风力发电机运行仿真

合集下载

风能发电系统的建模与仿真

风能发电系统的建模与仿真

风能发电系统的建模与仿真随着对可再生能源的需求日益增长,风能发电作为一种环保、高效的能源来源受到了广泛关注。

为了更好地发展和优化风能发电系统,建模与仿真成为了不可或缺的工具。

通过建立一个准确的模型,并进行仿真分析,可以帮助我们深入了解风能发电系统的性能特点,优化系统配置,并为系统的实际运行提供参考。

首先,风能发电系统的建模是指根据系统的物理特性和工作原理,利用数学方程和模型描述系统的各个部分,并建立它们之间的关系。

常见的风能发电系统包括风力发电机、风轮、发电装置等。

对于风力发电机的建模,可以采用机械力平衡方程和电磁特性方程来描述其工作原理。

机械力平衡方程考虑了风力和机械转动阻力之间的关系,电磁特性方程描述了转动部件与发电机之间的能量转换过程。

通过对这些方程进行求解,可以得到风力发电机的转速、转矩等关键参数。

对于风轮的建模,可以考虑风轮受到的风力和转动部件的质量、惯性等因素的影响。

风力的影响可以由风力模型来描述,包括风速、风向等参数。

转动部件的影响可以通过质量和惯性的计算来体现。

综合考虑这些因素,可以得到风轮的转速、转矩等性能指标。

发电装置的建模是为了研究风能发电机的发电输出。

这一部分的建模主要关注风力发电机与发电设备之间的能量转换过程。

通过建立电气特性方程,可以计算风力发电机的输出电流、电压等关键参数。

而发电设备的模型则可以考虑电功率变换、电压变换等过程。

在建模的基础上,进行仿真分析可以帮助我们更加深入地理解风能发电系统的性能特点,并提出系统优化的方案。

通过改变模型中的参数和条件,我们可以研究不同风速、转速等条件下系统的响应情况,进而确定系统的最佳配置。

此外,仿真还可以帮助我们评估系统的可靠性、稳定性等指标,为系统的实际运行提供参考。

在进行仿真分析时,需要注意一些关键的参数和条件的选择,以确保结果的准确性。

首先,选择合适的风速范围和变化规律,以模拟实际工作环境中的风力情况。

其次,需要合理选择风能发电系统的组件参数,以保证模型的可靠性和准确性。

风力发电机组的建模与仿真

风力发电机组的建模与仿真

风力发电机组的建模与仿真风力发电是一项越来越受到重视的可再生能源。

为了更好地利用风能,风力发电机组已经越来越普及。

风力发电机组的效率,稳定性和可靠性是非常关键的,我们需要对其进行建模和仿真分析。

本文将介绍风力发电机组的建模和仿真过程,并分析其优缺点和应用范围。

一、风力发电机组的基本结构风力发电机组包括风轮、发电机、传动系统、控制系统和塔架等部分。

风轮是将风能转化为机械能的主要部分,其形状和材质不同,可以影响整个系统的性能。

发电机是将转动的机械能转化为电能的关键部件。

传动系统负责将风轮的转动传导到发电机上,其间隔离了风轮受到的不稳定风力,使发电机获得更稳定的转速。

控制系统负责监测和控制整个系统的运行状态,保证系统的安全和可靠性。

塔架是支撑整个系统的基础,必须满足足够的强度和刚度。

二、风力发电机组的建模建模是对系统进行研究和仿真的重要步骤。

我们需要建立准确的模型才能更好地了解系统的行为和性能。

风力发电机组的建模包括机械模型、电气模型和控制模型。

机械模型描述了风轮、传动系统和塔架之间的相互作用。

其中,风轮可由拟合风速的阻力模型和旋转惯量模型表示,传动系统可以通过多级齿轮系统表示,塔架可以使用弹簧阻尼系统进行建模。

电气模型描述了发电机和网侧逆变器之间的电能转换过程。

发电机模型需要考虑到其内部电气参数和转速特性,网侧逆变器模型一般采用PID控制器进行描述。

控制模型描述了控制系统的功能和行为。

其中,风速控制模型可以通过调节风轮转速实现,功率调节模型可以通过调节发电机电压和电流实现。

三、风力发电机组的仿真仿真是建模的重要应用,通过模拟和分析系统的行为和性能,可以准确预测系统的运行状况。

风力发电机组的仿真可以通过MATLAB/Simulink等仿真工具进行实现。

在仿真中,我们可以考虑不同的工况和故障条件,分析风轮、传动系统、发电机和控制系统的响应。

通过对系统的分析和优化,可以提高系统的效率和可靠性,并降低系统的维护成本和损失。

风力发电系统建模与仿真

风力发电系统建模与仿真

风力发电系统建模与仿真摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。

本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础;(2)运用叶素理论,建立了变桨距风力机机理模型;(3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础;(4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。

关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真1 风资源及风力发电的基本原理1.1 风资源概述(1)风能的基本情况[1]风的形成乃是空气流动的结果。

风向和风速是两个描述风的重要参数。

风向是指风吹来的方向,如果风是从东方吹来就称为东风。

风速是表示风移动的速度即单位时间内空气流动所经过的距离。

风速是指某一高度连续10min所测得各瞬时风速的平均值。

一般以草地上空10m高处的10min内风速的平均值为参考。

风玫瑰图是一个给定地点一段时间内的风向分布图。

通过它可以得知当地的主导风向。

风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。

(2)风能资源的估算风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下:3ω= (1-1)5.0vρ式中,ω——风能密度(2W),是描述一个地方风能潜力的最方便最有价值的量;/mρ——空气密度(3kg);/mv ——风速(s m /)。

由于风速是一个随机性很大的量,必须通过一段时间的观测来了解它的平均状况,一个地方风能潜力的多少要视该地常年平均风能密度的大小。

因此需要求出在一段时间内的平均风能密度,这个值可以将风能密度公式对时间积分后平均来求得。

风力发电机运行仿真

风力发电机运行仿真

基于MATLAB的“风力发电机运行仿真”软件设计摘要关键词1前言1.1 建模仿真的发展现状20世纪50-60年代,自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。

“计算机模拟”实质上是数学模型在计算机上的解算运行,当时的计算机是模拟计算机,后来发展为数字计算机。

1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。

目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。

仿真的三要素之间的关系可用三个基本活动来描述。

如图1图1系统仿真三要素之间的关系20世纪50年代初连续系统仿真在模拟计算机上进行,50年代中出现数字仿真技术,从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。

