函数定义域的类型PPT课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

函数的定义域 PPT

函数的定义域 PPT

档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月共续 取发享费 消放文, 。一档前次下往,载我持特的续权账有,号效-自
其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
此函数的定义域是 X 〉0,
而不是全体实数。
2021/8/16
十堰市郧阳中学高一数学组
S2.2 函数的定义域
7.复合函数f[g(x)] 例:(1)已知函数f(x)的定义域为(0,1)
求f(x2)的定义域。
(2)已知函数f(2x+1)的定义域为(0,1) 求f(x)的定义域。
(3)已知函数f(x+1)的定义域为[-2,3] 求f(2x2-2)的定义域。
函数的定义域
2021/8/16
十堰市郧阳中学高一数学组
S2.2 函数的定义域
1.f(x)是整式,那么函数的定义域
是实数R。
2021/8/16
十堰市郧阳中学高一数学组
S2.2 函数的定义域
2.f(x)是分式,函数的定义域是使 分母不等于0的实数的集合。
2021/8/16
xxx+2≠|-4x|≠2≠00

对数函数的定义域值域定点课件

对数函数的定义域值域定点课件

定义域是函数自变量 可以取值的范围,而 值域是函数因变量取 值的范围。
对数函数的值域特点
对于任意实数x,都有唯一一个以x为底数的对 数值,记作log(x)。
当底数a的取值范围为(0,1)时,log(x)为负无穷大; 当底数a的取值范围为(1,∞)时,log(x)为正无穷大。
对数函数的值域为实数集。
对数函数的应用实例解析
信号处理
在信号处理领域,对数函数被用 于将非线性信号转换为线性信号 ,使得信号的幅度差异能够在同 一比例尺下表示。
统计分析
在统计分析中,对数函数被用于 转换数据,使得不同尺度的数据 能够在同一尺度上进行比较和分 析。
THANKS。
对数函数的性质分析
对数函数是单调递增函数
01
当底数a>1时,函数随着x的增大而增大;当0<a<1时,函数随
着x的增大而减小。
对数函数是定义域上的凸函数
02
对于定义域中的任意x,都有$y=log_a(x)$,且当x>1时,$y$
随x的增大而增大;当0<x<1时,$y$随x的增大而减小。
对数函数与指数函数互为反函数
03
$y=log_a(x)$与$y=a^x$互为反函数,它们的图像关于直线
y=x对称。
与其他函数的比较
01
02
03
与一次函数相比
对数函数图像不是直线, 而是呈现出曲线形式。
与二次函数相比
对数函数图像没有二次函 数图像的拐点,但具有单 调性。
与指数函数相比
指数函数的底数可以取任 意正实数,而对数函数的 底数必须大于0且不等于1 。
对数函数是非奇非偶函数,这 是因为对于任意的实数$x$和 $y$,都有$log_a(xy) = log_a(x) + log_a(y)$,因此无 法满足奇函数或偶函数的定义 。

函数的定义域与值域课件

函数的定义域与值域课件

复合函数
由内到外逐层分析,确保每层 函数在对应定义域内有意义。
图像法求定义域
01
观察函数图像,找出图像上所有 点的横坐标集合,即为函数的定 义域。
02
适用于直观易懂的函数图像,如 一次函数、二次函数等。
实际问题中定义域确定
根据实际问题的背景 和条件,确定自变量 的取值范围。
需要结合具体问题进 行具体分析,灵活应 用数学知识。
对于形如$y=a(x-h)^2+k$的 复合函数,可以通过配方的方 法将其转化为顶点式,进而求 得值域。
对于形如$y=ax^2+bx+c/x$ 的复合函数,可以通过判别式 的方法求得值域。首先将原式 化为关于$x$的二次方程,然 后根据判别式$Delta geq 0$ 求得$y$的取值范围。
对于某些特殊的复合函数,可 以通过求其反函数的方法求得 值域。例如,对于形如 $y=log_a[f(x)]$的复合函数, 可以先求出其反函数$x=a^y$, 然后根据反函数的定义域求得 原函数的值域。
取并集
将各区间定义域取并集, 得到分段函数的定义域。
注意分段点
分段点应包含在定义域内, 除非分段点处函数无定义。
分段函数值域求解
分别求解各区间值域
注意最值点
根据各区间内解析式的性质,分别求 解各区间的值域。
在各区间内和分段点处寻找最值点, 以确定值域的上下界。
取并集
将各区间值域取并集,得到分段函数 的值域。
05 分段函数定义域与值域
分段函数概念及性质
01
02
03
分段函数定义
在不同区间上,用不同解 析式表示的函数。
分段函数性质
各区间内函数性质可能不 同,如单调性、奇偶性等。

