高等代数、线性代数62维数基与坐标

合集下载

《维数基与坐标》课件

《维数基与坐标》课件
描述运动轨迹
维数基可以用来描述物体在空间中的 运动轨迹,通过在各个维度上定义坐 标值的变化,可以描述物体运动的方 向和距离。
坐标系在维数基中的应用
表达空间关系
通过坐标系,我们可以表达空间中物体之间的关系,例如距离、角度、方向等。
进行数学运算
在坐标系中,我们可以进行各种数学运算,例如加法、减法、乘法、除法等,以 解决各种实际问题。
标的应用和发展。
创新研究方法
03
鼓励数学家探索新的研究方法,以解决现有问题并开拓新的研
究领域。
感谢观看
THANKS
维数基与坐标
目 录
• 维数基的基本概念 • 坐标系的基本概念 • 维数基与坐标的关系 • 维数基与坐标的实例分析 • 维数基与坐标的未来发展
01
维数基的基本概念
定义与性质
维数基定义
维数基是线性空间中的一组基底,它由有限个线性无关的向 量组成,可以用来表示线性空间中的任意向量。
维数基的性质
维数基中的向量是线性无关的,即它们不能被其他向量线性 表示;维数基中的向量是正交的,即它们的点积为零;维数 基中的向量是单位向量,即它们的模长为1。
01
更高维度的探索
随着数学理论的发展,对高维空 间的研究将更加深入,有望揭示 更多关于宇宙的奥秘。
几何化代数
02
03
拓扑结构的研究
通过几何方法研究代数结构,将 有助于更好地理解复杂数学对象 。
利用坐标方法研究几何对象的拓 扑性质,将有助于解决一些经典 问题。
维数基与坐标在其他领域的应用前景
物理学
在量子力学和广义相对论等领域,维数基与坐标 有望提供更精确的数学工具。
参数方程
1 2
定义

6.2维数、基与坐标

6.2维数、基与坐标

都可表示为 p a0 p1 a1 p2 a2 p3 a3 p4 +a4 p5 ,
因此 p 在这个基中的坐标为
a0 , a1 , a2 , a3 , a4
T
.
若另取一个基 q1 1, q2 1 x, q3 2 x 2 , q4 x 3 , q5 x 4 ,
线性空间的结构完全被它的维数所决定.
谢谢
x1 , x2 , , xn 这组有序数就称为向量 在这个基中的坐标,
并记作 x1 ,
, xn
T
.
例 在线性空间 P x 中, 4 p1 1, p2 x, p3 x 2 , p4 x 3 , p5 x 4
就是它的一个基. 任一不超过 4 次的多项式
p a4 x4 a3 x3 a2 x 2 a1 x a0
维数、基与坐标
定义:设有线性空间 V , 如果存在n个向量a1, a2, …, an
满足 (i) a1, a2, …, an 线性无关;
(ii) V 中任意一个向量都能由 a1, a2, …, an线性表示; 那么称向量组 a1, a2, …, an是线性空间 V 的一个基, n称为线性空间 V 的维数,
则 p a0 a1 x a2 x 2 a3 x 3 a4 x 4

a0

a1


a1
1

x

a2 2
2x2

a3 x3

a4
x4

a0 a1
q1

a1q2

a2 2
q3

a3q4

a4q5
,

维数基与坐标

维数基与坐标

在线性代数中,维数基和坐标是紧密相关的概念,用来描述向量空间中的向量。

维数基是一个向量空间中的一组线性无关的向量,它可以作为该向量空间的基础。

一个向量空间可以有多组不同的维数基。

维数基的选择不唯一,但是它们具有一些重要的性质,最重要的一点是,使用维数基可以表示该向量空间中的任何向量。

换句话说,我们可以用维数基上的线性组合来描述向量空间中的每个向量。

坐标是描述一个向量在给定维数基下的表示。

当我们选择一个维数基作为参考,我们可以将向量空间中的任意向量表示为这组基向量的线性组合。

而坐标就是指这些线性组合中各个基向量的系数。

举例来说,假设我们有一个三维向量空间,并选择维数基为{v1, v2, v3},那么任意一个向量v可以表示为 v = a1*v1 + a2*v2 + a3*v3,其中a1、a2、a3分别是v在维数基{v1, v2, v3}下的坐标。