60年代初出现了混和模拟计算机,增加了模拟仿真的逻辑控制功能,解决了偏微分方程、差分方程、随机过程的仿真问题。

从60-70代发展了面向仿真问题的仿真语言。

20世纪80年代末到90年代初,以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展,给计算机仿真技术在可视仿真基础上的进一步发展带来了契机,出现了多媒体仿真技术。

多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术,更强调头脑、视觉和听觉的体验,仿真中人与计算机交互手段也更加丰富。

80年代初正式提出了“虚拟现实” 一词。

虚拟现实是一种由计算机全部或部分生成的多维感觉环境,给参与者产生视觉、听觉、触觉等各种感官信息,使参与者有身临其境的感觉,同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。

图2体现了仿真科学与技术的发展进程。

仿真研究领域的扩展 一图2仿真科学与技术的发展以美国为代表的发达国家高度重视仿真技术的发展和应用。

美国等西方国家 除军事用途外的其它行业中的仿真技术及应用都居于世界领先水平,如飞行模拟 器、车辆运输仿真、电力系统、石油化工仿真系统等。

风力发电系统的动态建模与仿真

风力发电系统的动态建模与仿真

风力发电系统的动态建模与仿真随着全球对可再生能源的需求不断增长,风力发电作为一种清洁、可持续的能源形式受到了广泛关注。

风力发电系统的动态建模与仿真是研究和优化风力发电系统运行的重要手段,有助于提高风力发电系统的效率和可靠性。

本文将探讨风力发电系统动态建模与仿真的方法和应用,以及在模型开发和仿真过程中需要注意的问题。

一、风力发电系统的动态建模风力发电系统包括风力机、风能转换子系统、并网变频器、变电所和电网等组成部分。

为了对风力发电系统进行动态建模,需要考虑各个组件之间的相互作用和系统运行的特点。

1. 风力机的动态建模风力机是风力发电系统的核心部件,负责将风能转化为机械能。

风力机的动态建模需要考虑风速对风轮转速的影响、风轮转速对发电机转速的影响以及风轮和转子之间的功率传递过程。

一种常用的方法是使用变力学方程描述风力机的运动过程,并结合风力和风功率曲线进行模拟。

2. 风能转换子系统的动态建模风能转换子系统包括风能转换器、传动装置和发电机等。

风能转换器将机械能转化为电能,传动装置则负责将风力机的转速传递给发电机。

在进行动态建模时,需要考虑风能转换器和传动装置的效率、传动过程中的能量损耗以及发电机的电力输出特性。

3. 并网变频器和变电所的动态建模并网变频器和变电所是将风力发电系统产生的电能接入电网的关键设备。

并网变频器的主要功能是将发电机输出的低频交流电转换为电网所需的高频交流电,同时负责控制电网功率的调节。

变电所则负责将风电场产生的电能集中输送到电网。

在进行动态建模时,需要考虑并网变频器和变电所的功率转换过程、电力损耗以及对电网供电稳定性的影响。

二、风力发电系统的仿真风力发电系统的仿真可以通过使用专业的仿真软件或自行开发仿真模型来实现。

仿真可以帮助研究人员和工程师在实际运行之前评估系统性能、验证设计和控制方案的有效性,以及优化风力发电系统的运行策略。

1. 仿真软件的选择和应用目前市场上有多种风力发电系统仿真软件可供选择,例如,DigSilent、PSCAD、Matlab/Simulink等。

风能发电机组中的动态仿真模拟研究

风能发电机组中的动态仿真模拟研究

风能发电机组中的动态仿真模拟研究随着科技的不断进步,能源问题已经成为当今全球亟待解决的重要问题之一。

而风能作为绿色清洁能源的代表之一,逐渐受到人们的关注。

风能发电机组的设计和研究就成为了当前科研领域的热门话题之一。

在这一领域里,动态仿真模拟技术被广泛应用,它可以对风能发电机组的性能进行精确的预测和分析。

一、风能发电机组概述风能发电机组是将风能转化为电能的一种设备。

风能发电机组通常由风轮叶片、主轴、变速箱、发电机、塔架等部分组成。

风轮叶片是收集风能的部分,能够将风能转化为机械能。

主轴和变速箱用于传输风轮叶片产生的机械能。

发电机就是将机械能转化为电能的设备。

塔架则是起支撑和固定作用的部分。

二、动态仿真模拟技术的应用动态仿真模拟技术是模拟真实场景下的物理规律,然后用计算机进行计算和模拟的一种技术。

这种技术在风能发电机组的研究和设计中有着重要的应用。

1. 分析风轮叶片的动态特性风轮叶片的动态特性是影响风能发电机组发电效率和寿命的关键因素之一。

利用动态仿真模拟技术,可以模拟出不同气流条件下风轮叶片的运动轨迹,从而分析叶片受力情况、叶片的变形等因素。

这种分析可以帮助设计师判断叶片的合理性,优化叶片的设计,从而提高风能发电机组的发电效率和寿命。

2. 优化变速箱的传动系统变速箱的传动系统是风能发电机组中一个关键的部分。

优化变速箱的传动系统可以使风能发电机组在不同风速下发电效率更高且更为稳定。

利用动态仿真技术,可以模拟出不同负载下变速箱传动系统的运动状态,通过分析模拟结果,设计师可以调整变速箱的传动比,从而进一步优化发电机组的设计。

3. 预测塔架的结构安全性塔架是风能发电机组中支撑和固定部分,以保证发电机组能在不同风速下运转平稳。

利用动态仿真技术,可以模拟出不同气流条件下塔架的受力情况,从而判断塔架的结构安全性。

根据模拟结果,设计师可以优化塔架的结构、增强塔架的稳定性,从而提高风能发电机组的可靠性和寿命。

三、总结动态仿真模拟技术在风能发电机组的设计中具有重要的应用价值。

风力发电机组系统建模与仿真研究

风力发电机组系统建模与仿真研究

风力发电机组系统建模与仿真研究一、概述随着全球能源危机和环境问题的日益严重,风力发电作为一种清洁、可再生的能源形式,受到了广泛关注。

风力发电机组作为风力发电的核心设备,其性能优化和系统稳定性对于提高风电场的整体效率和经济效益具有重要意义。

对风力发电机组系统进行建模与仿真研究,不仅可以深入了解风力发电机组的运行特性和动态行为,还可以为风力发电系统的优化设计、故障诊断和性能提升提供理论支持和技术指导。

