第五章运筹学目标规划
第五章运筹学目标规划
目标约束(软约束):引入正、负偏差变量后,对各 个目标建立的目标约束方程。
c x d d kj j k k Ek j 1 n
原来的目标函数变成了约束条件的一部分,即目标约 束(软约束)
原来的目标函数,在目标规划中只是成了问题要达到的
目标之一 ,“目标利润不低于12(百元 )”, 可以表示 成 min{d1-}
利润(元/件)
I 5 4 6
II 10 4 8
资源限量 60 40
• 设产品I和II的产量分别为X1和X2,当用 线性规划来描述和解决这个问题时,其 数学模型为: max z 6 x1 8 x2
5 x1 10x2 60 4 x1 4 x2 40 x ,x 0 1 2
例1.某企业计划生产甲、乙两种产品,这些产品分别要在 A、B、C、D四种不同的设备上加工。各产品占用资源数 量,资源拥有量及产品利润见下表。问如何安排生产,才 能获得最大的总利润?
消耗 产品 甲 乙
设备
设备工作 台时
A
B C D 利润(百元/件)
2 1 4 0 2
2 2 0 4 3
12 8 16 12
解:设 x1, x2 分别表示甲乙产品的产量,则相应的线性 规划模型为: max z 2 x1 3 x2
2 x1 2 x2 12 x1 2 x2 8 s.t . 4 x1 16 4 x2 12 x1 , x2 0
它的最优解为: x1 =4, x2 =2, z =14
d+——超出目标的差值,称正偏差变量; d-——未达到目标的差值,称负偏差变量。
d+与d-两者必有一个为零
(1)d-=0,d+>0 表示实际值超出规定目标值; (2)d->0,d+=0 表示实际值未达到目标值; (3)d-=0,d+=0 表示实际值同规定目标值恰好一致。
运筹学第五章 目标规划PPT课件
李军
桂林电子科技大学商学院
第5 章 目标规划
内S容ub 提titl要e
第一节 多目标规划问题 第二节 目标规划数学模型
目标的期望值 正负偏差变量 目标达成函数 目标优先级别 第三节 目标规划的图解法 第四节 目标规划单纯形法 第五节 目标规划应用案例
2
OORR:S:SMM
6
OORR:S:SMM
第二节 目标规划的数学模型
一、目标期望值
▪ 每一个目标希望达到的期望值(或目标值、理想值)。 ▪ 根据历史资料、市场需求或上级部门的布置等来确定。
二、偏差变量
▪ 目标的实际值和期望值之间可能存在正的或负的偏差。
▪
正偏差变量
d
k
表示第k个目标超过期望值的数值;
▪
负偏差变量
d
k
(i 1.2 m )
x j 0 (j 1.2 n) d l . d l 0 (l 1.2 L )
OORR:S:SMM
试试看——目标规划模型的实例
例1 某厂生产A、B、C三种产品,装配工作在同一生产线上 完成,三种产品时的工时消耗分别为6、8、10小时,生产线 每月正常工作时间为200小时;三种产品销售后,每台可获 利分别为500、650和800元;每月销售量预计为12、10和6台。 该厂经营目标如下:
负偏差变量dk- 尽可能小,不关心超出量dk+ :minSk= dk 若允许某个目标低于期望值,但希望不超过
正偏差变量dk+尽可能小,不关心低于量dk- :minSk= dk+
四、优先等级权数
目标重要度不同,用优先等级因子Pk 表示第k等级目标。 优先等级因子Pk 是正的常数, Pk >> Pk+1 。 同一优先等级下目标的相对重要性赋以不同权数w。
运筹学第5章-目标规划
[1/2] -1 1 1/2 -1/2
1/2 0 0 -3/2 3/2 1 -1
1
1
-1/2
3/2 -3/2
1
2020/5/30
20
注意:此时, P2行仍有负检验数,要选X2进基,因为d2+
的 检验数是
p1
3 2
p2 0
。
0
0
P1 0
0
P1 P2 0
CB XB b
x1
X2
d1-
d1+ d2-
d2+ d3-
min d
5x2
d
d
15
(4) “设备B既要充分利用,又要尽量不加班”可表示
为
min d d
4x1
d
d
16
2020/5/30
10
3、目标的优先级和权系数
不同的目标重要程度不同,优先级不同;
同一层次优先级的不同目标,重要程度不同,权重不同
