c '-,相应于F '的准线l ':2a x c=-. ◆ 情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.◆能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.(2) 思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.。

高中数学 2.3.2双曲线的简单几何性质(1)导学案 新人教版选修1-1(1)

高中数学 2.3.2双曲线的简单几何性质(1)导学案 新人教版选修1-1(1)

§2.3.2双曲线的简单几何性质(1) 学习目标 1.理解并掌握双曲线的几何性质.学习过程一、课前准备:(预习教材理P 56~ P 58,文P 49~ P 51找出疑惑之处) 复习1:写出满足下列条件的双曲线的标准方程: ①3,4a b ==,焦点在x 轴上;②焦点在y 轴上,焦距为8,2a =.复习2:前面我们学习了椭圆的哪些几何性质?二、新课导学:※ 学习探究问题1:由椭圆的哪些几何性质出发,类比探究双曲线22221x y a b -=的几何性质?范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( ).实轴,其长为 ;虚轴,其长为 . 离心率:1ce a =>.渐近线: 双曲线22221x y a b -=的渐近线方程为:0x y a b±=. 问题2:双曲线22221y x a b-=的几何性质? 图形:范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( )实轴,其长为 ;虚轴,其长为 .离心率:1c e a=>. 渐近线:双曲线22221y x a b-=的渐近线方程为: . 新知:实轴与虚轴等长的双曲线叫 双曲线.※ 典型例题例1求双曲线2214925x y -=的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.变式:求双曲线22916144y x -=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.例2求双曲线的标准方程:⑴实轴的长是10,虚轴长是8,焦点在x轴上;⑵离心率2e=,经过点(5,3)M-;⑶渐近线方程为23y x=±,经过点9(,1)2M-.※动手试试练1.求以椭圆22185x y+=的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.练2.对称轴都在坐标轴上的等到轴双曲线的一个焦点是1(6,0)F-,求它的标准方程和渐近线方程.三、总结提升:※ 学习小结 双曲线的图形、范围、顶点、对称性、离心率、渐近线. ※ 知识拓展 与双曲线22221x y a b -=有相同的渐近线的双曲线系方程式为2222x y a b λ-= (0)λ≠ 学习评价※ 当堂检测1.双曲线221168x y -=实轴和虚轴长分别是( ) A .8、42 B .8、22C .4、42D .4、222.双曲线224x y -=-的顶点坐标是 ( )A .(0,1)±B .(0,2)±C .(1,0)±D .(2,0±)3.双曲线22148x y -=的离心率为 ( ) A .1 B 23.24.双曲线2241x y -=的渐近线方程是 .5.经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的方程是 . 课后作业1.求焦点在y 轴上,焦距是16,43e =的双曲线的标准方程.2.求与椭圆2214924x y +=有公共焦点,且离心率54e =的双曲线的方程.。

高中数学人教B版选修1-1导学案:2.2.2双曲线的几何性质Word版

高中数学人教B版选修1-1导学案:2.2.2双曲线的几何性质Word版

2.2.2双曲线的几何性质学习目标:1使学生能根据双曲线的标准方程指出双曲线的范围,顶点和对称轴及对称中心,理解实轴、虚轴的意义2 让学生能熟练掌握基本量c b a ,,之间的关系及其几何意义,理解并掌握双曲线离心率的定义,了解等轴双曲线的概念及其简单性质3.使学生掌握双曲线的渐近线的概念及其几何意义,并会利用渐近线来解相关的双曲线的问题德育目标:通过本节课的学习,使学生进一步体会曲线与方程的对应关系,感受圆锥曲线在刻画现实世界和解决实际问题中的作用重点:通过类比椭圆的几何性质及研究方法,结合双曲线的几何图形,学习探究双曲线的几何性质难点:了解双曲线的渐近线及离心率对双曲线的影响活动一:自主预习,知识梳理一.焦点在x 轴,y 轴上的双曲线的几何性质与特征的比较二.双曲线的离心率对开口大小的影响双曲线的离心率ac e =反映了双曲线开口的大小,e 越大,双曲线的开口就活动二:问题探究不同的双曲线,渐近线能相同吗?其方程有何特点?活动三:要点导学,合作探究要点一:利用双曲线的标准方程研究其几何性质例1:求双曲线14491622=-y x 的实轴长和虚轴长、顶点坐标、焦点坐标、渐近线方程P54练习A-1要点二、利用椭圆的几何性质求其标准方程例2:已知双曲线的焦点在x 轴上,中心在原点,如果焦距为8,实轴长为6,求此双曲线的标准方程及其渐近线的方程,并画出它的图形练习:P54A-2要点三 与双曲线渐近线有关的问题例3:(1)已知双曲线122=-ny m x 的一条渐近线方程为x y 34=,则该双曲线的离心率e 为 (2)求与双曲线116922=-y x 有共同的渐近线,且过点(-3,32)的双曲线的标准方程练习:P54 B-2要点四:与双曲线的离心率有关的问题例4:(1)设21,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左右焦点,若双曲线上存在点A ,使9021=∠AF F ,且213AF AF =,则双曲线的离心率为 ( ) A.25 B.210 C.215 D.5(2)设双曲线)0(12222>>=-a b by a x 的半焦距为c ,直线l 过),0(),0,(b a 两点,已知原点到直线l 的距离为c 43,求双曲线的离心率。