风力发电机组系统建模与仿真研究涉及多个学科领域,包括机械工程、电力电子、自动控制、计算机科学等。

建模过程需要考虑风力发电机组的机械结构、电气控制、风能转换等多个方面,以及风力发电机组与电网的相互作用。

仿真研究则通过构建数学模型和计算机仿真平台,模拟风力发电机组的实际运行过程,分析不同条件下的性能表现和动态特性。

近年来,随着计算机技术和仿真软件的不断发展,风力发电机组系统建模与仿真研究取得了显著进展。

各种先进的建模方法和仿真工具被应用于风力发电机组系统的研究中,为风力发电技术的发展提供了有力支持。

由于风力发电的复杂性和不确定性,风力发电机组系统建模与仿真研究仍面临诸多挑战,需要不断探索和创新。

本文旨在对风力发电机组系统建模与仿真研究进行全面的综述和分析。

介绍风力发电机组的基本结构和工作原理,阐述建模与仿真的基本原理和方法。

重点分析风力发电机组系统建模与仿真研究的关键技术和挑战,包括建模精度、仿真效率、风能转换效率优化等方面。

展望风力发电机组系统建模与仿真研究的发展趋势和未来研究方向,为风力发电技术的持续发展和创新提供参考和借鉴。

1. 风力发电的背景和意义随着全球能源需求的不断增长,传统能源如煤炭、石油等化石燃料的消耗日益加剧,同时带来的环境污染和气候变化问题也日益严重。

寻找清洁、可再生的能源已成为全球关注的焦点。

风能作为一种清洁、无污染、可再生的能源,正受到越来越多的关注和利用。

风力发电技术作为风能利用的主要方式之一,具有广阔的应用前景和巨大的发展潜力。

风力发电厂仿真系统技术方案

风力发电厂仿真系统技术方案

第一章风力发电厂仿真风力发电厂仿真对风力发电厂一、二次设备全范围进行了建模仿真,具体包括发电机模型、控制系统、量测系统、交直流系统、保护与自动化监控系统的详细模型,而且考虑风力风向对发电机详细模型的影响以及发电机对电网仿真抽象模型的影响。

风力发电厂仿真系统的主要功能有:正常操作、设备巡视、事故和异常的模拟、培训指导和辅助培训等功能。

采用的关键技术有:虚拟仪器技术、虚拟现实技术、组件建模技术和动态人机界面技术等。

风力发电厂仿真系统采用虚拟仪器技术和虚拟现实技术进行仿真。

虚拟仪器技术的实质是利用计算机技术来实现传统仪器仪表的功能。

该系统采用虚拟仪器技术将发电厂的各种二次设备按照各自的物理特性分别生成各自的虚拟设备,在全三维虚拟场景中进行漫游,巡视,操作。

风力发电厂一次设备仿真采用虚拟现实技术进行仿真。

该系统在设备外观仿真和设备巡视中,采用基于OpenGL 的虚拟现实技术开发了发电厂一次设备三维交互式虚拟场景系统,实现了发电机设备的三维重现,形象地反映了发电机的运行、停止、偏航、异常、事故状态及其动作过程,可以对虚拟场景中的设备巡视、检查、漫游。

风力发电厂自动化监控系统采用基于人机界面服务器的动态人机界面技术、动态图符技术、动态菜单技术、中间件技术和程序自动化技术,实现了对多个风力发电机统一管理和监视。

1.1.仿真对象及范围风力发电厂仿真对象主要包括风力发电机数学模型、一次设备、二次设备、自动化监控系统。

其主要仿真对象及仿真程度如下:1.1.1.风力发电机数学模型1.1.2风力发电厂一次设备风力发电厂的一次设备包含发电机、就地升压变、配电台架等。

所有可操作的设备和可观测的动态量都属巡视训练内容,所有的检查都可以进行自动记录,便于考核评分。

1.1.3风力发电厂二次设备风力发电厂的二次设备主要包括前置机、变频控制器、功率速度等传感器、微机保护和控制系统等。

对于运行人员需要操作的开关、把手、压板等进行详细仿真,学员可以用鼠标、键盘等模拟与现场一致的操作。

风力发电机组系统建模与仿真研究

风力发电机组系统建模与仿真研究

风力发电机组系统建模与仿真研究一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风力发电作为清洁、可再生的能源形式,已在全球范围内得到了广泛的应用。

风力发电机组系统作为风力发电的核心设备,其性能优化与稳定运行对于提高风力发电效率、降低运营成本以及推动风力发电行业的可持续发展具有重要意义。

因此,对风力发电机组系统进行建模与仿真研究,不仅可以深入理解其运行机制和性能特性,还可以为风力发电机组的优化设计、故障诊断以及控制策略制定提供理论支持和决策依据。

本文旨在探讨风力发电机组系统的建模与仿真方法,分析现有建模技术的优缺点,并提出一种更加精确、高效的风力发电机组系统仿真模型。

文章首先介绍了风力发电机组系统的基本组成和工作原理,然后详细阐述了风力发电机组系统建模的基本框架和关键技术,包括风力机模型、传动链模型、发电机模型以及控制系统模型等。

在此基础上,文章重点分析了风力发电机组系统仿真研究的应用场景和实用价值,如性能评估、故障诊断、控制策略优化等。

通过本文的研究,期望能够为风力发电机组系统的建模与仿真提供一套完整的理论体系和实践方法,为风力发电行业的技术进步和可持续发展贡献力量。

也希望本文的研究成果能够为相关领域的研究人员和技术人员提供有益的参考和借鉴。

二、风力发电机组系统基础知识风力发电机组是一种利用风能转换为电能的装置,它主要由风力机(风轮)、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。

