复变函数第四章学习方法导学

合集下载

复变函数第四章

复变函数第四章
n0
即 R .
2. (极限不存在),
则级数 cnzn 对于复平面内除z 0以外的一切
n0
z 均发散, 即 R 0.
课堂练习 试求幂级数
zn
n1 n p
( p为正整数) 的收敛半径.
答案
因为
cn
1 np

lim cn1 n cn
lim( n n n
)p 1
lim
n
(1
1 1)
p
1.
n0
n0
n0
f (z) g(z) ( anzn ) ( bnzn ),
n0
n0
zR R min( r1, r2 )

(anb0 an1b1 a0bn )zn ,
zR
n0
2. 幂级数的代换(复合)运算
如果当 z r 时, f (z) anzn, 又设在
n0
z R 内 g(z)解析且满足 g(z) r, 那末当 z R
当 n 时, n ,
所以数列发散.
例2 级数 1 i2n1 是否收敛?
n1 n 解 级数满足必要条件, 即 lim 1 i2n1 0,
n n
但 1 i2n1 1 (1)n i
n1 n
n1
n
(1 1 1 ) i(1 1 1 ) 1 i (1)n 1
(定理二)
实数项级数的审敛问题
课堂练习 级数 1 (1 i ) 是否收敛?
n1 n
n

因为
an
n1
n1
1 n
发散;
bn
n1
n1
1 n2
收敛.
所以原级数发散.
必要条件
因为实数项级数 an和 bn收敛的必要条件是

复变函数教案第四章

复变函数教案第四章

复变函数教案第四章《复变函数与积分变换》教案《复变函数》第四章章节名称:第四章级数学时安排:12学时教学要求:使学生掌握复数列、复变函数项级数、幂级数等概念,以及复数列和幂级数的收敛和发散的判定方法。

教学内容:复数列、复变函数项级数、幂级数等概念,以及复数列和幂级数的收敛和发散的判定教学重点:幂级数的研究教学难点:幂级数收敛圆教学手段:课堂讲授教学过程:§1、复数项级数1,复数列的极限:1)定义:设{n}(n1,2,)为一复数列,其中nanibn,又设aib为一确定的复数。

如果任意给定0,相应地能找到一个正数N(),使n在nN时成立,那么称为复数列{n}(n1,2,)在n时的极限。

记作limnn也称复数列{n}(n1,2,)收敛于aib。

2)定理1:复数列{n}(n1,2,)收敛于aib的充要条件是limana,limbnbnn2,级数的概念:1)设{n}{anibn}(n1,2,)为一复数列,表达式n1n12n称为无穷级数,其最前面n项的和n12n称为级数的部分和。

2)如果部分和数列{n}收敛,那么级数n称为收敛。

并且极限limn 称n1n为级数的和;如果数列{n}不收敛,那么级数n称为发散。

n121《复变函数与积分变换》教案《复变函数》第四章3)定理2:级数n收敛的充要条件是级数an和级数bn都收敛。

n1n1n1注意:定理2将复数项级数的收敛问题转化为实数项级数的收敛问题,而由实数项级数an和bn收敛的必要条件n1n1liman0,limbn0nn可得limn0,从而推出复数项级数n收敛的必要条件是limn0nn1n4)定理3:如果n收敛,那么n也收敛,且不等式nn1n1n1n1n 成立。

注意:a)如果n收敛,那么称n为绝对收敛;非绝对收敛的收敛级数为条件收n1n1敛。

b)n绝对收敛的充要条件是级数an和级数bn都绝对收敛n1n1n15)正项级数的判别法举例(因为n的各项都是非负的实数,所以它的收敛n1性可用正项级数判别法):例1,下列数列是否收敛?如果收敛,求出其极限。

复变函数第四章3,4节

复变函数第四章3,4节
n 0

(4.8)
(n)
1 f ( ) f (a) cn d n 1 2 i p ( a) n!
(4.9)
( :| z | ,0 R; n 0,1, 2, )
且展式是唯一的.
(4.8)称为f(z)在点a的泰勒展式,(4.9)称为其 泰勒系数,(4.8)中的级数称为泰勒级数。
第三节 解析函数的泰勒展式
1、泰勒(Taylor)定理
2、幂级数和函数在收敛圆周上的状况 3、一些初等函数的泰勒展式
1. 泰勒(Taylor)定理
定理4.14 (泰勒定理) 设f(z)在区域D内解析,a∈D,只
要K:|z-a|<R含于D,则f(z)在K内能展成如下幂级数
其中系数
f ( z ) cn ( z a) n
(1) n z 2 n cos z , (| Z | ); (2n)! n 0 n 2 n 1 (1) z sin z , (| z | ). n 0 (2n 1)!

(1 z )

1 z
( 1)
2! ( 1) ( n 1) n z n!
z2
第四节 解析函数零点的孤立性与唯一性定理
1、 解析函数零点的孤立性 2、 唯一性定理 3、 最大与最小模原理
1. 解析函数的零点及其孤立性
定义4.7 设f(z)在解析区域D内一点a的值为零,即:
f(a)=0,则称a为解析函数f(z)的一个零点.
如果在|z-a|<R内,解析函数f(z)不恒为零,我们
将它在点a展成幂级数,此时,幂级数的系数不必
全为零,故必有一正数m(m≥1),使得
f (a ) f '(a ) f ( m 1) (a ) 0, 但f ( m ) (a ) 0,

