江西省抚州市抚州一中2020届高三第一次模拟测试卷理科数学试题(附答案解析)
2020年江西省抚州市临川一中高考数学一模试卷(理科) (含答案解析)
2020年江西省抚州市临川一中高考数学一模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={x|(x−2)(x+1)>0}则C R A=()A. {x|−1<x<2}B. {x|−1≤x≤2}C. {x|x<−1}∪{x|x>2}D. {x|x≤−1}∪{x|x≥2}2.已知复数z=1+i,则|z2−1|=()A. 5B. 2√5C. √5D. 23.一个几何体的三视图如图所示,其中俯视图的曲线部分是四分之一圆弧,该几何体的表面上的两点M,N在正视图上的对应点分别为A(中点),B,则一质点自点M沿着该几何体的侧面绕行一周到达点N的最短路径长为()A. √(π+4)2+1B. √π2+1C. √4π2+1D. √374.函数f(x)=13ax3+12ax2−2ax+2a+1的图像经过四个象限的一个充分但不必要条件是()A. −43<a<−13B. −1<a<−12C. −65<a<−316D. −2<a<05.已知△ABC的三个顶点是A(−a,0),B(a,0)和C(a2,√32a),则△ABC的形状是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 斜三角形6.下列函数图象不是轴对称图形的是()A. y=1xB. y=cosx,x∈[0,2π]C. y=√xD. y=lg|x|7.如图是一个2×2列联表,则表中m,n的值分别为()y 1 y 2 合计 x 1 a 35 45 x 2 7 b n 合计m73SA. 10,38B. 17,45C. 10,45D. 17,388. 一个圆经过以下两个点B(−3,0),C(0,−2),且圆心在y 轴上,则圆的标准方程为( )A.B. x 2+(y ±54)2=(134)2 C. x 2+(y −54)2=134D. x 2+(y −54)2=(134)29. 已知F 1(−8,3),F 2(2,3),动点P 满足|PF 1|−|PF 2|=10,则P 点的轨迹是( )A. 双曲线B. 双曲线的一支C. 直线D. 一条射线10. 向如图中所示正方形内随机地投掷飞镖,飞镖落在阴影部分的概率为( )A. 3518 B. 2536 C. 25144 D. 257211. 如图,直三棱柱ABC −A 1B 1C 1,AC ⊥BC ,且CA =CC 1=√2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A. √55B. √53C. 2√55D. √151512. 已知函数f(x)=k(x −lnx)−e x x,若f(x)只有一个极值点,则实数k 的取值范围是( )A. (−e,+∞)B. (−∞,e)C. (−∞,e]D. (−∞,1e ]二、填空题(本大题共4小题,共20.0分)13.f(x)=(2−x)e2x的单调递增区间是__________.)5的展开式中x4的系数为________.14.(x2+2x15.如图,江岸边有一观察台CD高出江面30米,江中有两条船A和B,由观察台顶部C测得两船的俯角分别是45o和30o,若两船与观察台底部连线成30o角,则两船的距离是__________.16.已知函数f(x)=axlnx−e x(其中e为自然对数的底数)存在唯一的极值点,则实数a的取值范围是________.三、解答题(本大题共7小题,共82.0分)17.设f(x)=6cos2x−√3sin2x.(1)求f(x)的最大值及最小正周期;α的值.(2)若锐角α满足f(α)=3−2√3,求tan4518.如图,在直三棱柱ABC−A1B1C1中,AC=BC,F为A1B1的中点.求证:(1)B1C//平面FAC1;(2)平面FAC1⊥平面ABB1A1.19.已知函数(1)当a=−1时,求f(x)的单调区间;(2)当x∈[1,e]时,求f(x)的最小值.20. 已知函数,f(x)=log 2x −x +1,(x ∈[2,+∞)),数列{a n }满足a 1=2,a n+1a n=2,(n ∈N ∗).(Ⅰ)求数列{a n }的通项公式a n ; (Ⅱ)求f(a 1)+f(a 2)+⋯+f(a n ).21. 设M 点为圆C :x 2+y 2=4上的动点,点M 在x 轴上的投影为N.动点P 满足2PN⃗⃗⃗⃗⃗⃗ =√3MN ⃗⃗⃗⃗⃗⃗⃗ ,动点P 的轨迹为E . (Ⅰ)求E 的方程;(Ⅱ)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于两点A ,B(A,B 不是左右顶点),且满足|DA ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ |=|DA ⃗⃗⃗⃗⃗ −DB⃗⃗⃗⃗⃗⃗ |,求证:直线l 恒过定点,并求出该定点的坐标.22. 在平面直角坐标系xOy 中,直线l 的参数方程为{x =1−√32ty =−√3+12t(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=√22. (1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)设点P(1,−√3),直线l与曲线C相交于两点A,B,求1|PA|+1|PB|的值.23.设函数f(x)=|x−a|.(1)当a=−1时,解不等式f(x)≥7−|x−1|;(2)若f(x)≤2的解集为[−1,3],m+2n=2mn−3a(m>0,n>0),求证:m+2n≥6.【答案与解析】1.答案:B解析:本题考查一元二次不等式的解法和补集及其运算.化简集合A,结合数轴即可求出结果.解:由(x−2)(x+1)>0得x>2或x<−1,∴A={x|x<−1或x>2},∴C R A={x|−1≤x≤2}.故选B.2.答案:C解析:本题主要考查了复数的四则运算,复数的模,属于基础题.先求出z2−1,再根据复数模的求法即可求得结果.解:由复数z=1+i,得z2−1=(1+i)2−1=2i−1,所以|z2−1|=√22+(−1)2=√5.故选:C.3.答案:A解析:本题考查几何体的三视图和多面体和旋转体上的最短距离(折叠与展开图),属中档题,关键是根据三视图确定几何体的形状与尺寸,并将空间最短路径问题转化为侧面展开图的直线距离问题解:如图是由三视图得到的几何体,是有一个棱长为2的正方体去掉以一条棱为轴的底面半径r=2的圆柱的四分之一得到,×2π×r=π,圆柱部分的底面弧长为14其展开图如图所示,是长为4+π,宽为2的矩形,质点自点M沿着该几何体的侧面绕行一周到达点N的最短路径长为展开图中M、N的直线距离为,故选A.4.答案:B解析:本题主要考查充分条件和必要条件的判断,结合函数的导数,研究函数的极值是解决本题的关键.据选择项只要判断当a<0时的函数的导数,研究函数的极值,结合函数的图象特点进行求解即可解:根据选择项只要判断当a<0时,即可,函数的导数f′(x)=ax2+ax−2a=a(x−1)(x+2).若a<0,当x<−2或x>1,f′(x)<0,当−2<x<1,f′(x)>0,即当x=−2时,函数取得极小值,当x=1时函数取得极大值,要使函数f(x)=13ax3+12ax2−2ax+2a+1的图象经过四个象限,则有f(−2)<0,且f(1)>0,∴−65<a<−316,即函数的图象经过四个象限的充要条件为−65<a<−316,则对应的充分但不必要条件为(−65,−316)的真子集,则−1<a<−12满足条件,故选:B.5.答案:C解析:本题主要考查了两点间的距离公式以及勾股定理判断,熟练掌握相关知识点和方法是解决此类问题的关键.解:由坐标可知|AB|=2a,|AC|=a2)(√3a2)=√3a,|BC|=a2)(√3a2)=a,所以|AB|2=|AC|2+|BC|2,则△ABC是直角三角形,故选C.6.答案:C解析:解:对于A,y=1x为轴对称图形,其对称轴y=x,或y=−x,对于B:y=cosx在x∈[0,2π]为轴对称图形,其对称轴x=π,对于C:y=√x不是轴对称图形,对于D:y=lg|x|为轴对称图形,其对称轴x=0,故选:C.根据常见函数的图象即可判断本题考查了函数的图象和性质,属于基础题7.答案:B解析:本题考查2×2列联表,考查推理能力和计算能力,属于基础题. 由联表中数据即可求解.解:根据2×2列联表可知a +35=45,解得a =10,则m =a +7=17,又由35+b =73,解得b =38,则n =7+b =45,故选B .8.答案:D解析:本题考查圆的标准方程的求法,训练了利用待定系数法求解圆的方程,是基础题.设圆心坐标为(0,b),半径为r ,可得圆的方程为x 2+(y −b)2=r 2,把已知点的坐标代入,求解b 与r 值,则圆的方程可求.解:设圆心坐标为(0,b),半径为r , 则圆的方程为x 2+(y −b)2=r 2, 则{9+b 2=r 2(b +2)2=r 2, 解得b =54,r 2=16916,∴圆的标准方程为x 2+(y −54)2=(134)2. 故选D .9.答案:D解析:F 1,F 2是两定点,|F 1F 2|=10,所以满足条件|PF 1|−|PF 2|=10的点P 的轨迹应为一条射线.故选D .10.答案:C解析:根据几何概率的求法:镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.几何概型的概率估算公式中的“几何度量”,可以为线段长度、含面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解:观察这个图可知:阴影部分是一个小三角形,在直线AB 的方程为6x −3y −4=0中, 令x =1得A(1,23), 令y =−1得B(16,−1). ∴三角形ABC 的面积为S =12AC ×BC =12×(1+23)(1−16)=2536∵图中正方形的面积为4,∴飞镖落在阴影部分(三角形ABC 的内部)的概率是:25364=25144.故选:C .11.答案:D解析:本题考查利用空间向量解决异面直线所成角的问题,向量夹角余弦的坐标公式,要清楚两异面直线的方向向量的夹角和这两异面直线所成角的关系.设CA =1,由条件及建立的空间直角坐标系,可求出点A ,B ,B 1,C 1几点的坐标,从而得到向量BC 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ 的坐标,由向量夹角余弦的坐标公式即可求出cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ >,从而便得出直线BC 1与直线AB 1夹角的余弦值.解:设CA =1,建立空间直角坐标系,如图,根据条件可求以下几点坐标:A(1,0,0),B 1(0,1,√22),B(0,0,√22),C 1(0,1,0);∴BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,−√22),AB 1⃗⃗⃗⃗⃗⃗⃗=(−1,1,√22);∴cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅AB 1⃗⃗⃗⃗⃗⃗⃗⃗ |BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |·|AB 1⃗⃗⃗⃗⃗⃗⃗⃗ |=1−12√1+24×√1+1+24=√1515.∴直线BC 1与直线AB 1夹角的余弦值为√1515.故选D .12.答案:C解析:本题考查了利用导数研究函数的单调性与极值问题,是中档题. 求出函数的导数,令f ′(x)=0,解得x =1,或k =e x x,令ℎ(x)=e x x,根据函数的单调性结合ℎ(x)=e x x的图象,求出k 的范围即可. 解:函数f(x)=k(x −lnx)−e x x(k ∈R ),∴f ′(x)=(x−1)(kx−e x )x 2,x ∈(0,+∞);令f′(x)=0,解得x =1,或k =e x x,设,则ℎ′(x)=e x x−e xx 2=e x (x−1)x 2,由ℎ′(x)>0,得x >1; 由ℎ′(x)<0得0<x <1.当x =1时,ℎ(x)取得极小值ℎ(1)=e . 作出函数ℎ(x)=e x x的图象如图所示:结合函数ℎ(x)的图象,则k <e 时,函数f(x)只有一个极值点x =1;k=e时,函数f(x)也只有一个极值点x=1,满足条件;k>e时不满足条件,舍去.综上所述,实数k的取值范围是(−∞,e].故选C.13.答案:(−∞,32)解析:f′(x)=−e2x+2(2−x)e2x=e2x(3−2x),因为e2x>0恒成立,所以令f′(x)=e2x(3−2x)>0得x<32.即f(x)的单调递增区间为(−∞,32).本题考察导数的基本计算和函数单调性的求解,属于基础题.14.答案:40解析:本题考查二项展开式的特定项与特定项的系数.求出二项展开式的通项,计算可得结果.解:根据题意得,T r+1=C5r(x2)5−r(2x)r=C5r2r x10−3r,令10−3r=4,得r=2,∴(x2+2x)5的展开式中x4的系数为C5222=40.故答案为40.15.答案:30米解析:本题给出实际应用问题,求观察台旁边两条小船间的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.利用直线与平面所以及俯角的定义,化为两个特殊直角三角形的计算,再在底面△DAB中用余弦定理即可求出两船距离.解:如图,设C处观测小船A的俯角为45°,设C处观测小船B的俯角为30°,连接DA、DB,Rt△CDA中,∠CAD=45°,可得DA=CD=30米,Rt△CDB中,∠CBD=30°,可得DB=√3CD=30√3米,在△DAB中,DA=30米,DB=30√3米,∠ADB=30°,由余弦定理可得:AB2=DA2+DB2−2DA·DBcos30°=900.∴AB=30米(负值舍去).故答案为30米.16.答案:解析:本题考查了利用导数求函数的极值问题,求出函数的导数,由已知条件结合零点存在定理进行判断即可.解:f′(x)=a lnx+a−e x=a(lnx+1)−e x,令f′(x)=0,即a(lnx+1)−e x=0,解得x=0,∴f(x)在x=0处存在极值为,f(0)=−e0=−1<0,又∵函数存在唯一的极值点,∴只需要f′(x)=a(lnx+1)−e x<0即可,∵e x在R上恒大于0,则只需a<0即可,∴a的取值范围为,故答案为.−√3sin2x17.答案:解:(1)f(x)=61+cos2x2=3cos2x −√3sin2x +3 =2√3(√32cos2x −12sin2x)+3=2√3cos(2x +π6)+3故f(x)的最大值为2√3+3;最小正周期T =2π2=π(2)由f(α)=3−2√3得2√3cos(2α+π6)+3=3−2√3, 故cos(2α+π6)=−1又由0<α<π2得π6<2α+π6<π+π6,故2α+π6=π,解得α=512π. 从而tan 45α=tan π3=√3.解析:本题考查三角函数的图象与性质即三角函数的恒等变换,解决问题的关键是:(1)利用三角函数的二倍角公式及公式asinx +bcosx =√a 2+b 2sin(x +θ)化简为只含一个角一个函数名的三角函数,利用有界性及周期公式求出最大值最小正周期. (2)列出关于α的三角方程,求出α,求出正切值.18.答案:解:(1)证明:如图所示取AB 的中点E ,连接CE ,EB 1,∵F 为A 1B 1的中点,∴C 1F//CE ,AF//B 1E ,且C 1F ∩AF =F ,CE ∩B 1E =E , ∴面B 1CE//平面FAC 1,∵B 1C ⊂B 1CE , ∴B 1C//平面FAC 1(2)证明:直三棱柱ABC −A 1B 1C 1中,A 1A ⊥面A 1C 1B 1,∵C 1F ⊂面A 1C 1B 1,∴A 1A ⊥C 1F , ∵AC =BC ,F 为A 1B 1的中点,∴A 1B 1⊥C 1F ,且AA 1∩A 1B 1,∴C 1F ⊥面AA 1C 1B 1B ,C1F⊂面A1C1B1,∴平面FAC1⊥平面ABB1A1.解析:(1)如图所示取AB的中点E,连接CE,EB1,可得面B1CE//平面FAC1,即B1C//平面FAC1 (2)只需证明C1F⊥面AA1C1B1B,即可得平面FAC1⊥平面ABB1A1.本题考查了线面平行、面面垂直的判定,关键是空间位置关系的判定与性质的应用,属于中档题.19.答案:解:(1)当a=−1时,,∴f′(x)=x−1x =x2−1x(x>0),由f′(x)>0,解得x>1;由f′(x)<0,解得0<x<1,故f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)f′(x)=x−(a+1)+ax =x2−(a+1)x+ax=(x−1)(x−a)x(x>0),当a≤1时,f(x)在[1,e]上为增函数,∴f(x)min=f(1)=92−a;当1<a<e时,f(x)在(1,a)上为减函数,在(a,e)上为增函数,;当a≥e时,f(x)在[1,e]上为减函数,∴f(x)min=f(e)=e22−(a+1)e+5+a,综上所述,当a≤1时,f(x)min=92−a;当1<a<e时,;当a≥e时,f(x)min=e22−(a+1)e+5+a解析:本题考查利用导数研究函数的单调性及最值,属于中档题.(1)求出导函数,由f′(x)>0解得单调递增区间,由f′(x)<0解得单调递减区间;(2)求出导函数,由f′(x)=0的两根的的大小,分类讨论,求得函数在[1,e]上的单调性,得到最小值.20.答案:解:(I)∵a n+1a n =2,a1=2,∴数列{a n}是以2为首项,2为公比的等比数列∴a n=2×2n−1=2n;(II)由(I)可得f(a n)=log22n−2n+1=(n+1)−2n,∴f(a1)+f(a2)+⋯+f(a n)=[2+3+⋯+(n+1)]−(2+22+⋯+2n]=n(n+3)2−2n+1+2.解析:(I)根据a n+1a n=2,a 1=2,利用等比数列的定义可得数列{a n }是以2为首项,2为公比的等比数列,从而可求数列{a n }的通项公式a n ;(II)由(I)可得f(a n )=log 22n −2n +1=(n +1)−2n ,利用等差数列与等比数列的求和公式,可得结论.本题考查等比数列的定义,考查等差数列与等比数列的求和公式,属于中档题.21.答案:解:(Ⅰ)设P(x,y),M(x 0,y 0),则N (x 0,0),∴PN⃗⃗⃗⃗⃗⃗ =(x 0−x,−y ),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,−y 0), ∵2PN ⃗⃗⃗⃗⃗⃗ =√3MN ⃗⃗⃗⃗⃗⃗⃗ , ∴x 0=x ,y 0=2√3y3, 代入圆的方程得,x 2+43y 2=4, 即x 24+y 23=1,故动点P 的轨迹E 的方程为:x 24+y 23=1;证明:(Ⅱ)证明:由(Ⅰ)知,D (−2,0), ∵|DA ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ |=|DA ⃗⃗⃗⃗⃗ −DB ⃗⃗⃗⃗⃗⃗ |, ∴DA ⊥DB ,设A (x 1,y 1),B (x 2,y 2),由{y =kx +m x 24+y 23=1,消去y 得(3+4k 2)x 2+8kmx +4m 2−12=0, ∴x 1+x 2=−8km3+4k 2,x 1x 2=4m 2−123+4k 2,…①∴y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+mk (x 1+x 2)+m 2,…② 由DA ⊥DB 得:y 1x 1+2×y 2x 2+2=−1, 即−y 1y 2=x 1x 2+2(x 1+x 2)+4,…③由②③得:(k 2+1)x 1x 2+(2+mk )(x 1+x 2)+m 2+4=0,…④ 把①代入④并整理得:7m 2−16km +4k 2=0,得: (7m −2k )(m −2k )=0,即m =27k 或m =2k ,故直线l 的方程为y =k (x +27),或y =k (x +2), 当直线l 的方程为y =k (x +27)时,l 过定点(−27,0);满足Δ>0当直线l 的方程为y =k (x +2)时,l 过定点(−2,0),这与A ,B 不是左右顶点矛盾. 故直线l 的方程为y =k (x +27),过定点(−27,0).解析:本题考查了轨迹方程的求法,直线与圆锥曲线的综合,难度较大.(Ⅰ)设P(x,y),M(x 0,y 0),由已知条件建立二者之间的关系,利用坐标转移法可得轨迹方程; (2)由向量条件结合矩形对角线相等可得DA ,DB 垂直,斜率之积为−1,再联立直线与椭圆方程,得根与系数关系,逐步求解得证.22.答案:解:(1)因为,所以,将,ρ2=x 2+y 2,代入上式,可得x 2+2y 2=8,所以曲线C 的直角坐标方程为x 2+2y 2=8; 因为直线l 的参数方程为{x =1−√32ty =−√3+12t, 消去参数t 得x +√3y +2=0,所以直线l 的普通方程为x +√3y +2=0; (2)易知点P(1,−√3)在直线l 上,将直线l 的参数方程代入曲线C 的普通方程, 可得5t 2−12√3t −4=0,设A,B 两点所对应的参数分别为t 1,t 2, 则t 1+t 2=12√35,t 1t 2=−45, 于是1|PA|+1|PB|=|PA|+|PB||PA||PB|=|t 1−t 2||t 1t 2|=√(t 1+t 2)2−4t 1t 2|t 1t 2|=4√2.解析:本题考查的知识点是椭圆的极坐标方程,直线的参数方程,直线参数方程中参数的几何意义,难度中档.(1)利用三种方程的转化方法,求直线l 的普通方程与曲线C 的直角坐标方程;(2)将直线l 的参数方程代入曲线C 的普通方程,可得5t 2−12√3t −4=0,利用参数的几何意义,求1|PA |+1|PB |的值.23.答案:解:(1)a =−1时,f(x)=|x +1|,f(x)≥7−|x −1|,即|x +1|+|x −1|≥7,故{x ≥1x +1+x −1≥7或{−1<x <1x +1+1−x ≥7或{x ≤−1−x −1+1−x ≥7, 解得:x ≥72或x ≤−72,故不等式的解集是(−∞,−72]∪[72,+∞);(2)令f (x )≤2,即|x −a|≤2,解得−2+a ≤x ≤2+a , 由f (x )≤2的解集是[−1,3],易得a =1,m +2n =2mn −3, ∵m >0,n >0,由均值不等式可得m +2n ≥2√2mn , 当且仅当m =2n =3时“=”成立, 故(m+2n 2)2≥(m +2n)+3,∴m +2n ≥6.解析:本题考查了解绝对值不等式问题,考查基本不等式的性质以及分类讨论思想,转化思想,是一道中档题.(1)通过讨论x 的范围,求出不等式的解集即可; (2)求出a 的值,根据基本不等式的性质证明即可.。