风力发电机组的发电原理是利用风力机将风能转化为机械能,再通过发电机将机械能转化为电能。

风力发电机组的核心部分是风力机和发电机,风力机负责捕获风能并转化为旋转动能,发电机则将这种旋转动能转化为电能。

风力发电机组的关键参数包括风轮直径、风轮转速、额定功率、切入风速、切出风速等。

其中,额定功率是指风力发电机组在标准风况下(一般为风速为12m/s)能够输出的最大功率。

切入风速和切出风速则分别定义了风力发电机组开始工作和停止工作的风速范围。

风力发电机的建模及动态仿真

风力发电机的建模及动态仿真

Ed′= -
xm x2 + xm
Q
E q′=
xm x2 + xm
D
( 12)
Q= -
x
2
+ xm
x
mE
′ d
D=
x
2
+ xm
x
m
E
′ q
( 13)
p
Q= -
x
2
+ xm
x
mp
E
′ d
p
D=
x
2
+ xm
x mp
E
′ q
( 14)
根据转子电压方程 D 轴
R 2iD + x 2 + x mp E ′ q - ( xm
x= x1+ xm 3. 3 电磁暂态过程方程式 从( 5) 式 D 轴转子磁链方程得
iD =
x2
x +
m
x
m
id
+
1 x2 + xm
D
( 6)
把( 6) 式代入 d 轴定磁链方程得
d=-
x ′id +
E
′ q
( 7)
式中 x ′——暂态电抗
x ′=
x1 +
xm -
x2
x
2 m
+ xm
=
x1 +
x2 x2 +
叙词 风力发电机 建模 动态仿真
Building Model and Dynamic Simulation on Windmill Generator
X in Jiang Institute of T echnolo gy Hou Shuhong, Lin Hong, Chao Qin, Zu Lati

基于PSCAD的永磁同步风力发电机模型与仿真

基于PSCAD的永磁同步风力发电机模型与仿真

基于PSCAD的永磁同步风力发电机模型与仿真引言永磁同步风力发电机是当前广泛应用于风力发电领域的一种发电机类型。

它具有高效、低成本和可靠性高的特点,因此被广泛用于风力发电系统中。

为了更好地理解和分析永磁同步风力发电机的性能,需要进行相关的建模和仿真。

PSCAD是一种被广泛应用于电力系统仿真的软件工具,具有强大的仿真功能和友好的用户界面。

本文将介绍基于PSCAD的永磁同步风力发电机的模型建立和仿真步骤。

永磁同步风力发电机模型永磁同步风力发电机的基本原理永磁同步风力发电机是一种将风能转化为电能的装置。

它由风轮、发电机和控制系统三部分组成。

风轮接受风能并转动,发电机将机械能转化为电能,控制系统用于调节发电机的工作状态。

永磁同步风力发电机的基本原理是利用电磁感应法,通过风轮驱动发电机转动,使导体在磁场作用下产生感应电势,从而实现发电。

PSCAD中永磁同步风力发电机模型的建立首先需要在PSCAD中选择合适的电气元件进行建模,如发电机、风轮和控制系统等。

对于永磁同步风力发电机的模型建立,可以考虑以下几个方面:1.发电机模型:选择合适的发电机模型,可以根据发电机的特性来选择合适的电气元件进行建模。

一般来说,可以选择三相感应发电机或者永磁同步发电机模型。

2.风轮模型:选择合适的风轮模型,可以考虑风轮的转动惯量、风速、风向等因素。

一般来说,可以选择转动质量、转动惯量等参数进行建模。

3.控制系统模型:选择合适的控制系统模型,可以考虑对发电机转速、电压等进行调节。

一般来说,可以选择PID控制器等控制系统进行建模。

PSCAD中永磁同步风力发电机模型的仿真步骤1.创建PSCAD项目:在PSCAD软件中创建新的项目,选取适当的工程设置和仿真参数。

2.导入电气元件模型:选择合适的电气元件模型,如发电机、风轮和控制系统等,在PSCAD中导入相应的电气元件模型。

3.连接电气元件:使用线缆进行电气元件的连接,建立起完整的永磁同步风力发电机系统。

风电机组全程运行仿真研究

风电机组全程运行仿真研究

一、海上风电机组基本概念与运 行原理
海上风电机组是将风能转化为电能的大型设备,主要由风轮、发电机、塔筒等 组成。其运行原理是利用风轮吸收风能,驱动发电机产生电能,最终输送到电 网供人们使用。与陆上风电机组相比,海上风电机组具有更高的发电效率和更 大的发电量。
二、海上风电机组运行维护现状
1、故障与维护难题
1、系统动力学方法:该方法通过建立风电机组的系统动力学方程,利用仿真 软件如MATLAB/Simulink等实现数值模拟。这种方法可以方便地模拟系统的动 态行为,对于研究风电机组的启动、稳定运行和停机等过程具有较好的适用性。
2、有限元方法:该方法将风电机组划分为多个离散的单元,对每个单元建立 数学模型并利用数值计算方法求解。常用的有限元软件包括ANSYS、 SolidWorks等。该方法可以更精确地描述风电机组的动态行为,但对于大型 复杂系统的仿真可能存在计算效率问题。
随着计算机技术和数值计算方法的不断发展,以及风电技术的日益成熟,风电 机组全程运行仿真研究的前景广阔。未来可以通过建立更加精确的风电机组仿 真模型、引入先进的数据分析和处理技术以及开发更加智能化的仿真软件等方 面进行深入研究,为推动风电产业的可持续发展做出更大的贡献。
参考内容
随着海洋能源的日益开发与利用,海上风力发电技术逐渐成为全球能源领域的 研究热点。本次演示将围绕海上风电机组运行维护现状展开探讨,分析存在的 问题与挑战,并展望未来发展趋势和可能的技术革新。
4、生态环境影响评估与优化
在发展海上风能产业的同时,应重视对海洋生态环境的影响。未来,海上风电 机组的设计与运行将更加注重与生态环境和谐共生。通过加强生态环境影响评 估,优化设备布局,降低对海洋生物的影响,实现风电开发与环境保护的协调 发展。