优先级因子:P1, P2 , P3,,...且
n
aij x j bi ,
i 1,2,....m
j1
n
clj x j
dl
d
l
gl ,
l 1,2,....L
j1
xi
0,
d
l
,
dl
0, i
1,...,m;
j
1,...L
刚性约束 柔性约束
2020/5/30
14
§5.2 目标规划的图解分析法
求解目标规划的思路: 刚性约束必须严格满足; 按优先级次序,从高层到低层逐层优化; 在不增加高层偏差值的情况下,使本层的偏差达到最小。
P1 d1- 10 [1] 0 1 -1
运筹学-目标规划
目标规划的数学模型
三.优先因子(优先等级)与优先权系数 优先因子Pk是将决策目标按其重要程度排序并表示出 来。P1>>P2>>…>>Pk>>Pk+1>>…>>PK ,k=1,2…,K。表 示Pk比Pk+1有更大的优先权。即首先保证P1级目标的实 现,这时可不考虑次级目标;而P2级目标是在实现P1级 目标的基础上考虑的;依此类推。 若要区别具有相同优先因子的两个目标的差别,这时 可分别赋予它们不同的权系数ωj,这些都由决策者按具 体情况而定。
• 优先等级法:
各目标按重要性归不同优先级而化为单目标。
• 有效解法:
寻求能照顾到各目标而使决策者感到满意的解。 但可行域大时难以列出所有有效解的组合。
• 目标规划法:
对每一个目标函数引入正的或负的偏差变量; 引入目标的优先等级和加权系数。
22
OR:SM
第二节 目标规划的数学模型
这些目标之间 相互矛盾,一 般的线性规划 方法不能求解
根据市场预测:
maxZ1=70 x1 + 120x2 minZ2= x1 maxZ3= x2 9 x1 +4 x2 ≤3600 4 x1 +5 x2 ≤ 2000 3 x1 +10 x2 ≤3000 x1 , x2 ≥0
第一节 多目标规划问题
二、多目标规划的提出
第二节 目标规划的数学模型
1.目标约束表示
n
ckj x j
d
k
-
d
k
E*
j 1
引入正负偏差变量,对各个目标建立目标约束(软约束)
例:甲乙产品的最优生产计划。
运筹学第五章 目标规划
2 x1 3x2 d3 d3 100
s.t.
4 x1 2 x2 d4 d4 128
x1
x2
40 30
l 1,2,3,4
x1 , x2 , dl , dl 0
东北林业大学
§5.1 问题的提出与目标规划模型
东北林业大学
§5.1 问题的提出与目标规划模型
二、目标规划模型
产品 甲 乙 资 源 拥有量
例5.1 问题的提出:对例1.1[某企业生 资源 2 3 100 产两种产品,需要两种原料,有关数据 A B 4 2 120 见表。如何安排生产计划可使总的收 益最大。]企业管理人员又提出如下目 单件收益 6 4 (千元) 标要求: 第一目标P1:收益不低于180千元; 第二目标P2:甲乙的产量尽量满足5:3的关系; 第三目标P3:A资源要充分利用,但不能超额。B资源可超额利用, 但最多不能超额8个单位。A、B资源的权系数分别为7和3。 由市场预测可知,甲、乙的产量不能超过40和30件。如何制定 满足上述目标要求的生产计划方案. 试建立该问题的目标规划模型。
§5.1 问题的提出与目标规划模型
请思考:目标函数怎么写? 如果这么写:
min z d1 (d2 d2 ) (d 3 d3 ) d4
目标函数:管理目标和实际可能完成的目标之间的偏差最小。
是否能反应出目标的重要性程度,或层次关系?
东北林业大学
(d1-→0) (d2-,d2+ →0) (d3-, d3+ →0) (d4+→0)
东北林业大学
§5.3 应用举例
例 5.3 问题的提出:某纺织厂生产两种布料,窗帘布和衣料。 平均生产能力是1000米/小时,正常生产能力是每周80小时。 根据市场顶测,下周的销售量为:窗帘布70000米,衣料45000 米;每米窗帘布和衣料的利润分别为2.50元和1.50元。 工厂经理考虑实际管理日标如下: P1:避免开工不足,使职工正常就业; P2:加班时间不超过10小时; P3:努力达到最大销量,即窗帘布70000米,衣料45000米;目标 相对重要性程度按两种布料利润比值确定。 P4:尽可能减少加班.