高中数学选修1-1优质学案:第1课时 双曲线的简单几何性质

高中数学选修1-1优质学案:第1课时 双曲线的简单几何性质

2.2.2 双曲线的简单几何性质第1课时双曲线的简单几何性质学习目标1.了解双曲线的简单性质,如范围、对称性、顶点、渐近线和离心率等.2.能用双曲线的简单性质解决一些简单问题.3.能区别椭圆与双曲线的性质.知识点一双曲线的几何性质知识点二等轴双曲线思考在双曲线标准方程中,若a=b,其渐近线方程是什么?[答案]y=±x.梳理实轴和虚轴等长的双曲线叫做等轴双曲线,它的渐近线是y=±x.1.双曲线有四个顶点,分别是双曲线与其实轴及虚轴的交点.(×) 2.双曲线的离心率越大,双曲线的开口越开阔.(√)3.方程y2a2-x2b2=1(a>0,b>0)的渐近线方程为y=±ba x.(×)4.等轴双曲线的离心率为 2.(√)类型一 双曲线的几何性质例1 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率、渐近线方程.考点 双曲线的几何性质题点 由双曲线的方程研究几何性质 解 将9y 2-4x 2=-36化为标准方程x 29-y 24=1,即x 232-y 222=1,∴a =3,b =2,c =13. 因此顶点为A 1(-3,0),A 2(3,0), 焦点为F 1(-13,0),F 2(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =c a =133,渐近线方程为y =±b a x =±23x .反思与感悟 讨论双曲线的几何性质,先要将双曲线方程化为标准形式,然后根据双曲线两种形式的特点得到几何性质.跟踪训练1 求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、顶点坐标、渐近线方程、离心率.考点 双曲线的几何性质题点 由双曲线的方程研究几何性质 解 将方程x 2-3y 2+12=0化为标准方程y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4.∴双曲线的实轴长2a =4,虚轴长2b =4 3.焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2.类型二 由双曲线的几何性质求标准方程例2 求满足下列条件的双曲线的标准方程: (1)以直线2x ±3y =0为渐近线,过点(1,2);(2)与双曲线y 24-x 23=1具有相同的渐近线,且过点M (3,-2);(3)过点(2,0),与双曲线y 264-x 216=1离心率相等;(4)与椭圆x 225+y 216=1有公共焦点,离心率为32.考点 双曲线性质的应用 题点 由双曲线的几何性质求方程解 (1)方法一 由题意可设所求双曲线方程为4x 2-9y 2=λ(λ≠0),将点(1,2)的坐标代入方程解得λ=-32.因此所求双曲线的标准方程为y 2329-x 28=1.方法二 由题意可设所求双曲线方程为x 2m -y 2n=1(mn >0).由题意,得⎩⎨⎧1m -4n=1,n m =49,解得⎩⎪⎨⎪⎧m =-8,n =-329.因此所求双曲线的标准方程为y 2329-x 28=1.(2)设所求双曲线方程为y 24-x 23=λ(λ≠0).由点M (3,-2)在双曲线上,得44-93=λ,λ=-2.故所求双曲线的标准方程为x 26-y 28=1.(3)当所求双曲线的焦点在x 轴上时,可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x 24-y 2=1;当所求双曲线的焦点在y 轴上时,可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去).综上可知,所求双曲线的标准方程为x 24-y 2=1.(4)方法一 由椭圆方程可得焦点坐标为(-3,0),(3,0),即c =3且焦点在x 轴上. 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).因为e =1=c a =32,所以a =2,则b 2=c 2-a 2=5,故所求双曲线的标准方程为x 24-y 25=1.方法二 因为椭圆焦点在x 轴上,所以可设双曲线的标准方程为x 225-λ-y 2λ-16=1(16<λ<25).因为e =32,所以λ-1625-λ=94-1,解得λ=21.故所求双曲线的标准方程为x 24-y 25=1.反思与感悟 (1)根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选择方程的形式. (2)巧设双曲线方程的六种方法与技巧.①焦点在x 轴上的双曲线的标准方程可设为x 2a 2-y 2b2=1(a >0,b >0).②焦点在y 轴上的双曲线的标准方程可设为y 2a 2-x 2b2=1(a >0,b >0).③与双曲线x 2a 2-y 2b 2=1共焦点的双曲线方程可设为x 2a 2-λ-y 2b 2+λ=1(λ≠0,-b 2<λ<a 2).④与双曲线x 2a 2-y 2b 2=1具有相同渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).⑤渐近线为y =kx 的双曲线方程可设为k 2x 2-y 2=λ(λ≠0). ⑥渐近线为ax ±by =0的双曲线方程可设为a 2x 2-b 2y 2=λ(λ≠0). 跟踪训练2 求满足下列条件的双曲线的标准方程: (1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分; (3)焦点在x 轴上,离心率为2,且过点(5,4). 考点 双曲线性质的应用 题点 由双曲线的几何性质求方程 解 (1)由题意知,2b =8,c a =53,又c 2=a 2+b 2,∴a =3,b =4, 故双曲线方程为x 29-y 216=1.(2)由题意知,2a =6,2c =4a =12, 又b 2=c 2-a 2, ∴a 2=9,b 2=27,∴双曲线方程为x 29-y 227=1或y 29-x 227=1.(3)∵ca=2,∴双曲线为等轴双曲线,则可设双曲线方程为x 2-y 2=λ(λ>0), 将点(5,4)代入双曲线方程,得λ=9, ∴双曲线方程为x 29-y 29=1.