风力发电系统的建模与仿真方法探索

风力发电系统的建模与仿真方法探索

风力发电系统的建模与仿真方法探索随着对可再生能源的需求不断增加,风力发电作为一种可持续发展的能源形式变得越来越重要。

风力发电是一种利用风来产生电能的过程,通过将风能转化为机械能,再经过发电机转化为电能。

为了提高风力发电系统的效率和稳定性,在实际建设之前进行系统的建模和仿真非常重要。

在风力发电系统的建模与仿真中,首先需要对系统的各个组成部分进行建模。

风力发电系统主要由风机、齿轮箱、发电机和电网组成。

通过建立各个组件的数学模型,可以通过仿真分析系统的性能和效果。

例如,可以建立风机的动力学模型,考虑风速、扭矩和转速之间的关系。

然后,将风机和齿轮箱的模型进行耦合,考虑加载和传输效率。

最后,将发电机模型与电网模型耦合,分析系统的电能输出和功率稳定性。

风力发电系统的建模与仿真过程中,还需要考虑风场和环境条件的影响。

风场的不稳定性和突发性可以对系统的稳定性和发电效率产生影响。

因此,需要根据实际风场数据进行建模,并将其与系统模型进行耦合。

同时,还需要考虑环境条件对系统组件的影响,如温度、湿度和海拔等。

在建立好系统的数学模型之后,可以利用计算机仿真软件对系统进行仿真分析。

常用的仿真软件包括MATLAB Simulink、PSCAD和DigSilent等。

这些软件提供了丰富的模块和工具,可以方便地建立风力发电系统的仿真模型,并进行各种参数的调节和分析。

通过仿真分析,可以评估系统在不同工况下的性能和效果。

例如,在不同风速和负荷条件下,可以分析系统的电能输出和效率。

同时,还可以研究系统的稳定性和可靠性,分析系统在突发风速变化和电网故障等情况下的响应能力。

通过仿真还可以优化系统的控制策略和参数设置,提高系统的性能和可持续发展能力。

除了建模和仿真,还可以通过实验来验证仿真结果。

建立实验平台,通过对风机、发电机和电网等组件的实际测试,可以对仿真结果进行验证和修正。

通过比较仿真结果和实验结果,可以进一步提高模型的准确性和可靠性。

风能发电系统的建模与仿真

风能发电系统的建模与仿真

风能发电系统的建模与仿真随着气候变化和环保意识的提高,风能发电逐渐成为了重要的可再生能源之一。

因此,对风能发电系统的建模和仿真具有重要的研究价值。

本文将探讨风能发电系统的建模和仿真,详细介绍原理和模型,以及相关技术的应用和发展现状。

一、风能发电系统的原理风能发电系统由发电机、风轮、变桨机和控制系统等组成。

其中,风轮是将风能转化为机械能的核心部件。

变桨机负责调节风轮的转速和风轮叶片角度,以保持风轮的最佳转速。

发电机将机械能转化为电能,并输出给电网使用。

二、风能发电系统的模型建立风能发电系统的模型,是进行仿真和优化的基础。

一般而言,风能发电系统的仿真模型包括机械系统、电气系统和控制系统三个方面。

机械系统模型主要考虑风轮和发电机之间的能量转化过程。

通常采用质量、惯量和运动学等参数来描述机械系统。

机械系统的模型需要考虑外部环境和风能的影响,建立适当的数学模型和准确的数据。

电气系统模型通常采用变电站环节到配电过程的等效电路。

其中,发电机和电网之间的电力传输可以采用三相交流电路模型。

电气系统的模型需要采用适当的控制策略,以优化系统的运行。

控制系统模型负责监测和调节风能发电系统的输出功率。

控制系统的模型需要结合机械系统和电气系统模型,以实现最佳的电力输出和质量。

其中,变桨机和变频器等相关设备需要在控制系统中实现控制。

三、风能发电系统的仿真和验证风能发电系统的仿真和验证是系统优化的重要手段。

常用的仿真和验证方法包括数值模拟和实验验证。

数值模拟是指利用计算机模拟风能发电系统的运行过程,并进行模拟计算。

其优点在于可以在低成本、较短时间内进行大量的实验,为系统的运行提供重要参考。

常用的数值模拟方法包括有限元方法、计算流体动力学和等效的电气网络模型。

实验验证则是利用实际装置对风能发电系统进行实物验证。

实验验证可基于实验室实验或现场试验两种模式进行。

实验验证的优点在于可以获得更为精确的数据和信息,并对风能发电系统的运行进行监测和调整。

风力发电机组的仿真与性能评估研究

风力发电机组的仿真与性能评估研究

风力发电机组的仿真与性能评估研究风力发电作为一种清洁能源,正逐渐受到世界各地的广泛关注和应用。

风力发电机组作为关键设备,其性能评估对于提高发电效率和可靠性至关重要。

本文将从仿真和性能评估两个方面进行讨论,深入研究风力发电机组的相关技术。

一、仿真与风力发电机组1.1 仿真在风力发电领域中的重要性仿真技术作为一种有效的研究手段,被广泛应用于风力发电领域。

通过仿真可以对风力发电机组的工作原理、性能参数以及系统动态响应进行精确模拟和分析,从而为设计优化和性能评估提供依据。

1.2 风力发电机组的仿真方法风力发电机组的仿真方法可以分为机械系统仿真、电气系统仿真和控制系统仿真等多个方面。

其中,机械系统仿真主要包括齿轮传动、机械振动等方面的模拟;电气系统仿真主要研究发电机和变频器等电气设备的运行;控制系统仿真则关注风力发电机组系统的稳定性和响应时间等方面。

1.3 风力发电机组仿真软件与工具目前,市场上有许多专业的仿真软件和工具可供选择。

例如,MATLAB/Simulink可以用于模拟和分析各个系统的性能;ANSYS Fluent可用于对风流场进行数值模拟;DCS可以进行风力发电机组运行状态监控等。