管理运筹学讲义第5章目标规划
C
•2
PPT文档演模板
• 2 • A • 6• 8 • 1 • x
管理运筹学讲义第5章目标规划 0
1
•二、升级调资问题
例 某单位领导在考虑本单位职工的升级调资方案时,依次遵 守以下规定: • (1) 不超过月工资总额60000元; • (2) 每级的人数不超过定编规定的人数; • (3) Ⅱ、Ⅲ级的升级面不低于现有人数的20%且无越级提升; • (4) Ⅲ级不足编制的人数可录用新职工,又Ⅰ级的职工中有 10%要退休。 • 有关资料汇总于表中,问该领导应如何拟订一个满意的方案。
• (4) 按单纯形法进行基变换运算,建立新的计算表,返回(2)。 • (5) 当所有检验数 j≥0时,计算结束。表中的解即为满意解。
PPT文档演模板
管理运筹学讲义第5章目标规划
例4 试用单纯形法来求解例2。 将例2的数学模型化为标准型:
PPT文档演模板
管理运筹学讲义第5章目标规划
① 取xs,d1-,d2-,d3-为初始基变量,列初始单 纯形表,见表5-1。
PPT文档演模板
管理运筹学讲义第5章目标规划
解 按决策者所要求的,分别赋予这三个目标P1,P2, P3优先因子。这问题的数学模型是:
PPT文档演模板
管理运筹学讲义第5章目标规划
目标规划的一般数学模型为
•
PPT文档演模板
为权系数。
管理运筹学讲义第5章目标规划
课堂练习:
某公司经销两种货物,售出每吨甲货物可盈利202元, 乙货物可盈利175元,各种货物每吨所占用的流动资 金为683元,公司现有流动资金1200万元,货物经销中 有8.48%的损耗。公司的决策者希望下月能达到以下 目标。 (1)第一目标:盈利5030000元以上; (2)第二目标:经销甲货物5000吨以上; (3)第三目标:经销乙货物18000吨以上; (4)第四目标:经销损耗在1950吨以下。 试问应怎样决策?
运筹学(第5章 目标规划)
解:设甲、乙产品的产量分别为x1,x2,建立线性规划模型:
max z 2x1 3x2
2x1 2x2 12
s.t
4
x1 x1
2x2
8 16
4x2 12
x1 , x2 0
其最优解为x1=4,x2=2,z*=14元
但企业的经营目标不仅仅是利润,而且要考虑多个方面,如: (1) 力求使利润指标不低于12元; (2) 考虑到市场需求,甲、乙两种产品的生产量需保持1:1的比
20x1+50x2≤90000
x1
0
1000
2000
3000
4000
5000
图2 图解法步骤2
针对优先权次高的目标建立线性规划
优先权次高(P2)的目标是总收益超过10000。 建立线性规划如下:
Min d2s.t.
20x1+50x2≤90000 0.5x1 +0.2x2-d1++d1-=700 3x1+4x2-d2++d2-=10000 d1+=0 x1,x2,d1+,d1-,d2+,d2-≥0
显然,此问题属于目标规划问题。它有两个目标变量:一是限制风险,一 是确保收益。在求解之前,应首先考虑两个目标的优先权。假设第一个目 标(即限制风险)的优先权比第二个目标(确保收益)大,这意味着求解 过程中必须首先满足第一个目标,然后在此基础上再尽量满足第二个目 标。 建立模型:
设x1、x2分别表示投资商所购买的A股票和B股票的数量。 首先考虑资金总额的约束:总投资额不能高于90000元。即 20x1+50x2≤90000。
目标规划模型的标准化
例6中对两个不同优先权的目标单独建立线性规划进行求解。为简 便,把它们用一个模型来表达,如下:
运筹学第五章_目标规划
第一节目标规划实例与模型
看起来有 点繁~ 有点 ‘烦’… … …★
因此其目标规划的数学模型: minz=p1d1++p2(d2-+d2+)+p3d3s.t 2x1+x2≤11 x1-x2+d1--d1+=0 x1+2x2+d2--d2+=10 8x1+10x2+d3--d3+=56 x1,x2≥0,di-,di+≥0,i=1,2,3
第一节目标规划实例与模型
(5)目标函数—准则函数 目标函数是由各目标约束的正负偏差变量及其相应 的优先级、权因子构成的函数,且对这个函数求极小值, 其中不包含决策变量xi.因为决策者的愿望总是希望尽可能 缩小偏差,使目标尽可能达到理想值,因此目标函数总是 极小化。有三种基本形式:
第一节目标规划实例与模型
第一节目标规划实例与模型