2020届高三数学第一次模拟考试试题理(含解析)
2020届高三数学第一次模拟考试试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回笭非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考人员将答题卡收回.第Ⅰ卷选择题一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.2.复数 (i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.3.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C.D.【答案】B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.4.已知等差数列中,,则()A. 10B. 16C. 20D. 2【答案】C【解析】【分析】由可得出,然后利用算出答案即可【详解】因为数列是等差数列所以,所以所以故选:C【点睛】本题考查的是等差数列的性质,较简单.5.为了得到函数的图象,只需把函数的图象上所有的点()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】D【解析】【分析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.6.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A. B. C. D.【答案】A【解析】【分析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数图象关于轴对称图象关于对称时,单调递减时,单调递增又且,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.7.若实数x,y满足条件,目标函数,则z 的最大值为( )A. B. 1 C. 2 D. 0【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A. 2B. 3C. 4D. 1【答案】B【解析】【分析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.9.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A. 当时,该命题不成立B. 当时,该命题成立C. 当时,该命题不成立D. 当时,该命题成立【答案】C【解析】【分析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.10.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A. 1B.C.D.【答案】C【解析】【分析】根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.11.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】分析】将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.12.若不等式对于一切恒成立,则的最小值是()A. 0B.C.D.【答案】C【解析】【详解】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+a x+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题第Ⅱ卷非选择题二、填空题(本题共4小题,每小题5分,共20分.)13.若,且,则的最小值是______.【答案】8【解析】【分析】利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.14.已知向量,,若,则实数______.【答案】-2【解析】【分析】根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【详解】由题意得:,解得:本题正确结果:【点睛】本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.【答案】300.【解析】【分析】先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.16.已知函数,则过原点且与曲线相切的直线方程为____________.【答案】【解析】【分析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.三、解答题(共70分,解答应写出相应的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.【答案】(1);(2).【解析】【分析】(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.18.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.【答案】(1)见证明;(2)【解析】【分析】(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得.【详解】(1)证明:取PD中点G,连结为的中位线,且,又且,且,∴EFGA是平行四边形,则,又面,面,面;(2)解:取AD中点O,连结PO,∵面面,为正三角形,面,且,连交于,可得,,则,即.连,又,可得平面,则,即是二面角的平面角,在中,∴,即二面角的正切值为.【点睛】本题考查线面平行证明,考查求二面角.求二面角的步骤是一作二证三计算.即先作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算.19.“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望【答案】(Ⅰ);(Ⅱ)分布列见解析,.【解析】【分析】(Ⅰ)直接利用古典概型概率公式求 . (Ⅱ)先由题得可能取值为,再求x的分布列和期望.【详解】(Ⅰ)(Ⅱ)可能取值为,,,,,的分布列为.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.【答案】(1);(2)极小值为,递减区间为:,递增区间为.【解析】【分析】(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,即,解得,令,即,解得或,所以函数的单调减区间为,递增区间为,当时,函数取得极小值,极小值为.当时,有极大值3.【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的单调区间和极值,其中解答中熟记函数的极值的概念,以及函数的导数与原函数的关系,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.21.已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.【答案】(Ⅰ);(Ⅱ)面积的最大值为,此时直线的方程为.【解析】【分析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用(表示原点到直线的距离)表示面积,最后利用基本不等式求解最值.【详解】解:(Ⅰ)由定义法可得,点的轨迹为椭圆且,.因此椭圆的方程为.(Ⅱ)设直线的方程为与椭圆交于点,,联立直线与椭圆的方程消去可得,即,.面积可表示为令,则,上式可化为,当且仅当,即时等号成立,因此面积的最大值为,此时直线的方程为.【点睛】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点,若点满足且,则的轨迹是椭圆;(2)已知点,若点满足且,则的轨迹是双曲线.(二)选考题:共10分,请考生在22题、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:[坐标系与参数方程]22.已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求值.【答案】(1)直线普通方程:,曲线直角坐标方程:;(2).【解析】【分析】(1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果.【详解】(1)由直线参数方程消去可得普通方程为:曲线极坐标方程可化为:则曲线的直角坐标方程为:,即(2)将直线参数方程代入曲线的直角坐标方程,整理可得:设两点对应的参数分别为:,则,【点睛】本题考查极坐标与直角坐标互化、参数方程与普通方程的互化、直线参数方程中参数的几何意义的应用;求解距离之和的关键是能够明确直线参数方程中参数的几何意义,利用韦达定理来进行求解.[选修4-5:不等式选讲]23.已知.(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集.【答案】(1);(2).【解析】【分析】(1)依据能成立问题知,,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可.【详解】因为不等式有实数解,所以因为,所以故.①当时,,所以,故②当时,,所以,故③当时,,所以,故综上,原不等式的解集为.【点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想的应用.2020届高三数学第一次模拟考试试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回笭非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考人员将答题卡收回.第Ⅰ卷选择题一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.2.复数 (i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.3.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C.D.【答案】B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.4.已知等差数列中,,则()A. 10B. 16C. 20D. 2【答案】C【解析】【分析】由可得出,然后利用算出答案即可【详解】因为数列是等差数列所以,所以所以故选:C【点睛】本题考查的是等差数列的性质,较简单.5.为了得到函数的图象,只需把函数的图象上所有的点()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】D【解析】【分析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.6.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A. B. C. D.【答案】A【解析】【分析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数图象关于轴对称图象关于对称时,单调递减时,单调递增又且,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.7.若实数x,y满足条件,目标函数,则z 的最大值为( )A. B. 1 C. 2 D. 0【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A. 2B. 3C. 4D. 1【答案】B【解析】【分析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.9.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A. 当时,该命题不成立B. 当时,该命题成立C. 当时,该命题不成立D. 当时,该命题成立【答案】C【解析】【分析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.10.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A. 1B.C.D.【答案】C【解析】【分析】根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.11.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】分析】将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.12.若不等式对于一切恒成立,则的最小值是()A. 0B.C.D.【答案】C【解析】【详解】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题第Ⅱ卷非选择题二、填空题(本题共4小题,每小题5分,共20分.)13.若,且,则的最小值是______.【答案】8【解析】【分析】利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.14.已知向量,,若,则实数______.【答案】-2【解析】【分析】根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【详解】由题意得:,解得:本题正确结果:【点睛】本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.【答案】300.【解析】【分析】先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.16.已知函数,则过原点且与曲线相切的直线方程为____________.【答案】【解析】【分析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.三、解答题(共70分,解答应写出相应的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.【答案】(1);(2).【解析】【分析】(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.18.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.。
江西省2020届高三第一次大联考数学(理)试题(解析版)
江西省2020届高三第一次大联考数学(理)试题一、单选题1.设全集I R =,集合{}2|log ,1A y y x x ==>,{|B x y ==,则( )A.A B ⊆B.A B A ⋃=C.AB =∅D.I A C B ⋂=∅【答案】B【解析】通过函数的值域以及函数的定义域可得{}0A y y =>,{}|1B x x =≥,B A ⊆,然后对逐个选项判断即可.【详解】∵{}{}2log ,10A y y x x y y ===>,{{}|1|B x y x x ==≥=,由此可知B A ⊆,A B A ⋃=,A B B =,()I A C B ⋂≠∅,故选:B. 【点睛】本题主要考查以函数的值域和定义域为背景,考查了集合间的运算,属于基础题. 2.已知集合{}|12M x x =-<<,{}|N x x a =≤,若M N ⊆,则实数a 的取值范围是( ) A.()2,+∞ B.[)2,+∞C.(),1-∞-D.(],1-∞-【答案】B【解析】根据集合子集的概念,可确定端点的关系,即可求解. 【详解】已知{}|12M x x =-<<,{}|N x x a =≤,且M N ⊆, 所以2a ≥.故实数a 的取值范围为[)2,+∞,故选:B. 【点睛】本题主要考查了集合子集的概念,属于容易题. 3.下列命题中为真命题的是( ) A.命题“若,则”的否命题 B.命题“若x >y ,则x >|y|”的逆命题C.命题“若x =1,则”的否命题D.命题“已知,若,则a >b”的逆命题、否命题、逆否命题均为真命题【答案】B【解析】根据否命题的定义写出A ,C 的否命题,用特殊法判断其是否为真命题; 根据逆命题的定义写出B 中命题的逆命题,判断真假; 根据D 命题是假命题可知D 的逆否命题为假命题. 【详解】A .命题“若x >1,则x2>1”的否命题为“若x≤1,则”假命题;B .命题“若x >y ,则x >|y|”的逆命题为“若x >|y|,则x >y”真命题.C .命题“若x =1,则”的否命题为“若x≠1,则”假命题.D .假命题.因为逆命题与否命题都是假命题. 【点睛】本题考查命题真假的判断与应用,四种命题的逆否关系,考查基本知识的应用. 4.已知函数()222f x x ax =++在区间(),4-∞上单调递减,则a 的取值范围是( ) A.[)4,+∞ B.(],4-∞C.(),4-∞-D.(],4-∞-【答案】D【解析】根据二次函数的图象与性质,写出对称轴,比较对称轴与4的关系即可求解. 【详解】由于二次函数()222f x x ax =++的二次项系数为正数,对称轴为直线x a =-,其对称轴左侧的图像是下降的,∴4a -≥,故4a ≤-, 因此,实数a 的取值范围是(],4-∞-,故选:D. 【点睛】本题主要考查了二次函数的单调性,对称轴与区间端点的关系是解题关键,属于中档题. 5.函数的图象可能是( )A. B.C. D.【答案】A【解析】取特殊值排除选项得到答案. 【详解】排除BD排除C故答案选A 【点睛】本题考查了函数图像,用特殊值法排除选项是常用方法,也可以从函数的性质着手得到答案.6.某电动汽车“行车数据”的两次记录如下表:(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=累计耗电量累计里程,剩余续航里程=剩余电量平均耗电量,下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是 A .