类型三 与双曲线有关的离心率问题 命题角度1 求双曲线离心率的值例3 双曲线的两条渐近线的夹角为60°,则双曲线的离心率为( ) A .2或233B .2 C.233D. 3考点 双曲线的几何性质 题点 求双曲线的离心率 [答案] A[解析] 因为双曲线的两条渐近线的夹角为60°,所以有以下两种情况(以焦点在x 轴上为例):(1)如图①所示,其中一条渐近线的倾斜角为60°;(2)如图②所示,其中一条渐近线的倾斜角为30°.所以该渐近线的斜率为k =3或k =33.当双曲线焦点在x 轴上时, 有b a =3或b a =33. 因为b 2=c 2-a 2,所以c 2-a 2a 2=3或c 2-a 2a 2=13,所以e 2=4或e 2=43,得e =2或e =233;同理,当双曲线焦点在y 轴上时, 则a b =3或a b =33, 所以b a =33或ba = 3.同理可得e =233或e =2.故选A.反思与感悟 求双曲线离心率的常见方法 (1)依据条件求出a ,c ,再计算e =ca.(2)依据条件建立参数a ,b ,c 的关系式,一种方法是消去b 转化为离心率e 的方程求解,另一种方法是消去c 转化成含b a 的方程,求出ba后,利用e =1+⎝⎛⎭⎫b a 2求解.跟踪训练3 双曲线x 2a 2-y 2b 2=1(0<a <b )的半焦距为c ,直线l 过A (a,0),B (0,b )两点,且原点到直线l 的距离为34c .则双曲线的离心率为________. 考点 双曲线的几何性质 题点 求双曲线的离心率 [答案] 2[解析] 如图所示,在△OAB 中, |OA |=a ,|OB |=b ,|OE |=34c , |AB |=a 2+b 2=c .因为|AB |·|OE |=|OA |·|OB |, 所以c ·34c =ab ,即34(a 2+b 2)=ab , 两边同除以a 2,得34⎝⎛⎭⎫b a 2-b a +34=0, 解得b a =3或b a =33(舍去).所以e =c a=a 2+b 2a 2=1+⎝⎛⎭⎫b a 2=2.命题角度2 求离心率的取值范围例4 已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a ,b >0)的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2为钝角三角形,则该双曲线的离心率e 的取值范围为( ) A .(1,+∞) B .(2+1,+∞) C .(1,2+1) D .(1,3)考点 双曲线的几何性质 题点 求双曲线离心率的取值范围 [答案] B[解析] 由题设条件可知△ABF 2为等腰三角形,且AF 2=BF 2, 只要∠AF 2B 为钝角即可.由题设可得AF 1=b 2a ,所以有b 2a >2c ,即2ac <c 2-a 2,解得e ∈(1+2,+∞). 故选B.反思与感悟 求离心率的取值范围技巧 (1)根据条件建立a ,b ,c 的不等式;(2)通过解不等式得c a 或ba的取值范围,求得离心率的取值范围.跟踪训练4 若在双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支上到原点O 和右焦点F 距离相等的点有两个,则双曲线的离心率的取值范围为________. 考点 双曲线的几何性质 题点 求双曲线离心率的取值范围 [答案] (2,+∞)[解析] 由于到原点O 和右焦点F 距离相等的点在线段OF 的垂直平分线上,其方程为x =c2.依题意,在双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,所以直线x =c 2与右支有两个交点,故应满足c 2>a ,即ca>2,得e >2.1.双曲线2x 2-y 2=8的实轴长是( ) A .2B .22C .4D .4 2考点 双曲线的几何性质题点 由双曲线的方程研究几何性质[答案] C[解析] 双曲线的标准方程为x 24-y 28=1,故实轴长为4.2.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( )A.x 225-y 29=1B.x 225-y 29=1或y 225-x 29=1C.x 2100-y 236=1D.x 2100-y 236=1或y 2100-x 236=1考点 双曲线性质的应用题点 由双曲线的几何性质求方程[答案] B[解析] 由题意知,a =5,b =3,∴双曲线标准方程为x 225-y 29=1或y 225-x 29=1.3.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于() A.3414B.324 C.32D.43考点 双曲线的几何性质题点 求双曲线的离心率[答案] C[解析] 由题意知a 2+5=9, 解得a =2,则e =c a =32.4.双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )A.22B.12C .1 D. 2考点 双曲线的几何性质题点 由双曲线的方程研究几何性质[答案] A[解析] 双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线y =±x ,所以x ±y =0,所以顶点到渐近线的距离为d =|±1±0|2=22. 5.已知双曲线x 29-y 2m=1的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( ) A .y =±34x B .y =±43x C .y =±223x D .y =±324x 考点 双曲线性质的应用题点 以离心率或渐近线为条件的简单问题[答案] B[解析] 根据题意,双曲线的方程为x 29-y 2m=1,则其焦点在x 轴上,直线x +y =5与x 轴交点的坐标为(5,0),则双曲线的焦点坐标为(5,0),则有9+m =25,解得m =16,则双曲线的方程为x 29-y 216=1,其渐近线方程为y =±43x ,故选B.1.渐近线是双曲线特有的性质,两方程联系密切,把双曲线的标准方程x 2a 2-y 2b2=1(a >0,b >0)右边的常数“1”换为“0”,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ,再结合其他条件求得λ就可得双曲线方程.2.准确画出几何图形是解决[解析]几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.。