(4)优先级与权因子 多个目标之间有主次缓急之分,凡要求首先达到的目 标,赋于优先级p1,要求第2位达到的目标赋于优先级 p2,…设共有k0个优先级则规定 p1>>p2>>p3……Pk0>0 P1优先级远远高于p2,p3,只有当p1级完成优化后,再考 虑p2,p3。反之p2在优化时不能破坏p1级的优先值,p3级 在优化时不能破坏p1,p2已达到的优值 由于绝对约束是必须满足的约束,因此与绝对约束相 应的目标函数总是放在p1级
第一节目标规划实例与模型
该问题的决策目标是: (1)总利润最大; (2)尽可能少加工; (3)尽可能多销售电扇; (4)生产数量不能超过预销售数量。 (5)绝对目标约束。所谓绝对目标约束就是必须要严格 满足的约束。绝对目标约束是最高优先级,在考虑较低 优先级的目标之前它们必须首先得到满足。
运筹学课件 第五章-目标规划
通过分析决策变量之间的关系以及决策变量与目标值之间 的关系,建立一组目标约束。并从所有的决策目标中,找 出绝对决策目标(即,如果不满足将导致最终结果无法实 现的目标),将这些目标作为第一优先级。而后再确定其 余目标的优先级。
第三步:建立指标偏差函数
目标规划的一般模型为:
其中
xj( j 1,2,, n )为决策变量;
Pk( k 1,2,, K)为第k级优先因子; wkl , wkl 分别为第l 个目标约束的正负偏差变量的权
系数,在同一等级的目标中,根据对各因子考虑的先 后次序的不同,赋予不同权系数。
el( l 1,2,, L)为目标的预期目标值;
d1+
d11+
1
1
-1
1
1
1
1
1
-1
-1
3
-1
1
-1
单纯形方法——解决
在选择最优列时,先从检验数栏中最优等级 P1 行开始寻找最大正检验数。 如 P1行内有最大正检验数,就确定它为最优列,进行迭代。直到 P1行内检验 数没有正值为止,再转入P2 行寻找最大检验数。如此继续下去,直到所有检 验数全部检查完毕。找关键行是常数项被最优列系数除所得数的最小值所在的行。
来实现;
模型建立
指标偏离函数
第一优先级 决策目标
正偏差:决策 值超过目标值的 偏差部分
负偏差:决策 值小于目标值 的偏差部分
(mx1,ixn2 ){P1(d1
d
2
),
P2
(d3
),
P3
(d4
),
P4
(d1
1.5d
2
运筹学习题解答(chap5 目标规划)
第五章 目标规划一、建立下列问题的数学模型1、P164, 5.8 某种牌号的酒由三种等级的酒兑制而成。
已知各种等级的酒每天供应量和单位成本如下:等级I :供应量1500单位/天,成本6元/单位;等级Ⅱ:供应量2000单位/天,成本4.5元/单位; 等级Ⅲ:供应量1000单位/天,成本3元/单位。
该种牌号的酒有三种商标(红、黄、蓝)各种商标酒的混合比及售价如表所示。
确定经营目标:P1:兑制要求配比必须严格满足;P2:企业获取尽可能多的利润; P3:红色商标酒产量每天不低于2000单位。
试对此问题建立相应的目标规划模型。
解:设红黄蓝分别为1、2、3号酒,ij x 表示i 号酒中j 原料的用量。
则依题意建立如下模型:-+-+-=33222)(min d P d d P Z.3,2,3,2,1,,0,,020000)(3)(5.4)(6)(8.4)(0.5)(5.5100020001500)%(10)%(50)%(20)%(70)%(50)%(103313121122332313322212312111333231232221131211332313322212312111333231313332313323222121232221231312111113121113==≥≥=+-++=+-++-++-++-++++++++≤++≤++≤++++≥++≤++≥++≤++≥++≤-+-+-+k j i d d x d d x x x d d x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x k k ij2、P164, 5.9 某公司从三个产地1A ,2A ,3A 将产品运往四个销地1B ,2B ,3B ,4B .各产地的产量,各销地的销量,及各产地往各销地的运费单价如表所示。
运筹学第五章 目标规划
第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。
当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。
无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。
目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。