复变函数4章

复变函数4章
1
k
又取 令 max zk 0 得 S n C zdz k 于是
2
上页
返回
下页
⒉复变函数积分的计算问题
求复积分的一般公式是将复积分转化求两个实的平面上第 二型曲线积分,现找出转化为定积分的公式,实际为平面 上第二型曲线积分转化为定积分的过程 ⑴公式 设光滑曲线C:z z (t ) x(t ) iy(t ) (α ≤t≤ β) 当是分段光滑 即 z t x t iy t 在[α, β]连续不为0 曲线时,结论 f(z)沿C连续 仍然成立。 C f (z)dz f (z(t ))z' (t )dt 则 计算时从积分 记: f(z)= f(z(t))= u(x(t),y(t))+iv(x(t),y(t))=u(t)+iv(t) 路径C的参数 dx x t dt dy y t dt 方程入手。 则由复积分的一般公式
上页 返回 下页
例(P102例3.5)
计算积分 ,c Re z dz 其中积分路径c: ⑴ c为连结 0 点到1+i 点的直线段. ⑵ c为连结0点到1 点再至1+i点的折线. 解 ⑴ c的参数方程:z=(1+i)t 0≤t≤1 则 Re z dz 1 t 1 i dt 1 i / 2

C
f ( z )dz u iv dx idy
C
例(P98例3.1) 设C是连接 a及b两点的任意曲线,则 ①

C
dz b a

1 2 2 zdz b a C 2


如果是C闭曲线,即a = b ,那么积分都是零。
上页
与分析中结果 类同; 积分与积分曲 线C无关!

复变函数第4章

复变函数第4章

《复变函数》(第四版) 第4章
第19页
[证]

cn
z0n收
敛,

lim
n
cn
z0n
0,
n0
则存在M使对所有的n有 | cnz0n | M
如果
|
z
||
z0
|,

|z| | z0 |
q
1,

n
|
cnzn
||
cn z0n
|
z z0
Mq n
2024/4/4
《复变函数》(第四版) 第4章
第20页
n
|
i )n 2
5 (cos
2
i sin )n
2 5
n
cos(n
)
i
sin(
n
)
|n |
n1
n1
2 n
5
收敛.
(公比 |q | < 1)
∴ 原级数绝对收敛.
2024/4/4
《复变函数》(第四版) 第4章
第12页
解: 3)
|n |
(1 i)n ( 2 )n cos in
( 2)n ( 2 )n cos in
1 2
| z |2
2024/4/4
《复变函数》(第四版) 第4章
第35页
当 1 | z |2 1, 即| z | 2时, 原级数绝对收敛. 2
当 1 | z |2 1, 即| z | 2时, 原级数发散. 2
故 原级数收敛半径 R 2.
注: 求形如 n z2n 或 n z2n1 (n 0 )
1 chn
en
2 en
2 en

复变函数 第四章

复变函数  第四章

4. 收敛半径的求法
关于幂级数∑ cn z n
n =0 ∞
(3)的收敛半径求法,有
1/ λ cn+1 定理2 若lim = λ,则R = + ∞ (比值法) n→∞ cn 0
0 < λ < +∞ λ =0 λ = +∞
c n + 1 z n +1 c n +1 证明 (i ) λ ≠ 0,∵ lim = lim z =λ z n n→∞ n→∞ c cn z n
定义 设复数列: {α n } = {an + ibn }(n = 1, 2,⋯, n),
∑α
n=1

n
= α1 +α2 +⋯+αn +⋯ ---无穷级数
级数的前面n项的和n
sn = α1 +α2 +⋯+αn = ∑αi ---级数的部分和
i =1

收敛 -级数 ∑ α n 称为收敛 n =1 lim sn = s称为级数的和 n→∞ 若部分和数列{ s n } ∞ 不收敛 -级数 α 称为发散 ∑1 n n=
定义 若 ∑ α n 收敛,则称 ∑ α n为绝对收敛;
n =1 ∞ n =1

若 ∑ α n 发散,而 ∑ α n收敛,则称 ∑ α n为n =1 n =来自 n =1∞∞
条件收敛.
例2 下列级数是否收敛?是 下列级数是否收敛? 否绝对收敛? 否绝对收敛?
∞ 1 i (8i ) n (1) ∑ (1 + ) (2) ∑ n n =1 n n=0 n ! ∞
2. 收敛定理
同实变函数一样,复变幂级数也有所谓的收敛定理: 定理1 (阿贝尔(Able)定理 阿贝尔(Able)定理) 定理1 (阿贝尔(Able)定理)

复变函数与积分变换第四章ppt课件

复变函数与积分变换第四章ppt课件

定理4.4

n



n



n
n
.
n1
n1
n1
n1
证明 n an ibn an2 bn2
由比较判定法
an an2 bn2 ,
an和
bn均绝对收敛,
n1
n1
bn an2 bn2
n
n
k k ,
k 1
k 1
由定理4.2得
收敛。
n
n1
n n
n1
n1
?


n

n1
n1
lim
n
n
lim
n
an
a,
lim
n
bn
b.
证明

”已知
lim
n
n
即,
0, N 0,当 n N , 恒有 n
又 n (an a) i(bn b) (an a)2 (bn b)2
an a n bn b n

lim
n
a
n
a
,
lim
n
bn
3)
R 1 e
5. 幂级数的运算和性质
代数运算

an z n
f (z)
R
r1,
bn z n
g(z)
R
r2
n0
n0
anzn bnzn (an bn )zn f (z) g(z) z R
n0
n0
n0
---幂级数的加、减运算
( anzn ) ( bnzn ) (a0bn a1bn1 a2bn2 anb0 )zn