等于12.5 B .12.5到12.6之间 C .等于12.6 D .大于12.6【答案】D【解析】根据累计耗电量的计算公式,即可求解. 【详解】由题意,可得41000.12640000.125516.650016.6⨯-⨯=-=,所以对该车在两次记录时间段内行驶100公里的耗电量估计正确的是:大于12.6, 故选D . 【点睛】本题主要考查了函数模型的应用,其中解答中正确理解题意,根据累计耗电量的公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 7.三个数0.23,30.2,0.2log 3的大小顺序是( ) A.0.230.230.2log 3<<B.0.230.23log 30.2<<C.0.230.2log 330.2<<D.30.20.2log 30.23<<【答案】D【解析】根据指数函数和对数函数性质,分析3个数与0,1的大小即可. 【详解】由指数函数和对数函数的图象与性质可知:0.231>,300.21<<,0.2log 30<,所以30.20.2log 30.23<<,故选D.【点睛】本题主要考查了指数函数、对数函数的单调性,属于中档题.8.对于实数x ,y ,若p :4x ≠或1y ≠,q :5x y +≠,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】B【解析】取特殊值6x =,1y =-,可知p ¿q ,利用逆否命题与原命题等价,可确定q ⇒p ,即可得出结论. 【详解】取6x =,1y =-,满足条件p ,此时5x y +=,即p ¿q ,故p 是q 的不充分条件,q :5x y +≠⇒p :4x ≠或1y ≠等价于4x =且15y x y =⇒+=,易知成立,所以p 是q 的必要条件. 故答案选B. 【点睛】本题主要考查了充分条件、必要条件,逆否命题,属于中档题.9.已知函数()()2ln 1f x m x x mx =++-在()1,+∞上单调递增,则m 的取值范围是( ) A.()4,+∞ B.(],4-∞C.(),0-∞D.()0,∞+【答案】B【解析】对函数求导可得()2221m x x f x x -⎛⎫- ⎪⎝⎭'=+,根据函数的单调性可得()0f x '≥在()1,+∞上恒成立,等价于2102m --≥,解出即可. 【详解】()()222'211x m x m f x x m x x +-=+-=++2221m x x x -⎛⎫- ⎪⎝⎭=+. 因为()f x 在()1,+∞上单调递增,所以()0f x '≥在()1,+∞上恒成立, 即202m x --≥在()1,+∞上恒成立,等价于2102m --≥4m ⇒≤, 故选B. 【点睛】本题主要考查了已知函数的单调性求参数问题,等价转化为恒成立问题是解题的关键,属于中档题.10.已知()f x 是定义在R 上的偶函数,且当120x x >>时,都有()()1212f x f x x x -<-成立,设tan 4a f π⎛⎫= ⎪⎝⎭,12log 3b f ⎛⎫= ⎪⎝⎭,()0.2c f π-=,则a ,b ,c 的大小关系为( ) A.a b c << B.c a b << C.b c a <<D.b a c <<【答案】D【解析】根据题意,由函数的奇偶性可得()()2212log 3log 3log 3b f f f ⎛⎫==-= ⎪⎝⎭,分析可得()f x 在()0+∞,上为减函数,据此分析可得答案. 【详解】由于当120x x >>时,都有()()12120f x f x x x -<-成立,故()f x 在0x >上为减函数,()tan 14a f f π⎛⎫== ⎪⎝⎭,()122log 3log 3b f f ⎛⎫== ⎪⎝⎭,而0.22log 310π->>>,所以()()()0.12log 31f f f π-<<,即b a c <<.故答案为D. 【点睛】本题主要考查函数的奇偶性与单调性的综合应用,关键是分析函数单调性,属于中档题.11.已知函数()22,0511,04x x x x f x a x ⎧-+≤≤⎪=⎨⎛⎫-≤<⎪ ⎪⎝⎭⎩的值域为[]15,1-,则实数a 的取值范围是( ) A.(],2-∞- B.[)2,0-C.[]2,1--D.{}2-【答案】B【解析】分段研究,当05x ≤≤时,可得()151f x -≤≤,所以只需0a x ≤<时,114x⎛⎫- ⎪⎝⎭取值为[]15,1-的子集即可. 【详解】当05x ≤≤时,()()22211f x x x x =-+=--+,所以()151f x -≤≤;当0a x ≤<时,()114x f x ⎛⎫=- ⎪⎝⎭为递增函数,所以()1104af x ⎛⎫-≤< ⎪⎝⎭, 因为()f x 的值域为[]15,1-,所以111540aa ⎧⎛⎫-≥-⎪ ⎪⎨⎝⎭⎪<⎩,故20a -≤<,故选B.【点睛】本题主要考查了分段函数的值域,二次函数、指数函数的单调性,属于中档题. 12.不等式()22ln 40ax a x x a ->-->解集中有且仅含有两个整数,则实数a 的取值范围是( ) A.()ln3,2 B.[)2ln3,2-C.(]0,2ln3-D.()0,2ln3-【答案】C【解析】设()2ln 4g x x x =--,()2h x ax a =-,通过导数判断()g x 的单调性,结合直线()2h x ax a =-恒过定点()2,0,得到两函数的图象,结合题意得不等式组()()()()01133a h g h g ⎧>⎪>⎨⎪≤⎩,解出即可. 【详解】由题意可知,22ln 4ax a x x ->--, 设()2ln 4g x x x =--,()2h x ax a =-. 由()1212x g x x x='-=-. 可知()2ln 4g x x x =--在10,2⎛⎫ ⎪⎝⎭上为减函数,在1,2⎛⎫+∞⎪⎝⎭上为增函数, ()2h x ax a =-的图象恒过点()2,0,在同一坐标系中作出()g x ,()h x 的图象如下,若有且只有两个整数1x ,2x ,使得()10f x >,且()20f x >,则()()()()01133a h g h g ⎧>⎪>⎨⎪≤⎩,即022ln 3a a a >⎧⎪->-⎨⎪≤-⎩,解得02ln3a <≤-,故选C.【点睛】本题主要考查了不等式与函数图象的关系,利用导数判断函数单调性,考查了学生的计算能力,属于中档题.二、填空题 13.函数3()ln 4f x x =的单调递减区间是_________【答案】90,4⎛⎤ ⎥⎝⎦或90,4⎛⎫ ⎪⎝⎭【解析】求出导函数'()f x ,然后在定义域内解不等式'()0f x <得减区间.【详解】33'()44f x x x =-=,由3'()04f x x=<,又0x >得904x <<.∴减区间为9(0,)4,答9(0,]4也对. 故答案为9(0,)4或9(0,]4. 【点睛】本题考查导数与函数的单调性,一般由'()0f x >确定增区间,由'()0f x <确定减区间. 14.已知函数()()2xf x x a e =-,且()'13f e =,则曲线()y f x =在0x =处的切线方程为______. 【答案】10x y --=【解析】求导,利用()'13f e =求出a ,根据导数几何意义可求斜率(0)k f '=,利用点斜式写出切线方程即可. 【详解】∵()()()'2222xxxf x e x a e x a e =+-=+-,∴()()'143f a e e =-=,解得1a =,即()()21x f x x e =-,()01f =-,则()()'21x f x x e =+,∴()'01f =,曲线()y f x =在点0x =处的切线方程为()110y x +=⨯-,即10x y --=.【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题. 15.以下说法中正确的是______. ①函数()1f x x=在区间()(),00,-∞⋃+∞上单调递减; ②函数11x y a +=+的图象过定点()1,2-;③若1x 是函数()f x 的零点,且1m x n <<,则()()0f m f n ⋅<; ④方程3log 124x=的解是19x =; ⑤命题“()00,x ∃∈+∞,00ln 1x x =+”的否定是()0,x ∀∈+∞,ln 1x x ≠+. 【答案】②④⑤【解析】对于①,举出反例()1f 和()1f -;对于②,将点()1,2-代入即可得结果;对于③,()f m ,()f n 中也有可能存在一个为零;对于④,根据指数与对数的运算性质解方程即可;对于⑤,由特称命题的否定为全称命题可得结果. 【详解】说法①:函数()1f x x=在(),0-∞、()0,∞+每个区间上单调递减,但是在整个定义域内不具有单调性,例如:11>-,而()()11f f >-,不具有单调递减的性质; 说法②:当1x =-时,2y =,所以函数()111x y a a +=+>的图象过定点()1,2-是正确的;说法③:如果()f m ,()f n 中也存在一个为零时,就不符合()()0f m f n ⋅<,故本说法不正确; 说法④:33log l 23og 12log 491222xx x x -==-⇒⇒=⇒=,故本说法④正确; 说法⑤:命题“()00,x ∃∈+∞,00ln 1x x =+”的否定是()0,x ∀∈+∞,ln 1x x ≠+.故⑤是正确的.综上,本题的答案为②④⑤. 【点睛】本题主要考查了判断命题的真假,函数单调性,函数零点的性质,特称命题的否定,属于中档题.16.已知函数()cos 3sin 2f x x x =--,0,2x π⎛⎫∈ ⎪⎝⎭,则函数()f x 的最小值为______.【答案】 【解析】对函数进行求导得()()()3sin 24sin 3f x x x '=-+,令sin x t =,()()g t f x '=,根据()g t 的符号以及复合函数的单调性得到()f x 的单调性,进而可得函数的最值. 【详解】因为()cos 3sin 2f x x x =--,0,2x π⎛⎫∈ ⎪⎝⎭,∴()()2sin 6cos 2sin 612sin f x x x x x '=-=--212sin sin 6x x =+-()()3sin 24sin 3x x =-+,令sin x t =,∵0,2x π⎛⎫∈ ⎪⎝⎭,∴()sin 0,1t x =∈, 令()()g t f x '=,则()()()3243g t t t =-+, ∴令()0g t =,则23t =,02sin 3x =, ∴当203t <<时,()0g t <,当213t <<时,()0g t >,∵函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增,根据复合函数的单调性可知,函数()f x 在区间()00,x 上递减,在区间0,2x π⎛⎫⎪⎝⎭上递增,∴当23t =,即02sin 3x =,0cos 3x =时,()min 6sin cos cos f x x x x =--=∴函数()f x 的最小值为,故答案为【点睛】本题主要考查了利用导数求函数的最值,准确求导得到函数的单调性是解题的关键,考查了学生的计算能力,属于中档题.三、解答题17.设命题p :对任意[]0,1x ∈,不等式2234x m m -≥-恒成立,命题q :存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立. (1)若p 为真命题,求实数m 的取值范围;(2)若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围. 【答案】(1)13m ≤≤;(2)1m <或23m <≤.【解析】(1)p 为真命题时,任意[]0,1x ∈,不等式2234x m m -≥-恒成立可转化为()2min 234x m m -≥-,求解即可(2)根据且、或命题的真假,确定p ,q 一真一假,结合(1),再化简命题q ,即可求出m 的取值范围. 【详解】对于p :()2min 234x m m -≥-成立,而[]0,1x ∈,有()min 233x -=-,∴234m m -≥-,∴13m ≤≤.q :存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立,只需()2min210x x m -+-≤,而()2min212x x m m -+-=-+,∴20m -+≤,∴2m ≤;(1)若p 为真,则13m ≤≤;(2)若p q ∧为假命题,p q ∨为真命题,则p ,q 一真一假. 若q 为假命题,p 为真命题,则132m m ≤≤⎧⎨>⎩,所以23m <≤;若p 为假命题,q 为真命题,则132m m m ⎧⎨≤⎩或,所以1m <.综上,1m <或23m <≤. 【点睛】本题主要考查了命题的真假,且、或命题,不等式恒成立、存在性问题,属于中档题. 18.已知函数()xf x e =.(1)若()24f a =,求实数a 的值; (2)设函数()()2xg x e kxk R =-∈,若()g x 在()0,∞+上没有零点,求k 的取值范围.【答案】(1)ln 2a =;(2)24e k <. 【解析】(1)代入解析式,取对数即可求解(2)转化为方程2xe k x =在()0,∞+上无实数解,求()()20xe h x x x=>的值域即可得到k 的范围.【详解】(1)因为()224af a e ==,即:2a e =,所以ln 2a =.(2)由题意可知,()2xg x e kx =-,函数()g x 在()0,∞+上没有零点等价于方程2xe k x=在()0,∞+上无实数解,设()()20xe h x x x =>,则()()()32'0x e x h x x x-=>, ∴()h x 在()0,2上单调递减,在()2,+∞上单调递增, ∴()h x 在2x =上取得极小值,也是最小值,∴()()224e h x h ≥=,∴24e k <.【点睛】本题主要考查了函数与方程,利用导数求函数的极值、最值,转化思想,属于中档题. 19.设函数()()1xf x aex =+(其中 2.71828e =⋅⋅⋅),()22g x x bx =++,已知它们在0x =处有相同的切线.(1)求函数()f x ,()g x 的解析式; (2)若函数()f x 在[],1t t +上的最小值为22e-,求实数t 的取值范围. 【答案】(1)()()21xf x ex =+,()242g x x x =++;(2)32t -≤≤-. 【解析】(1)两函数在0x =处有相同的切线可知()()''00f g =,()()002f a g ===,联立求解即可(2)利用导数可求出()f x 的唯一极小值,也就是最小值()222f e-=-,转化为[]2,1t t -∈+即可求t 范围. 【详解】 (1)()()'2xf x aex =+,()'2g x x b =+,由题意,两函数在0x =处有相同的切线, ∴()'02f a =,()'0g b =, ∴2a b =,()()002f a g ===, ∴2a =,4b =, ∴()()21xf x ex =+,()242g x x x =++.(2)由(1)得()()'22xf x e x =+.当2x >-时,则()'0f x >,所以()f x 在()2,-+∞上单调递增,当2x <-时,则()'0f x <,所以()f x 在(),2-∞-上单调递减, 而函数()()2min 22f x f e=-=-,∴[]2,1t t -∈+, 即32t -≤≤-.故实数t 的取值范围是32t -≤≤-. 【点睛】本题主要考查了导数的几何意义,利用导数求函数单调性、极值,转化的思想,属于中档题.20.已知函数()221f x x ax =-+在区间[]2,3上的最小值为1.(1)求a 的值; (2)若存在0x 使得不等式()333x xxf k <⋅在[]1,1x ∈-成立,求实数k 的取值范围.【答案】(1)1;(2)()0,∞+.【解析】(1)二次函数写出对称轴,分2a <,23a ≤≤,3a >三种情况讨论即可求出最小值,根据最小值为1,写出a (2)分离参数可得2111233x x k ⎛⎫+-⋅< ⎪⎝⎭,令13x t =,换元后求最小值,只需k 大于最小值即可. 【详解】(1)()()221f x x a a =-+-.当2a <时,()()min 2541f x f a ==-=,解得1a =;当23a ≤≤时,()()2min 11f x f a a ==-=,解得0a =不符合题意;当3a >时,()()min 31061f x f a ==-=,解得32a =,不符合题意. 综上所述,1a =. (2)因为()2332313333x x x xx xxf k k -⋅+<⋅⇒<⋅, 可化为2111233x x k ⎛⎫+-⋅< ⎪⎝⎭, 令13x t =,则221k t t >-+. 因[]1,1x ∈-,故1,33t ⎡⎤∈⎢⎥⎣⎦.故不等式221k t t >-+在1,33t ⎡⎤∈⎢⎥⎣⎦上有解.记()()22211h t t t t =-+=-,1,33t ⎡⎤∈⎢⎥⎣⎦,故()()min 10h t h ==, 所以k 的取值范围是()0,∞+. 【点睛】本题主要考查了二次函数的最值,分类讨论,分离参数,不等式有解问题,属于中档题. 21.已知函数的图象经过点,曲线在点处的切线恰好与直线垂直.(1)求实数,的值; (2)若函数在区间上单调递增,求的取值范围. 【答案】(1);(2)或.【解析】(1)M 点坐标代入函数解析式,得到关于的一个等式;曲线在点处的切线恰好与直线垂直可知,列出关于的另一个等式,解方程组,求出的值. (2)求出,令,求出函数的单调递增区间,由题意可知是其子集,即可求解. 【详解】(1)的图象经过点,①,因为,则, 由条件,即②,由①②解得.(2), 令得或,函数在区间上单调递增,,或,或【点睛】本题主要考查了函数导数的几何意义,直线垂直的充要条件,利用导数确定函数的单调区间,属于中档题.22.已知函数()()224ln f x x ax x -=,a R ∈.(1)当0a =时,求函数()f x 的单调区间;(2)若函数()()2g x f x x =+,求证:当1a >时,在[)1,x ∈+∞上恒有()2332g x a a >-成立.【答案】(1)()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭;(2)见解析.【解析】(1)当0a =时,对函数()f x 求导可得()()()22ln 1,0,f x x x x '=+∈+∞,解不等式得单调性;(2)对函数()g x 求导可得()()()4ln 1g x x a x '=-+,求出()g x 的最小值为()222ln g a a a a =-,将()()g x g a ≥与()222ln 21a a aa ->--相结合可证得不等式. 【详解】(1)函数()f x 的定义域为()0,∞+,当0a =时,()22ln f x x x =,()()4ln 222ln 1f x x x x x x =+=+',令()0f x '>,即2ln 10x +>,解得12x e ->, 令()0f x '<,即2ln 10x +<,解得120x e -<<,∴函数()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭;(2)()()2224ln x a g x x x x -=+,()()44ln 242g x x a x x a x '=-+-+()()4ln 1x a x =-+,由[)1,x ∈+∞得,ln 10x +>,当()1,x a ∈时,()0g x '<,当(),x a ∈+∞时,()0g x '>, ∴函数()g x 在()1,a 上单调递减,在(),a +∞上单调递增,()()()22min 2ln g x g x g a a a a ===-极小值,∵1x >时,ln 1x x <-,∴()222ln 21a a a a ->--,即()()()22222ln 21g x g a a a a a aa ≥=->--2332a a =-.∴()2332g x a a >-成立.【点睛】本题主要考查了利用导数判断函数的单调性,利用导数解决恒成立问题,解决第二问的难点在于得到在给出的范围内得到()222ln 21a a a a ->--,属于难题.。
江西省2020年高考数学一模试卷(理科)(I)卷(模拟)