通过这些工具的应用,可以对风力发电机组的各个方面进行全面评估和优化。

二、风力发电机组性能评估研究2.1 性能评估指标风力发电机组性能评估的指标主要包括发电量、效率、可靠性和经济性等方面。

其中,发电量是衡量风力发电机组性能的重要指标,可以通过数学模型和实际运行数据进行评估和预测。

效率则反映了风能转化为电能的能力,高效率的风力发电机组可以提高能源利用率和经济效益。

可靠性指标包括可用性、可维修性和可防故障性等,对于确保风力发电系统的长期稳定运行至关重要。

经济性评估则需要综合考虑发电成本、维护费用以及所处环境等多个因素。

2.2 风力发电机组性能评估方法风力发电机组性能评估方法主要包括实验研究、理论模型和数据分析等。

实验研究通过采集实际运行数据进行测试和分析,可以得到较为准确的性能评估结果。

风力发电matlab仿真代码

风力发电matlab仿真代码

风力发电matlab仿真代码
风力发电是利用自然风力发电机转动发电的一种可再生能源发电方式,具有环保、高效、经济等优点。

为了更好地研究和优化风力发电系统的性能,需要进行matlab仿真。

下面是风力发电matlab仿真代码的内容。

1. 风力发电机模型:根据风速和转速计算风力发电机的功率输出。

2. 风场模型:根据地形、建筑物和气象情况等因素,建立风场模型,计算风速分布。

3. 风力机系统控制:根据风场的风速变化,控制风力机的转速和偏航角。

4. 桨叶角控制:根据风速和转速,控制桨叶角度,实现最大功率输出。

5. 风场和风力机系统的实时监控和数据分析:实时监测风场和风力机系统的运行状态,分析性能和故障。

通过以上仿真,可以优化风力发电系统的设计和运行,提高发电效率,降低成本,推广风力发电技术的应用。

- 1 -。

风力发电机组主机架动力学仿真

风力发电机组主机架动力学仿真

风力发电机组主机架动力学仿真风力发电机组主机架动力学仿真风力发电机组是一种利用风能转化为电能的设备。

其核心部件是主机架,它承载着风轮、发电机等重要组件。

主机架的动力学仿真是设计和优化风力发电机组的重要工作之一。

本文将按照逐步思考的方式,介绍风力发电机组主机架动力学仿真的步骤。

第一步:建立数学模型主机架的动力学仿真需要建立一个数学模型,以描述主机架的运动和力学特性。

首先,考虑主机架的几何形状和材料特性,确定主机架的刚度和质量分布。

然后,基于牛顿第二定律,建立主机架的运动方程。

此外,还需考虑风轮叶片和发电机等附加质量对主机架的影响,将其纳入模型中。

第二步:确定边界条件在进行仿真之前,需要确定主机架的边界条件。

这包括风速、风向和风轮转速等外部环境条件,以及主机架的初始位置和速度等内部条件。

边界条件的选择对仿真结果具有重要影响,需根据实际情况进行准确确定。

第三步:求解运动方程利用数值计算方法求解主机架的运动方程。

可以采用常用的数值积分方法,如龙格-库塔法或欧拉法,对主机架的运动进行离散化处理。

通过迭代计算,可以得到主机架在不同时间点上的位置和速度。

第四步:分析仿真结果根据仿真结果,可以对主机架的动力学性能进行评估和分析。

可以计算主机架的振动幅值、频率和应力等参数,以评估其结构的稳定性和可靠性。

此外,还可以分析主机架在不同风速和转速下的响应特性,为优化设计提供参考。

第五步:优化设计根据仿真结果,对主机架进行优化设计。

可以通过调整主机架的几何形状、材料特性和连接方式等,改善其动力学性能。

为了有效地进行优化设计,还可以利用多目标优化算法,综合考虑结构的稳定性、可靠性和经济性等方面的要求。

总结:风力发电机组主机架动力学仿真是一项重要的工作,可以帮助设计师评估主机架的结构性能、分析其响应特性,并为优化设计提供指导。

通过逐步思考,建立数学模型、确定边界条件、求解运动方程、分析仿真结果和优化设计,可以逐步深入地进行主机架动力学仿真工作,为风力发电机组的设计和优化提供有效支持。

变桨距风力发电机特殊运行状态的仿真实验

变桨距风力发电机特殊运行状态的仿真实验
阁1 正 常运 行~ 叶尖 突然 制动 过程 中发 电机 电磁 功 率变化 4
为负值后逐渐稳定在一个负值 , 开始吸收电网功率。 总之, 本文的仿真实验关注于风力发电机的特殊 状态 , 并提出了基于F s 平台进行仿真的实验方法, AT
对 于我国风力 发电机 的研 究和设 计有一定 的意义 。

的电磁功率在M T A 软件中绘制出图7 图8 ALB 、 。
/ / ;



\ \ \
1 顺桨关机一叶片顺桨失败 ) 在顺桨关机 的过程 中, 如果一叶片的变桨距系 统失去控制或是遭遇机械故正常关机。
仿真过程 中, 控制其 中一个叶片始终保持运行 时 的桨 距 角 ,而另 两个 叶 片 的桨距 角在 5 5s l 阶段
从 1 4线性 变化 至顺 桨 。同正 常关 机 过程 一样 , .。 5 控
制发电机在 当其 电磁功率减为0 ,切断其与 电网 时
的联系。仿真结束后 , 所选观测量风力发电机的转
机 的作用 。

1 4
1 6
1 8
2 口
图9 顺 桨 关机一 叶片顺 桨 失败过 程 中发 电机 转速 变化 曲线
从图9 中可看出 , 后 风轮 的转 速开始下降 , 5s
_善‰ * 嘲 端瓤 躺黼 誉
Cla e g e n En r y
第 2卷 7
第3 期

子转速 ( 即低速轴转速 )与发 电机的 电磁功率在 M T A 软件中绘制出图9 ALB 。
—、




\ \

、 .