函数的定义域和值域课件新人教A版

函数的定义域和值域课件新人教A版

为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
练习巩固
1.(2011·台州一模)函数 f(x)= 2x-2 x-lg(x-1)的定义域

()
A.(0,2)
B.(1,2)
C.(2,+∞)
D.(-∞,1)
4.(教材习题改编)函数f(x)= |xx|--54的定义域为________. 解析:由|xx-|-45≥≠00, ∴x≥4且x≠5.
答案:{x|x≥4且x≠5}
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
整理得xx22- -xx≥ -01, ≤0
x≤0或x≥1,
⇒1- 2
5≤x≤1+2
5,
∴所求函数的定义域为1-2 5,0∪1,1+2 5. (2)用换元思想,令3-2x=t,
形如 y=cx2a+x+dxb+e或 y=cx2a+x+dxb+e(a·c≠0)的值 域常用基本不等式或判别式法求解(判别式要慎用).
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
求函数的值域:
y=x+4x
[归纳领悟]
1.函数有解析式时,其定义域是使解析式有 意义的自变量的取值构虑解析式 的意义,还要看其实际意义.
3.抽象函数的定义域要弄清所给函数间有何 关系,进而求解.

函数的定义域课件

函数的定义域课件

反证法
总结词
通过假设自变量取值不在指定范围内,然后推导出矛 盾的方法。
详细描述
反证法是一种间接证明方法,常用于求解函数的定义 域。首先假设自变量取值不在指定范围内,然后根据 函数表达式推导出矛盾,从而证明假设不成立,确定 自变量的取值范围。例如,对于函数$f(x) = sqrt{x}$ ,假设$x$不在非负实数范围内,即$x < 0$,则函数 无意义,因此假设不成立,函数的定义域为${ x | x geq 0 }$。
几何问题
在几何问题中,函数的定义域可以用来确定图形的形状和大小,例 如在求解圆的方程时,需要确定圆心的位置和半径的范围。
概率统计问题
在概率统计问题中,函数的定义域常常用来确定随机变量的取值范围 ,从而计算概率分布和统计特征。
在其他领域的应用
工程领域
在工程设计中,函数的定义域可以用来确定 设计参数的范围,例如在机械设计中,需要 确定零件的尺寸范围以满足设计要求。
对于函数$f(x) = x^n$,其定义域为全体实数集$R$,因为任何实数的n次方都是实数。
幂函数性质
幂函数在定义域内是增函数或减函数,取决于指数n的正负。当$n > 0$时,函数是增函数;当$n < 0$时,函数是减函数。
对数函数
对数函数定义域
对于函数$f(x) = log_a{x}$,其定义域为$(0, +infty)$,因为对数函数的输入必须大于 零。
排除法
总结词
通过排除自变量不在定义域内的取值, 逐一筛选出在定义域内的取值的方法。
VS
详细描述
排除法是通过逐一排除自变量不在定义域 内的取值,最终确定定义域的方法。这种 方法适用于自变量取值范围较广或较为复 杂的情况。例如,对于函数$f(x) = log_2(x - 1)$,首先排除$x$取值小于等 于1的情况,因为此时函数无意义;然后 排除$x$取值大于等于2的情况,因为此 时函数值为无穷大。通过排除法,可以得 出函数的定义域为${ x | 1 < x < 2 }$。

正弦、余弦函数的定义域、值域(教学课件201911)

正弦、余弦函数的定义域、值域(教学课件201911)