人教课标版高中数学选修1-1《双曲线的简单几何性质》教学设计

人教课标版高中数学选修1-1《双曲线的简单几何性质》教学设计

选修1-12.2.2双曲线的简单几何性质一、教学目标 1.核心素养培养直观想象、逻辑推理、数学建模、数据分析素养 2.学习目标(1)类比椭圆的性质,能根据双曲线的标准方程,了解它的简单几何性质(范围、对称性、顶点、实轴长、虚轴长等).(2)理解渐近线和离心率的定义、范围,掌握参数,,,a b c e 间的关系 (3)能运用双曲线的几何性质解决一些简单的问题. (4)了解直线与双曲线的位置关系 3.学习重点双曲线的几何性质. 4.学习难点双曲线性质的应用,渐近线的理解. 二、教学设计 (一)课前设计 1.预习任务 任务1预习教材4953P P - ,类比椭圆几何性质的研究,你认为应该研究双曲线()222210,0x y a b a b-=>>的哪些性质?如何研究这些性质? 任务2 完成53P 的练习 2.预习自测1.已知双曲线2213x y m m-=的一个焦点为()2,0,则此双曲线的实轴长为( )A .1B .3C .2D .23 答案:C解析:考查双曲线简单几何性质.2. .已知双曲线()222103x y a a -=>的离心率为2,则a =( ) A .2 B .62C .52D .1 答案:D解析:考查双曲线简单几何性质.3.椭圆222134x y n +=和双曲线222116x y n -=有共同的焦点,则双曲线的离心率为( ) A .415B .53C .43D .不能确定 答案:B解析:考查双曲线简单几何性质. (二)课堂设计 1.知识回顾1.焦点在x 轴上的双曲线的标准方程为()222210,0x y a b a b-=>>,焦点()()12,0,,0F c F c -,其中222c a b =+;2.焦点在y 轴上的双曲线的标准方程为()222210,0y x a b a b-=>>,焦点()()120,,0,F c F c -其中222c a b =+.3.()0l y kx b C F x y 直线:,与圆锥曲线:,=+=相交于1122()()A x y B x y ,,,两点,则:222121212114AB k x x k x x x x =+-=+(+)- 或21212122211114AB y y y y y y k k=+-=+(+)- 2.问题探究问题探究一 双曲线的几何性质根据双曲线的标准方程()222210,0x y a b a b-=>>研究它的性质1.(1)从形的角度看:双曲线位于直线x a =和x a =-的外侧,即在不等式x a ≤-与x a ≥所表示的平面区域内.(2)从数的角度看:利用方程研究,双曲线上点的坐标满足222210x y a b -=≥,故22x a ≥,即x a ≤-或x a ≥;这说明双曲线在不等式x a ≤-或x a ≥与所表示的平面区域内.2. (1)从形的角度看:双曲线与椭圆一样,既是中心对称图形,也是轴对称图形.(2)从数的角度看:在双曲线方程中,以-x 、-y 代替x 、y 方程不变,因此双曲线是以x 轴、y 轴为对称轴的轴对称图象;也是以原点为对称中心的中心对称图形,这个对称中心叫做双曲线的中心.3.双曲线与它的对称轴的两个交点叫做双曲线的顶点,双曲线()222210,0x y a b a b-=>>的顶点是(,0)a ±,这两个顶点之间的线段叫做双曲线的实轴,它的长等于2a ,同时在另一条对称轴上作点()()120,,0,B b B b -,线段B 1B 2叫做双曲线的虚轴,它的长等于2b ,a 、b 分别是双曲线的实半轴长和虚半轴长. 4. 双曲线()222210,0x y a b a b -=>>各支向外延伸时,与两条直线y =±b a x 逐渐接近,但永不相交,我们把这两条直线称为双曲线的渐近线,方程为y =±ba x. 5.双曲线的半焦距c 与实半轴长a 的比叫做双曲线的离心率,其取值范围是(1,)+∞.问题探究二 能运用双曲线的几何性质解决一些简单的问题例1.求双曲线22194x y -=的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.【知识点:双曲线的几何性质】详解:222229,4,13,3,2,13a b c a b a b c ===+====, 顶点()()123,0,3,0A A -,焦点()()1213,0,13,0F F -,实轴长26a =,虚轴长24b = 离心率133c e a ==, 在方程22194x y -=中将1换成0,得22094x y -=,即032x y±=. ∴23y x =±为双曲线的渐近线方程.变式引伸:已知双曲线的渐近线方程为43y x =±,并且焦点都在圆22100x y +=上,求双曲线方程.解法一:(1)当焦点在x 轴上时,设双曲线方程为22221x y a b-=,因为渐近线方程为43y x =±,则43b a =.又由焦点在圆22100x y +=上知10c =,所以222100a b c +==,可求得6a =,8b =.所求双曲线方程为2213664x y -=. (2)当焦点在y 轴上时,设双曲线方程为22221y x a b-=.由题设得22210043a b c a b ⎧+==⎪⎨=⎪⎩,解得:8,6a b ==.焦点在y 轴上时,双曲线方程为2216436y x -=. 综上所述,所求双曲线方程为2213664x y -=或2216436y x -=. 解法二:因为双曲线的渐近线方程为43y x =±.设双曲线方程为222234x y λ-=(0)λ≠. 又焦点都在圆22100x y +=上,所以2100c =.则22(3)(4)100λλ+=.解得4λ=±.所求双曲线方程为2222434x y -=±.即:2213664x y -=±. 点拔:双曲线与其渐近线的关系是:以0x ya b±=为渐近线的双曲线系方程为2222(0)x y a b λλ-=≠;双曲线2222(0)x y a b λλ-=≠的渐近线方程为0x y a b±=. 例2.求与双曲线221916x y -=有共同的渐近线,且经过点(3,23)M -的双曲线的方程.【知识点:双曲线的标准方程及几何性质】详解:设所求双曲线方程为22(0)916x y λλ-=≠,由于双曲线过点(3,23)M -,有:22(3)(23)19164λ-=-=.故双曲线方程为2219164x y -=,即:221944x y -=. 点拔:与双曲线22221x y a b-=有共同渐近线的双曲线方程可设为2222(0)x y a b λλ-=≠的形式.当λ的值为正时,焦点在x 轴上,为负时焦点在y 轴上.