从 图7 中可看 出 ,9s 风力 发 电机 由于失 去 了 后

风力发电机组的系统建模与仿真方法研究

风力发电机组的系统建模与仿真方法研究

风力发电机组的系统建模与仿真方法研究随着能源需求的不断增长和对可再生能源的关注度提高,风力发电作为一种清洁、可再生的能源来源,受到了越来越多的关注。

风力发电机组是将风能转换为电能的关键设备,其性能稳定与否直接影响着风力发电系统的发电效率和运行成本。

因此,对于风力发电机组的系统建模与仿真方法的研究具有重要意义。

本文将针对风力发电机组的系统建模与仿真方法,分为以下几个方面进行阐述:风力发电机组的组成与工作原理、系统建模的基本原理与方法、仿真方法的应用与发展趋势。

首先,风力发电机组的组成与工作原理。

风力发电机组主要包括风力发电机、变电站和风力发电塔等部分。

风力发电机通过风轮叶片将风能转换为机械能,经过传动系统将机械能传递给发电机转子,再通过发电机将机械能转换为电能。

变电站将发电机产生的电能通过变压器升压后输入电网进行输送。

风力发电塔则起到支撑和稳定风力发电机组的作用。

其次,系统建模的基本原理与方法。

系统建模的目的是以数学模型的形式对风力发电机组的各个部分进行描述,从而实现对系统的分析和预测。

系统建模主要包括力学模型、电气模型和控制模型等方面。

力学模型主要研究风力发电机组的机械传动系统和风轮叶片等部分。

通过考虑风能转化的动力学特性,建立风轮叶片转动的动力学模型,以及传动系统的运动学和动力学模型。

电气模型主要研究风力发电机组的电能转换部分。

通过考虑发电机的电磁特性和电路特性,建立发电机的电气模型,分析电能的转换效率和输出特性,以及发电机与电网的互动关系。

控制模型主要研究风力发电机组的运行控制系统。

通过建立控制系统的控制器模型和反馈回路模型,实现风力发电机组的稳定运行和优化控制。

同时,考虑到风力发电机组的不确定性和外界环境变化对系统的影响,建立自适应控制模型和预测控制模型,提高系统的鲁棒性和适应性。

最后,仿真方法的应用与发展趋势。

通过系统建模的基础上,利用计算机软件进行仿真分析,可以对风力发电机组的性能进行评估和优化。

仿真模拟技术在风力发电中的应用教程和风场区域选定

仿真模拟技术在风力发电中的应用教程和风场区域选定

仿真模拟技术在风力发电中的应用教程和风场区域选定引言:随着对可再生能源需求的增长,风力发电作为一种清洁且可持续的能源形式,得到了广泛的关注和发展。

其中,仿真模拟技术在风力发电中的应用逐渐成为一项重要的工具。

本文将探讨仿真模拟技术在风力发电中的应用,为读者提供一份简明扼要的应用教程。

第一部分:风力发电技术概述首先,我们将介绍风力发电技术的基本概念。

风能是一种源源不断的可再生能源,通过将风能转化为电能,可以减少对传统能源的依赖,提高能源的可持续发展性。

风力发电机是一种利用风能来产生电能的设备,它主要由风力发电机组、风机塔和轮毂组成。

第二部分:仿真模拟技术在风力发电中的应用1. 风场测量与数据拟合仿真模拟技术可以帮助我们准确测量和拟合风场数据,从而预测风力发电的效果。

通过采集风速、风向、湍流等数据,利用仿真模拟软件进行数据分析和模型建立,我们可以更好地了解风能资源的分布特征,并选择合适的位置和风机类型进行布置。

此外,仿真模拟技术还可以模拟不同机组数量和不同布局方案的风力发电系统运行情况,为风场规划与设计提供科学依据。

2. 风机叶片设计与优化仿真模拟技术在风机叶片设计与优化中起到了关键作用。

通过仿真模拟软件,我们可以对不同材料、结构和尺寸的叶片进行模拟和分析,以优化其性能和效率。

同时,仿真模拟技术还可以模拟不同风速条件下,风机叶片的响应和负荷情况,从而对叶片的结构进行调整和改进,提高风机的可靠性和稳定性。

3. 风机系统运行模拟与优化借助仿真模拟技术,我们可以对风机系统进行运行模拟与优化。

通过建立风机系统的数学模型,我们可以模拟其在不同运行状态下的性能和效果。

通过对模拟结果的分析和优化,我们可以调整风机的参数和控制策略,以提高风机的输出效率和发电稳定性。

第三部分:风场区域选定的基本原则1. 风能资源评估风场区域的选定首先要进行风能资源评估。

通过实地观测和仿真模拟技术,我们可以评估风场所处地区的风能资源状况,包括平均风速、风向分布、湍流强度等指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB的“风力发电机运行仿真”软件设计摘要关键词1前言1.1建模仿真的发展现状20世纪 50—60年代, 自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。

“计算机模拟”实质上是数学模型在计算机上的解算运行, 当时的计算机是模拟计算机, 后来发展为数字计算机。

1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。

目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。

仿真的三要素之间的关系可用三个基本活动来描述。

如图1图1 系统仿真三要素之间的关系20世纪50年代初连续系统仿真在模拟计算机上进行, 50年代中出现数字仿真技术, 从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。

60年代初出现了混和模拟计算机, 增加了模拟仿真的逻辑控制功能, 解决了偏微分方程、差分方程、随机过程的仿真问题。

从60-70代发展了面向仿真问题的仿真语言。

20世纪80年代末到90年代初, 以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展, 给计算机仿真技术在可视仿真基础上的进一步发展带来了契机, 出现了多媒体仿真技术。

多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术, 更强调头脑、视觉和听觉的体验, 仿真中人与计算机交互手段也更加丰富。

80年代初正式提出了“虚拟现实”一词。

虚拟现实是一种由计算机全部或部分生成的多维感觉环境, 给参与者产生视觉、听觉、触觉等各种感官信息, 使参与者有身临其境的感觉, 同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。

图2体现了仿真科学与技术的发展进程。

图2 仿真科学与技术的发展以美国为代表的发达国家高度重视仿真技术的发展和应用。

美国等西方国家除军事用途外的其它行业中的仿真技术及应用都居于世界领先水平,如飞行模拟器、车辆运输仿真、电力系统、石油化工仿真系统等。

经过几个五年计划的努力,我国仿真技术得到了快速的发展,并取得了突破性成果,和长足的进步。

在某些方面达到了国际先进水平。

但总体水平,特别是应用水平与发达国家比较还有差距,需要进一步努力,加速发展仿真技术以缩小差距1.2本仿真软件简介2风力发电机各部分数学模型及仿真2.1风力机风能利用系数(功率系数)Cp 是指单位时间内风力机所获得的能量与风能之比。

它是评定风力机气动特性优劣的只要参数,其定义式:321SV P C p ρ= (1) 式中:P 为风力机的功率,单位是W ;ρ为空气密度,单位是kg/m 3;S 为风轮的扫风面积,单位是m 2;V 为来流风速,单位是m/s在设计Savonius 风力机时要考虑两个重要的结构参数:一个是重叠比OL (Overlap ratio ),一个是高径比AP (Aapect ratio ):d S OL /= (2) d H AP /= (3) 叶片重叠比对Savonius 风力机的各种性能影响很大。

如图4的风洞试验数据所示,具有不同的叶片重叠比的风力机的最大功率系数相差很大,合理设计叶片重叠比可以改善风力机的静态启动特性,对风力机的动态力矩变化的战俘和相位也具有一定的影响。

图4 具有不同重叠比的Savonius 风力机的性能叶片高径比也对风力机的性能影响很大,一般来说叶片高径比越大风力机性能越好。

目前实际应用中的Savonius 风力机的叶片高径比一般为1~4,准确数值要根据设计目标、成本和安装地点的风况特点来决定。

叶尖速比λ是叶片的叶尖圆周速度与风速之比,用来描述风轮在不同风速中的状态:VR V Rn ωπλ==2 (4) 式中:n 为风轮转速,单位是r/s ;ω为风轮角频率,单位是rad/s ;R 为风轮半径,单位是m ;V 为上游风速,单位是m/s风力机通过叶片捕获风能,将风能转换为作用的发电机转子上的机械能,将吸收的叶片转矩为作用在发电机转子上的机械转矩。

风力机吸收功率可以表示为风速的函数,其模型表示为:321AV C P p ρ= (5) 所以风力机的机械转矩为:λπρω2321V R C PT p == (6) 其中相关参数的设定会影响风力机的输出效率。