在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。
(2)模型特征。
目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。
1)正、负偏差变量,i i d d +-。
正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。
因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。
2)硬约束和软约束。
硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。
我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。
3)优先因子与权系数。
一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。
《运筹学》教案-目标规划数学模型
《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。
运筹学第五章
A 原材料(kg) 设备(台时) 2 1 B 1 2 限量 11 10
单位利润
8
10
minZ=P1 d1+ +P2 (d2-+ d2+) +P3 d3OR2 4
例2的解法
解:问题分析:找差别、定概念(与单目标规划相 比) 1)绝对约束:必须严格满足的等式约束和不 等式约束,称之为绝对约束。 2x1+1.5x2≤50 (1) (2) 2)目标约束:那些不必严格满足的等式约束和 不等式约束,称之为目标约束(软约束)。目标 约束是目标规划特有的,这些约束不一定要求严 格完全满足,允许发生正或负偏差,因此在这些 约束中可以加入正负偏差变量。
16
例4:min Z
x1 x1 s .t . x 1 x2 x1
OR2
p d p d p (2 d d x d d 40 x d d 50 d d 24 d d 30 , x ,d ,d 0 ( i 1, 2 , 3 ,4 )
OPERATIONS RESEARCH
运筹学
徐 玲
OR2
1
第五章
目标规划
要求 1、理解概念 2、掌握建模 3、掌握图解法和单纯形解法 4、理解目标规划的灵敏度分析
OR2
2
5.1目标规划的概念及数学模型1
多目标问题 多目标线性规划 产品 例1
资源 原材料(kg) 设备(台时) 单位利润
OR2 8
7)目标规划的目标函数: 目标规划的目标函数是按各约束的正、负偏 差变量和赋予相应的优先因子而构造的。 目标函数的基本形式有三种: 1、要求恰好达到目标值,即正负偏差变量都要尽 可能地小,这时, minZ=f(d++d-). 2、要求不超过目标值,即允许达不到目标值但正 偏差变量要尽可能地小,这时, minZ=f(d+). 3、要求超过目标值,即超过量不限但负偏差变量 要尽可能的小,这时, minZ=f(d-) 显然,本题目标函数表示为:
运筹学(第5章 目标规划)
解:本问题中有3个不同优先权的目标,不妨用P1、P2、P3表 示从高至低的优先权。
对应P1有两个目标:每周总耗费人力资源不能低于600工 时,也不能超过680工时;
对应P2有一个目标:每周的利润超过70000元; 对应P3有两个目标:每周产品A和B的产量分别不低于200和 120件。
采用简化模式,最终得到目标线性规划如下:
把等式转换,可得到 0.5x1 +0.2x2-d1++d1-=700。
再来考虑年收入: 年收入=3x1+4x2
引入变量d2+和d2-,分别表示年收入超过与低于10000 的数量。 于是,第2个目标可以表示为
3x1+4x2-d2++d2-=10000。
有优先权的目标函数
本问题中第一个目标的优先权比第二个目标大。即最重要的目标 是满足风险不超过700。分配给第一个目标较高的优先权P1,分配给第 二个目标较低的优先权P2。
2 x1
2x2
d
d
12
3. 目标的优先级与权系数
在一个目标规划的模型中,为达到某一目标可牺牲其他一些 目标,称这些目标是属于不同层次的优先级。优先级层次的高低 可分别通过优先因子P1,P2,…表示。对于同一层次优先级的不同 目标,按其重要程度可分别乘上不同的权系数。权系数是一个个 具体数字,乘上的权系数越大,表明该目标越重要。
Min P1(d1+)+ P1(d2-)+P2(d3-)+ P3(d4-)+ P3(2d5-) s.t.