例3.设双曲线22221x y a b-=(0)a b <<的半焦距为c ,直线l 过(,0)(0,)a b 、两点,且原点到直线l 的距离为34c ,求双曲线的离心率. 解:由直线l 过(,0)(0,)a b 、两点,得l 的方程为0bx ay ab +-=. 由点到l 的距离为34c ,得2234ab c a b=+.将22b c a =-代入,平方后整理得:2222216()1630a a c c -⨯+=.令22a x c=,则:2161630x x -+=,解得34x =或14x =. 由ce a =得,1e x =.故233e =或2e =. 因为0a b <<,故222212c a b b e a a a+===+>.所以应舍去233e =. 故所求离心率为2e =.点拔:此题易得出错误答案2e =或233e =,其原因是未注意到题设条件0a b <<,从而离心率2e >,而2323<,应舍去. 问题探究三 直线与双曲线的位置关系1.设直线方程为y kx m =+,双曲线22221(0,0)x y a b a b -=>>,联立方程得22221y kx m x y a b =+⎧⎪⎨-=⎪⎩消去y 并化简()22222222220b a k x a mkx a m a b ----=①当2220b a k -=,即bk a =±时,直线与渐近线平行,则直线与双曲线只有一个公共点.②当2220b a k -≠,即bk a ≠±时,0∆>⇔直线与双曲线相交⇔直线与双曲线有两个公共点; 0∆=⇔直线与双曲线相切⇔直线与双曲线有且只有一个公共点 0∆<⇔直线与双曲线相离⇔直线与双曲线无公共点 2.弦长问题设直线方程为y kx m =+,双曲线22221(0,0)x y a b a b -=>>于点()()111222,,P x y P x y 两点,则()()22121212PP x x y y =-+-()221212121y y x x x x ⎡⎤⎛⎫-⎢⎥=-+ ⎪-⎢⎥⎝⎭⎣⎦()()22121x x k =-+2121k x x =+-()22121214kx x x x =++-同理可得1212211PP y y k =+-()212122114y y y y k=++-()0k ≠3.双曲线的通径过双曲线的焦点且垂直于实轴的直线被双曲线截得的弦称为双曲线的通径,通径长为22b a.例4.过点(8,1)P 的直线与双曲线2244x y -=相交于A 、B 两点,且P 是线段AB 的中点,求直线AB 的方程.【知识点:双曲线的几何性质,直线与双曲线的位置关系】详解一:设A 、B 的坐标分别为11(,)x y 、22(,)x y .则:221144x y -= ①222244x y -= ②①-②得:12121212()()4()()0x x x x y y y y +--+-=.∵P是线段AB 的中点, ∴121216,2x x y y +=+= . ∴1212121224()y y x xx x y y -+==-+.∴直线AB 的斜率为2. ∴直线AB 的方程为12(8)y x -=-. 即2150x y --=.详解二:设A (,)x y ,则B (16,2)x y --. ∵A 、B 为双曲线上的点, ∴2244x y -= ①22(16)4(2)4x y ---= ②①-②得2321616160x y --+=. 整理得2150x y --=.例5.已知曲线C :221x y -=及直线l :1y kx =-. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A 、B 两点,O 是原点,且△OAB 的面积为2,求实数k 的值.【知识点:双曲线的几何性质,直线与双曲线的位置关系】 详解:(1)曲线C与直线l 有两个不同的交点.则方程组2211x y y kx ⎧-=⎨=-⎩有两个不同的解,整理得:22(1)220k x kx -+-=,此方程必有两个不等的实根1x 、2x .∴22210△48(1)0k k k ⎧-≠⎪⎨=+->⎪⎩. 解得22k -<<且1k ≠±时,曲线C 与直线l 有两个不同的交点. (2)设交点A 11(,)x y 、B 22(,)x y ,直线l 与y 轴交于点D (0,-1).∴1221222121k x x k x x k -⎧+=⎪⎪-⎨-⎪⋅=⎪-⎩. ∵△△△121()2OAB OAD OBD S S S x x =+=+12122x x =-=.∴2212()(22)x x -=, 即22228811k k k-⎛⎫+= ⎪--⎝⎭.解得0k =或62k =±. 又∵22k -<<且1k ≠±,∴0k =或62k =±时,△OAB 的面积为2. 3.课堂总结 【知识梳理】椭圆、双曲线的标准方程的区别和联系双曲线的几何性质与椭圆的几何性质有不少相同或类似之处,要注意它们的区别与联系,不能混淆,列表如下 椭圆双曲线方程()2222+10,0x y a b a b=>> ()222210,0x y a b a b-=>> 图形范围 b y a ≤≤||,|x | R y a x ∈≥,||对称性对称轴:x 轴、y 轴对称中心:原点对称轴:x 轴、y 轴 对称中心:原点顶点 轴长 ,0,0(0,)0,a a b b ()、()、()--长轴长2a ,短轴长2b,0,0a a ()、()-实轴长2a虚轴长2b离心率 ,(01)ce e a=<< ,(1)ce e a=>渐近线无 有两条,其方程为b y x a=±【重难点突破】 1.双曲线的渐近线(1)对圆锥曲线来说,渐近线是双曲线的特有性质,画双曲线时应先画出它的渐近线.(2)要明确双曲线的渐近线是哪两条直线,过双曲线实轴的两个端点与虚轴的两个端点分别作对称轴的平行线,它们围成一个矩形,其两条对角线所在直线即为双曲线的渐近线.(3)“渐近”两字的含义:当双曲线的各支向外延伸时,与这两条直线逐渐接近,接近的程度是无限的.(4)根据双曲线的标准方程求它的渐近线方程的方法:把标准方程中“1”用“0”替换得出的两条直线方程,即双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为02222=-b y a x 即by x a =±;双曲线22221(0,0)y x a b a b -=>>的渐近线方程为22220y x a b -=,即a y x b=±. (5)渐近线是刻画双曲线的一个重要概念,根据双曲线的渐近线方程可设出双曲线方程.