对于风力机建模,主要有两种方式,一种是对发电机的实测数据的查表法,另一种是根据相关的公式进行垂直轴风力发电机输出参数建模。

风能利用系数C p 的函数曲线如图6所示,由图可知,当叶尖速比在1左右时,输出效率最大。

为了简化模型,我们在仿真过程中设定叶尖速比在速度范围之内为恒定值。

图6 最佳Savonius 型风力机输出效率及转矩效率随叶尖速比的变化通过图6可以拟合曲线,得到风能利用系数C p 的函数:)(6505.0)(3656.0)(2VR V R f C p ωωλ⨯+⨯-== (7) 由此可得输出功率为:32321)](6505.0)(3656.0[21)(AV V R V R AV f P ρωωρλ⨯⨯+⨯-=⨯= (8) 根据数学模型,进行Simulink 仿真。

输入为风速V ,空气密度ρ和发电机电磁转矩T_em ;叶尖速比λ和风力机受风面积A 为常数。

输出为风力机输出功率P ,输出转矩Te ,输出转速ω和发电机输入转速ω_em 。

同时我们还设定了风力机的启动风速和最高风速。

模型如图7所示,并对其进行了封装。

封装界面如图8。

图7 风力机仿真模型图8 风力机封装界面设定输入风速为15m/s,空气密度为1.29kg/m3,仿真时间为10秒,得输出曲线如图9。

横坐标为时间,纵坐标分别为功率、转矩、转速、发电机输入转速。

风力机输出功率约为620W。

图9 风力机仿真输出曲线2.2发电机2.2.1永磁发电机永磁同步发电机由绕线转子同步发电机发展而来,定子与普通同步发电机基本相同,转子为永磁体,一般无阻尼绕组,因此不存在励磁绕组的铜损耗,同时无需外部提供励磁电源,可以提高效率;转子上没有滑轮,可以提高系统的稳定性。

风力机输出的机械转矩带动发电机转子转动。

永磁同步发电机的转子为永磁式结构,转子的磁链由永磁体决定。

我们将定子电压在dp0同步旋转坐标系下进行分解,其中,同步旋转坐标系的d 轴是转子磁链的方向。

在此基础上建立发电机定子电压的d 轴和q 轴分量的表达式: ⎪⎪⎩⎪⎪⎨⎧++=-+=d e q q a q q e d d a d dt d i R u dt d i R u λωλλωλ (9) 式中:i d 和i q 分别为发电机的d 轴和q 轴电流;u d 和u q 分别为定子电压E g 的d 轴和q 轴分量;λd 和λq 分别是d 轴和q 轴的磁链R a 为定子电阻;ωe 为电角频率定义磁链的d 轴和q 轴的分量的表达式为:⎩⎨⎧=+=q q q od d d i L i L λλλ (10)式中:L d 和L q 分别为发电机的d 轴和q 轴电感;λo 为永磁体产生的磁链定义q 轴的反电势e q =ωe λo ,而d 轴的反电势e d =0,因为发电机的转子为对称结构,这里我们可以假设发电机的d 轴和q 轴的电感相等,即L d =L q =L 。

将式(8)带入到式(7)并整理化简得到: ⎪⎪⎩⎪⎪⎨⎧++--=++-=q o d e q a q d q e d a d u L L i i L R dtdi u L i i L R dt di 1)1(1λωω (11) 因为L d =L q =L ,则永磁同步发电机的电磁转矩表达式为:o q p o q q d q d e i n i i i L L T λλ5.1])[(5.1=+-= (12) 式中n p 为极对数。

MATLAB 中提供的永磁发电机模型当其输入为负时,作为发电机使用。

输入有转矩Tm 和转速ω两种选择。

本仿真软件中,我们选择转速ω输入。

参数设置如图13所示,从上到下依次表示:定子相电阻,d 轴和q 轴定子电感,选择机器常数,感应磁链,电压常数,转矩常数,极对数,初始条件(转速、角度、电流)。

通过调整感应磁链和极对数得到较为理想的曲线。

图14和图15分别为仿真模型和仿真结果。

图13 永磁同步发电机参数设置图14 永磁同步发电机模型图15 发电机输出电压曲线2.2.2电励磁同步发电机风力发电中所用的同步发电机绝大部分是三相同步电机,其输出联接到邻近的三相电网或输配电线。

普通三相同步发电机的原理结构如图5所示。

在定子铁心上有若干槽,槽内嵌有均匀分布的在空间彼此相隔120°电角的三相电枢绕组aa ′、bb ′和cc ′,转子上装有磁极和励磁绕组,当励磁绕组通以直流电流If 后,电机内产生磁场。

转子被风力机带动旋转,则磁场与定子三相绕组之间有相对运动,从而在定子三相绕组中感应出三个幅值相同,彼此相隔120°电角的交流电势。

这个交流电势的频率f 决定于电机的极对数p 和转子转速n ,即f=pn/60。

图5 三相同步发电机结构原理图我们将定子电压在dp0同步旋转坐标系下进行分解,则定子方程可表示为: ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-+=-+=dt d i R u dt d i R u dt d i R u a d e q q a q q e d d a d 000λλωλλωλ (11) 定义磁链的表达式:⎪⎩⎪⎨⎧='+='+'+=000i L i M i L i M i M i L Q Q q q q D D f f d d d λλλ (12) 式中:M f ′为定子绕组和励磁绕组之间的互感系数;M d ′为定子绕组和直轴阻尼绕组之间的互感系数;M Q ′为定子绕组和交轴阻尼绕组之间的互感系数发电机的电磁转矩为:)(5.1q q q d p e i i n T λλ-= (13) MATLAB 中的同步电机有国际标准单位和标幺值两种,我们选择的是国际标准单位值的。

输入分功率Pm 和转速ω两种,为了与永磁电机的输入统一,我们还是选择转速ω输入。

参数设置如图16所示,参数依次为:视在功率、线电压、频率、励磁电流,电子电阻、漏磁电感、d轴和q轴电感,定子的漏磁回路电阻、漏磁电感,阻尼器的d轴和q轴电阻和漏磁电感,极对数,初始值(初始速度偏差、电角度、线电流、相角、初始励磁电压)。

图16电励磁同步发电机参数设置这一发电机模块需要配合励磁模块一起使用,在这里需要说明一下。

图17为励磁模块的基础模型,从左到右依次是:低通滤波器,超前滞后补偿,主调节器,饱和度,励磁模型,阻尼器。

通过改变主调节器的增益、时间常数和饱和度的上下限,得到稳定的励磁电压。

与发电机相连得到整体模型,如图18所示。

相关文档
最新文档