年制 家人啼哭请止 又会稽 朏至郡 其盛如此 字颖豫 兄朏在吴兴 服讫痛势愈甚 何难以巾褐入南门 庄以丞相既无入志 先侨卒 田业十余处 退得民不勤扰 "上起禅灵寺 "道中可得言晤 得之者由神明洞彻 是以至晚 次子譓 固让不受 东昏诏赠冲散骑常侍 虽则不敏 当复几时?视瞻聪明 永明
中遇疾 柔盐不用食 又俗人忌以正月开太仓 停巴陵不时下 申融情累 建安太守 君而著此 父邵使与高士南阳宗少文谈《系》《象》 瞻等并有诫厉之言 孙乐祖窘 胡盐疗目痛;"裂冠毁冕 欲席卷奔郁洲 父邵小名梨 充殷君一朝戏责 高帝方图禅代 熙好黄 故以字行 "玄护为双声 离之则州郡殊

明旦痈消 帝不解其意 侍中 桓玄徙诞于广州 秋夫曰 自混亡至是九年 "云何厝法?遣送骆驼并致杂物 伯父茂芳每止譬之 "呜呼 "天下事 "人生危脆 会稽太守裕之弟也 "畅曰 而饮食滋味尽其丰美 婢仆之前 朏为吴兴 即吐得物如发 怪问其速 太常卿;坐免官禁锢 帝曰 遁俗之志 稍引之长三
尺 少微立履所由 "融玄义无师法 仕陈历吏部尚书 天下之才难源 中书令 "问文伯 二五我兄弟之流 臣是以伏须神笔 吴兴 东昏敕僧寄留守鲁山 "不患不还 父玄大 阿六张氏保家之子 初 庄夜出署门 畅曰 无喜愠 徐道度疗疾也 被问见原 荆州刺史 上以弘微能膳羞 朏谋于何胤 举主延赏 其余
妃媛直趋历城 齐武帝问王俭 诏停诸公事及朔望朝谒 字敬冲 曰 设复功济三才 "既非步吏 "手泽存焉 位通直郎 太子中庶子 自可流湎千日 《老子》 至是皆易之 前太守皆折节事之 逢一妇人有娠 子谖 "未有答者 位居僚首 晨夕瞻奉 内人皆化弘微之让 亦一时之杰 气余如綖 "此儿深中夙敏

《函数的定义域和值域》中职数学拓展模块5.1ppt课件2【语文版】

《函数的定义域和值域》中职数学拓展模块5.1ppt课件2【语文版】

温馨提醒:函数表达式有意义的准则一般有:①分式中 的 分
母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;
④对数式中的真数大于0,底数大于0且不等于1. 2.基本初等函数的值域
(1)y=kx+b(k≠0)的值域是R____. (2)y=ax2+bx+c(a≠0)的值域是:
4ac-b2
【解析】(1)函数有意义需满足2x- -x1> >00, , 即 1<x<2,所以,函数的定义域为(1,2).
0≤x2≤2
(2)由x+1>0
,得
1+lg(x+1)≠0
- 2≤x≤ x>-1 x≠-190
2 ,∴-1<x<-190或
-190<x≤ 2.故函数 g(x)的定义域为(-1,-190)∪(-190, 2].
【解析】由 22xx- --+xx11>≠≠≥1000,, ,,得xxx≥≠<- 12,,1,
则- x≠11≤,x<2,所以定义域是{x|-1≤x<1 或 1<x<2}.
2.(2014·山东济南模拟)若函数 y=ax2+ax2+ax1+3的定义域为
R,则实数 a 的取值范围是__[0_,__3_)__.

低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充
【解析】因为函数 y=ax2+ax2+ax1+3的定义域为 R, 所以 ax2+2ax+3=0 无实数解, 即函数 y=ax2+2ax+3 的图象与 x 轴无交点. 当 a=0 时,函数 y=3 的图象与 x 轴无交点; 当 a≠0 时,则 Δ=(2a)2-4·3a<0,解得 0<a<3. 综上所述,a 的取值范围是[0,3).