江西省2020年高考数学一模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高一上·江苏月考) 已知集合,,,则图中阴影部分表示的集合为()A .B .C .D .2. (2分)复数等于()A .B .C .D .3. (2分) (2016高一下·天水期中) 已知向量,,,若向量与共线,则λ的值为()A .B .C . 2D .4. (2分)下列结论错误的是()A . 命题“若p,则q”与命题“若¬q,则¬p”互为逆否命题B . 命题p:∀x∈[0,1],ex≥1,命题q:∃x∈R,x2+x+1<0,则p∨q为真C . “若am2<bm2 ,则a<b”的逆命题为真命题D . 若p∨q为假命题,则p、q均为假命题5. (2分)已知圆C:x2+y2-4x=0,l过点P(3,0)的直线,则()A . l与C相交B . l与C相切C . l与C相离D . 以上三个选项均有可能6. (2分) (2017高三下·黑龙江开学考) 已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为()A . 8B . 16C . 32D . 487. (2分)甲、乙两人轮流投一枚均匀硬币,甲先投,谁先得到正面谁获胜,求投币不超过四次即决定胜负的概率()A .B .C .D .8. (2分)(2018·河南模拟) 执行如图所示的程序框图,则输出的值为()A . 14B . 13C . 12D . 119. (2分)把函数y=sinx的图象上所有点向右平移个单位,再将图象上所有点的横坐标缩小到原来的(纵坐标不变),所得解析式为y=sin(x+j),则()A . =2,j=B . =2,j=-C . =,j=D . =,j=-10. (2分) (2019高三上·郴州月考) 在边长为的菱形ABCD中,,沿对角边折成二面角为的四面体,则四面体外接球表面积为()A .B .C .D .11. (2分)(2019·吉林模拟) 已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A . 2B .C .D . 512. (2分) (2016高三上·绍兴期末) 对于函数f(x),若存在x0∈Z,满足|f(x0)|≤ ,则称x0为函数f(x)的一个“近零点”.已知函数f(x)=ax2+bx+c(a>0)有四个不同的“近零点”,则a的最大值为()A . 2B . 1C .D .二、填空题 (共4题;共4分)13. (1分) (2017高二下·荔湾期末) 在(2+x)6(x+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,4)+f(5,3)=________.(用数字作答)14. (1分) (2015高二下·忻州期中) 设x,y满足约束条件,则z=x﹣2y的最大值是________.15. (1分)(2016·上饶模拟) △ABC的三个内角A、B、C的对边分别是a、b、c,其面积S=a2﹣(b﹣c)2 .若a=2,则BC边上的中线长的取值范围是________.16. (1分)(2020·鹤壁模拟) 已知为曲线在处的切线,当直线与坐标轴围成的三角形面积为时,实数的值为________.三、解答题 (共7题;共70分)17. (10分) (2019高二上·集宁月考) 等比数列的各项均为正数,且 .(1)求数列的通项公式;(2)设,求数列的前项和 .18. (15分)(2020·平邑模拟) 在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期(单位:天)人数85205310250130155(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关;潜伏期天潜伏期天总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?附:0.050.0250.0103.841 5.024 6.635,其中 .19. (10分) (2016高二上·黑龙江期中) 如图,边长为2的正方形ABCD中,点E是AB的中点,点F是BC 的中点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′,连接EF,A′B.(1)求证:A′D⊥EF;(2)求二面角A′﹣EF﹣D的余弦值.20. (5分)(2016·北区模拟) 已知椭圆C: =1(a>b>0)的短轴长为2,离心率e= .(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:y=kx+m与椭圆交于不同的两点A,B,与圆x2+y2= 相切于点M.(i)证明:OA⊥OB(O为坐标原点);(ii)设λ= ,求实数λ的取值范围.21. (10分)(2020·江苏) 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上、桥AB与MN平行,为铅垂线( 在AB上).经测量,左侧曲线AO上任一点D到MN的距离 (米)与D到的距离a(米)之间满足关系式;右侧曲线BO上任一点F到MN的距离 (米)与F到的距离b(米)之间满足关系式 .已知点B到的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价 (万元)(k>0).问为多少米时,桥墩CD与EF的总造价最低?22. (10分) (2018高三上·福建期中) 已知曲线的极坐标方程式,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是,(为参数).(1)求曲线的直角坐标方程和直线的普通方程;(2)设点,若直线与曲线交于两点,且,求实数的值.23. (10分) (2016高三上·平罗期中) 已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、18-1、18-2、18-3、19-1、21-1、21-2、22-1、22-2、23-1、23-2、。
江西省2020年高考数学一模试卷(理科)(I)卷
江西省2020年高考数学一模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2016高一下·老河口期中) 若集合则集合=()A .B .C .D .2. (2分) (2015高二下·椒江期中) 已知i是虚数单位,则复数的虚部为()A . 1B . iC . ﹣1D . ﹣i3. (2分)下列函数中,图象关于原点对称的是()A . y=-|sinx|B . y=-x·sin|x|C . y=sin(-|x|)D . y=sin|x|4. (2分) (2019高二上·四川期中) 若命题是真命题,是真命题,则下列命题中,真命题是()A .B .C .D .5. (2分) (2020高二上·娄底开学考) 设等差数列的前项和为,若,则()A . 6B . 7C . 11D . 96. (2分) (2019高一上·哈密月考) 若函数是定义在R上的偶函数,在上是减函数,且,则使得的x的取值范围是()A . 或B .C .D .7. (2分)执行如图所示的程序框图,输出的S值为()A . 1B . -1C . -2D . 08. (2分)已知某几何体的俯视图是如图所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其全面积是()A . 8B . 12C .D .9. (2分)在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有()A . 34种B . 48种C . 96种D . 144种10. (2分)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A .B .C .D .11. (2分) (2017高二上·西安期末) P是双曲线 =1(a>0,b>0)上的点,F1、F2是其焦点,且 =0,若△F1PF2的面积是9,a+b=7,则双曲线的离心率为()A .B .C .D .12. (2分)(2018·内江模拟) 当时,不等式恒成立,则的取值范围是()A .B .C .D .二、填空题: (共4题;共5分)13. (2分) (2017高一下·珠海期末) 下面是被严重破坏的频率分布表和频率分布直方图,根据残表和残图,则 p=________,q=________.分数段频数[60,70)p[70,80)90[80,90)60[90,100]20q14. (1分)(2017·黄石模拟) 已知(3x2﹣1)dx=m,则的展开式中x4的系数是________.15. (1分) (2017高二上·黑龙江月考) 已知,满足约束条件若的最大值为4,则的值为________.16. (1分)已知f(x)= ,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+ ,则f2017(x)的表达式为f2017(x)=________.三、解答题: (共7题;共65分)17. (5分) (2016高三上·北京期中) 已知函数.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)设α是锐角,且,求f(α)的值.18. (15分) (2018高二下·中山月考) 某校为了解开展校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:等级不合格合格得分[20,40)[40,60)[60,80)[80,100]频数6a24b(1)求a,b,c的值;(2)先用分层抽样的方法从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,再从这10人中任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望E(ξ);(3)某评估机构以指标(,其中表示的方差)来评估该校开展安全教育活动的成效.若≥0.7,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(2)的条件下,判断该校是否应调整安全教育方案.19. (15分) (2016高二上·定州开学考) 在如图所示的几何体中,四边形ABCD是平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB= ,EF=1,BC= ,且M是BD的中点..(1)求证:EM∥平面ADF;(2)求直线DF和平面ABCD所成角的正切值;(3)求二面角D﹣AF﹣B的大小.20. (10分) (2019高二下·深圳期末) 已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。
【附20套高考模拟试题】2020届抚州市高考数学模拟试卷含答案
2020届抚州市高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =2.某几何体由一个棱柱与一个棱锥组合而成,其三视图如图所示,其中俯视图和侧视图中的正方形的边长为2,正视图和俯视图中的三角形均为等腰直角三角形,则该几何体的体积为( )A.163 B .163或203 C .203 D .203或63.某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为( )A .51296π-B .296C .51224π-D .5124.已知函数,若,则实数的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1) 5.函数22()()1f x log x =-的定义域为( )A .1(0,)2 B .(2,)+∞ C .1(0,)(2,)2+∞U D .1(0,][2,)2+∞U6.我国南宋时期的数学家秦九韶(约1202-1261)在他的著作(数书九章)中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的,,,则程序框图计算的结果为( )A .15B .31C .63D .1277.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .08.已知函数()()x xf x x e e -=-,对于实数a b ,,“0a b +>”是“()()0f a f b +>”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.实数x y ,满足不等式组20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目标函数2z x y =+的最小值是( )A .2B .3C .4D .510.函数2πsin12()12xf x x x=-+的零点个数为( ) A .0B .1C .2D .411.已知直线m 、n 与平面α、β,下列命题正确的是( ) A .m α⊥,//n β且αβ⊥,则m n ⊥B .m α⊥,n β⊥且αβ⊥,则m n ⊥C .m αβ⋂=,n m ⊥且αβ⊥,则n α⊥D .//m α,//n β且//αβ,则//m n12.若某几何体的三视图如图所示,则该几何体的表面积为( )A .264B .270C .274D .282二、填空题:本题共4小题,每小题5分,共20分。
江西省抚州市临川第一中学等2020届高三数学上学期第一次联考试题理(含解析)
江西省抚州市临川第一中学等2020届高三数学上学期第一次联考试题 理(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若21iz i-=+,则z z ⋅=( ) A. -2 B. 2C.52D. 52-【答案】C 【解析】 【分析】根据共轭复数的性质可知2||z z z ⋅=,直接利用复数模的性质即可求解. 【详解】因为21iz i-=+,所以|2||||1|i z i -===+ 2105||42z z z ⋅===,故选C. 【点睛】本题主要考查了复数模的性质,共轭复数的性质,属于中档题.2.设集合{}2A x x a =>,{}32B x x a =<-,若A B =∅I,则a 的取值范围为( )A. ()1,2B. ()(),12,-∞⋃+∞C. []1,2D. (][),12,-∞+∞U【答案】D 【解析】 【分析】集合的交集运算即求两个集合的公共元素,A B =∅I 说明集合,A B 没有公共元素,借助于数轴列式计算.【详解】因为A B φ⋂=,所以232a a ≥-,解得1a ≤或2a ≥.【点睛】本题考查集合的交集运算,考查运算求解能力与推理论证能力.3.设,a b ∈R ,则“()20a b a ->”是“a b >”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】 【分析】利用充分、必要条件的定义即可判断。
【详解】()20a b a ->,因为0a ≠,可推出a b >;a b >时,若0a =,则无法推出()20a b a ->,所以“()20a b a ->”是“a b >”的充分不必要条件,故选A 。
【点睛】本题主要考查分、必要条件的定义的应用。
4.若函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线,则实数a 的取值范围是( ) A. ()2,-+∞ B. 1,2⎛⎫+∞⎪⎝⎭C. 1,2⎛⎫-+∞ ⎪⎝⎭D. ()2,+∞【答案】D 【解析】 【分析】函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线,即()2f x '=有解,转化为12,0a x x=+>有解即可求出. 【详解】因为函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线, 所以函数()ln f x ax x =-的图象上存在斜率为2的切线, 故()12k f x a x'==-=有解, 所以12,0a x x=+>有解,因为12,0y x x=+>的值域为(2,)+∞ 所以(2,)a ∈+∞.【点睛】本题主要考查了函数导数的几何意义,方程有根的问题,转化思想,属于中档题.5.若0x >,0y <,则下列不等式一定成立的是( ) A. 222x y x -> B. ()1222log 1xyx ->+C. 221x y x ->+D. 221x y x ->-【答案】B 【解析】 【分析】利用指数函数与对数函数的性质结合特殊值可得正确答案. 【详解】A 选项,取2,1x y ==-,不等式不成立; B 选项,0,0x y ><Q22,220x y x y ∴>->0,x >Q∴()12log 10x +<∴()1222log 1x yx ->+故B 正确;C 选项,取1,1x y ==-,不等式不成立,D 选项,当0x →, 21x →,11x -→,当0y <且0y →,21y →,所以220x y -→,而11x -→,所以不等式不成立.【点睛】本题主要考查了指数、对数函数性质,以及与不等式的交汇,属于中档题.6.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC ∆中,51BC AC -=.根据这些信息,可得sin 234︒=( )A.154- B. 358+-C. 514-D.45+ 【答案】C 【解析】 【分析】要求sin 234︒的值,需将角234︒用已知角表示出来,从而考虑用三角恒等变换公式解题.已知角有36︒,正五边形内角108︒,72ACB ∠=︒,已知三角函数值有1512cos724BCAC ︒==,所以234=272+90=144+90︒⨯︒︒︒︒,从而sin 234=cos144︒︒. 【详解】由题可知72ACB ∠=︒,且1512cos724BCAC ︒==,251cos1442cos 721+︒=︒-=, 则()51sin 234sin 14490cos144+︒=︒+︒=︒=. 【点睛】本题考查三角恒等变换,考查解读信息与应用信息的能力.7.若函数()()222,1log 1,1x x f x x x ⎧+≤⎪=⎨->⎪⎩,在(],a -∞上的最大值为4,则a 的取值范围为( )A. (]1,17B. (]1,9C. []1,17D. []1,9【答案】C 【解析】 【分析】利用分段函数的单调性,结合已知条件求解即可.【详解】因为函数()()222,1log 1,1xx f x x x ⎧+≤⎪=⎨->⎪⎩,(,1]x ∈-∞时,函数为增函数,(1,)x ∈+∞时,函数为增函数,且(1)4,(17)4f f == 所以[1,17]a ∈.【点睛】本题主要考查了分段函数的应用,函数的单调性以及函数的最值求法,属于中档题.8.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A. 40 B. 60 C. 80 D. 100【答案】A 【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是:36240C = 种.本题选择A 选项.9.执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值范围是( )A. (3042],B. (30,42)C. (42,56]D. (42,56)【答案】A 【解析】依次运行程序框图中的程序可得:第一次,0212,2S k =+⨯==,满足条件,继续运行; 第二次,2226,3S k =+⨯==,满足条件,继续运行; 第三次,62312,4S k =+⨯==,满足条件,继续运行; 第四次,122420,5S k =+⨯==,满足条件,继续运行; 第五次,202530,6S k =+⨯==,满足条件,继续运行;第六次,302642,7S k =+⨯==,不满足条件,停止运行,输出7. 故判断框内m 的取值范围为3042m <≤.选A .10.已知1F ,2F 为椭圆()222210x y a b a b +=>>的两个焦点,B 为椭圆短轴的一个端点,2121214BF BF F F ⋅≥uuu r uuu r uuu u r ,则椭圆的离心率的取值范围为( )A. 1(0,]2B. 2(0,2C. 3(0,]3D. 1(,1)2【答案】C【解析】 【分析】用,,a b c 表示出21212,BF BF F F ⋅uuu r uuu r uuu u r ,解出不等式得出e 的范围. 