复变函数第四章

复变函数第四章

0
被称为收敛圆,R是收敛半径。
R=0
收敛半径是0
,收敛圆只有一点
R = +∞
收敛半径是 +∞,收敛圆为复平面.
§4.2幂级数 幂级数
收敛半径的求法 例求下列幂级数的收敛范围和函数 解 ∞
n =0
zn = 1+ z + z2 +L + zn +L ∑ 1− zn sn = 1 + z + z 2 + L + z n −1 = , ( z ≠ 1) 1− z 1 n z < 1 ⇒ lim z = 0, lim sn = ; n →∞ n →∞ 1− z z ≥ 1 ⇒ lim z n ≠ 0
表达式
∑α n = α1 + α 2 + L + α n + L n =1

称为复数项无穷级数.其最前面 称为复数项无穷级数 其最前面 n 项的和
sn = α 1 + α 2 + L + α n
称为级数的部分和. 称为级数的部分和
§4.1复数项级数 复数项级数
复级数的收敛与发散
如果部分和数列 { sn } 收敛, 那末级数 ∑ α n收敛 ,
的级数称为幂级数 的级数称为幂级数. 幂级数
幂级数在复变函数论中有着特殊重要意义,它不仅是研究解析 函数的工具,而且在实际计算中应用也比较方便.
§4.2幂级数 幂级数
当 a = 0 时,
cn z n = c0 + c1 z + c2 z 2 + L + cn z n + L . ∑
n=1 ∞
注:如果令 就是a=0的情 n =1 形。所以今后主要讨论a=0这种情形了。 2)收敛定理 ----阿贝尔 阿贝尔Abel定理 阿贝尔 定理