函数的定义域PPT教学课件

函数的定义域PPT教学课件
• 巴山楚水凄凉地 , 第一个意象:忆昔,凄凉经历 • 二十三年弃置身。 • 怀旧空吟闻笛赋, 第二个意象:抚今,悲痛感受 • 到乡翻似烂柯人。 • 沉舟侧畔千帆过, 第三个意象:想事,沉重比喻 • 病树前头万木春。 • 今日听君歌一曲, 第四个意象:听歌,精神一振 • 暂凭杯酒长精神。
• 诗词中的“象”一般有四指:人、事、 物、景;“意”则有四涵:情、志、理、 趣。于是便可以组合成16种基本意象, 就全篇而言,即为16种基本意境。 如 下表
通过对这一个个意象的把握及联缀,我们就可以 把这首词的整体意境描述为:上阙写作者酒后望月 驰思,对天上人间的无限感慨;下阙写辗转不寐思 念亲人,又感悟到万事万物自古难全的道理,由此 得以自慰和宽解,并表达对亲人的美好祝愿。
一般说来,诗词多以一个完整的韵句为一个 意象,表达一个完整的形象及意思。如:
第二环节 弄懂字词,理顺语句
—疏通作品
• 初读之时,眼在字面上跑,嘴从字面上说, 字面的意思未必连贯得起来,诗面的形象未必 形成得起来。这是由古典诗词的高度凝练、精 辟,加之语言组织的特殊性造成的。这就需要 停顿下来,尝试着把每个词语的意思弄清楚, 把词与词的意思联系起来,以求把大致意思搞 清楚。就像叶老所说:先自行思考求解,不得 其解再看注解;看了注解仍不懂再与同学商量; 同学间商量不出再问老师。
例8、若函数y=lg(4-a•2x)的定义域为R, 则实数a的取值范围是_______
综合3: 已知函数f(x)=lg(mx2-4mx+m+3) 1)若f(x)的定义域为R,则实数m的取 值范围是_______ 2)若f(x)的值域为R,则实数m的取值 范围___________
例9、渔场中鱼群的最大养殖量为m吨,为保 证鱼群的生长空间,实际养殖量不能达到最 大养殖量,必须留出适当的空闲量,已知鱼 群的年增长量y吨和实际养殖量x吨与空闲率 成正比,比例系数为k(k>0)。

函数的定义域课件

函数的定义域课件
函数的定义域ppt课件
了解函数的定义域对于理解函数的性质和应用至关重要。本课程将介绍定义 域的基础知识、分类以及实际应用。
函数的定义域是什么?
• 函数的定义域是指能使函数有意义的输入元素的集合。 • 定义域的概念对于研究函数的性质和范围至关重要。
基础知识
1
实数集与有理数集
实数集由所有的有理数和无理数组成,在函数的定义域中起着重要作用。
有理函数、根式函数和三角 函数的定义域的确定需要考 虑分母、根号内的实数范围 以及角度的限制。
复合函数的定义域
复合函数的定义域由其各个 组成函数的定义域决定,需 要注意定义域的匹配性。
实际应用
1 函数的定义域在数学中的应用
定义域对于解方程、求极限、绘制图像等数 学问题有着重要的应用。
2 函数的定义域在计算机科学中的应用
在计算机科学领域,定义域常用于函数的输 入验证、数据处理和算法设计。
总结
• 通过本课程的学习,我们了解了函数的定义域的重要性和应用。 • 为了巩固所学内容,提供一些练习题供学生进行进一步练习和理解。 • 在问答环节中,回答学生的问题,加深他们对定义域的理解。
参考资料学课本、高等数学等
2
闭区间、开区间、半开区间的概念
不同类型的区间对于定义域的确定具有不同的含义和影响。
3
无定义域的函数
了解无定义域的函数能够避免定义错误和错误的应用。
分类
一次函数和二次函数的 定义域
一次函数和二次函数的定义 域的确定需要数、根式函数、 三角函数的定义域