【详解】由椭圆定义可知:12BF BF a ==,12OF OF c ==,则1sin cOBF e a∠==, 所以22121cos 12sin 12F BF OBF e ∠=-∠=-,因为2121214BF BF F F ⋅≥uuu r uuu r uuu u r ,即222(12)e a c -≥,22(12)e e -≥,即213e ≤.303e ∴<≤. 【点睛】本题主要考查了椭圆的几何性质,平面向量的数量积运算,属于中档题.11.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[]1,+∞上的单调递减,则实数k 的取值范围是( )A. [)0,+∞B. ()0,∞+C. [)1,+∞ D. ()1,+∞【答案】A 【解析】 【分析】由定积分可以求出b , ()22ln 2g x x bx kx =--在[]1,+∞上单调递减可转化为()0g x '≤在[]1,+∞上恒成立即可求解.【详解】由题意,6601cos sin 2|b xdx x ππ===⎰, 所以()22ln g x x x kx =--,因为()22ln g x x x kx =--在[]1,+∞上的单调递减,所以222()0x kx g x x--+'=≤在[]1,+∞上恒成立,即2()220h x x kx =--+≤在[]1,+∞上恒成立,只需14(1)0k h ⎧-≤⎪⎨⎪≤⎩,解得0k ≥.【点睛】本题主要考查了利用定积分求面积,函数的单调性与导数的关系,不等式的恒成立问题,属于中档题.12.设数列{}n a 的前n 项和为n S ,且满足122a a +=,123n n a S +=+,用[]x 表示不超过x 的最大整数,设[]n n b a =,数列{}n b 的前2n 项和为2n T ,则使22000n T >成立的最小正整数n 是() A. 5 B. 6C. 7D. 8【答案】B 【解析】 【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 通项公式以及前n 项和n S ,利用二项式展开式化简[]n n b a =,求得2212211n n n n b b a a --+=+-,利用分组求和法求得数列{}n b 的前2n 项和2n T ,由此求得使22000n T >成立的最小正整数n 的值. 【详解】令1n =,得2123a a =+,又122a a +=,解得123a =,243a =,又123n n a S +=+,123n n a S -=+,所以12(2)n n a a n +=…,又212a a =,可求得23nn a =,()2213n n S =-.所以01111333(1)(1)2(31)333n n n n n n n n n n n C C C b ---⎡⎤⎡⎤⎡⎤⋅-⋅++⋅⋅-+--===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L , 即011211(1)C 3C 3C (1)3n n n n n n nnnb ----⎡⎤-=⋅-⋅++-+⎢⎥⎣⎦L ,所以2(1)(1)33n n n n b ⎡⎤---=+⎢⎥⎣⎦,即22,321,3n n n n b n ⎧-⎪⎪=⎨-⎪⎪⎩为奇数为偶数,所以2212211n n n n b b a a --+=+-,因此()2222213nn n T S n n =-=--,当5n =时,1067T =;当6n =时,1227242000T =>.使22000n T >成立的最小正整数n 是6.故选B.【点睛】本题考查等比数列通项公式及前n 项和公式,考查分组求和法,考查推理论证能力和创新意识,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.912x ⎫⎪⎭展开式中的常数项为______.【答案】212- 【解析】 【分析】利用二项展开式的通项公式即可求出. 【详解】因为993rr 22+19911=()()22r rr r r r T C x x C x----=-, 令9302r-=,解得3r =, 所以展开式中常数项为3349121=()22T C -=-. 【点睛】本题主要考查了二项展开式的通项公式,属于中档题.14.设n S 是公差不为0的等差数列{}n a 的前n 项和,且712a a =-,则1197S Sa =+______.【答案】32【解析】 【分析】由712a a =-可得12a d =-,利用前n 项和公式及通项公式即可求解. 【详解】因为712a a =-, 所以120a d =-≠,111111011332S a d d ⨯=+=,91989182S a d d ⨯=+=,7164a a d d =+=, 所以11973331842S d S a d d ==++.【点睛】本题主要考查了等差数列的通项公式与前n 项和公式,属于中档题.15.如图所示是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD 长为2,侧视图是一直角三角形,俯视图为一直角梯形,且1AB BC ==,则异面直线PB 与CD 所成角的正切值是______.2 【解析】 【分析】根据三视图画出空间图形的直观图,取AD 中点E ,连接BE ,PE ,CE ,将CD 平移到BE ,根据异面直线所成角的定义可知PBE ∠为异面直线PB 与CD 所成角,在直角三角形PBE ∆中,求出其正切值即可.【详解】作出直观图如图:取AD 中点E ,连接BE ,PE ,CE , 因为CD //BE ,根据异面直线所成角的定义可知PBE ∠为异面直线PB 与CD 所成角, 由条件知,1,2,PE BE PE BE ==⊥,2tan 22PBE ∴∠==. 【点睛】本题主要考查了异面直线所成的角,空间图形的三视图,考查了空间想象能力、运算能力,属于中档题.16.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A 是双曲线左支上的一点,若直线1AF 与直线by x a=平行且12AF F ∆的周长为9a ,则双曲线的离心率为______. 【答案】2 【解析】 【分析】根据双曲线的定义及三角形的周长可求出2111272||,||22a c a cAF AF --==,利用直线1AF 与直线by x a =平行知12cos a AF F c∠=,结合余弦定理即可求解. 【详解】由双曲线定义知21||||2AF AF a -=,又21||||92AF AF a c +=-解得2111272||,||22a c a cAF AF --==, 因为直线1AF 与直线by x a=平行, 所以12tan b AF F a ∠=,故12cos a AF F c∠=, 由余弦定理得:12cos a AF F c∠=222121||4||2||2AF c AF AF c +-=⋅即2211844144e e e e e-++=-,化简得2280e e +-=, 解得2e =或4e =-(舍去).【点睛】本题主要考查了双曲线的定义,余弦定理,双曲线的离心率,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.ABC ∆的内角A 、B 、C 所对的边长分别为a 、b 、c ,已知()cos 4cos a B c b A =-. (1)求cos A 的值;(2)若4b =,点M 在线段BC 上,2AB AC AM +=u u u r u u u r u u u u r,AM =uuu r ABC ∆的面积.【答案】(1)1cos 4A =;(2)【解析】 【分析】(1)由正弦定理将条件统一为三角函数,化简即可求解(2)2AB AC AM +=u u u r u u u r u u u u r,两边平方可转化为关于c 的方程,求解代入三角形面积公式即可. 【详解】(1)∵()cos 4cos a B c b A =-,由正弦定理得:()sin cos 4sin sin cos A B C B A =-,即sin cos cos sin 4sin cos A B A B C A +=,即sin 4cos sin C A C =, 在ABC ∆中,sin 0C ≠,所以1cos 4A =.(2)2AB AC AM +=u u u r u u u r u u u u r ,两边平方得:22224AB AC AB AC AM ++⋅=u u u r u u u r u u u r u u u r u u u r ,由4b =,10AM =uuu r ,1cos 4A =,15sin A =得22124104c b c b ++⨯⨯⨯=⨯,可得216240c c ++=, 解得:4c =或6c =-(舍), 所以ABC ∆的面积1sin 2152S bc A ==. 【点睛】本题主要考查了正弦定理,三角恒等变换,向量数量积的性质,三角形面积公式,属于中档题.18.如图,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,6AB =,23BC =,26AC =,,D E 分别为线段,AB BC 上的点,且2AD DB =,2CE EB =,PD AC ⊥.(1)求证:PD ⊥平面ABC ;(2)若PA 与平面ABC 所成的角为4π,求平面PAC 与平面PDE 所成的锐二面角.【答案】(1)证明见解析;(2)30°. 【解析】 试题分析:(1)由条件可得ABC ∆为直角三角形,且3cos ABC ∠=故由余弦定理可得22CD =所以222CD AD AC +=,从而CD AB ⊥,又由条件可得CD PD ⊥,故PD ⊥平面ABC .(2)由,,PD CD AB 两两互相垂直可建立空间直角坐标系,结合条件可求得平面PAC 的法向量和平面DEP 的法向量,根据两法向量夹角的余弦值可得锐二面角的大小. 试题解析:(1)证明:连DE ,由题意知4,2AD BD ==. 222,AC BC AB +=Q90.ACB ∴∠=o∴cos 63BC ABC AB ∠=== 在BCD ∆中,由余弦定理得2222?· cos CD BC BD BC BD DBC ∴=+-∠412228.3=+-⨯⨯=CD ∴=222CD AD AC ∴+=,∴90CDA ∠=o , ∴CD AB ⊥,又因为PAB ABC ⊥平面平面, ∴,CD PAB ⊥平面 又PD ⊂PAB 平面,,CD PD ∴⊥又PD AC ⊥,=AC CD C ⋂, ∴PD ⊥平面ABC .(2)由(1)知,,PD CD AB 两两互相垂直,建立如图所示的空间直角坐标系D xyz -,由PA 与平面ABC 所成的角为4π,知4PD =, 则()()()()0,4,0,22,0,0,0,2,0,0,0,4A C B P -∴()()()22,2,0,22,4,0,0,4,4CB AC PA =-==--u u u v u u u v u u u v因为2,2,AD DB CE EB ==//,DE AC ∴由(1)知,AC BC ⊥ PD ⊥平面ABC , ∴ CB ⊥平面DEP∴()22,2,0CB =-u u u v为平面DEP 的一个法向量.设平面PAC 的法向量为(),,n x y z v=,则,,n AC n PA ⎧⊥⎨⊥⎩u u u u v v u u u v v ∴2240440x y y z ⎧+=⎪⎨--=⎪⎩,令1z =,则2,1x y ==-,∴)2,1,1n =-v为平面PAC 的一个法向量.∴3cos ,2412||n CB n CB n CB ⋅===-⋅u u u v v u u u v vu u v u u u u v 故平面PAC 与平面PDE 3所以平面PAC 与平面PDE 的锐二面角为30o . 点睛:(1)在建立空间直角坐标系后求平面的法向量时,首先要判断一下条件中是否有垂直于面的直线.若有,则可将直线的方向向量直接作为平面的法向量,以减少运算量.(2)求二面角的余弦值时,在求得两平面法向量夹角的余弦值后,要根据图形判断出二面角是锐角还是钝角,然后再求出二面角的余弦值.19.已知椭圆()222210x y a b a b +=>>的离心率2,一个长轴顶点在直线2y x =+上,若直线l 与椭圆交于P ,Q 两点,O 为坐标原点,直线OP 的斜率为1k ,直线OQ 的斜率为2k . (1)求该椭圆的方程. (2)若1214k k ⋅=-,试问OPQ ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)OPQ ∆的面积为定值1. 【解析】 【分析】(1)根据离心率及长轴即可写出椭圆标准方程(2)设()11,P x y ,()22,Q x y ,当直线PQ 的斜率存在时,设其方程为y kx m =+,求PQ ,点O 到直线y kx m =+的距离21md k =+,写出三角形面积,化简即可求证.【详解】由c e a ==,又由于0a b >>,一个长轴顶点在直线2y x =+上,可得:2a =,c =,1b =.(1)故此椭圆的方程为2214x y +=.(2)设()11,P x y ,()22,Q x y ,当直线PQ 的斜率存在时,设其方程为y kx m =+, 联立椭圆的方程得:()222418440k x kmx m +++-=, 由()()222264441440k m k m ∆=-+->,可得2241m k <+, 则122841km x x k +=-+,21224441m x x k -⋅=+,12PQ x x=-=,又点O到直线y kx m=+的距离d=,122OPQS d PQ m∆=⋅⋅=,由于2121212121214y y x x mk kx x x x++⋅===-,可得:22421k m=-,故2212OPQS mm∆=⋅=,当直线PQ的斜率不存在时,可算得:1OPQS∆=,故OPQ∆的面积为定值1.【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,三角形的面积公式,考查了学生的运算能力及推理能力,属于难题.20.抚州不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来抚州参观旅游的人数不胜数.其中,名人园与梦岛被称为抚州的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X,求X的分布列与数学期望;(2)若从游客中随机抽取m人,记总分恰为m分的概率为m A,求数列{}m A的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n分的概率为n B,探讨n B与1n B-之间的关系,并求数列{}n B的通项公式.【答案】(1)详见解析;(2)364729;(3)1213n nB B-=-+;322553nnB⎛⎫=+⋅-⎪⎝⎭.【解析】【分析】(1)根据n 次独立重复试验模型可求解(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,求前6项和即可(3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,可得递推关系1213n n B B -=-+,构造等比数列求解即可. 【详解】(1)X 可能取值为3,4,5,6()3113327P X ⎛⎫=== ⎪⎝⎭, ()21321643327P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()223211253327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,()3286327P X ⎛⎫===⎪⎝⎭, 故其分布列为()5E X =.(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭, 故6611(1)36433172913S -==-.(3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,而113B =, 故1213n n B B --=,即1213n n B B -=-+,可得1323535n n B B -⎛⎫-=-- ⎪⎝⎭,134515B -=-, 所以13425153n n B -⎛⎫-=-- ⎪⎝⎭可得322553nn B ⎛⎫=+⋅- ⎪⎝⎭.【点睛】本题主要考查了n 次独立重复试验,分布列、期望,等比数列求和,由递推关系式求通项公式,属于难题.21.已知函数()()()22112ln 1ln 242f x x x ax x x =----. (1)讨论()f x 的单调性.(2)试问是否存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)见解析;(2) 存在;a 的取值范围为(]2,e . 【解析】 【分析】(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞,所以()0f x '=得12,x a x e ==,所以通过对a 与0,e 的大小关系进行分类讨论得()f x 的单调性;(2)假设存在满足题意的a 的值,由题意需()min 13sin 44a f x π>+,所以由(1)的单调性求()min f x 即可;又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立,所以可以考虑从区间[)1,+∞内任取一个x 值代入,解出a 的取值范围,从而将(],a e ∈-∞的范围缩小减少讨论.【详解】解:(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞. 当a e =时,()()()ln 10f x x e x '=--≥,()f x 在()0,∞+上单调递增当0a ≤时,0x a ->,()f x 在()0,e 上单调递减,在(),e +∞上单调递增 当0a e <<时,()f x 在(),a e 上单调递减,在()0,a ,(),e +∞上单调递增; 当a e >时,()f x 在(),e a 上单调递减,在()0,e ,(),a +∞上单调递增.(2)假设存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立. 则()31123sin 444a f a π=->+,即8sin1504a a π-->, 设()8sin 154xg x x π=--,则存在(],x e ∈-∞,使得()0g x >, 因为()8cos044xg x ππ='->,所以()g x 在(],x e ∈-∞上单调递增, 因为()20g =,所以()0g x >时2x >即2a >. 又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立时,需()min 13sin 44a f x π>+, 所以由(1)得:当a e =时,()f x 在[)1,+∞上单调递增,所以()()min 331=2=244f x f a e =--, 且3123sin 444e e π->+成立,从而a e =满足题意. 当2e a <<时,()f x 在(),a e 上单调递减,在[)1,a ,(),e +∞上单调递增,所以()()2113sin ,4413sin ,444a f e a f e ea ππ⎧>+⎪⎪⎨⎪=->+⎪⎩所以22,4sin 1204a a ea e π>⎧⎪⎨--->⎪⎩(*) 设()()24sin 1242xh x ex e x e π=---<<,()4cos044xh x e ππ=-'>,则()h x 在()2,e 上单调递增,因为()228130h e e =-->,所以()h x 的零点小于2,从而不等式组(*)的解集为()2,+∞, 所以2x e <<即2e a <<.综上,存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立,且a 的取值范围为(]2,e .【点睛】求可导函数()f x 的单调区间的一般步骤是:(1)求定义域;(2)求()f x ';(3)讨论()f x '的零点是否存在;若()f x '的零点有多个,需讨论它们的大小关系及是否在定义域内;(4)判断()f x '在每个区间内的正负号,得()f x 的单调区间.当()f x a >在区间D 上恒成立时,需()min f x a >.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,曲线C 的参数方程为2cos ,2sin x y αα=⎧⎨=⎩([0,2),απα∈为参数),在同一平面直角坐标系中,经过伸缩变换'2,'x x y y=⎧⎨=⎩得到曲线1C ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(Ⅰ)求曲线C 的直角坐标方程和曲线1C 的极坐标方程;(Ⅱ)若射线():0OA θβρ=>与曲线1C 交于点A ,射线():02OB πθβρ=+>与曲线1C 交于点B ,求2211OAOB +的值. 【答案】(Ⅰ)224x y +=,2222416cos sin ρθρθ+=;(Ⅱ)516. 【解析】【分析】 (Ⅰ)消去参数,求得曲线C 的直角方程为224x y +=,再根据图象的变换公式,即可求解曲线1C 的方程,进而得到其极坐标方程;(Ⅱ)将()0θβρ=>代入2222416cos sin ρθρθ+=,根据极坐标中极经的几何意义,即可求解。