维数基和坐标两者的关系是紧密相连的,通过选择不同的维数基,可以得出不同的坐标表示。

而坐标的选择也是由维数基的选择决定的。

通常我们使用标准基作为维数基,如在三维空间中使用{i, j, k}作为标准基,此时坐标表示就变为(vx, vy, vz)。

但是在不同的情景中可能会选择其他的维数基,而相应的坐标表示也会不同。

在实际应用中,维数基和坐标有着广泛的应用,如线性变换、向量运算、数据分析等。

对于线性代数的深入理解,理解维数基和坐标的概念是非常重要的。

维数基与坐标

维数基与坐标

维数基与坐标1. 引言在数学中,维数基和坐标是描述向量空间中向量的重要概念。

维数基是向量空间的一组基础向量,用于表示空间中的任意向量。

坐标则是基于维数基的一种表示方法,通过一组数字来描述向量在各个维度上的大小。

本文将详细介绍维数基和坐标的概念、属性和应用,并通过示例和图表进行解释和说明。

2. 维数基2.1 定义维数基是向量空间的一组基础向量,它们可以线性组合得到空间中的任意向量。

一个向量空间的维数基通常由线性无关的向量组成,并且可以表示空间的维数。

2.2 特性•维数基是线性无关的,即其中任意一个向量不能由其他向量线性表示。

•维数基可以通过线性组合生成空间中的任意向量。

•维数基的数量等于向量空间的维数。

2.3 示例考虑二维平面上的向量空间,我们可以选择两个线性无关的向量作为维数基,比如:v1 = [1, 0]v2 = [0, 1]这两个向量分别表示平面上的 x 轴和 y 轴,它们可以通过线性组合得到平面上的任意向量。

3. 坐标3.1 定义坐标是一种用数字表示向量在各个维度上大小的方法。

坐标是基于维数基的,通过将向量在维数基上的投影来确定各个维度上的大小。

3.2 坐标系坐标系是描述向量空间的一种方式,它由维数基和原点组成。

常见的坐标系有笛卡尔坐标系、极坐标系等。

在笛卡尔坐标系中,维数基通常是正交的单位向量,原点是空间的起点。

以二维平面为例,笛卡尔坐标系的维数基为:e1 = [1, 0]e2 = [0, 1]3.3 坐标表示假设有一个向量 v,它可以由维数基 e1 和 e2 线性组合得到:v = a * e1 + b * e2其中 a 和 b 是向量在 e1 和 e2 上的投影,也就是向量的坐标。

3.4 示例考虑二维平面上的向量 v,它在维数基 e1 和 e2 上的投影分别是 a 和 b。

那么v 的坐标表示为 (a, b)。

4. 应用4.1 线性代数维数基和坐标是线性代数中的重要概念,它们用于描述向量空间和向量的性质和关系。

维数、基与坐标

维数、基与坐标
(k) k ()
对任意αV,kK成立.从而
(0) (0) 0 () 0
() ((1)) (1) () () (k11 k22 krr ) (k11) (k22 ) (krr )
k1 (1) k2 (2 ) kr (r )
(2) 若有不全为零的k1,k2,…,kr使
则有
(k11 k2 2 kr r ) 0
由于σ是单射,又只有零元素0才映射到0,

k11 k2 2 kr r 0 即若 (1), (2 ),, (r ) 线性相关也必有 α1,α2,…,αr线性相关;
(3) 由于维数就是线性空间中线性无
关元素的最大个数,设V与W同构,则若V 中最大的线性无关元素组为α1,α2,…,αm,那么 σ(α1), σ(α2),…,σ(αr)也是W中线性无关的,且 任何多于m个的元素组必线性相关.这样,W 的维数必等于V的维数;
设 ε1,ε2,…,εn与η1,η2, …,ηn是n维线性空 间V中的两组基.由基的定义,它们必可以 互相线性表出.设 η1,η2, …,ηn由ε1,ε2,…,εn线 性表出的关系式为
1 a111 a12 2 a1n n , 2a211a222 a2n n , n an11 an2 2 ann n .
(1, 2 ,3 , 4 ) (1, x, x 2 , x3 ) A
其中
(1, 2 , 3 , 4 ) (1, x, x 2 , x3 )B
1 1 1 1
A
2 0 2
1 2 0
0 2 0
3 03
1 1 1 1
B
0 0 0
1 0 0
2 1 0
3 13
于是
(1, 2 , 3 , 4 ) (1, 2 ,3 , 4 )A1B

第三节 维数 基与坐标

第三节  维数 基与坐标

( r 1 ) 称为线性相关,如果在数域 P 中有 r 个不 全为零的数 k1 , k2 , … , kr , 使 k11 + k22 + …+ krr = 0.
(3)
如果向量组 1 , 2 , …, r 不线性相关,就称为线性 无关. 换句话说,向量组 1 , 2 , …, r 称为线性
如果看作 间,那么这是一维的,数 1 就是一个基; 是实数域上的线性空间,那么就是二维的, 1,i
就是一个基.
注 ◆ 线性空间的维数与所考虑的数域有关.