渐近线为ny x m=的双曲线方程可设为:2222(0);x y m n λλ-=≠如果两条渐近线的方程为0Ax By ±=那么双曲线的方程可设为2222(0);A x B y m m -=≠与双曲线12222=-b y a x 共渐近线的双曲线方程可设为.02222)(≠=-λλby a x 2.双曲线上两个重要的三角形(1)实轴端点、虚轴端点及对称中心构成一个直角三角形,边长满足222c a b =+称为双曲线的特征三角形.(2)焦点,F 过F 作渐近线的垂线,垂足为D ,则||,||,||,OF c FD b OD a OFD Δ===|亦是直角三角形,满足,||||||222OD FD OF +=也称为双曲线的特征三角形. 3.学习双曲线中应注意的几个问题:(1)双曲线是两支曲线,而椭圆是一条封闭的曲线; (2)双曲线只有两个顶点,离心率1e >;(3)等轴双曲线是一种比较特殊的双曲线,其离心率为2,实轴长与虚轴长相等,两条渐近线互相垂直;(4)注意双曲线中a b c e 、、、的等量关系与椭圆中a b c e 、、、的不同. 4.随堂检测1.已知双曲线221ax y +=的虚轴长是实轴长的2倍,则a =( )A .14-B .4-C .4D .14答案:A解析:【知识点:双曲线的标准方程及几何性质】2.已知双曲线()222210,0x y a b a b-=>>的两条渐近线相互垂直,则双曲线的离心率为( )A.3 B.2C.5 2D.2 2答案:B解析:【知识点:双曲线的标准方程及几何性质】3.已知双曲线C的焦点、顶点恰好分别是椭圆2212516x y+=的长轴端点、焦点,则双曲线的渐近线方程为()A.430x y±=B.340x y±=C.450x y±=D.540x y±=答案:A解析:【知识点:双曲线的标准方程及几何性质】4. 过双曲线2212yx-=的右焦点F作直线l交双曲线于A、B两点,若4AB=,则这样的直线有()A.1条B.2条C.3条D.4条.答案:C解析:【知识点:双曲线的几何性质,直线与双曲线的标准方程及几何性位置】5. 已知,,,a b c分别为双曲线的半实轴长、半虚轴长、半焦距,且方程20ax bx c++=无实根,则双曲线离心率e的取值范围是()A . 152e <<-B .12e <<C .13e <<D .152e <<+ 答案:D解析:【知识点:双曲线的几何性质】 由已知,04b 2<-=∆ac2222c 40,()4()10,410.c ca ac e e a a ∴--<∴--<--<即2525,1,125e e e ∴-<<+><<+又故.(三)课后作业 基础型 自在突破1.双曲线221916x y -=的一个焦点到一条渐近线的距离等于( ) A.3 B.3 C.4 D.2 答案:C解析:【知识点:双曲线的标准方程及几何性质】2.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A .22144x y -=B .22144y x -=C .22148y x -=D .22184x y -= 答案:B解析:【知识点:双曲线的标准方程及几何性质】3.双曲线与椭圆2211664x y +=有相同的焦点,它的一条渐近线为y x =-,则双曲线的方程为( ) A .2296x y -= B .22160y x -= C .2280x y -=D .2224y x -= 答案:D解析:【知识点:双曲线的标准方程及几何性质,椭圆的几何性质】4.中心在原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .54y x =±B .45y x =±C .43y x =±D .34y x =±答案:D解析:【知识点:双曲线的几何性质】5. 已知双曲线()222210,0x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A. 22154x y -=B.22145x y -= C.22136x y -=D. 22163x y -= 答案:A解析:【知识点:双曲线的标准方程及几何性质,圆的几何性质】6.双曲线()222210,0x y a b a b-=>>的两焦点分别为12F F 、,以12F F 为边作等边三角形,若双曲线恰平分三角形的另两边,则双曲线的离心率为( ) A .1+ 3B .4+2 3C .23-2D .23+2解析:【知识点:双曲线的标准方程及几何性质】 答案:A 能力型 师生共研7.设12F F 、分别为双曲线()222210,0x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近方程为( ) A .450x y ±= B .340x y ±= C .430x y ±= D .540x y ±= 答案:C解析:【知识点:双曲线的标准方程及几何性质】8.双曲线221x y -=与直线y kx =没有公共点,则k 的取值范围是______________. 答案: 11k k ≤-≥或解析:【知识点:直线与双曲线的位置关系】9.设1a >,则双曲线()222211x y a a -=+的离心率的取值范围是_________. 答案:25e <<解析:【知识点:双曲线的标准方程及几何性质】10.求与双曲线221916x y -=有共同的渐近线,且经过点(3,23)M -的双曲线的方程.答案:见解析解析:【知识点:双曲线的标准方程及几何性质】设所求双曲线方程为22(0)916x y λλ-=≠,由于双曲线过点(3,23)M -,有: 22(3)(23)19164λ-=-=.故双曲线方程为2219164x y -=,即:221944x y -=. 探究型 多维突破11. 已知F 1和F 2是双曲线()222210,0x y a b a b-=>>的左,右焦点,P 在双曲线右支上,且124PF PF =,求双曲线的离心率的取值范围. 答案:见解析解析:【知识点:双曲线的标准方程及几何性质】点P 在双曲线右支上,故有1212||||2,||4||,PF PF a PF PF 又-==所以21121228||,||.||||||,33a aPF PF PF PF F F ==+≥当且仅当三点共线时取等号.所以28102,333a a a c +=≥即53c a ≤,双曲线的离心率1e >.所以双曲线离心率的取值范围为]351,(.12. 设双曲线C :2221x y a-=(0a >)与直线l :1x y +=相交于不同的两点A 、B .(1)求双曲线C 的离心率e 的取值范围; (2)设直线l 与y 轴的交点为P ,且512PA PB =.求a 的值. 答案:见解析解析:【知识点:直线与双曲线的位置关系】(1)由C 与直线l 相交于不同的两点A 、B 得方程:22211x y a x y ⎧-=⎪⎨⎪+=⎩有两个不同的实数解.