2x1+3x2-d1++d1-=680
对应第1个目标
2x1+3x2-d2++d2-=600
运筹学05目标规划
录
目标规划实例与模型 目标规划求解方法 用Excel求解目标规划的解
目
录
目标规划实例与模型 目标规划求解方法 用Excel求解目标规划的解
一、建立模型举例:例5.1
设某公司生产两种型号的电扇,一种为普通型,装配一个 设某公司生产两种型号的电扇,一种为普通型,装配一个 需要 1 小时,另一种为豪华型,装配一个需要 2 小时。正常的 需要 1 小时,另一种为豪华型,装配一个需要 2 小时。正常的 装配时间每周限定为 40 小时。市场调查表明每周销售普通型 装配时间每周限定为 40 小时。市场调查表明每周销售普通型 不超过 30 件,豪华型不超过 15 件。普通型每件的净利润为 不超过 30 件,豪华型不超过 15 件。普通型每件的净利润为 8 元,豪华型为每件 12 元。 8 元,豪华型为每件 12 元。 公司经理提出如下优先次序的要求: 公司经理提出如下优先次序的要求: .总利润最大(显然的) 1 1 .总利润最大(显然的) .装配线尽可能少加班(避免装配线超负荷损坏) 2 2 .装配线尽可能少加班(避免装配线超负荷损坏) .销售尽可能多的电扇(这同尽可能获取最大利润一 3 3 .销售尽可能多的电扇(这同尽可能获取最大利润一 致)。 1.5 倍,因此公 致)。 由于每件豪华型的利润是普通型的 由于每件豪华型的利润是普通型的 1.5 倍,因此公 司对销售豪华型的愿望是销售普通型的 1.5 倍 司对销售豪华型的愿望是销售普通型的 1.5 倍 同时,根据市场调研要求每周生产的产品数不能多 同时,根据市场调研要求每周生产的产品数不能多 于销售的数量,即普通型电扇为 30 件,豪华型电扇为 15 于销售的数量,即普通型电扇为 30 件,豪华型电扇为 15 件。 件。
2.目标约束 绝对目标约束(或硬约束)是指必须要严格满 足的等式或不等式约束,如线性规划问题的所有 约束条件,具有最高优先级。 目标约束(软约束)是把约束右端项看作是目 标值,在达到此目标值时允许发生正或负偏差, 在约束中加入正、负偏差变量。 可根据问题的需要将绝对目标约束变换为目标 约束,目标约束的形式为:f ( x) d d b
运筹学:第5章 目标规划
n
aij x j bi ,
i 1,2,....m
j1
n
clj x j
dl
d
l
gl ,
l 1,2,....L
j1
xi
0,
d
l
,
dl
0, i
1,...,m;
j
1,...L
刚性约束 柔性约束
2021/4/18
14
§2 目标规划的图解分析法
求解目标规划的思路: 刚性约束必须严格满足; 按优先级次序,从高层到低层逐层优化; 在不增加高层偏差值的情况下,使本层的偏差达
d
3
d
4
d
4
3(d
3
d
3
)
d
4
29
0.25
5x2 15
满意解 F
d1
O
4x1 16
d1 2x1 3x2 15
x1
2021/4/18
16
§3 目标规划的单纯形解法
单纯形法求解目标规划的思路:
1.求解步骤与一般线性规划问题的单纯形法基本相同;
2.根据目标函数中的优先级次序,从高层到低层逐层优
26
1、第一优先级:检验和销售费用每月不超过4600元; 2、第二优先级:每月销售录音机不少于50台; 3、第三优先级:两车间的工时得到充分利用(重要 性权系数按每小时的管理费用比); 4、第四优先级:甲车间加班不超过20小时; 5、第五优先级:每月销售电视机不少于80台; 6、第六优先级:两车间的加班总时间要控制(权系 数分配如3) 试确定该厂为达到上述目标的最优月度生产计划。
[1/2] -1 1 1/2 -1/2
1/2 0 0 -3/2 3/2 1 -1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利润(元/件)
I 5 4 6
II 10 4 8
资源限量 60 40
• 设产品I和II的产量分别为X1和X2,当用 线性规划来描述和解决这个问题时,其 数学模型为: max z 6 x1 8 x2
5 x1 10x2 60 4 x1 4 x2 40 x ,x 0 1 2
假设企业的经营目标不仅仅是利润,而是要考虑多个方面的目标:
(1)企业利润不低于12(百元)。
(2)力争使甲乙两种产品的比例大致为1:1。 (3)设备B必要时可以加班,但不希望加班;设备A既要充分利用, 又尽可能不加班。 是否可以用线性规划解决上述多目标的问题?