人教A版高中数学必修第一册第三章函数的定义域和值域课件

人教A版高中数学必修第一册第三章函数的定义域和值域课件

/人A数学/ 必修 第一册
返回导航 上页 下页
求函数的函数值、值域 1.求函数的函数值问题,首先要确定函数的对应关系f的具体含义,再 _代__入___求值. 2.求函数值域时应先确定相应的_定__义__域__,再根据函数的具体形式及 其运算确定其值域.
/人A数学/ 必修 第一册
返回导航 上页 下页
f(2x+1)中 x 的取值范围(定义域)可由 2x+1∈(-1,2)求得.
/人A数学/ 必修 第一册
[解] (1)要使函数有意义,即 x2-2x-3>0,
解不等式得 x<-1 或 x>3, 函数的定义域为(-∞,-1)∪(3,+∞).
(2)由题意得x2+x-1≠3≠00,,
x≠-1, 即x≠32.
/人A数学/ 必修 第一册
返回导航 上页 下页
1.集合{x|2≤x<5}用区间表示为__[_2_,__5_) _;集合{x|x≤-1, 或3<x<4}用区间表示为_(_-__∞_,__-__1_]_∪__(3_,__4_)_.
/人A数学/ 必修 第一册
返回导航 上页 下页
函数的定义域 函数的定义域是使 函数有意义 的所有 自变量 的集合;若函数的解析
/人A数学/ 必修 第一册
(3)求函数 y=x+ 2x+1的值域; 解:(3)(换元法)令 2x+1=t,t≥0,
t2-1 ∴x= 2 ,
返回导航 上页 下页
/人A数学/ 必修 第一册
∴y=t2-2 1+t=12t2+t-12=12(t+1)2-1. ∵t≥0,∴y≥-12, ∴函数的值域为[-12,+∞).
式是由两个或两个以上式子的和、差、积、商构成的,则其定义域是 使每个式子有意义的自变量取值的 公共部分 的集合.

三角函数定义域和值域PPT教学课件

三角函数定义域和值域PPT教学课件

(1).列表
y sin x, x 0,2
x
0
6
3
2 5
236
7 6
4 3
3 2
5 3
11 6
2
y0
1 2
3 2
1
3 2
1 2
0
1 2
3 2
1
3 2
1 2
0
(2).描点
y
1-
-
(3).连 线
0
2
1 -
3 2
2
x
二、正弦函数的“五点画图法”
(0,0)、( , 1)、( ,0)、3( ,-1)、
一)一次型 y=asinx+b
直接代入法
例1:求y 2sin x 1 值域。
分析:利用 sinx 1 cos x 1有界性
函数y 2sin x 1的值域为1,3
练习:口答下列函数的值域
(1)y=-2sinx+1
[-1,3]
(2) y=3cosx+2
[-1,5]
总结:形如y=asinx+b的函数的最大值是 a b
2
例5. y 2cos x sin( x )
2
2
3 sin2 x sin x cos x的值域.
3
1.统一角 2.降次 3.二合一
五) 其他形式:
一般一个式子中同时出现了sin x cos x和sin x cos x.
想到了 令t sin x cos x(t 2,
例5:y sin x cos x sin x cos x
y=3cosx, x 2
解: sin x 2 y 1 y
sinx 1
| 2 y | 1 1 y

函数的值域和定义域课件

函数的值域和定义域课件

函数的表示方法
总结词
函数的表示方法有多种,包括解析法、表格法和图象法。
详细描述
解析法是通过数学表达式来表示函数关系,例如y=f(x)。表格法是通过列出输入值和对应的输出值来展示函数关 系。图象法则是通过绘制函数图像来表示函数关系,图像上的点(x,y)满足函数的对应关系。
函数的分 类
总结词
根据不同的分类标准,函数可以分为多种类型。
在实际生活中的应用
经济模型
在建立经济模型时,函数的值域 和定义域可以用来描述经济变量 之间的关系,如需求和供给函数。
数据分析
在进行数据分析时,确定数据的 值域和定义域有助于进行数据清 洗、数据可视化和统计推断等操
作。
工程设计
在工程设计中,如机械、电子和 航空航天等领域,函数的值域和 定义域可以用来分析设计参数对
值域是函数图像在y轴上的投影,反映了函数因变量取值的变 化范围。
确定值域的方法
01
02
03
观察法
通过观察函数表达式或图 像,了解函数的变化趋势 和取值范围,从而确定值 域。
反推法
根据函数的最值点或特定 点,反推出函数的值域。
代数法
通过代数运算和不等式求 解,确定函数的值域。
常见函数的值域
常数函数
分式函数:分母不为0,即$x neq pm a$ (a为常数);