复变函数第四章学习方法导学

复变函数第四章学习方法导学

第四章级数复级数也是研究解析函数的一种重要的工具,实际上,解析函数的许多重要性质,还需要借助适当的级数才能得到比较好的解决。

例如,解析函数零点的孤立性、解析函数的惟一性、解析函数在其孤立奇点去心邻域内的取值特点等等。

根据所研究的解析函数所涉及的问题的需要,在本章中,我们重点介绍两类特殊的复函数项级数,一类是幂级数,通常考虑函数在其解析的区域内的整体性质或函数在其解析点邻域内的性质时,用这类级数;另一类是洛朗级数,通常考虑函数在其孤立奇点附近的有关性质时,用这类级数.本章,我们主要介绍以下内容:首先,平行介绍复数项级数和复函数项级数一般理论.其次,作为函数项级数的特例,我们平行介绍形式简单且在实际中的应用广泛的幂级数,并建立如何将圆形区域内解析的函数表示成幂级数的方法,以及如何利用这种方法来研究解析函数的有关良好的性质(比如:解析函数零点的孤立性、解析函数的惟一性以及作为解析函数基本理论之一的最大模原理等).第三,进一步介绍由正、负整数次幂项构成的形式幂级数(也称为洛朗级数或双<-<(0r≤,边幂级数)的概念及其性质,并建立(挖去奇点a的)圆环形区域r z a RR≤+∞)内解析函数的级数表示(即解析函数在圆环形区域内的洛朗展式),然后再用洛朗展式作为工具研究解析函数在其孤立奇点附近的性质.作为解析函数孤立奇点性质的应用,再简要介绍复变函数的进一步研究中经常涉及到的两类重要的函数,即整函数与亚纯函数及其简单分类.一、学习的基本要求1.能正确理解复级数收敛和发散以及绝对收敛等概念.掌握复级数收敛的必要条件和充要条件,特别是复级数收敛与实、虚部级数收敛之间的关系,并能熟练地运用这种关系来讨论复级数的有关问题以及利用复级数来讨论实级数的有关问题(比如:利用复级数的和求实级数的和的问题等).2.了解复级数绝对收敛与条件收敛,掌握收敛以及绝对收敛级数的若干性质(比如收敛级数的线性性、添项减项性和添加括号性;绝对收敛级数的项的重排性、乘积性等;二次求和的可交换性,即在,11()n m n m A∞∞==∑∑,,11()n m m n A ∞∞==∑∑以及,,1n m n m A ∞=∑都收敛的条件下,有成立).3.了解复函数项级数收敛、一致收敛和内闭(紧)一致收敛的含义,掌握一致收敛的柯西准则和魏尔斯特拉斯判别法,并能熟练运用此判别法判断复函数项级数的一致或内闭一致收敛,掌握一致或内闭一致收敛的函数项级数和函数的连续性、逐项积分性以及解析函数项级数和函数的解析性、逐项求任意阶导数性.4.熟练掌握幂级数收敛半径的两种计算方法:记00()()n n n f z a z z ∞==-∑,l =1z 是()f z 的不解析点中距0z 最近的点, 利用系数计算的公式:1R l=. 利用和函数的计算公式:10R z z =-.熟练掌握同类幂级数的运算性质.比如:设有两个同类幂级数00()()nn n f z a z z ∞==-∑,00()()n n n g z b z z ∞==-∑ 其收敛半径分别为1R ,2R ,不妨设12R R ≤,则在它们收敛的公共范围01z z R -<内● 加、减性: 000000()()()()n nn n n n n n n n a z z b z z a b z z ∞∞∞===-±-=±-∑∑∑. ● 乘积性: 0000000(())(())()()nn n n n n n k k n n n k a z z b z z a b z z ∞∞∞-====-⋅-=⋅-∑∑∑∑.注意:在用乘积性时,级数不能缺项,若缺项需要将所缺项补齐后,再用乘积性. 设00()()n n n f z a z z ∞==-∑的收敛半径0R >,则在其收敛圆0z z R -<内● 逐项积分性:1000000()d ()d ()1zz nn n n n n a f a z z z n ξξξξ∞∞+===-=-+∑∑⎰⎰. ● 逐项微分性:10010()()(1)()n n n n n n f z na z z n a z z ∞∞-=='=-=+-∑∑. ● 收敛半径在逐项积分和逐项微分下的不变性,即00()nn n a z z ∞=-∑,101()n n n na z z ∞-=-∑(逐项微分),100()1n n n a z z n ∞+=-+∑(逐项积分) 这三个幂级数具有相同的收敛半径,从而有相同的收敛圆和收敛圆周.注意:对收敛半径在逐项积分和逐项微分下的不变性,只要注意到下面的上极限等式立即可得== 5.掌握泰勒定理的条件和结论,了解解析函数的(幂)级数定义法,从而理解为什么只有当函数在一点解析时,函数在这一点才能展开成幂级数.熟练掌握如何将解析函数在指定的解析点展开成幂级数的方法(常用的有三种:直接法,间接法和利用解析函数的惟一性的方法)和技巧,并牢记如下几个主要初等解析函数的幂级数展开式① 01!zn n e z n ∞==⋅∑,z <+∞;② 211210111sin (1)(1)(21)!(21)!nn n n n n z z z n n ∞∞+--===-⋅=-⋅+-∑∑,z <+∞. 201cos (1)(2)!nn n z z n ∞==-⋅∑,z <+∞. ③ 110111ln(1)(1)(1)1n n n n n n z z z n n ∞∞+-==+=-⋅=-⋅+∑∑,1z <,其中ln(1)z +表示对数函数Ln(1)z +的主值支.101[Ln(1)]ln(1)22(1)1nn k n z z k i k i z n ππ∞+=+=++=+-⋅+∑,1z <. ④ 11(1)(1)(1)11!n n n n n n z z z n ααααα∞∞==⎛⎫--++=+⋅=+ ⎪⎝⎭∑∑,1z <,其中α为复常数,(1)z α+表示一般幂函数的主值支.特别,当1α=-时,01(1)1n n n z z ∞==-+∑;011n n z z ∞==-∑,1z <. 6.掌握解析函数零点以及零点阶数的定义,掌握解析函数零点阶数的判别方法(即解析函数()f z 以0z 为m 阶零点⇔存在0z 的某邻域0z z R -<,使得在其中0()()()m f z z z z ϕ=-,其中()z ϕ在0z z R -<内解析,且0()0z ϕ≠.)并能合理地利用零点阶数的定义或零点阶数的判别法确定解析函数零点的阶数.能正确地理解并掌握解析函数零点孤立性.掌握解析函数的惟一性及其初步的应用(比如,利用惟一性证明三角恒等式,解析函数的幂级数展式,解析函数的最大模和最小模原理等).补充解析函数的最大模原理及其几个相关的结论:最大模原理:设函数()f z 在区域D 内解析,则()f z 在区域D 内取得最大值的充要条件是()f z 在区域D 内为常函数.设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,则max ()max ()z Cz D f z f z ∈∈=,即()f z 在D D C =+上的最大值一定能在边界C 上取得.最小模原理:设函数()f z 在区域D 内解析,且()0f z ≠,则()f z 在区域D 内取得最小值的充要条件是()f z 在区域D 内为常函数.设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,且()0f z ≠,则min ()min ()z Cz D f z f z ∈∈=,即()f z 在D D C =+上的最小值一定能在边界C 上取得.7.了解形式幂级数(即洛朗级数)的含义及其收敛的定义,并能解释其收敛范围为什么一般只能是圆环.掌握洛朗级数在其收敛圆环内的性质(解析性,逐项积分和逐项微分性).掌握圆环形区域内解析函数的洛朗展开定理(即洛朗定理),并能熟练地将解析函数在指定的解析圆环内展开成洛朗级数.注意:●求解析函数在指定圆环形区域内的洛朗展式的方法,基本上是沿用求幂级数展式的方法.不过在运用"基本展式"时要注意,先根据所求展式的要求(一般由指定的圆环或去心邻域来确定),并兼顾所要用的"基本展式"成立的范围,把0z z -的"适当幂"作为一个整体,再用基本展式.