线性规划模型存在Байду номын сангаас下几方面的局限性:
1.LP只能处理单目标优化问题。因此,线性规划模型中人为地将一 些次要目标转化为约束。(在实际中,目标和约束可以相互转化) 2.LP要求问题的解必须满足全部约束条件,但实际中并非所有约束 都必须严格满足。 3.LP中各个约束(实际上也可以看作目标)都处于同等重要地位, 但实际问题中各个目标既有层次上的差别,又有权重上的区分。 4.LP寻求最优解,但很多问题只要找到满意解即可。
xj 0 d l , d l 0
( j 1,2, , n) (l 1,2, , L)
例2 • 某工厂生产两种产品,受到原材料供应 和设备工时的限制。在单件利润等有关 数据已知的条件下,要求制订一个获利 最大的生产计划。具体数据见下表
产品
原材料(kg/件) 设备工时(h/件)
第五章 目标规划
( Goal Programming)
本章基本要求:
1. 理解目标规划概念 2. 掌握目标规划建模技巧 3. 能够运用图解法求解模型
一、问题提出与目标规划的数学模型
线性规划:在一组线性约束下一个线性函数的极值问题。 线性规划的局限性 只能解决一组线性约束条件下,某一目标而且只能是 一个目标的最大或最小值的问题。 实际决策中,衡量方案优劣常常需要考虑多个目标,比如 1).生产计划决策中,通常要考虑产值、利润、满足市场 需求、降低消耗、提高质量、提高劳动生产率等; 2).生产布局决策中,除了要考虑运输费用、投资、原料 供应、产品需求量等经济指标外,还要考虑到污染和其它 社会因素等。
d+——超出目标的差值,称正偏差变量; d-——未达到目标的差值,称负偏差变量。
d+与d-两者必有一个为零
(1)d-=0,d+>0 表示实际值超出规定目标值; (2)d->0,d+=0 表示实际值未达到目标值; (3)d-=0,d+=0 表示实际值同规定目标值恰好一致。
3.统一处理目标和约束 系统约束(硬约束):对资源使用上有严格限制的约束, 用严格的等式或不等式表示(同线性规划中的约束)。 如:4x1 16 (设备C的使用时间) 4x2 12 (设备D的使用时间)
解:设 x1, x2 分别表示彩色和黑白电视机的产量。该问 题的目标规划模型为:
min z P1d1 P2d 2 P3 (2d 3 d4 )
x1 x2 d1 d1 40 x1 x2 d 2 d 2 50 s.t . x1 d3 d3 24 x d d 2 4 4 30 x , x , d , d 0 ( i 1, 2, 3, 4) 1 2 i i
目标约束(软约束):引入正、负偏差变量后,对各 个目标建立的目标约束方程。
c x d d kj j k k Ek j 1 n
原来的目标函数变成了约束条件的一部分,即目标约 束(软约束)
原来的目标函数,在目标规划中只是成了问题要达到的
目标之一 ,“目标利润不低于12(百元 )”, 可以表示 成 min{d1-}
解:设 x1, x2 分别表示甲乙产品的产量,则相应的线性 规划模型为: max z 2 x1 3 x2
2 x1 2 x2 12 x1 2 x2 8 s.t . 4 x1 16 4 x2 12 x1 , x2 0
它的最优解为: x1 =4, x2 =2, z =14
目标规划的一般模型为:
~ min a Pk ( wkl d l wkl d l ) k 1 l 1 K L
s.t.