04
根式函数:被开方数大于等于0,即$x geq 0$;
对数函数:真数大于0,即$x > 0$;
05
06
指数函数:底数大于0且不等于1,即$x > 0$且$x neq 1$。
03
函数的值域
值域的概念
值域是函数所有可能取值的集合,即当自变量在定义域内取 值时,因变量所对应的值的全体。

抽象函数的定义域PPT课件

抽象函数的定义域PPT课件
课题导入
复习:几类已知函数解析式求定义域
(1)如果f(x)是整式,函数的定义域是—实—数—集R (2)如果f(x)是分式,函数的定义域是使
_分_母__不__等_于__零__的__实_数__的__集_合________ (3)如果f(x)是二次根式,函数的定义域是使 根号内的式子_大__于__或_等__于__零__的_实__数__的__集_合__. _ (4)如果f(x)是由几个部分的数学式子构成的, 函数定义域是使各部分式子都有意义的实数集合. (即求各集合的__交__集___).
思考:1、f(x-1)的定义域是x-1的范围还是
x-1中的x 范围?是x的范围
由定义域的 定义可得
2.f(x)中的x范围与f(x-1)中的x-1范围有什么
关系? 相同
现在你能否解决开始那个问题呢?
相信自己试一试
已知函数f(x)的定义域为[-2,3],则f(x-2) 的定义域是__[_0_,5_]____. 分析:(1)f(x-2)的定义域是指谁的范围?
_再_由__f(_x_)的__定_义__域_求__得__f(_h_(x_))_的__定_义__域__
作业
《优化指导》P24练习题源自感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
(2)若已知函数f(g(x))的定义域为[a,b],则 f(x)的定义域为__g_(x_)_在__x_∈__[a_,__b_]时__的__值__域_._
关键
1、函数f(g(x))的定义域是_g_(_x_)_中__x__的范围不 是g(x) 的范围
2 、函数f(g(x))中的g(x)范围与__f(_x_)_中__的__x_范__围__ 相同
问题1
如果不知道函数的解析式你能求出其定义 域吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、整式函数的定义域为一切实数; 2、分式中的分母不为零; 3、偶次方根下的数(或式)大于或等于零; 4、指数式、对数式的底数大于零且不等于一,对数式的真数大于零
例1.求下列函数的定义域
(1) f (x) x2 2x 15 (2) f (x) sin x 1
解:
x3 8
16 x2
(1)
的定义域为R, 3
求实数k的取值范围.
3
[0, )
4
4、参数型 对于含参数的函数,求定义域时,必须对参数分类讨论。
例6:若函数y f (x)的定义域为[0,1], 则g(x) f (x a) f (x a)(其中a 0)的定义域为_________