江西省2020版高考数学一模试卷(理科)(I)卷(模拟)
江西省2020版高考数学一模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020高二下·海安月考) 若集合,,则()A .B .C .D .2. (2分)(2019·北京模拟) 若复数满足,则等于()A .B .C .D .3. (2分) (2019高三上·天津期末) 在中,为的中点,,则()A .B .C . 3D .4. (2分)(2017·黑龙江模拟) 已知双曲线C:﹣ =1(a>0,b>0)的离心率为2,且右焦点到一条渐近线的距离为,双曲线的方程为()A .B .C .D .5. (2分)△ABC中,AB=, BC=2,sinA=,则sinC=()A .B .C .D .6. (2分)将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有()A . 18种B . 36种C . 48种D . 60种7. (2分) (2017高一上·陵川期末) 某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A . f(x)=lnxB . f(x)=C . f(x)=exD . f(x)=x38. (2分)(2017·舒城模拟) 设k是一个正整数,(1+ )k的展开式中第四项的系数为,记函数y=x2与y=kx的图象所围成的阴影部分为S,任取x∈[0,4],y∈[0,16],则点(x,y)恰好落在阴影区域内的概率为()A .B .C .D .9. (2分) (2018高二上·阜阳月考) 在等比数列中,若,前3项和,则公比的值为()A . 1B .C . 1或D . 或10. (2分)(2017·安徽模拟) 如图,网格纸上小正方形的边长为1,粗线(实线和虚线)为某几何体的三视图,则该几何体外接球的表面积为()A . 24πB . 29πC . 48πD . 58π11. (2分) (2016高一下·海南期中) 已知a,b为正实数,且,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为()A .B . (﹣∞,3]C . (﹣∞,6]D .12. (2分) (2019高三上·榕城月考) 设函数.若为奇函数,则曲线在点处的切线方程为()A .B .C .D .二、填空题. (共4题;共4分)13. (1分) (2018·陕西模拟) 设函数则的值为________.14. (1分) (2019高二上·烟台期中) 已知克糖水中含有克糖(),再添加克糖()(假设全部溶解),糖水变甜了.请将这一事实表示为一个不等式________.15. (1分)设p:函数f(x)=2|x﹣a|在区间(4,+∞)上单调递增;q:loga2<1,如果“¬p”是真命题,“p或q”也是真命题,则实数a的取值范围为________.16. (1分) (2016高二下·静海开学考) 已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.三、解答题 (共7题;共65分)17. (10分)(2018·广元模拟) 设函数.(1)求的最大值,并写出使取最大值时的集合;(2)已知中,角的对边分别为,若,,求的最小值.18. (10分)(2017·聊城模拟) 如图,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中点.(1)求证:A1C∥平面BDC1;(2)若AB⊥AC,且AB=AC= AA1 ,求二面角A﹣BD﹣C1的余弦值.19. (10分) (2020高二下·唐山期中) 已知某单位有甲、乙、丙三个部门,从员工中抽取7人,进行睡眠时间的调查.若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(1)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(2)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.20. (5分)(2018·浙江) 如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A , B满足PA , PB的中点均在C上.(Ⅰ)设AB中点为M ,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+ =1(x<0)上的动点,求△PAB面积的取值范围.21. (10分)(2018·中山模拟) 已知函数.(1)若 ,求函数的单调区间;(2)若对恒成立,求的取值范围.22. (10分)已知直线l的参数方程为:(t为参数),曲线C的极坐标方程为:ρ2cos2θ=1.(1)以极点为原点,极轴为x轴正半轴,建立直角坐标系,求曲线C的直角坐标方程;(2)若求直线,被曲线C截得的弦长为,求m的值.23. (10分)(2019·淄博模拟) 已知.(1)当m=-3时,求不等式的解集;(2)设关于x的不等式的解集为M,且,求实数m的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。
高三数学(理)第一次高考模拟考试(2020届附答案)
n=5 s=0 WHILE s<15 S=s + n n=n -1 WEND PRINT n END (第5题)2020届高三数学(理)第一次高考模拟考试(附答案)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.满足条件{1,2}{1,2,3}A ⋃=的集合A 有( )A .1个B .2个C .4个D .8个2.已知445sin sin cos ααα=-则的值为 ( )A .—35B .—15C .15D .353.已知()f x 是定义在R 上的奇函数,当0x ≥时,值域为[—2,3],则()()y f x x =∈R 的值域为( )A .[—2,2]B .[—2,3]C .[—3,2]D .[—3,3]4.棱长为1的正方形ABCD —A 1B 1C 1D 1中,11AB BC ⋅的值为( )A .1B .—1C .2D .—25.右边程序执行后输出的结果是( ) A 1- B 0 C 1 D 26.21()n x x-的展开式中,常数项为15,则n 的值是( )A .3B .4C .5D .67.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人 相邻但不排在两端,不同的排法共有( ) A .1440种B .960种C .720种D .480种8.曲线||2||2x y +=的图象大致是( )9.已知双曲线方程22221(0)x y a b a b-=>>,过右焦点F 2且倾斜角为60°的线段F 2M 与y轴交于M ,与双曲线交于N ,已知224MF NF =,则该双曲线的离心率为( )A.13- B1- C.13+ D110.如果函数()f x 对任意的实数x ,存在常数M ,使得不等式|()|||f x M x ≤恒成立,那么就称函数()f x 为有界泛涵,下面四个函数;①()f x =1②()f x =x 2 ③()(sin cos )f x x x x =+④2()1xf x x x =++ 其中属于有界泛函的是 ( ) A .①②B .③④C .①③D .②④第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题4分,共20分。
江西省抚州市临川第一中学2020届高三数学5月模拟考试试题理含解析
高考某某省抚州市某某第一中学2020届高三数学5月模拟考试试题 理(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 已知i 为虚数单位,若复数1z ,2z 在复平面内对应的点分别为(2,1),(1,2)-,则复数12iz z ⋅=( ) A. 34i -- B. 34i -+C. 43i --D. 3-【答案】A 【解析】 【分析】根据题意12z i =+,212z i =-,故()()12212i i z z i i+-⋅=,计算得到答案. 【详解】根据题意12z i =+,212z i =-,故()()122124334i i z z ii i i i+-⋅-===--. 故选:A.【点睛】本题考查了复数的计算,意在考查学生的计算能力. 2. 已知集合{|20}A x x =-≥,{|ln(1)}B x y x =∈=+Z ,则A B =A. [1,2]-B. (1,2]-C. {0,1,2}D.{1,0,1,2}-【答案】C 【解析】【详解】因为{|20}{|2}A x x x x =-≥=≤,{|ln(1)}{|1}B x y x x x =∈=+=∈>-Z Z ,所以{0,1,2}AB =.故选C .高考3. 设n S 为等差数列{}n a 的前n 项和,若41012222a a a ++=,则14S =( ) A .56B. 66C. 77D. 78【答案】C 【解析】 【分析】化简得到11411a a +=,代入公式计算得到答案.【详解】()()()()410124104127811422222a a a a a a a a a a a ++=+++=+=+=,故11411a a +=,()1141414772a a S +==.故选:C.【点睛】本题考查了等差数列求和,确定11411a a +=是解题的关键.4. 已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令2log 3a =,12211,log 162b c -⎛⎫== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( ) A. ()()()f a f b f c << B. ()()()f a f c f b << C. ()()()f b f a f c << D. ()()()f c f a f b <<【答案】C 【解析】 【分析】化简得到()()2f b f =,()()1f c f =,12a <<,根据函数单调性得到答案.【详解】()()()()12142216f b f f f f -⎛⎫⎛⎫ ⎪===-= ⎪ ⎪⎝⎭⎝⎭,()()()21log 112f c f f f ⎛⎫==-= ⎪⎝⎭,2221log 2log 3log 42a =<=<=,函数在区间[]1,2上是减函数,故()()()f b f a f c <<. 故选:C.【点睛】本题考查了根据函数单调性比较函数值大小,意在考查学生的计算能力和对于函数性质的灵活运用.5. 若点()cos ,sin P αα在直线2y x =-上,则sin 22πα⎛⎫+ ⎪⎝⎭的值等于( ) A. 3-5B.35C. 4-5D.45【答案】A 【解析】 【分析】根据题意得到tan 2α,再利用齐次式计算得到答案.【详解】点()cos ,sin P αα在直线2y x =-上,故tan 2α,222222cos sin 1tan 3sin 2cos 22cos sin 1tan 5παααααααα--⎛⎫+====- ⎪++⎝⎭, 故选:A.【点睛】本题考查了三角函数定义,齐次式求值,意在考查学生的计算能力和转化能力. 6. 在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是( )A. 2019年我国居民每月消费价格与2018年同期相比有涨有跌B. 2019年我国居民每月消费价格中2月消费价格最高C. 2019年我国居民每月消费价格逐月递增D. 2019年我国居民每月消费价格3月份较2月份有所下降【答案】D【解析】【分析】根据统计折线图以及同比和环比的概念,对四个选项逐个分析可得答案.【详解】根据统计折线图以及同比增长率的概念可知2019年我国居民每月消费价格与2018年同期相比都是上涨的,故A不正确;2019年我国居民每月消费价格中2月消费价格涨幅最高,不是消费价格最高,故B不正确;2019年我国居民每月消费价格有涨有跌,故C.不正确;2019年我国居民每月消费价格3月份较2月份有所下降,下降了0.4个百分点,故D正确. 故选:D【点睛】本题考查了对统计折线图的分析和理解能力,考查了同比和环比的概念,属于基础题.7. 已知1111114357941π≈-+-+-+,如图是求π的近似值的一个程序框图,则图中空白框中应填入()A. ()1121nin+-=+B. (1)21nin-=+C. ()112nii+-=+D. (1)2nii-=+【答案】B【解析】【分析】根据计算公式:计算数据正负交替,分母为首项是1,公差为2的等差数列,得到答案. 【详解】根据计算公式:计算数据正负交替,分母为首项是1,公差为2的等差数列,故填写(1)21nin-=+.故选:B.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.8. 已知实数,x y满足约束条件2202201,1x yx yx y-+≥⎧⎪--≤⎨⎪≥-≥-⎩,则2x y+的取值X围是A. (3,6]- B. [3,6]- C. 3(,6]2-D. 3[,6]2-【答案】B 【解析】【详解】作出不等式组2202201,1x y x y x y -+≥⎧⎪--≤⎨⎪≥-≥-⎩表示的平面区域,如图中阴影部分所示,设2z x y =+,则2y x z =-+,平移该直线,当直线2y x z =-+经过点A 时,z 取到最大值,由220220x y x y -+=⎧⎨--=⎩得22x y =⎧⎨=⎩,即(2,2)A ,则max 426=+=z ;当直线2y x z =-+经过点C 时,z 取到最小值,易得(1,1)C --,则min 213=--=-z ,所以2x y +的取值X 围是[3,6]-.故选B .9. 函数1()ln ||1xf x x+=-的图象大致为( ) A. B. C. D.【答案】D 【解析】【分析】判断出函数为奇函数,即排除B;代入特殊点后又能排除两个选项,即可得到正确答案. 【详解】由题可得函数()f x 的定义域为{|1}x x ≠±.因为1()ln ||1x f x x --==+1ln ||()1xf x x+-=-- 所以函数()f x 为奇函数,排除选项B;又(1.1)ln 211f =>,(3)ln 21f =<,所以排除选项A 、C 故选:D.【点睛】本题考查了函数的图像,考查了对数的运算.在选择正确的函数图像时,一般都不是直接画函数图像,而是运用排除法.首先判断函数的定义域、奇偶性、单调性进行排除,然后代入特殊点,进行排除.10. 2019年10月1日,中华人民某某国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为( ) A. 72 B. 84 C. 96 D. 120【答案】B 【解析】 【分析】先选择一个非0数排在首位,剩余数全排列,共有96种,其中1和0排在一起形成10和原来的10有重复,共有12种,得到答案.【详解】先选择一个非0数排在首位,剩余数全排列,共有144496C A ⋅=种,其中1和0排在一起形成10和原来的10有重复,考虑1和0相邻时,且1在0的左边,和剩余数字共有4!=24种排法, 其中一半是重复的,故此时有12种重复. 故共有961284-=种. 故选:B.【点睛】本题考查了排列组合的综合应用,意在考查学生的计算能力和应用能力.11. 已知1F,2F是椭圆C:22221(0)x ya ba b+=>>的左、右焦点,过2F的直线交椭圆于,P Q两点.若2211||,||,||,||QF PF PF QF依次构成等差数列,且1||PQ PF=,则椭圆C的离心率为()A.23B.34C. 155D. 105【答案】D【解析】【分析】设2211||,||,||,||QF PF PF QF依次构成等差数列{}n a,其公差为d,可得12344a a a a a+++=,及123a a a+=,进而可求得1234,,,a a a a的表达式,然后在12PF F△和1PFQ中,利用余弦定理得到12cos F PF∠的表达式,进而可求出离心率的值.【详解】如图所示,设2211||,||,||,||QF PF PF QF依次构成等差数列{}n a,其公差为d.根据椭圆定义得12344a a a a a+++=,又123a a a+=,则1111111()(2)(3)4()2a a d a d a d aa a d a d++++++=⎧⎨++=+⎩,解得25d a=,12342468,,,5555a a a a a a a a====.所以18||5QF a=,16||5PF a=,24||5PF a=,6||5PQ a=.在12PF F△和1PFQ中,由余弦定理得2222221246668()()(2)()()()55555cos 4666225555a a c a a a F PF a a a a +-+-∠==⨯⨯⨯⨯, 整理得22715a c =,则c e a ==. 故选:D.【点睛】本题考查椭圆离心率的求法,考查椭圆定义的应用,考查等差数列的性质,考查学生的计算求解能力,属于中档题.12. 已知0x =是函数()(tan )f x x ax x =-的极大值点,则a 的取值X 围是( ) A. (],1-∞- B. (,1]-∞C. [0,)+∞D. [1,)+∞【答案】B 【解析】 【分析】求导得到()22tan cos xf x ax x x'=--,导函数为奇函数,根据题意得到()00f ''≤,计算得到答案.【详解】()(tan )f x x ax x =-,则()22tan cos xf x ax x x'=--, 易知()f x '为奇函数,又0x =是函数()(tan )f x x ax x =-的极大值点,故()00f ''≤,()2241cos sin cos 2cos cos x x x xf x a x x+''=--,代入计算得到1a ≤. 易知()f x ''为偶函数,当1a ≤时,取0,2x π⎛⎫∈ ⎪⎝⎭,()2241cos sin cos 22110cos cos x x x xf x a x x+''=--<--=,故函数()f x '在,22ππ⎛⎫- ⎪⎝⎭上单调递减,()00f '=,满足条件.故选:B.【点睛】本题考查了根据极值点求参数,确定''(0)0f ≤是解题的关键.二、填空题(本大题共4小题,每小题5分,共20分)13. 设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a b ⨯是一个向量,它的模sin a b a b θ⨯=⋅⋅.若()()13,3,1a b =--=,,则a b ⨯=____________.【答案】2 【解析】 【分析】 计算3cos a b a bθ⋅==-⋅得到1sin 2θ=,代入公式得到答案. 【详解】(1a =--,,3,1b,则23cos a b a bθ⋅-===⋅ []0,θπ∈,故1sin 2θ=,故sin 2a b a b θ⨯=⋅⋅=.故答案为:2.【点睛】本题考查了向量的新定义,意在考查学生的计算能力和理解能力. 14. 若2a xdx =⎰,则()51x ay +-的展开式中22x y 的系数为___________.【答案】120- 【解析】 【分析】计算2a =,()521x y +-的展开式的通项为:()()51521rrrr T C x y -+=+⋅-,()52rx y -+的展开式的通项为:()5152mm r mm r T C xy --+-=⋅,计算得到答案.