例如,将函数()1(2)f z z =-在11z <-<+∞内展成洛朗级数,此时,根据基本展式01(1)n n u u ∞=-=∑成立的范围是1u <,我们可以先将函数变形为1111()211(1)f z z z z -==⋅----, 然后将1(1)z --作为一个整体,对111(1)z ---在圆环11z <-<+∞内用基本展式11n n u u ∞==-∑. ●解析函数在使其解析的圆形区域内的幂级数展式,也就是它在此圆形区域内的洛朗展式,即洛朗展式是幂级数展式的推广.8.了解解析函数孤立奇点(包括∞)的含义,会用解析函数在其孤立奇点去心邻域内的罗郎展式,对解析函数的孤立奇点进行分类.注意:若函数()f z 以∞为孤立奇点,()f z 在∞的主要部分(或奇异部分)是指()f z 在圆环r z <<+∞内的罗郎展式中的1n n n c z ∞=⋅∑部分.这与函数在有限孤立奇点处的主要部分不同.关于函数()f z 的孤立奇点∞的类型的判别,虽有类似于有限孤立奇点类型判别的方法,但在实际判别时,我们也可以通过变换1z ξ=将它化为判别函数1()f ξ的孤立奇点0ξ=的类型. 9.掌握解析函数的各类孤立奇点的特征,并能熟练地运用这些特征来判断解析函数的孤立奇点的类型.10.初步了解刻画本性奇点本质特征的维尔斯特拉斯定理和毕卡定理的含义,初步掌握整函数与亚纯函数的定义,并会用其奇点(包括∞)的类型对它们进行初步的分类.11.几个有用的结论:(1)若0z 分别为解析函数()f z 和()g z 的n 阶零点和m 阶零点,则① 0z 必为()()f z g z ⋅的n m +阶零点.② 当n m ≠时,0z 必为()()f z g z ±的min(,)n m 阶零点;当n m =时,或者0z 为()()f z g z ±的至少n m =阶零点,或者()()0f z g z ±≡.③ 当n m >时,0z 必为()()f z g z 的n m -阶零点;当n m =时,0z 不是()()f zg z 的零点,且为解析点(可去奇点);当n m <时,0z 不是()()f z g z 的零点,且为()()f z g z 的m n -阶极点.(2) 解析函数的四种等价性定义:设()(,)(,)f z u x y iv x y =+是定义在区域D 内的一个复变函数,则下面的四种说法是等价的Ⅰ.函数()f z 在区域D 内可导(可微);Ⅱ.(,)u x y 和(,)v x y 都在区域D 内可微(或具有连续的偏导数)且在区域D 内满足柯西—黎曼条件,即u v x y ∂∂=∂∂,u v y x∂∂=-∂∂; Ⅲ.()f z 在区域D 内连续,且对D 内任一条围线C ,只要C 的内部仍含于D ,就有()0C f z dz =⎰;Ⅳ.()f z 在区域D 内任一点的邻域内都可展开成幂级数.(3) 若0z 分别为解析函数()f z 和()g z 的n 阶极点和m 阶极点,则① 0z 必为()()f z g z ⋅的n m +阶极点.② 当n m ≠时,0z 必为()()f z g z ±的max(,)n m 阶极点;当n m =时,或者0z 为()()f z g z ±的至多n m =阶极点,或者()()f z g z ±的可去奇点.③ 当n m >时,0z 必为()()f z g z 的n m -阶极点;当n m =时,0z 是()()f z g z 的可去奇点);当n m <时,0z 是()()f z g z 的零点,且为()()f zg z 的m n -阶零点. (4)设函数()f z 不恒为零且以z a =为可去奇点(解析点)或极点,而()g z 以z a=为本性奇点,则z a =必为()()f z g z ±,()()f z g z ⋅和()()g z f z 的本性奇点. (5)若a 为函数()f z 的本性奇点,且在点a 的某去心邻域0z a ρ<-<内()0f z ≠,则a 必为1()f z 的本性奇点.二.问题研究1.泰勒定理类似于数学分析的证明方法:设函数()f z 在0z 的某邻域00():U z z z R -<解析,()000()()!n n n f z z z n ∞=-∑称为()f z 在0z 的泰勒级数,记()000()()()!k n k n k f z S z z z k ==-∑,则 (1)任意0()z U z ∈,0z z ρ-<,0R ρ<<,有1010()()()()d 2()()n n n C z z f f z S z i z z ρξξπξξ++--=--⎰ (()f z 在0z 的泰勒公式) 其中0:C z ρξρ-=,记1010()()()d 2()()n n n C z z f R z i z z ρξξπξξ++---⎰称为泰勒公式的余项.(2)对任意0R ρ<<,()n R z 在闭圆0z z ρ-≤上一致收敛于0,从而()n R z 在0()U z 内内闭一致收敛于0.(3)由(1)和(2)得,在00():U z z z R -<内()000()()()!n n n f z f z z z n ∞==-∑(()f z 在0z 的泰勒展式) (4)若()f z 在00():U z z z R -<内还有展式00()()n n n f z a z z ∞==-∑,则对任意正整数n ,有 ()0()!n n f z a n =,即()f z 在0z 的泰勒展式是惟一的. (注意:此问题的讨论方法同课本上第4章习题20的讨论方法是类似的)2.阿贝尔(Abel )第二定理及其应用.按下面的步骤考虑阿贝尔第二定理,并利用阿贝尔第二定理求一类Fourier 级数的和:(1)若幂级数0()nn n f z a z ∞==∑的收敛半径1R =,且在1z =收敛于s ,即0n n s a ∞==∑收敛,则0n n n a z ∞=∑在如图示以1z =为顶点,以[0,1]为角平分线,张度为02θπ<的四边形角域1A 上一致收敛;提示:记0n σ=,1n k n k i i n a σ++=+=∑,利用阿贝尔变换将变成然后再利用一致收敛的柯西准则.(2)11lim ()z z A s f z →∈=. 提示:逐项求极限立即可得.(3)若幂级数0()n n n f z a z ∞==∑的收敛半径1R =,且在ia z e =(02a π<<)收敛于a s ,即0ina a n n s a e∞==∑收敛,则0n n n a z ∞=∑在以ia z e =为顶点,以线段0,:ia ia e z te =([0,1]t ∈)为角平分线,张度为02θπ<的四边形角域a A 上一致收敛,且lim ()ia aa z e z A s f z →∈=. 提示:作旋转变换ia z e ω-=⋅利用(1)(2)即可.(4)(阿贝尔(Abel )第二定理)若幂级数00()()n n n f z a z z ∞==-∑的收敛半径0R >,且在0ia z z Re =+(02a π<<)收敛于a S ,即0n inaa n n S a R e ∞==∑收敛,则00()n n n a z z ∞=-∑在以0ia z z Re =+为顶点,以线段000,:ia ia z z Re z z te +=+([0,]t R ∈)为角平分线,张度为02θπ<的四边形角域A 上一致收敛,且0lim()ia a z z Re z A S f z →+∈=. 提示:作变换z Rω=利用(3)即可. (5)求出幂级数1n n z n∞=∑的和函数,并利用阿贝尔第二定理证明下面的两个Fourier展式:1cos ln(2sin )2n n n θθ∞==-∑,1sin 2n n n θπθ∞=-=∑ 其中02θπ<<.参考文献:[1]方企勤.复变函数教程.北京:北京大学出版社,1996:121~124.[2]余家荣.复变函数(第三版).北京:高等教育出版社,2000:64~87.[3]郑建华.复变函数.北京:清华大学出版社,2005:95~101.[4]范宜传,彭清泉.复变函数习题集.北京:高等教育出版社,1980:88~112.。