消去y 并整理得2222(1)220a x a x a -+-=. ①所以22221048(1)0a a a a ⎧-≠⎪⎨+->⎪⎩解得02a <<且1a ≠. 双曲线的离心率22111a e a a +==+. ∵02a <<且1a ≠,∴62e >且2e ≠. (2)设11(,)A x y ,22(,)B x y ,(0,1)P .∵512PA PB =, ∴11225(,1)(,1)12x y x y -=-由此得12512x x =.由于1x 、2x 是方程①的两根,且210a -≠,所以222172121a x a =--,222252121a x a=--. 消去2x 得222289160a a -=-, 由0a >得1713a =.(四) 自助餐1.双曲线2233x y -=的渐近线方程是( ) A .3y x =±B .13y x =±C .3y x =±D .33y x =± 答案:C解析:【知识点:双曲线的标准方程及几何性质】2. 已知点P 在双曲线221916x y -=上,则P 到双曲线焦点距离的最小值是( )A .9B .3C .2D .无最大值和最小值 答案:C解析:【知识点:双曲线的标准方程及几何性质】3.经过点1(,2)2P 且与双曲线2241x y -=仅有一个公共点的直线有( )A .4条B .3条C .2条D .1条 答案:A解析:【知识点:直线与双曲线的位置关系】4. 若双曲线221x y -=的右支上一点(,)P a b 到直线y x =的距离为2,则a b +的值为( )A .12-B.1 2C.1 2±D.2±答案:B解析:【知识点:双曲线的标准方程及几何性质】5. 双曲线2214x yb+=的离心率e∈(1,2),则b的取值范围是()A.012b<<B.102b-<<-C.120b-<<D.80b-<<答案:C解析:【知识点:双曲线的标准方程及几何性质】6.已知双曲线22221x ya b-=(0,0)a b>>的离心率152e+=,A与F分别是左顶点和右焦点,B点的坐标为(0,)b,则∠ABF等于()A.120B.90C.60D.30答案:B解析:【知识点:双曲线的标准方程及几何性质】7.若过双曲线2213yx-=的右焦点2F,作直线l与双曲线的两支都相交,则直线l的倾斜角α的取值范围是______________.答案:233,,⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭πππ解析:【知识点:直线与双曲线的位置关系】8.双曲线221169x y -=上有点P ,1F 、2F 是双曲线的焦点,且123F PF π∠=,则△12F PF 的面积是__________. 答案:93解析:【知识点:双曲线的标准方程及几何性质】9.已知PQ 为过双曲线的一个焦点F 且垂直于实轴的弦,F '是另一个焦点,若90PF Q '∠=,则双曲线的离心率为__________.答案:12+解析:【知识点:双曲线的几何性质】10.若双曲线的渐近线方程为230x y ±=,且两顶点间的距离为6,求该双曲线的标准方程. 答案:见解析解析:【知识点:双曲线的标准方程及几何性质】设所求双曲线方程为()22094x y λλ-=≠ 分00λλ><与讨论,焦点在x 轴上双曲线标准方程为22194x y -=,焦点在y 轴上双曲线标准方程为2241981y x -= 11.已知双曲线的中心在原点,焦点1F 、2F 在坐标轴上,离心率为2,且过点(4,10)-.(1)求此双曲线的方程;(2)若直线系30kx y k m --+=(k 为参数)所过定点M恰在双曲线上,求证:12F M F M ⊥.答案:见解析解析:【知识点:双曲线的标准方程及几何性质,直线与椭圆的位置关系】 ①2222222212c a b b e a a a +===+=, ∴1b a=.设双曲线的方程为22x y λ-=. ∵点(4,10)-在双曲线上,∴24106λ=-=.∴双曲线的方程为:226x y -=.②证明:直线系方程为:(3)()0k x m y -+-=过定点(3,)M m .∵M 在双曲线上,∴2236m -=, ∴3m =±.∴(3,3)M ±. 又∵双曲线的焦点为1(23,0)F -、2(23,0)F .∴121F M F M k k ⋅=-, ∴12F M F M ⊥.12.已知直线1y ax =+与双曲线2231x y -=交于A 、B 两点.(1)若以AB 为直径的圆过坐标原点,求实数a 的值;(2)是否存在这样的实数a ,使A 、B 两点关于直线12y x =对称?若存在,请求出a 的值;若不存在,请说明理由.答案:见解析解析:【知识点:双曲线的标准方程及几何性质,直线与椭圆的位置关系】 (1)由22131y ax x y =+⎧⎨-=⎩消去y 得: 22(3)220a x ax ---= ①依题意得:230△0a ⎧-≠⎨>⎩,解得:66a -<<且3a ≠± ②设11(,)A x y 、22(,)B x y ,则:1221222③32④3a x x a x x a ⎧+=⎪⎪-⎨-⎪•=⎪-⎩∵以AB 为直径的圆过坐标原点.∴OA ⊥OB . ∴12120x x y y += ⑤2121212()1y y a x x a x x =+++.由③④⑤得:22222(1)1033a a a a a -+⋅+⋅+=--. 解得1a =±满足②∴1a =±(2)假设存在实数a ,使A 、B 两点关于直线12y x =对称.则直线1y ax =+与12y x =垂直. ∴112a ⋅=-,即2a =-.直线l 的方程为21y x =-+. 将2a =-代入③得124x x +=.∴A 、B 中点的横坐标为2,纵坐标为2213y =-⨯+=-.但A 、B 中点(2,-3)不在直线12y x =上. 故不存在实数a ,使A 、B 两点关于直线12y x =对称. 三、 数学视野回顾椭圆定义的拓展,我们在教材第46页双曲线标准方程的推导过程中,对()()2222x c y x c y a ++--+=±和()()22222222c a x a y a c a --=-分别进行变形整理,类似可以得到.双曲线的第二定义:点P 满足,1,PF e e F l d=>∉,则P 点的轨迹为椭圆.其中F 为定点,l 为定直线,e 为离心率,d 为点P 到直线l 的距离.双曲线的第三定义:点P 满足21,1PA PB k k e e ⋅=->,则P 点的轨迹为椭圆,其中,k k分别表示点P与两定点A,B连线的斜率,e为离心率. PA PB。