【详解】2220122a xdx x ===⎰,故()521x y +-的展开式的通项为:()()51521rrr r T C x y -+=+⋅-.()52rx y -+的展开式的通项为:()5152mmr mm r T C xy --+-=⋅,取2m =,1r =得到系数为:()2214521120C C ⋅⋅⋅-=-.故答案为:-120.【点睛】本题考查了定积分的计算,二项式定理,意在考查学生的计算能力和综合应用能力. 15. 在棱长为4的正方体1111ABCD A B C D -中,P 为线段11A D 的中点,若三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为_______________. 【答案】41π 【解析】 【分析】AC 中点1O 为ABC 外心,故球心O 在平面ABC 的投影为1O ,Q 为AD 中点,OM PQ ⊥于M ,连接1QO ,设1OO h =,则()22224R h =+-,()22222R h =+,解得答案.【详解】如图所示:AC 中点1O 为ABC 外心,故球心O 在平面ABC 的投影为1O ,QAD 中点,OM PQ ⊥于M ,连接1QO ,OC ,则12MO QO ==,122OC =, 设1OO h =,则()22224R h =+-,()22222R h =+,解得412R =, 故2441S R ππ==. 故答案为:41π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.16. 已知1(3,0)A -,2(3,0)A 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点,双曲线C 的渐近线上存在一点P 满足122||||PA PA =,则b 的最大值为________. 【答案】4 【解析】 【分析】根据题意知:3a =,根据对称性不妨设渐近线为3by x =,设()3,P m bm ,代入计算得到()2227390270b mm +-+=,根据0∆≥得到答案.【详解】根据题意知:3a =,根据对称性不妨设渐近线为3by x =,设()3,P m bm , 122||||PA PA =,则()()()()2222334334m bm m bm ++=-+,整理得到:()2227390270b mm +-+=,()22904272730b ∆=-⨯⨯+≥,解得4b ≤.故答案为:4.【点睛】本题考查了双曲线中参数的最值,意在考查学生的计算能力和转化能力. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 如图,在平面四边形ABCD 中,2BC =,23CD =,且AB BD DA ==.(1)若6CDB π∠=,求tan ABC ∠的值;(2)求四边形ABCD 面积的最大值. 【答案】(1)3-2)83【解析】【分析】(1)根据正弦定理得到3CBD π∠=,()tan tan ABC ABD CBD ∠=∠+∠,计算得到答案.(2)根据余弦定理得到216BD θ=-,计算3ABCD S πθ⎛⎫=-+ ⎪⎝⎭四边形,计算得到答案.【详解】(1)在BCD ∆中,由正弦定理得sin sin CD BCCBD BDC=∠∠,∴sin6sin 22CBD π∠==,∵0CBD π<∠<,∴3CBD π∠=或23CBD π∠=, 当23CBD π∠=时,此时、、A B C 三点共线,矛盾 ∴3CBD π∠=,∴()2tan tan tan tan 333ABC ABD CBD πππ⎛⎫∠=∠+∠=+==⎪⎝⎭.(2)设BCD θ∠=,在BCD ∆中,由余弦定理得2222cos BD BC CD BC CD θ=+-⋅(2222216θθ=+-⨯⨯=-,∴11sin sin 22AB BCD BA CD D S S BC C B S D A BD θθ∆∆=+=⋅+⋅四边形 21sin 2BC CD θ=⋅+6cos 3πθθθ⎛⎫=+=-+ ⎪⎝⎭当56πθ=时,四边形ABCD 面积的最大值【点睛】本题考查了正弦定理,余弦定理,面积公式,意在考查学生的计算能力和综合应用能力.18. 如图,在四棱锥P ABCD -中,PAB △是等边三角形,BC ⊥AB ,BC CD ==2AB AD ==.(1)若3PB BE =,求证://AE 平面PCD ; (2)若4PC =,求二面角A PC B --的正弦值. 【答案】(1)证明见解析;(225【解析】 【分析】(1)作//EF PC ,交BC 于F ,连接AF ,分别证明//AF 平面PCD ,//EF 平面PCD ,进而可证明平面AEF //平面PCD ,可得//AE 平面PCD ;(2)计算可知222PC PB BC =+,所以BC PB ⊥,结合BC ⊥AB ,可知BC ⊥平面PAB ,从而可知平面PAB ⊥平面ABCD ,在平面PAB 内作Bz ⊥平面ABCD ,以B 点为坐标原点,分别以,,BC BA Bz 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系B xyz -,求出平面BPC 的法向量m ,平面APC 的法向量n ,再结合cos ,m n m n m n⋅=,可求出sin ,m n .【详解】(1)如图,作//EF PC ,交BC 于F ,连接AF . 因为3PB BE =,所以E 是PB 的三等分点,可得12333BF BC ==. 因为2AB AD ==,23BC CD ==AC AC =,所以ABC ADC △≌△, 因为BC ⊥AB ,所以90ADC ABC ∠=∠=︒,因为3tan23ABACBBC∠===,所以30ACB ACD∠=∠=︒,所以60BCD∠=︒,因为tan323ABAFBBF∠===,所以60AFB∠=︒,所以//AF CD,因为AF⊄平面PCD,CD⊂平面PCD,所以//AF平面PCD.又//EF PC,EF⊄平面PCD,PC⊂平面PCD,所以//EF平面PCD.因为AF EF F=,AF、EF⊂平面AEF,所以平面AEF//平面PCD ,所以//AE平面PCD .(2)因为PAB△是等边三角形,2AB=,所以2PB=.又因为4PC=,23BC=,所以222PC PB BC=+,所以BC PB⊥.又BC⊥AB,,AB PB⊂平面PAB,AB PB B⋂=,所以BC⊥平面PAB.因为BC⊂平面ABCD,所以平面PAB⊥平面ABCD.在平面PAB内作Bz⊥平面ABCD,以B点为坐标原点,分别以,,BC BA Bz所在直线为,,x y z 轴,建立如图所示的空间直角坐标系B xyz-,则(23,0,0)C,(0,2,0)A,3)P,所以(23,0,0)BC=,3)BP=,(23,2,0)AC=-,(0,3)AP=-.设111(,,)zm x y=为平面BPC的法向量,则m BCm BP⋅=⋅⎧⎪⎨⎪⎩=,即1113030xy z⎧=+=⎪⎨⎪⎩,令11z =-,可得(0,3,1)m =-.设222(,,)x n y z =为平面APC 的法向量,则00n AC n AP ⋅=⋅⎧⎪⎨⎪=⎩,即2222200y y ⎧-=⎪⎨-=⎪⎩, 令21z =,可得(1,3,1)n =.所以2c s ,o m n m n m n⋅===⨯,则1sin,m n =-=, 所以二面角A PC B --. 【点睛】本题考查线面平行的证明,考查二面角的求法,考查利用空间向量求二面角,考查学生的空间想象能力与计算求解能力,属于中档题.19. 2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据数据用最小二乘法求出y 与x 的线性回归方程y bx a =+(系数用分数表示,不能用小数);(2)该药企准备生产药品A 的三类不同的剂型1A ,2A ,3A ,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型1A ,2A ,3A 合格的概率分别为12,34,35,第二次检测时,三类剂型1A ,2A ,3A 合格的概率分别为45,23,23.两次检测过程相互独立,设经过两次检测后1A ,2A ,3A 三类剂型合格的种类数为X ,求X 的分布列与数学期望.附:(1)1221ni ii ni i x y nx yb a y bx x nx==-==--∑∑,(2)882113471308i i i i i x y x ====∑∑,.【答案】(1)83107340340y x =+(2)分布列见解析,1310【解析】 【分析】(1)直接利用回归方程公式计算得到答案.(2)X 可取0,1,2,3,计算概率得到分布列,再计算数学期望得到答案. 【详解】(1)2361021131518118x +++++++==,112 2.56 3.5 3.5 4.538y +++++++==,由公式12221ˆ34781138313088b11340ni ii ni i x y nx yx nx==-⨯⨯==-⨯-=-∑∑, 83107ˆˆ311340340a y bx =-=-⨯=, ∴83107340340y x =+. (2)药品A 的三类剂型123A A A 、、经过两次检测后合格分别为事件123B B B 、、, 则()()()123142321322,,255432535p B P B P B =⨯==⨯==⨯=, 由题意,X 可取0,1,2,3,()()21232190115250p X p B B B ⎛⎫⎛⎫===--=⎪⎪⎝⎭⎝⎭, ()()21231231232122121111125255250p X p B B B B B B B B B ⎛⎫⎛⎫⎛⎫==++=-⋅+-⋅⋅-⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()212312312321221821125255225p X p B B B B B B B B B ⎛⎫⎛⎫⎛⎫==++=⋅-+-⋅⋅⋅=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,()()212321235225p X p B B B ⎛⎫===⋅=⎪⎝⎭. X ∴的分布列为:X123p950 2150 825 22592182130123.5050255010EX =⨯+⨯+⨯+⨯= 【点睛】本题考查了回归方程,分布列,数学期望,意在考查学生的计算能力和综合应用能力.20. 给定椭圆:C 22221(0)x y a b a b+=>>,称圆心在原点O ,半径为22a b +的圆是椭圆C 的“准圆”.若椭圆C 的一个焦点为(30)F ,,其短轴上的一个端点到F 的距离为6.(1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12,l l 交“准圆”于点,M N . ①当点P 为“准圆”与y 轴正半轴的交点时,求直线12,l l 的方程并证明12l l ⊥; ②求证:线段MN 的长为定值.【答案】(1)椭圆方程为22163x y +=,准圆方程为229x y +=;(2)①12:33:l y x l y x =+=-+,,证明见解析;②证明见解析【解析】 【分析】(1)根据题意c a b ===.(2)(ⅰ)设直线为3y kx =+,联立方程计算0∆=得到1k =±,得到答案.(ⅱ)考虑斜率存在和不存在两种情况,设点00(,)P x y ,切线为00()y t x x y =-+,联立方程得到2220000(6)2(6)0x t x y t x -++-=,20122616x t t x -⋅==--,得到直线12l l ,垂直,得到线段MN 为准圆的直径,得到答案.【详解】(1)3c a b ==∴=,∴椭圆方程为22163x y +=,准圆方程为229x y +=. (2)(ⅰ)因为准圆229x y +=与y 轴正半轴的交点为(03)P ,, 设过点(03)P ,且与椭圆相切的直线为3y kx =+, 所以由223163y kx x y =+⎧⎪⎨+=⎪⎩得22(12)12120k x kx +++=.因为直线3y kx =+与椭圆相切,所以22144412(12)0k k ∆=-⨯+=,解得1k =±,所以12l l ,方程为33y x y x =+=-+,,121l l k k ⋅=-,12l l ∴⊥.(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l斜率不存在, 则1l :x=1l :x =1l与准圆交于点, 此时2l为y =y =,显然直线12l l ,垂直; 同理可证当1l :x =12l l ,垂直 ②当12l l ,斜率存在时,设点00(,)P x y ,其中22009x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+,所以由0022()163y t x x y x y =-+⎧⎪⎨+=⎪⎩得2220000(12)4()2()60t x t y tx x y tx ++-+--=.由0∆=化简整理得()22200006230x t x y t y -++-=,因为22009x y +=,所以有2220000(6)2(6)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(6)2(6)0x t x y t x -++-=, 所以20122616x t t x -⋅==--,即12l l ,垂直. 综合①②知:因为12l l ,经过点00()P x y ,,又分别交其准圆于点M N ,,且12l l ,垂直. 所以线段MN 为准圆229x y +=的直径,6MN =,所以线段MN 的长为定值6.【点睛】本题考查了椭圆方程,证明直线垂直,定值问题,意在考查学生的计算能力和综合应用能力.21. 已知函数()sin axf x e x =.(1)若()f x 在,63x ππ⎡⎤∈⎢⎥⎣⎦上存在单调递增区间,某某数a 的取值X 围; (2)设1a ≥,若0,2x π⎡⎤∀∈⎢⎥⎣⎦,恒有()f x bx ≤成立,求2b e a -的最小值. 【答案】(1)()∞(2)22e π-【解析】 【分析】(1)求导得到()()sin cos axf x e a x x '=+,根据题意得到sin cos 0a x x +>在,63ππ⎡⎤⎢⎥⎣⎦上有解,则min1tan a x ⎛⎫>- ⎪⎝⎭,计算得到答案.(2)设()()g x f x bx =-,()()()sin cos axh x g x ea x xb ==+-',计算得到()h x 单调递增,故()21,a g x b ae b π⎡⎤∈--⎢⎥⎣⎦',讨论1b ≤,2a b ae π≥,21a b ae π<<三种情况,得到b 的取值X 围为22,a e ππ⎡⎫+∞⎪⎢⎣⎭,设()222a G a e e a ππ=-,根据函数的单调性得到答案.【详解】(1)由()sin axf x e x =,得()()sin cos axf x ea x x '=+,由()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,上存在单调递增区间,可得()0f x '>在,63ππ⎡⎤⎢⎥⎣⎦上有解,即sin cos 0a x x +>在,63ππ⎡⎤⎢⎥⎣⎦上有解,则min 1tan a x ⎛⎫>- ⎪⎝⎭,∴a >∴a 的取值X围为()∞.(2)设()()sin axg x f x bx e x bx =-=-,0,2x π⎡⎤∈⎢⎥⎣⎦, 则()()sin cos axg x e a x x b =+'-.设()()sin cos axh x ea x xb =+-,则()()21sin 2cos 0ax h x e a x a x ⎡-'⎤=+≥⎣⎦, ∴()h x 单调递增,即()g x '在0,2π⎡⎤⎢⎥⎣⎦上单调递增 ∴()21,a g x b ae b π⎡⎤∈--⎢⎥⎣⎦'.当1b ≤时,()0g x '≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,∴()()00g x g ≥=,不符合题意; 当2ab ae π≥时,()0g x '≤,()g x 0,2π⎡⎤⎢⎥⎣⎦上单调递减,()()00g x g ≤=,符合题意; 当21a b ae π<<时,由于()g x '为一个单调递增的函数,而()010g b ='-<,202a g ae b ππ⎛⎫='-> ⎪⎝⎭,由零点存在性定理,必存在一个零点0x ,使得()00g x '=,从而()g x 在[]00,x x ∈上单调递减,在0,2x π⎛⎤⎥⎝⎦上单调递增,因此只需02g π⎛⎫≤ ⎪⎝⎭,∴22a e b ππ≤,∴22a b e ππ≥,从而222a a eb ae πππ≤<,综上,b 的取值X 围为22,a e ππ⎡⎫+∞⎪⎢⎣⎭,因此2222ab e a ee a ππ-≥-.设()222aG a ee a ππ=-,则()22aG a e e π-'=,令()0G a '=,则41a π=>,∴()G a 在41,π⎡⎤⎢⎥⎣⎦上单调递减,在4,π⎛⎫+∞ ⎪⎝⎭上单调递增, 从而()242e G a G ππ⎛⎫≥=- ⎪⎝⎭,∴2b e a -的最小值为22e π-.【点睛】本题考查了根据单调区间求参数,恒成立问题,意在考查学生的计算能力和综合应用能力.22. 在平面直角坐标系xOy 中,直线l 的参数方程为8,242x tt y t ⎧=⎪⎪+⎨⎪=⎪+⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若射线4πθ=(0ρ>)与直线l 和曲线C 分别交于A ,B 两点,求AB 的值.【答案】(1)40x y +-=(0x ≠),2220x y y +-=;(2. 【解析】 【分析】(1)将直线l 的参数方程消参,即可得直线l 的普通方程,要注意0x ≠;将曲线C 的极坐标方程两边同乘ρ,再将sin y ρθ=,222x y ρ+=代入,即可得曲线C 的直角坐标方程;(2)先将直线l 的直角坐标方程化为极坐标方程,再将4πθ=(0ρ>)代入直线l 和曲线C的极坐标方程中,可得点A ,B 对应的极径,利用||A B AB ρρ=-计算,即可求解.【详解】(1)由82x t=+得0x ≠, 将8,242x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩(t 为参数)消去参数t , 得直线l 的普通方程为40x y +-=(0x ≠).由2sin ρθ=得22sin ρρθ=,将sin y ρθ=,222x y ρ=+代入上式,得2220x y y +-=,所以曲线C 的直角坐标方程为2220x y y +-=.(2)由(1)可知直线l 的普通方程为40x y +-=(0x ≠), 化为极坐标方程得cos sin 40ρθρθ+-=(2πθ≠),当4πθ=(0ρ>)时,设A ,B 两点的极坐标分别为,4A πρ⎛⎫⎪⎝⎭,,4B πρ⎛⎫⎪⎝⎭,则A ρ=2sin4B πρ==,所以|||A B AB ρρ=-==【点睛】本题考查直角坐标方程与极坐标方程的互化、参数方程与普通方程的互化及参数的几何意义,考查运算求解能力,考查数学运算核心素养,属于常考题. 23. 已知()|||2|f x x x =+-. (1)求不等式|4|()x f x x>的解集; (2)若()f x 的最小值为M ,且22(,,)a b c M a b c ++=∈R ,求证:22249a b c ++≥.【答案】(1)(,0)(3,)-∞⋃+∞;(2)证明见解析 【解析】 【分析】(1)分0x <、02x <≤和2x >三种情况,分别解不等式,进而可得出答案; (2)先求出()f x 的最小值,可求出的M 的值,再结合柯西不等式,可证明结论. 【详解】(1)当0x <时,|4|()x f x x>等价于|||2|4x x +->-,该不等式恒成立; 当02x <≤时,()|||2|2f x x x =+-=,则|4|()x f x x>等价于24>,该不等式不成立; 当2x >时,()|||2|22f x x x x =+-=-,则|4|()x f x x >等价于2224x x >⎧⎨->⎩,解得3x >, 所以不等式|4|()x f x x>的解集为:(,0)(3,)-∞⋃+∞. (2)因为()|||2||(2)|2f x x x x x =+-≥--=,当02x ≤≤时取等号,所以2M =,222a b c ++=,由柯西不等式可得22222222224(22)(122)()9()a b c a b c a b c =++≤++++=++,当且仅当244,,999a b c ===时等号成立,所以22249a b c ++≥.【点睛】本题考查绝对值不等式的解法,考查不等式的证明,考查分类讨论的数学思想的应用,考查学生的推理论证能力,属于基础题.。