复变函数与积分变换课堂第四章PPT课件

复变函数与积分变换课堂第四章PPT课件
n1
称为无穷级数, 其最前面n项的和
sn12 n
称为级数的部分和。
如果部分和数列{sn}收敛, 则级数 n 称为收敛,且 n 1
极限 lim n
sn
s
称为级数的和。如果数列
{
s
n
}
不收敛,则
级数 n 称为发散。 n 1
定理二 级数 n 收敛的充要条件是级数 a n 和
n 1
n 1
b n 都收敛。
1 n1 2 n
收敛,仍断定原级数发散。
另外, 因为 | n | 的各项都是非负的实数, 所以它的 n 1
收敛也可用正项级数的判定法来判定。
例2 下列数列是否收敛? 如果收敛, 求出其极限。
1)n 11 n ein; 2)nncosin
[解] 1) 因n 11 n ei n 11 n cos nisin n ,故
an2bn2 |an||bn|,因此
, an2bn2 |an| |bn|
n1
n1n1所以当 Nhomakorabeaa n 与
b n 绝对收敛时,
n 也绝对收敛,因此
n 1
n 1
n 1
n 绝对收敛的充要条件是 a n 和 b n 绝对收敛。
n 1
n 1
n 1
例1
考察级数
n 1
(
1 n
i 2n
)
的敛散性。
[解]
因 发散,虽 1 n1 n
n 1
[证] 因 s n 1 2 n ( a 1 a 2 a n )
i(b 1 b 2 b n )n in
其中s n a 1 a 2 a n ,n b 1 b 2 b n 分别为 a n 和 n 1

复变函数-第4章

复变函数-第4章
lim f n ( z ) = f ( z ),
n →∞ ∞ 则称函数序列{ f n ( z )}n =1 在G上逐点收敛到函数 f(z), f(z)称为 ∞
{ f n ( z )}∞=1 在G上的极限函数. 相应地, 若级数 ∑ f j ( z ) 的部分 n

和函数序列在G上逐点收敛到 f(z), 则称级数 ∑ f j ( z ) 收敛于

n =1
求导运算和无穷和运算可交换

返回泰勒级数
定理 (实函数项级数逐项求导) 设实级数 ∑ f n ( x) 的各项在 区间[a, b]上都有连续的导数,

n =1

∑f
n =1

n
( x) 在[a, b]上逐点收敛且
n =1
⎞ ∞ d f n′( x) 在[a, b]上一致收敛, 则 d ⎛ ∞ f n ( x). ⎜ ∑ f n ( x) ⎟ = ∑ dx ⎝ n =1 ⎠ n =1 dx
∑c
j =0

j
绝对收敛. 正项级数
非绝对收敛的收敛级数称为条件收敛. 由比较判别法可知, 绝对收敛
收敛
绝对收敛级数的两个重要性质:
(1) 一个绝对收敛的复级数的各项可以任意重排次序, 亦绝对收敛, 且和不变. (2) 两个绝对收敛的复级数

∑c
j =0

j
= S , ∑ c′j = S ′ 按对角线

(3i ) j 由比式判别法知 ∑ 收敛. j! j =0
注意: 若 lim j →∞
j →∞
c j +1 cj
= L = 1, 或 lim j | c j | = L = 1,

复变函数第四章

复变函数第四章

使级数对一 切Mzn∈收E敛,有,则|f复n(z函)|≤数M项n (级n=数1,2,…fn)(,z而)在且点正集项E上
n1
绝对收敛且一致收敛.
n1
这样的正项级数
M
称为函数项级数
n
fn
(z)
的优级数.
n 1
n1
定理4.6 设级数 fn(z)的各项在点集E上连续,并
ቤተ መጻሕፍቲ ባይዱ
且一致收敛于f(z)n,则1 和函数 f (z) fn(z)也在E
上连续.
n1
定理4.7 设级数 fn(z)的各项在曲线C上连续,并 n1
且在C上一致收敛于f(z),则沿C可以逐项积分:
C f (z)dz C fn(z)dz n1
定义4.5 设函数fn(z)(n=1,2,…)定义于区域D内,若 级数(4.2)在D内任一有界闭集上一致收敛,则称此 级数在D内内闭一致收敛.
由定理4.7得 c f (z)dz c fn (z)dz 0 n1
于是,由摩勒拉定理知,f(z)在 K 内解析,即
在 z0 D 解析。由于 z0 D 的任意性,
故f(z)在区域 D 内解析。
(2)设z0的某邻域U的边界圆K也在D内,对于z K ,
n1
(z
fn(z) 一致收敛于
f(z),对于E上的每一点z,级数(4.2)均收敛于f(z),则称
f(z)为级数(4.2)的和函数,记为: f (z) fn(z) n1
定义4.4 对于级数(4.2),如果在点集E上有一个函数
f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
一致切收的 敛于z∈f(Ez均),有记|作f(z:)-sn(z)|<fεn ,则zz称E 级f z数 (4.,2)在E上其一