§6.3 维数 基与坐标
例3
在 n 维空间 P n 中,显然
1 (1,0, ,0) , (0,1, ,0) , 2 n (0,0, ,1)
是一个基. 对每一个向量 = ( a1 , a2 , … , an ) , 都有
= a1 1 + a2 2 + … + an n .
= a1 1 + a2 2 + … + an n ,
其中系数 a1, a2 , … an 是被向量 和基 1 , 2 , …,
n 唯一确定的, 这组数就称为 在基 1 , 2 , … , n 下的坐标,记为 ( a1, a2 , … , an ) .
§6.3 维数 基与坐标
= a11 + ( a2 - a1 )2 + … + ( an - an -1 ) n .
所以 在基 1 , 2 , …, n 下的坐标为
(a1, a2 - a1 , … , an - an -1 ) .
§6.3 维数 基与坐标
例4
如果复数域 C 看作是自身上的线性空

02 第二节 维数、基与坐标

02 第二节 维数、基与坐标
. 显然,是的倍数. 向量组与向量组等价,并且线性无关,进而是的 一组基,所以.
例6 (E04) 证明维线性空间 与维数组向量空间同构.
证 (1) 中的元素与中的元素形成一一对应关系;
(2) 则有
结论 1. 数域上任意两个维线性空间都同构. 2. 同构的线性空间之间具有反身性、对称性与传递性. 3. 同维数的线性空间必同构.
例4(E02) 所有二阶实矩阵组成的集合对于矩阵的加法和数量乘法, 构成实数域R上的一个线性空间. 试证
,,, 是中的一组基, 并求其中矩阵A在该基下的坐标.
证 先证其线性无关, 由有
即线性无关. 又对于任意二阶实矩阵 有 因此为的一组基. 而矩阵在这组基下的坐标是
例5 (E03) 求子空间的维数,其中 解 易知是由下列向量的全体线性组合所构成的集合:
第二节 基、维数与坐标
分布图示
★ 引言
★ 线性空间的基与维数
★ 生成子空间
★ 例1
★ 坐标
★ 例2
★ 例3 ★ 例4
★ 线性空间的同构
★ 例6
★ 内容小结
★ 课堂练习
★ 习题6-2
★ 例5 ★ 例7
内容要点
一、线性空间的基与维数 我们已知在中,线性无关的向量组最多由个向量组成,而任意个向
量都是线行相关的。现在我们要问:在线性空间中,最多能有多少个线 性无关的向量?
元素有序数组 定义2 设是线性空间的一个基,对于任一元素, 有且仅有一组有序数 使,则称有序数组为元素在基下的坐标, 并记作.
二、线性空间的同构 设是维线性空间的一组基,在这组基下,中的每个向量都有唯一确
定的坐标,而向量的坐标可以看作中的元素,因此向量与它的坐标之间 的对应就是到的一个映射。对于中不同的向量它们的坐标也不同,即对 应于中的不同元素。反过来,由于中的每个元素都有中的向量与之对 应,我们称这样的映射是与的一个一一对应的映射。这个映射的一个重 要特征表现在它保持线性运算(加法和数乘)的关系不变。

维数基与坐标 基变换与坐标变换

维数基与坐标 基变换与坐标变换

§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。

高等代数 第6章线性空间 6.2 基底、坐标与维数

高等代数 第6章线性空间 6.2 基底、坐标与维数

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是

维数-基-坐标ppt课件

维数-基-坐标ppt课件
则称向量 可由向量组 1,2 , ,r 线性表出.
3/36
若向量组 1, 2 , , s 中每一向量皆可由向量组
1,2 , ,r线性表出, 则称向量组 1, 2 , , s
可由向量组 1,2 , ,r 线性表出.
若两向量组可以互相线性表出,则称这两个向量组 为等价的.
(3)1,2 , ,r V ,若存在不全为零的数 k1, k2 , , kr P,使得 k11 k22 krr 0 则称向量组 1,2 , ,r 线性相关.
就是 Pn 的一组基.称为Pn的标准基.
12/36
注意:
① n维线性空间 V的基不是唯一的,V中任意 n个 线性无关的向量都是V的一组基.
② 任意两组基向量是等价的.
例4(1)证明:线性空间P[x]n是n 维的,且 1,x,x2,…,xn-1 为 P[x]n 的一组基.
(2)证明:1,x-a,(x-a)2,…,(x-a)n-1 也为P[x]n的一组基.
0
0