抚州一中2020届高三第一次同步考试数学试卷
抚州一中2020届高三第一次同步考试数学试卷出题人:高三数学组 分值:150分一、选择题〔每题5分,共60分〕1.设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,那么a 的取值范畴是〔 〕A .13-<<-aB .13-≤≤-aC .3-≤a 或1-≥aD . 3-<a 或1->a 2.条件p: a <-2;条件q:函数3)(+=ax x f 在区间[-1,2]上存在0x ,使得0)(0=x f 成立. 那么p 是q 的〔 〕A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 3.在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称,而 函数()y f x =的图象与()y g x =的图象关于y 轴对称,假设()1f m =-,那么m 的值是〔 〕 A .e -B .1e-C .eD .1e4.设3131323log >==cba ,那么〔 〕A .a >c >bB .b >a >cC .c >b > aD .b >c > a5.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,那么不等式()()0f x f x x--<的解集为〔 〕 A .(10)(1)-+∞,, B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,, D .(10)(01)-,,6.函数3()2x f x +=,1()f x -是()f x 的反函数,假设16mn =〔m n ∈+R ,〕,那么11()()f m f n --+的值为〔 〕 A .10 B .4 C .1D .2-7.设一次函数1)(+=kx x f ,且f (1)、f (4)、 f (13)成等比数列,那么f (2)+f (4)+…+ f (2n )=〔 〕A .n ( 2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)8.函数24()log (3)f x x ax a =-+在区间[)2,+∞上是增函数,那么实数a 的取值范畴是〔 〕A .(),4-∞B .(]4,4-C .()[),42,-∞-+∞ D .[)4,2-9.定义在R 上的函数()f x 满足:()(4)f x f x =-且(2)(2)0f x f x -+-=,那么(2008)f 的值是〔 〕A .-1B .0C .1D .无法确定10.设等比数列{}n a 的公比为q ,前n 项和为n S ,假设1n S +,n S ,2n S +成等差数列, 那么公比q 为〔 〕A .2q =-B .1q =C .2q =-或1q =D .2q =或1q =-11.在等差数列{}n a 中,81073=-+a a a ,4411=-a a ,那么13S 等于〔 〕 A .152 B .154 C .156 D .158 12.在等差数列{}n a 中,12008a =-,其前n 项和为n S ,假设101221210S S -=,那么2008S 的值等于〔 〕A .2007-B .2008-C .2007D .2008 二、填空题〔每题4分,共16分〕13.关于x 的方程|243|0x x a -+-=有三个不相等的实数根,那么实数a = ; 14.假设数列{}n a 为等差数列,且28143a a a ++=,那么2313log ()a a += ; 15.在等比数列}{n a 中,假设,41,1631354321==++++a a a a a a 那么5432111111a a a a a ++++=_________. 16.在数列}{n a 中,对任意,*N n ∈,都有k a a a a nn n n =--+++112〔k 为常数〕,那么称}{n a 为〝等差比数列〞,下面对〝等差比数列〞的判定: ① k 不可能为0;② 等差数列一定是等差比数列; ③ 等比数列一定是等差比数列;④ 通项公式为)1,0,0(≠≠+⋅=b a c b a a nn 的数列一定是等差比数列.其中正确的判定是三、解答题〔本大题共6小题,共74分,解承诺写出文字讲明,证明过程或演算步骤〕 17.〔本小题总分值12分〕设集合{|||2}A x x a =-<,21{|1}2x B x x -=<+,全集为R 〔1〕当1a =时,求:R R C A C B ;〔2〕假设A B ⊆,求实数a 的取值范畴.18.〔本小题总分值12分〕如以下图,9个正数排列成3行3列,其中每一行的数成等差数列,每一列的数成等比数列,且所有的公比差不多上q ,121a =,,41,433223==a a 又设第一行数列的公差为1d . 〔1〕求出11a ,1d 及q ;〔2〕假设保持这9个数的位置不动,按照上述规律,补成一个n 行n 列的数表如下,试求出数表第n 行第n 列nn a 的表达式.19.〔本小题总分值12分〕定义域为R 的函数12()2x x nf x m+-+=+是奇函数.〔1〕求m 、n 的值;〔2〕假设对任意的t ∈R ,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范畴.333231232221131211a a a a a a a a a nnn n n n n n a a a a a a a a a a a a a a a a ,,,,,,,,32133332312232221113121120.〔本小题总分值12分〕设数列{}n a 的前n 项和为n S ,1,a a =(a 为常数,且3a ≠),13n n n a S +=+,设*3()n n n b S n N =-∈.(1)求数列{}n b 的通项公式; (2)求数列{2}n n b ⋅的前n 项和n T .21.〔本小题总分值12分〕〔理科学生做〕函数003)ln()(2处取得极值在=++-+=x b a x x x x f . (1)求实数a 、b 的值; (2)假设关于x 的方程[]20m 25)(,在区间+=x x f 上恰有两个相异实数根, 求实数m 的取值范畴;〔文科学生做〕函数f (x )=2x -12|x | ⑴假设f (x )=2,求x 的值;⑵假设0)()2(2≥+t mf t f t关于t ∈[1,2]恒成立,求实数m 的取值范畴.22. 〔本小题总分值14分〕〔理科学生做〕数列}{n a 的前n 项和为n S ,且*)()1(2N n a n S n n ∈+=,11=a .(1)求数列}{n a 的通项;(2)11)1(2+-⋅-=n n n n a a n b ,求n b b b +++ 21.(3)求证:23)311(34<+≤n a n a 〔文科学生做〕函数的导数是)(),(4)(23x f y R a ax x x f =∈-+-=)('x f y =.(1)假设函数)(x f y =的图象在点))1(,1(f P 处的切线的倾斜角为4π,求a ; (2)在(1)的条件下,假设[]1,1-∈n m 、,求)()('n f m f +的最小值; (3)假设存在),0(0+∞∈x ,使0)0(>f ,求实数a 的取值范畴.2018届高三第一次同步考试参考答案一、选择题ABBCDD ABBACB 二、填空题13. 1 14. 1 15.31 16. ①④ 三、解答题 17.解:〔1〕(1,3)A =- (2,3)B =-, ∴(1,3)AB =-()(,1][3,)R R R C A C B C A B ⇒==-∞-+∞〔2〕(2,2)220(2,3)23A a a a a B a =-+-⎫⎧⇔⇔⎬⎨=-+⎭⎩≥-≤≤1≤. ∴a 的取值范畴是[0,1] A B ⊆18解:〔1〕由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=>==+=⋅==+=),2,1,(043)2(121232111132311112n j i a q a a q d a q a a d a a ij , 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===212121111q d a〔2〕111111])1([---+==k k k kk q d k a qa a k k )21(⋅= 19解:①f(0)=0得1=n ,因此mx f x x ++-=+1212)( ,由2)1()1(=⇒--=m f f②由①知12111()22221x x x f x +-+==-+++ 由上式知()f x 在〔-∞,+∞〕上为减函数.又因()f x 是奇函数,从而不等式22(2)(2)0f t t f t k -+-<等价于222(2)(2)(2)f t t f t k f t k -<--=-+,因为()f x 是减函数得22222,320t t t k t R t t k ->-+∈-->即对一切有, 13k ∆<-=4+12k<0,得. 20解(1)113n n n n n S S a S ++-==+ 即123nn n S S +=+∴111132332232333n n n nn n n n n n nn n n n b S S S b S S S ++++-+--⋅====--- 故{}n b 为等比数列,公比为2. 又3a ≠,∴1133b S a =-=-0≠, ∴1(3)2n n b a -=-⋅. (2)22(3)n n nb n a =⋅⋅-,∴'1(3)(3)(1)22(3)n n n T a T a n a +=-=--⋅+-.21.〔理科〕解〔1〕a =1,b=0 〔2〕3ln 12ln 21-≤≤--m 〔文科〕解〔1〕当0x <时,()0f x =;当0x ≥时,1()22xxf x =-由条件可知1222xx -=,解得21x =±20log (1x x >=∴ 〔2〕当[1,2]t ∈时,22112(2)(2)022t t tt t m -+-≥ 即24(21)(21)t t m -≥--,2210t ->∵,2(21)t m ≥-+∴[1,2]t ∈∵,2(21)[17,5]t -+∈--∴故m 5-≥ 22(理科)解:(1)∵n n a n S )1(2+=,∴11)2(2+++=n n a n S两式相减得:n n n a n a n a )1()2(211+-+=++ 即n n a a n n 11+=+ ∴)2(11≥-=-n n na a n n ∴2≥n 时,n n n n n a a a a a a a a a a n n n n n =⋅⋅--⋅-=⋅⋅⋅=---1122321111223211 又11=a ,∴*)(N n na n ∈=(2)nn n n n a a n b n n n n n n n 1111212)1()1(2)1(2--+--+=+-=⋅-= ∴=+++n b b b 21)212()122()3242()2232()122(121232n n n n n n n n ----++--++-+-+- 112-+=n n(3)证明:n a n na n )311()311(+=+ n n n r r n n n n nC n C n C n C C )31()31()31(312210++++++=又r r r r rn r rr n n r r n n n n n C n C 31!)1()2)(1(3131)31(<⋅+---⋅=⋅=∴23311)31(13131311)311(2<--=++++<+nn n n 而3431)311(10=⋅+≥+n C C n n n n ∴23)311(34<+≤n a n a (文科)略解:〔1〕a = 2 (2)-11 (3)〔3,+∞〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省抚州市抚州一中第一次模拟测试卷理科数学本试卷共4页,23小题,满分150分.考试时间120分钟 注意事项:答卷前,考生务必将自已的姓名、准考证号填涂在答题卡上,并在相应位置贴好条形码; 2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案信息涂黑:如 需改动,用橡皮擦干净后,再选涂其它答案;3.非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改 动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上要求作答无效;4.考生必须保证答题卡整洁.考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.)已知集合A ={x ∈N |0≤x ≤4},则下列说法正确的是( ) A .0∉A B .1⊆A C.2⊆A D .3∈A2.设z =1-i1+i +2i ,则|z |等于( )A.0B.12C.1D.23.设命题p :函数y =log 2(x 2-2x )的单调增区间是[1,+∞),命题q :函数y =13x +1的值域为(0,1),则下列命题是真命题的为( ) A .p ∧q B .p ∨q C .p ∧(¬q ) D .¬q4.函数y =212log (231)x x -+的单调递减区间为( )A .(1,+∞)B.⎝⎛⎦⎤-∞,34C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 5.函数y =x 2ln|x ||x |的图象大致是( )6.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )7.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43C. 3 D .28.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}9.已知△ABC 外接圆的圆心为O ,AB =23,AC =22,A 为钝角,M 是BC 边的中点,则AM →·AO →等于( )A.3B.4C.5D.6 10.下图是某几何体的三视图,则此几何体的表面积为( )A.42+23+2 B .43+4 C.22+43+2 D.82+411.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支12.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.14.函数f (x )=x 3+ax 2-ax 在R 上单调递增,则实数a 的取值范围是________. 15.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.16. 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为________.三,解答题:共70分.解答应写出文字说明、证明过程或演算步第17-21题为必考题,每个试题考生都必须作答;第22.23题为选考题,考生根据要求作答。
(一)必考题:共60分17.(12分)设函数f (x )=2sin ⎝⎛⎭⎫2ωx -π6+m 的图象关于直线x =π对称,其中0<ω<12. (1)求函数f (x )的最小正周期.(2)若函数y =f (x )的图象过点(π,0),求函数f (x )在⎣⎡⎦⎤0,3π2上的值域. 18.(12分)为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示. (1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X的分布列及期望.19.(12分)如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行?20.(12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.21.(12分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R ,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.(二)选考题:共10分请考生在第22、23题中任选一题作答,如果多做,则技所做的第一题计分22.(10分)选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程. 23.(10分)选修4-5:不等式选讲(1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值; (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值.答案解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.答案 D解析 集合A ={x ∈N |0≤x ≤4},∴0∈A,1∈A ,2∉A,3∈A ,故选D. 2.答案 C解析 ∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i2+2i =i ,∴|z |=1.故选C. 3.答案 B解析 函数y =log 2(x 2-2x )的单调增区间是(2,+∞),所以命题p 为假命题. 由3x >0,得0<13x +1<1,所以函数y =13x +1的值域为(0,1),故命题q 为真命题.所以p ∧q 为假命题,p ∨q 为真命题,p ∧(¬q )为假命题,¬q 为假命题.故选B.4.答案 A解析 由2x 2-3x +1>0,得函数的定义域为⎝⎛⎭⎫-∞,12∪(1,+∞). 令t =2x 2-3x +1,x ∈⎝⎛⎭⎫-∞,12∪(1,+∞). 则y =12log t ,∵t =2x 2-3x +1=2⎝⎛⎭⎫x -342-18, ∴t =2x 2-3x +1的单调递增区间为(1,+∞). 又y =12log t 在(1,+∞)上是减函数,∴函数y =212log (231)x x -+的单调递减区间为(1,+∞).5.答案 D解析 从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增.由此可知应选D. 6.答案 D解析 由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D. 7.答案 B解析 所求面积=ʃ20(-x 2+2x )d x =⎪⎪⎝⎛⎭⎫-13x 3+x 220=-83+4=43. 8.答案 C解析 当k 为偶数时,A =sin αsin α+cos αcos α=2;当k 为奇数时,A =-sin αsin α-cos αcos α=-2.9.答案 C解析 ∵M 是BC 边的中点, ∴AM →=12(AB →+AC →),∵O 是△ABC 的外接圆的圆心, ∴AO →·AB →=|AO →|·|AB →|cos ∠BAO =12|AB →|2=12×(23)2=6. 同理可得AO →·AC →=12|AC →|2=12×(22)2=4.∴AM →·AO →=12(AB →+AC →)·AO →=12AB →·AO →+12AC →·AO →=12×(6+4)=5. 10.答案 A解析 该几何体为三棱锥,其直观图如图所示,为三棱锥B 1-ACD ,则其表面积为四个面面积之和S =2×⎝⎛⎭⎫12×2×22+12×2×2+34×(22)2=42+23+2. 11.答案 C解析 可构造如图所示的圆锥.母线与中轴线夹角为30°,然后用平面α去截,使直线AB 与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P 的轨迹为椭圆.故选C.12.答案 A解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则M 到直线l 的距离d =4b 5≥45,∴1≤b <2. 离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32, 故选A.二、填空题:本题共4小题,每小题5分,共20分。