复变函数第四章学习指导

复变函数第四章学习指导

复变函数第四章学习指导一、 知识结构⎧⎧⎧⎪⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎧⎪⎧⎪⎪⎪⎪⎪⎨⎨⎨⎪⎩⎪⎪⎪⎪⎩⎪⎪⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎩收敛复数项级数绝对收敛一般的级数概念内闭一致收敛复变函数项级数一致收敛级数的性质收敛圆一般概念收敛半径的求法幂级数和函数泰勒定理零点定义及充分必要条件零点的孤立性解析函数的性质零点的性质解析函数的唯一性二、 学习要求⒈了解复级数的基本概念;⒉理解解析函数的幂级数表示; ⒊理解收敛圆及收敛半径的概念;⒋熟练掌握收敛圆及收敛半径的求法;⒌了解解析函数的零点并掌握其判别方法; ⒍熟练掌握将函数在一点展成幂级数的方法;⒎了解解析函数的唯一性定理,掌握其证明方法。

三、 内容提要幂级数定义 称形如+++++=∑∞=nn n nnz c z c z c c zc22100(4.3)或+-++-+-+=-∑∞=nn n n nz z c z z c z z c c z z c)()()()(020201000 (4.3)的级数为幂级数,其中 ,,,,,,2100n c c c c z 均为复常数。

收敛圆 收敛半径对于级数(4.3),总存在圆周R z c R =:,使得级数(4.3)在R c 的内部绝对收敛,在Rc的外部发散.我们称圆R z R N <:),0(为级数(4.3)的收敛圆,称R 为级数(4.3)的收敛半径。

求收敛半径的方法与数学分析中的方法一样。

定理4.12 对于级数(4.3),若极限nn n c c 1lim+∞→存在(有限或无限),则极限nn n c ∞→lim存在,并且有nn n nn n c c c 1limlim+∞→∞→== R1=其中的R 为级数(4.3)的收敛半径.当0= 时,规定+∞=R ,当+∞= 时,规定0=R 。

解析函数的幂级数表示定理4.13 设G 为区域,点G a ∈,圆R a z K <-:含于G ,若函数)(z f 在G 内解析,则在K 内有∑∞=-=0)()(n nna z cz f (4.5)其中,2,1,0,!)0()(==n n fc n n (4.7)且上述展式是唯一的。