k1 2k2 k3 0
其系数行列式
11 1
1 2 ( 1)( 2 1)( 2 ) 0 1 2
23/36
∴方程组②只有零解: k1 k2 k3 0 故 E, A, A2 线性无关. 又由①知,任意f(A)均可表成 E, A, A2 的线性组合, 所以V为三维线性空间, E, A, A2 就是V 的一组基.
怎样才能便于运算?
2/36
一、线性空间中向量之间的线性关系
1、有关定义
设V 是数域 P 上的一个线性空间
(1)1,2 , ,r V (r 1), k1, k2 , , kr P, 和式
k11 k22 krr
称为向量组1,2 , ,r 的一个线性组合.

§3.4线性空间、基、维数和坐标

§3.4线性空间、基、维数和坐标

一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念,它是向量空间概念的推广。

线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。

定义设F 是数的集合,若其满足(1)F∈1,0 (2)F ,均有∈∀b a ,∈≠÷×−+)0(,,,b b a b a b a b a 则称F 是一个数域。

R ,实数域Q ,有理数域常用数域C ,复数域F},,1, |),,{(1n i a a a i n =∈=},,2,1,,2,1, |]{[n j m i a a ij n m ij ==∈=×;F [x ]F F m ×n F },2,1,0,,1,0 , |){2210 ==∈++++=n n i a x a x a x a a i nn ;Fn F }0)( ,)( ],[F )(|)({≡∈=x f n x f x x f x f 或的次数小于}],[)(|)({上的连续函数是闭区间b a x f x f =F [x ]n C [a ,b ]βαγ+=若对于任一数与任一元素,总有唯一的一个元素与之对应,称为与的数量积,记作∈k V ∈αV ∈δk ααδk =定义设是一个非空集合,F 为数域.如果对于任意两个元素,总有唯一的一个元素与之对应,称为元素与的和,记作V ∈βα,V ∈γαβV F对F ,总有,,,,V k l αβγ∈∈;,,)3(αθααθ=+∈都有对任何中存在在V V ;)1(αββα+=+ ()();)2(γβαγβα++=++ 如果上述的两种运算满足以下八条运算规律,那么就称为数域F 上的线性空间:V 零元素(5) 1αα=()()(6) k l kl αα=()(8)k k k αβαβ+=+()(7) k l k l ααα+=+;),,)(θααααα=−+∈−∈( 4使的都存在对任何V V 负元素说明1.凡满足以上八条规律的加法及数乘运算,称为线性运算;2.线性空间中的向量不一定是有序数组;3.若一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。

高等代数 讲义 第六章

高等代数 讲义 第六章
2)若M中不同元素的象也不同,即 ∀a1,a2 ∈ M ,若a1 ≠ a2 , 则σ (a1 ) ≠ σ (a2 ) (或 ∀a1,a2 ∈ M ,若σ (a1 ) = σ (a2 ), a1 = a2 ),
则称σ是M到M´的一个单射(或称σ为1—1的);
3)若σ既是单射,又是满射,则称σ为双射, (或称σ为 1—1对应)
§6.1 集合 映射
☆集合的表示方法一般有两种:描述法、列举法 描述法:给出这个集合的元素所具有的特征性质.
M={x | x具有性质P} 列举法:把构成集合的全部元素一一列举出来.
M={a1,a2,…,an}
例1 M = {( x, y) x2 + y2 = 4, x, y ∈ R} 例2 N= {0,1, 2, 3,LL}, 2Z= {0, ±2,±4,±6,LL} 例3 M = { x x2 − 1 = 0, x ∈ R} = {−1,1}
A U B ⊆ B. 又因 B ⊆ A U B,∴ A U B = B.
§6.1 集合 映射
二、映射
1、定义
设M、M´是给定的两个非空集合,如果有 一个对 应法则σ,通过这个法则σ对于M中的每一个元素a, 都有M´中一个唯一确定的元素a´与它对应, 则称 σ为
M到M´的一个映射,记作 :σ : M → M'或 M ⎯σ⎯→M' 称 a´为 a 在映射σ下的象,而 a´ 称为a在映射σ下的 原象,记作σ(a)=a´ 或 σ : a a a′.
又对∀a ∈ R+,存在
x
=
log
a 2