a
j 1 n j 1
n
ij
x j (, )b j (l 1,2, , L)
c x d d lj j l l el
3. 对所有的目标函数建立约束方程,并入原来的约束条 件中,组成新的约束条件;
4. 引入目标的优先等级和加权系数;建立使组合偏差最 小的目标函数。
1.确定目标函数的期望值 每一个目标函数希望达到的期望值(或目标值、理想值)。
根据历史资料、市场需求或上级部门的布置等来确定。 2.设置偏差变量,用来表明实际值同目标值之间的差异。
(2)对属于同一层次优先级的不同目标,其重要程度的差别可以通 过设置权系数来表达。权系数越大,表示目标越重要。 本例中,假设: P1 :企业利润目标; P2 :甲、乙产品的产量尽可能达到1∶1的要求; P3 :设备A、B尽量不超负荷工作,在第三优先级中,设备A的重 要性是设备B的三倍。
本例中,假设:
- - d +=12 2x +3x + d 1 2 1 1 要求甲、乙两种产品的比例尽可能接近1∶1,可以表示成
min{d2- + d2+ }
x1-x2 +d2- - d2+ = 0
设备A既要充分利用,又尽可能不加班,可以写成
•
min{d3- +d3+} 2x1+2x2+ d3-- d3+=12 (设备A) 设备B允许加班,只是不希望加班或少加班,可以写成 min{d4+} x1+2x2+ d4- - d4+=8 (设备B)
课堂练习2: 某电视机厂装配黑白和彩色两种电视机,每装配一台电视机 需要占用装配线1小时,装配线每周计划开动40小时。预计市 场每周彩色电视机的销量为24台,每台可获利80元;黑白电 视机的销量是30台,每台可获利40元。该厂确定的目标为: 第一优先级:充分利用装配线每周计划开动的40小时; 第二优先级:允许装配线加班,但加班的时间尽量不超过10 小时; 第三优先级:装配电视机的数量尽量满足市场需要。因彩色 电视机利润高,取其权为2。 试确定该厂为达到以上目标的最优生产计划。(建立数学模 型)
f(x) 的值不超过目标值 f0 (即允许少于f0, 但尽可能不要超过f0) min(d+) …… f0
二、建立目标规划模型的步骤 • 第一步:定义决策变量和有关的常量 定义决策变量和决策目标约束等式右边的常数。 等式右边的常数是可利用的资源或是决策者特定 的目标值。 • 第二步:建立决策目标约束 通过分析决策变量之间的关系以及决策变量与目 标值之间的关系,建立一组目标约束。并从所有 的决策目标中,找出绝对决策目标(即,如果不 满足将导致最终结果无法实现的目标),将这些 目标作为第一优先级。而后再确定其余目标的优 先级。 • 第三步:建立指标偏差函数
其最优解,即最优生产计划为X1=8,X2=2,maxz=64
• 假设计划人员还被要求考虑如下意见: • (1)由于产品II销售疲软,故希望产品II的产 量不超过产品I的一半。 • (2)原材料严重短缺,生产中应避免过量消 耗。 • (3)最好能节约4小时设备工时; • (4)计划利润不少于48元。 • 面对这些意见,计划人员作出如下意见,首先 原材料使用额不得突破;产品II产量要求必须 优先考虑;设备工时问题其次考虑;最后考虑 计划利润的要求。
4.目标函数、目标的优先级和权系数
目标规划中的目标函数是各个实际值与目标值之间的最小差距。
(1)在目标规划中,如果两个不同目标的重要程度相差悬殊,为达 到某一目标可牺牲其他目标,称这些目标是属于不同层次的优先级。 优先级层次的高低可通过优先因子P1,P2……表示。
并规定P
k
»P
k+1
,即不同优先级之间的差别无法用数字大小衡量。
例1.某企业计划生产甲、乙两种产品,这些产品分别要在 A、B、C、D四种不同的设备上加工。各产品占用资源数 量,资源拥有量及产品利润见下表。问如何安排生产,才 能获得最大的总利润?
消耗 产品 甲 乙
设备
设备工作 台时
A
B C D 利润(百元/件)
2 1 4 0 2
2 2 0 4 3
12 8 16 12
P1 :企业利润目标; P2 :甲、乙产品的产量尽可能达到1∶1的要求;
P3 :设备A、B尽量不超负荷工作,在第三优先级中,设备A的重 要性是设备B的三倍。
min z P1d1 P2 (d 2 d2 ) 3 P3 (d 3 d3 ) P3d 4
4 x1 16 (1) (2) 4 x2 12 2 x 3 x d d 12 (3) 2 1 1 1 (4) x1 x2 d 2 d 2 0 2 x 2 x d d (5) 2 3 3 12 1 x 2x d d 8 (6) 1 2 4 4 x , x 0, d , d i i 0 ( i 1, 2, 3, 4) 1 2
消耗 资源 产品 A B 12 1 20 资源限量 66 8
电力
10
2 10
原材料
单位产品利润
解:设x1 、x2分别表示A、B两种产品的产量,则目标规划 模型如下:
min z P1 (d1 d1 ) P2d 2 P3d 3
2 x1 x2 8 10 x 12 x d d 1 2 1 1 66 s .t . 10 x1 20 x2 d 2 d2 100 x x d d 2 3 3 0 1 x , x , d , d 0 ( i 1, 2, 3) 1 2 i i