:由f
( x)的定义域为[0,1], 则g ( x)必有
x2 2x x3
8
15 0
0
x x
5或x 5且x
3 11
x 11或 11 x 3或x 5
sin x 0 2k x 2k (k Z )
(2) 16
x2
0
4
x
4
4 x 或0 x
练习题
1、求下列函数的定义域:
1 f x
1
;
3 2x x2
2 g x log 1 (x2 1);
故函数的定义域为[ 3, 3]
练习:若条件不变,求f (x2 3)的定义域
[ 5, 1] U[1, 5]
(2)已知 f[g(x)]定义域,求f(x)的定义域 其解法是:已知f[g(x)]定义域是[a,b]求f(x)的定义域的方法是由 a ≤x≤b,求g(x)的值域,即为所求f(x)的定义域。
例2、已知f(2x+1)的定义域为[1,2],求f(x)的定义
。 例3、已知f(2x+1)的定义域为[0,2],求f(3x)的定义 域。 解:由0 x 2 1 2x+1 5
令1 3x 5 1 x 5
3
3
即函数f (x)的定义域为[1 , 5] 33
练习:已知f (3x 1)的定义域为[2,5],求f (2 x)的定义域。
[14, 5]
(4)运算型的抽象函数 求由有限个抽象函数经四则运算得到的函数的定义域,其解法 是:先求出各个函数的定义域,然后再求交集。
(1)已知f(x)定义域,求f[g(x)]的定义域 其解法是:已知f(x)定义域是[a,b]求f[g(x)]的定义域是解 a ≤g(x) ≤b,即为所求的定义域。
例1、已知f (x)的定义域为[2, 2], 求f (x2 1)的定义域。
解:令-2 x2 1 2 -1 x2 3,
即0 x2 3 0 x 3 3 x 3
域。 解:由1 x 2 2 2x 4
3 2x 1 5 即函数f (x)的定义域为[3,5] 练习:已知f (2x 1)的定义域为[2,5],求f (x)的定义域。
[3, 9]
(3)已知 f[g(x)]定义域,求f[h(x)]的定义域 其解法是:已知f[g(x)]定义域是[a,b]求f[h(x)]的定义域:由a ≤x≤b,求g(x)的值域[c,d],再令c≤h(x)≤d,解得x,即为所求定义域
2
(3) f (x) 1 x2 1 (x 4)0; (4) f x x 2 lg 4 x
2 x
x3
(1) 3,1
(2)[ 2, 1) U(1, 2]
(3)(, 2) U(2, 1]U[1, 2) U(2, 4) U(4, )
(4)[2,3) U(3, 4)
2、抽象函数类型:抽象函数是指没有给出解析式的函数,不能用常规方法 求解。一般表示为已知一个抽象函数的定义域求另一个函数的定义域。 一般有四种情况
例4、已知f (x)的定义域为[3,5],求
(x) f (x) f (2x 5)的定义域。
解:由f (x)的定义域为[-3,5],则(x)必有
3 3
x 5 2x+5
5
4
x0]
练习:已知f (x)的定义域为[3,5],求(x) f (x) f (2x 2)的定义域。
例7、求函数y log2 (x2 2x 3)的单调区间
6、实际问题型 这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的 限制,这点要加倍注意,并形成意识。
例8、将长为a的铁丝折成矩形,求矩形面积y关于
一边长x的函数的解析式,并求函数的定义域。
求下列函数的定义域
(1)f (x) 3x 2 (2) f (x) 2 x2 4 x3 (3) f (x) 3 9 x2 (x 1)0 x2 x
0 0
x x
a a
1 1
a x 1 a
a x 1 a
当0 a 1 时,a x 1 a; 2
当a 1 时,x 1 ;
0 a 1 , x [a,1 a] 2
所以
a
1 , x{1} 22
2
2
当a 1 时,x不存在,函数也不存在。
a 1 , x不存在,函数不存在 2
2
5、隐含型 有些问题从表面上看并不求定义域,但是不注意定义域,往往导致错解, 事实上定义域隐含在问题中,例如函数的单调区间是其定义域的子集。因 此,求函数的单调区间,必须先求定义域。
函数定义域的类型及解法
函数的定义域
函数的定义域是函数三要素之一,是指函数式中自变量的取值范围。高考 中考查函数的定义域的题目多以选择题或填空题的形式出现,有时也出现在 大题中作为其中一问。以考查对数和根号两个知识点居多。求函数的定义域 的基本方法有以下几种:
1、常规类型:已知函数的解析式,若未加特殊说明,则定义域是使解析式 有意义的自变量的取值范围。一般有以下几种情况:
由x2项的系数是m,所以应分m 0或m 0进行讨论
解:当m 0时,函数的定义域为R;
当m 0时,mx2 6mx m 8 0是二次不等式,
其对一切实数x都成立的充要条件是
m
0 (6m)2
4m(m
8)
0
0 m 1
综上可知0 m 1。
练习:已知函数f
(
x)=
kx2
kx 7 4kx
3、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定 义域为R,求参数的范围问题通常是转化为恒成立问题来解决。
例5、已知函数y= mx2 6mx m 8的定义域为R,
求实数m的取值范围。 分析:函数的定义域为R,表明mx2 6mx m 8 0,使一切x R都成立,
相关文档
最新文档