R
,使
σ
(log
a 2
)
=
2log
a 2
=a

线性代数中的基与维数

线性代数中的基与维数

线性代数中的基与维数线性代数是数学的一个分支,主要研究向量空间和线性映射的性质。

而在线性代数中,基与维数是两个重要的概念,它们扮演着关键的角色。

本文将详细讨论线性代数中的基与维数,并探讨它们的应用。

一、基与线性无关性在线性代数中,我们将向量空间中的一组向量称为基(basis),它们具有以下两个性质:1. 生成性:基中的向量可以通过线性组合生成向量空间中的任意向量。

2. 线性无关性:基中的向量不能通过线性组合得到零向量。

具体来说,设V是一个向量空间,若存在向量组B={v₁, v₂, ..., vₙ}满足以下两个条件,则称该向量组为V的基:1. 所有的向量v∈V都可以由B中的向量线性表出。

2. 如果B中的向量进行线性组合时等于零向量,那么必须其中的所有系数都等于零。

基的一个重要性质是线性无关性。

线性无关的向量组意味着每个向量都是独立的,不能由其他向量线性表示出来。

当一组向量线性无关时,它们的个数称为向量空间的维数。

二、维数的概念及性质在线性代数中,维数(dimension)是向量空间中独立向量的最大个数,记作dim(V)。

维数是衡量向量空间复杂程度的一个指标,它具有以下性质:1. 如果向量空间V中存在有限个向量使得它们线性无关,那么V的维数是有限的。

2. 如果在V中存在无穷多个向量,且它们线性无关,那么V的维数是无穷大。

3. 如果V的维数为n,那么V的任意一个基都包含n个向量。

4. 如果V的维数为n,那么V中的任意n+1个向量必然线性相关。

维数的计算方法也有一些常见的技巧。

对于有限维向量空间V而言,可以通过求解线性方程组的方法来求解维数。

另外,对于一些特殊的向量空间,也可以直接通过观察其内部的向量性质来确定维数。

三、基与维数的应用基与维数在线性代数中有广泛的应用,下面简要介绍几个常见的应用领域:1. 基变换与坐标系:在向量空间中,不同的基可以产生不同的坐标系,基变换就是在不同的基之间进行坐标的转换。

线性代数6-2维数基坐标

线性代数6-2维数基坐标

坐标.
例1 在线性空间P[x]3中, p1 1, p2 x, p3 x2, p4 x3 就是它的一个基.
任一不超过3次的多项式
p a0 a1x a2x2 a3x3
可表示为 p a0 p1 a1 p2 a2 p3 a3 p4
因此 p 在这个基下的坐标为 (a0, a1, a2, a3)

y2
yn

并且两组基间有线性关系式
1, 2,, n 1,2 ,,n A
则有如下的关系式
x1
y1
x2

xn


A
y2
yn
,
y1
x1


若取另一组基为 q1 1, q2 1 x, q3 2x2 , q4 x3,
p

( a0
a1)q1

a1q2

a2 2
q3

a3q4
因此 p 在这个基下的坐标为
说明:
(a0

a1, a1,
a2 2
, a3 )
(2)一个向量在一组基下的 坐标是唯一的.
(3)同一个向量在不同基下 的坐标一般是不同的 .
则称此公式为基变换公式.
2.利用分块矩阵的方法可将上述公式写成
其中
1, 2 ,, n 1,2 ,,n A
a11 a12 a1n
A