高中数学 双曲线的简单性质导学案 新人教A版选修1-1

高中数学 双曲线的简单性质导学案 新人教A版选修1-1

陕西省榆林市育才中学高中数学 双曲线的简单性质导学案 新人教A版选修1-1学习目标:1.了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.2.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;3.掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念.重点、难点:理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题自主学习复习旧知1.把平面内与两个定点1F ,2F 的距离的差的绝对值等于___(小于12F F )的点的轨迹叫做双曲线(hyperbola ).其中这两个定点叫做双曲线的___,两定点间的距离叫做双曲线的___.即当动点设为M 时,双曲线即为点集P ={}122M MF MF a -=2. 写出焦点在x 轴上,中心在原点的双曲线的标准方程:______________,3.写出焦点在Y 轴上,中心在原点的双曲线的标准方程:_______________。

合作探究1.通过图像研究双曲线的简单性质: ①范围:由双曲线的标准方程得,222210y x b a=-≥,进一步得: x a ≤-,或x a ≥.这说明双曲线在不等式x a ≤-,或x a ≥所表示的区域;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心; ③顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;④渐近线:直线b y x a =±叫做双曲线22221x y a b-=的渐近线; ⑤离心率: 双曲线的焦距与实轴长的比ac e =叫做双曲线的离心率(1e >) 2.求双曲线22916144y x -=的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.3.求与双曲线221169x y -=共渐近线,且经过()3A -点的双曲线的标准方及离心率.练习反馈1.求下列双曲线的实轴和虚轴的长,焦距和离心率:(1)9x 2 — y 2=81; (2)252y - 92x =12.已知双曲线92x -162y =1与双曲线 -92x + 162y =1,它们的离心率1e ,2e 是否满足等式e 21-+e 22-=1分析:若设点(),M x y ,则M F=,到直线l :165x =的距离165d x =-,则容易得点M 的轨迹方程.图2-3-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2.2双曲线的简单几何性质(1) 学习目标 1.理解并掌握双曲线的几何性质.
学习过程
一、 课前准备:
复习1:写出满足下列条件的双曲线的标准方程: ①3,4a b ==,焦点在x 轴上;
②焦点在y 轴上,焦距为8,2a =.
复习2:前面我们学习了椭圆的哪些几何性质?
二、新课导学:
※ 学习探究
问题1:由椭圆的哪些几何性质出发,类比探究双曲线22
221x y a b -=的几何性质?
范围:x : y :
对称性:双曲线关于 轴、 轴及 都对称. 顶点:( ),( ).
实轴,其长为 ;虚轴,其长为 .
离心率:1c
e a =>.
渐近线:
双曲线22221x y a b -=的渐近线方程为:0x y
a b ±=.
问题2:双曲线22
221y x a b -=的几何性质?
图形:
范围:x : y :
对称性:双曲线关于 轴、 轴及 都对称.
顶点:( ),( )
实轴,其长为 ;虚轴,其长为 . 离心率:1c e a
=>.
渐近线:双曲线22221y x a b -=的渐近线方程为: . 新知:实轴与虚轴等长的双曲线叫 双曲线. ※ 典型例题
例1求双曲线2214925
x y -=的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.
变式:求双曲线22916144y x -=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
例2求双曲线的标准方程:
1.实轴的长是10,虚轴长是8,焦点在x 轴上;
2.离心率
e =(5,3)M -;
3.渐近线方程为23y x =±,经过点9(,1)2
M -.
※ 动手试试
练1.求以椭圆22185x y +=的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.
练2.对称轴都在坐标轴上的等到轴双曲线的一个焦点是1(6,0)F -,求它的标准方程和渐近线方程.
三、总结提升:
※ 学习小结
双曲线的图形、范围、顶点、对称性、离心率、渐近线. ※ 知识拓展
与双曲线22221x y a b -=有相同的渐近线的双曲线系方程式为2222x y a b
λ-= (0)λ≠ ※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 双曲线221168
x y -=实轴和虚轴长分别是( ) A .
8、 B .8、
C .4、
D .4、2.双曲线224x y -=-的顶点坐标是( )
A .(0,1)±
B .(0,2)±
C .(1,0)±
D .(2,0±)
3. 双曲线22148
x y -=的离心率为( )
A .1
B .
C
D .2
4.双曲线2241x y -=的渐近线方程是 .
5.经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的方程是 .
1.求焦点在y 轴上,焦距是16,43
e =的双曲线的标准方程.
2.求与椭圆2214924x y +=有公共焦点,且离心率54e =的双曲线的方程.。

相关文档
最新文档