a21
a23

a2n


an1
an2

ann

则称上述矩阵A为由基1,2,,n到基1, 2,, n的
设 a11 a22 ann , b11 b2 2 bn n

线性代数 基、维数与坐标

线性代数 基、维数与坐标

基、维数与坐标⏹基、维数的概念⏹坐标的概念基、维数与坐标定义2(1) α1,α2, …,αm 线性无关;(2) V 中任一向量都能由α1,α2, …,αm 表示,则称α1,α2, …,αm 为空间V 的一组基(或基底), 基与维数m 称为向量空间V 的维数,记为dim V =m ,设V 是数域p 上的向量空间,向量α1,α2, …,αm V ,如果并称V 是数域p 上的m 维向量空间.零空间的维数规定为零.基、维数与坐标2. 将向量空间V 的基的定义与向量组的极大线性无关组的定义相比较,不难看出,1. 向量空间的维数和该空间中向量的维数是两个不同的概念.若把向量空间V 看作一个向量组,那么它的基就是V 的一个极大线性无关组,dim V 就是V 的秩.3. 容易证明,若向量空间V 的维数是m ,那么V 中任意m 个线性无关的向量都是V 的一组基;对于向量空间V 的任一子空间V 1,dim V 1≤dim V .基、维数与坐标对于向量空间R n ,基本单位向量ε1, ε2, …, εn 就是它的一组基,有dim R n =n , 则称R n 为n 维实向量空间.在四维向量空间R 4中,向量组α1=(0, 0,0,1),α2=(0,1,0,1), α3=(-1,2,0,1),α4=(1,0,2,1)线性无关,所以它们也是R 4的一组基.基、维数与坐标定义3设α1,α2, …,αm 为向量空间V 的一组基,1122m m x x x ,则称有序数组由定理3.2.2,向量α的表示也是唯一的, α V , 有因此α基下α1,α2, …,αm 的坐标也是唯一的.坐标的概念x 1,x 2, …,x m 为向量α在基α1,α2, …,αm 下的坐标.记为(x 1,x 2, …,x m ).基、维数与坐标例4证明111002210A设α1=( 1,0,2),α2=(1,0,1), α3=(-1,2,0),证明α1,α2, α3是向量空间R 3的一组基,并求向量α=( 2,-3,5)在这组基下的坐标.以向量α1T ,α2 T , α3 T 为列向量做矩阵基、维数与坐标因为A 的行列式|A |=2≠0,,把α1,α2, α3代入,比较等式两端向量的对应分量,可得线性方程组112233x x x 设所以α1,α2, α3线性无关, 故它们是R 3的一组基.12331222325x x x x x x基、维数与坐标解之,得于是向量在α基α1,α2, α3下的坐标为12393,4,22x x x 93,4,22 ()。

高等代数基.维数与坐标

高等代数基.维数与坐标

. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
向量的线性无关
根据这个定义,如果向量 α1, α2, · · · , αr 中有一个是零向量,那 么 α1, α2, · · · , αr 一定线性相关. 事实上,例如,设 α1 = 0. 那么
向量的线性关系
在研究线性空间时,向量的线性关系起着极为重要的作用. 在这 一节里,我们将研究这种线性关系. 以下谈到线性空间,都指的是某一给定数域 P 上的线性空间.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
向量的线性关系
在研究线性空间时,向量的线性关系起着极为重要的作用. 在这 一节里,我们将研究这种线性关系. 以下谈到线性空间,都指的是某一给定数域 P 上的线性空间.
1α1 + 0α2 + · · · + 0αr = 0, 其中 α1 的系数不为零.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
向量的线性无关
根据这个定义,如果向量 α1, α2, · · · , αr 中有一个是零向量,那 么 α1, α2, · · · , αr 一定线性相关. 事实上,例如,设 α1 = 0. 那么
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
向量的线性关系
例 在 R3 里,取
那么
α1 = (1, −1, 0), α2 = (0, 2, 1), α3 = (1, −1, 2)

线性代数6.2线性空间的维数基与坐标

线性代数6.2线性空间的维数基与坐标

因此
1 2
4 1
2 3
9 1
1 0 6 5
2 5 7 5
k1 k2 k3 k4
0000.
设该齐次线性方程组的系数矩阵为A, 则
1 0 3 4
A
初等行变换
~
0 1
0 0
0 0
2 1
0 0
0 0
因此, f1(x), f2(x)线性无关, 且是由 f1(x), f2(x), f3(x), f4(x)所生成的子空间的基, 该子空间的维数为2, 且有
坐标是唯一的, 在不同的基下所对应的坐标一般不同.
例2: 所有二阶实矩阵组成的集合R22, 对于矩阵的 加法和数量乘法, 构成实数域R上的一个线性空间. 对 于R22中的矩阵
E11
1 0
0 0
,
E12
0 0
10,
E 21
0 1
00,
E 22
0 0
10,

k1E11
+
k2E12
+
k3E21
+
k4E22
因为,
(1) Vn中的元素与Rn中的元素 x = (x1, x2, ···, xn)T
形成一一对应关系:
Vn: = x11+x22+···+xnn
Rn : x = (x1, x2, ···, xn)T
(2) 设 (a1, a2, ···, an)T, (b1, b2, ···, bn)T, 则有 + (a1, a2, ···, an)T+(b1, b2, ···, bn)T,
定义: 在线性空间V中, 如果存在n个元素1, 2, ···, nV, 满足:

维数基与坐标 -回复

维数基与坐标 -回复

维数基与坐标-回复维数基与坐标是线性代数中的重要概念,它们在研究向量空间及其变换中具有关键作用。

维数基是向量空间的一组基,而坐标则是用基向量来表示向量的一种方式。

本文将逐步解析这两个概念,帮助读者深入理解它们之间的关系和意义。

首先,让我们来了解维数基的概念。

在线性代数中,向量空间是线性运算的集合,它具有加法和数乘运算,并满足线性组合的封闭性质。

向量空间可以是有限维或无限维的,但我们在此主要关注有限维向量空间。

有限维向量空间可以由一组基向量来生成,这组基向量可以表示空间中的任意向量。

为了方便讨论,我们设想一个三维向量空间,即三维几何空间。

这个空间可以由三个线性无关的向量基来生成,记作{e1, e2, e3}。

这三个向量可以是单位向量,也可以是其他向量,只要它们线性无关即可。

这个向量空间的维数就是基向量的个数,即3。

维数基是一组生成向量空间的基向量,它们的线性组合可以表示该空间中任意的向量。

接下来,我们来讨论坐标的概念。

在向量空间中,给定一组维数基{e1, e2, e3},我们可以用这组基向量来表示该空间中任意向量v。

假设向量v可以表示为v = a1e1 + a2e2 + a3e3,其中a1, a2, a3是实数系数,那么(a1, a2, a3)就是向量v的坐标。

在三维空间中,我们通常用一个有序的三元组(x, y, z)来表示向量的坐标。

这个三元组实际上就是向量在维数基{e1, e2, e3}下的系数,即(x, y, z) = (a1, a2, a3)。

坐标表示了向量在特定基下的投影系数,它可以用来描述向量在空间中的位置和方向。

维数基和坐标之间的关系可以通过矩阵运算来表示。

我们可以将维数基向量e1, e2, e3组成一个矩阵A = [e1, e2, e3],它是一个三行一列的矩阵。

而向量v的坐标可以表示为一个列向量v = [a1, a2, a3],它是一个三行一列的矩阵。

那么向量v可以表示为v = A * v。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注:任意数域P看成是它自身上的线性空间是一维的,
数1就是它的一组基.另外,维数是和所考虑的数域有关
的。
第15页共16页
小结
通过线性相关、线性表出的概念,我们发现线
性空间中本质的东西是基。基中向量的个数就 是维数,由基来表达一个向量就产生了坐标。
作业 P268:5, 7,8 (选1个小题),
第16页共16页
注: 此时, f ( x) a0 a1 x an1 x n1
在基1,x,x2,…,xn-1下的坐标就是
(a0 , a1,, an1 )
第14页共16页
例4 求全体复数的集合C看成复数域C上的线性
空间的维数与一组基;
若把C看成是实数域R上的线性空间呢? 解:复数域C上的线性空间C是1维的,数1就是它的 一组基; 而实数域R上的线性空间C为2维的,数1,i 就为 它的一组基.
1 , 2 ,, n ,称为 V 的一组基;
(3)坐标
1, 2 ,, n 为线性空间 V 的一组基, V , 若 a1 1 a2 2 a n n , a1 ,a2 ,, a n P
设 则数组
a1, a2 ,, an ,就称为 在基 1, 2 ,, n
2、有关结论
(1)单个向量 线性相关
0. 单个向量 线性无关 0
向量组 1 , 2 ,, r线性相关
1 , 2 ,, r 中有一个向量可经其余向量线性表出.
第4页共16页
(2)若向量组 1 , 2 ,, r 线性无关,且可被
向量组
1, 2 ,, s 线性表出,则 r s ;
2、有限维线性空间
(1)n 维线性空间:
若在线性空间 V 中有 n 个线性无关的向量,但是
任意 n+1 个向量都是线性相关的,则称 V 是一个
n 维线性空间;常记作 dimV= n . 注:零空间的维数定义为0. dimV= 0 V={0}
第7页共16页
( 2) 基 在 n 维线性空间 V 中,n 个线性无关的向量
第11页共16页
例2 3 维几何空间R3= {( x, y, z ) x, y, z R}
1 (1,0,0), 2 (0,1,0), 3 (0,0,1) 是R3的一组基;
1 (1,1,1), 2 (1,1,0),3 (1,0,0)也是R3的一组基.
一般地,向量空间
第13页共16页
证: 首先,1,x,x2,…,xn-1是线性无关的.
f ( x) a0 a1 x an1 x 其次,
n 1
P[ x ]n
f ( x) 可经 1,x,x2,…,xn-1线性表出.
∴ 1,x,x2,…,xn-1 从而,P[x]n是n维的.
为P[x]n的一组基,
(2)1 , 2 ,, r , V,若存在 使
k1, k2 ,, kr P
线性表出;
第2页共16页
k11 k2 2 kr r 则称向量 可经向量组 1 , 2 ,, r
若向量组 1 , 2 ,, s 中每一向量皆可经向量组
下的坐标,记为 (a1 , a2 ,, an ).
第8页共16页
a1 1 a2 2 an n
a1 a 2 有时也形式地记作 ( 1 , 2 , , n ) an
注意:
向量
的坐标 (a1, a2 ,, an ) 是被向量 和基 1, 2 ,, n 唯一确定的.即向量 在基 1 , 2 ,, n 下的坐标唯一的. 但是,在不同基下 的坐标一般是不同的.
二、线性空间的维数、基与坐标
1、无限维线性空间
若线性空间 V 中可以找到任意多个线性无关的向量, 则称 V 是无限维线性空间. 例1 所有实系数多项式所成的线性空间 R[x] 是 无限维的. 因为,对任意的正整数 n,都有 n 个线性无关的 向量 1 , x , x 2, … , x n - 1
第6页共16页
若 1 , 2 ,, r与 1 , 2 ,, s 为两线性无关的 等价向量组,则
r s.
(3)若向量组 1 , 2 ,, r 线性无关,但向量组
1, 2 ,, r , 线性相关,则 可被向量组 1, 2 ,, r 线性表出,且表法是唯一的.
第5页共16页
P n {(a1 , a2 ,, an ) ai P, i 1,2,, n} 为n维的,
1 (1,0,,0), 2 (0,1,,0),, n (0,,0,1)
就是 Pn 的一组基.称为Pn的标准基.
第12页共16页
注意:
① n 维线性空间 V 的基不是唯一的,V中任意 n个 线性无关的向量都是V的一组基. ② 任意两组基向量是等价的. 例3 证明:线性空间P[x]n是n 维的,且 1,x,x2,…,xn-1 为 P[x]n 的一组基.
第9页共16页
3、线性空间的基与维数的确定
定理:若线性空间V中的向量组 1 , 2 ,, n 满足 ⅰ) 1 , 2 ,, n 线性无关; ⅱ) V , 可经 1 , 2 ,, n 线性表出
,
则V为n 维线性空间,1 , 2 ,, n 为V的一组基.
第10页共16页
§6.3 维数 · 基与坐标
一、线性空间中向量之间的线性关系 二、线性空间的维数、基与坐标
第1页共16页
一、线性空间中向量之间的线性关系
1、有关定义
设V 是数域 P 上的一个线性空间 (1)1, 2 ,, r V (r 1), k1, k2 ,, kr P, 和式
k11 k2 2 kr r 称为向量组 1 , 2 ,, r 的一个线性组合.
Hale Waihona Puke 证明:∵ a1 , a2 , , an 线性无关, ∴V的维数至少为 n . 任取V中 n+1个向量 1 , 2 ,, n , n1 , 由ⅱ),向量组 1 , 2 ,, n , n1 可用向量组
a1 , a2 , , an 线性表出.
若 1 , 2 ,, n , n1是线性无关的,则n+1≤n,矛盾. ∴V中任意n+1个向量 1, 2 ,, n , n1 是线性相关的. 故,V是n 维的,1 , 2 ,, n 就是V的一组基.
1, 2 ,, r 线性表出,则称向量组 1, 2 ,, s 可经向量组 1 , 2 ,, r 线性表出;
若两向量组可以互相线性表出,则称这两个向量组 为等价的. (3) 1 , 2 ,, r V ,若存在不全为零的数
k1, k2 ,, kr P ,使得
k11 k2 2 kr r 0
则称向量组 1 , 2 ,, r 为线性相关的;
第3页共16页
(4)如果向量组 1 , 2 ,, r 不是线性相关的,即
k11 k2 2 kr r 0
只有在 k1 k2 kr 0 时才成立, 则称 1 , 2 ,, r 为线性无关的.
相关文档
最新文档