复变函数第四章学习方法导学

复变函数第四章学习方法导学

第四章级数复级数也是研究解析函数的一种重要的工具,实际上,解析函数的许多重要性质,还需要借助适当的级数才能得到比较好的解决。

例如,解析函数零点的孤立性、解析函数的惟一性、解析函数在其孤立奇点去心邻域内的取值特点等等。

根据所研究的解析函数所涉及的问题的需要,在本章中,我们重点介绍两类特殊的复函数项级数,一类是幂级数,通常考虑函数在其解析的区域内的整体性质或函数在其解析点邻域内的性质时,用这类级数;另一类是洛朗级数,通常考虑函数在其孤立奇点附近的有关性质时,用这类级数.本章,我们主要介绍以下内容:首先,平行介绍复数项级数和复函数项级数一般理论.其次,作为函数项级数的特例,我们平行介绍形式简单且在实际中的应用广泛的幂级数,并建立如何将圆形区域内解析的函数表示成幂级数的方法,以及如何利用这种方法来研究解析函数的有关良好的性质(比如:解析函数零点的孤立性、解析函数的惟一性以及作为解析函数基本理论之一的最大模原理等).第三,进一步介绍由正、负整数次幂项构成的形式幂级数(也称为洛朗级数或双<-<(0r≤,边幂级数)的概念及其性质,并建立(挖去奇点a的)圆环形区域r z a RR≤+∞)内解析函数的级数表示(即解析函数在圆环形区域内的洛朗展式),然后再用洛朗展式作为工具研究解析函数在其孤立奇点附近的性质.作为解析函数孤立奇点性质的应用,再简要介绍复变函数的进一步研究中经常涉及到的两类重要的函数,即整函数与亚纯函数及其简单分类.一、学习的基本要求1.能正确理解复级数收敛和发散以及绝对收敛等概念.掌握复级数收敛的必要条件和充要条件,特别是复级数收敛与实、虚部级数收敛之间的关系,并能熟练地运用这种关系来讨论复级数的有关问题以及利用复级数来讨论实级数的有关问题(比如:利用复级数的和求实级数的和的问题等).2.了解复级数绝对收敛与条件收敛,掌握收敛以及绝对收敛级数的若干性质(比如收敛级数的线性性、添项减项性和添加括号性;绝对收敛级数的项的重排性、乘积性等;二次求和的可交换性,即在,11()n m n m A∞∞==∑∑,,11()n m m n A ∞∞==∑∑以及,,1n m n m A ∞=∑都收敛的条件下,有成立).3.了解复函数项级数收敛、一致收敛和内闭(紧)一致收敛的含义,掌握一致收敛的柯西准则和魏尔斯特拉斯判别法,并能熟练运用此判别法判断复函数项级数的一致或内闭一致收敛,掌握一致或内闭一致收敛的函数项级数和函数的连续性、逐项积分性以及解析函数项级数和函数的解析性、逐项求任意阶导数性.4.熟练掌握幂级数收敛半径的两种计算方法:记00()()n n n f z a z z ∞==-∑,l =1z 是()f z 的不解析点中距0z 最近的点, 利用系数计算的公式:1R l=. 利用和函数的计算公式:10R z z =-.熟练掌握同类幂级数的运算性质.比如:设有两个同类幂级数00()()nn n f z a z z ∞==-∑,00()()n n n g z b z z ∞==-∑ 其收敛半径分别为1R ,2R ,不妨设12R R ≤,则在它们收敛的公共范围01z z R -<内● 加、减性: 000000()()()()n nn n n n n n n n a z z b z z a b z z ∞∞∞===-±-=±-∑∑∑. ● 乘积性: 0000000(())(())()()nn n n n n n k k n n n k a z z b z z a b z z ∞∞∞-====-⋅-=⋅-∑∑∑∑.注意:在用乘积性时,级数不能缺项,若缺项需要将所缺项补齐后,再用乘积性. 设00()()n n n f z a z z ∞==-∑的收敛半径0R >,则在其收敛圆0z z R -<内● 逐项积分性:1000000()d ()d ()1zz nn n n n n a f a z z z n ξξξξ∞∞+===-=-+∑∑⎰⎰. ● 逐项微分性:10010()()(1)()n n n n n n f z na z z n a z z ∞∞-=='=-=+-∑∑. ● 收敛半径在逐项积分和逐项微分下的不变性,即00()nn n a z z ∞=-∑,101()n n n na z z ∞-=-∑(逐项微分),100()1n n n a z z n ∞+=-+∑(逐项积分) 这三个幂级数具有相同的收敛半径,从而有相同的收敛圆和收敛圆周.注意:对收敛半径在逐项积分和逐项微分下的不变性,只要注意到下面的上极限等式立即可得== 5.掌握泰勒定理的条件和结论,了解解析函数的(幂)级数定义法,从而理解为什么只有当函数在一点解析时,函数在这一点才能展开成幂级数.熟练掌握如何将解析函数在指定的解析点展开成幂级数的方法(常用的有三种:直接法,间接法和利用解析函数的惟一性的方法)和技巧,并牢记如下几个主要初等解析函数的幂级数展开式① 01!zn n e z n ∞==⋅∑,z <+∞;② 211210111sin (1)(1)(21)!(21)!nn n n n n z z z n n ∞∞+--===-⋅=-⋅+-∑∑,z <+∞. 201cos (1)(2)!nn n z z n ∞==-⋅∑,z <+∞. ③ 110111ln(1)(1)(1)1n n n n n n z z z n n ∞∞+-==+=-⋅=-⋅+∑∑,1z <,其中ln(1)z +表示对数函数Ln(1)z +的主值支.101[Ln(1)]ln(1)22(1)1nn k n z z k i k i z n ππ∞+=+=++=+-⋅+∑,1z <. ④ 11(1)(1)(1)11!nn n n n n z z z n ααααα∞∞==⎛⎫--++=+⋅=+ ⎪⎝⎭∑∑L ,1z <,其中α为复常数,(1)z α+表示一般幂函数的主值支.特别,当1α=-时,01(1)1n n n z z ∞==-+∑;011n n z z ∞==-∑,1z <. 6.掌握解析函数零点以及零点阶数的定义,掌握解析函数零点阶数的判别方法(即解析函数()f z 以0z 为m 阶零点⇔存在0z 的某邻域0z z R -<,使得在其中0()()()m f z z z z ϕ=-,其中()z ϕ在0z z R -<内解析,且0()0z ϕ≠.)并能合理地利用零点阶数的定义或零点阶数的判别法确定解析函数零点的阶数.能正确地理解并掌握解析函数零点孤立性.掌握解析函数的惟一性及其初步的应用(比如,利用惟一性证明三角恒等式,解析函数的幂级数展式,解析函数的最大模和最小模原理等).补充解析函数的最大模原理及其几个相关的结论:最大模原理:设函数()f z 在区域D 内解析,则()f z 在区域D 内取得最大值的充要条件是()f z 在区域D 内为常函数.设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,则max ()max ()z Cz D f z f z ∈∈=,即()f z 在D D C =+上的最大值一定能在边界C 上取得.最小模原理:设函数()f z 在区域D 内解析,且()0f z ≠,则()f z 在区域D 内取得最小值的充要条件是()f z 在区域D 内为常函数.设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,且()0f z ≠,则min ()min ()z Cz D f z f z ∈∈=,即()f z 在D D C =+上的最小值一定能在边界C 上取得.7.了解形式幂级数(即洛朗级数)的含义及其收敛的定义,并能解释其收敛范围为什么一般只能是圆环.掌握洛朗级数在其收敛圆环内的性质(解析性,逐项积分和逐项微分性).掌握圆环形区域内解析函数的洛朗展开定理(即洛朗定理),并能熟练地将解析函数在指定的解析圆环内展开成洛朗级数.注意:●求解析函数在指定圆环形区域内的洛朗展式的方法,基本上是沿用求幂级数展式的方法.不过在运用"基本展式"时要注意,先根据所求展式的要求(一般由指定的圆环或去心邻域来确定),并兼顾所要用的"基本展式"成立的范围,把0z z -的"适当幂"作为一个整体,再用基本展式.例如,将函数()1(2)f z z =-在11z <-<+∞内展成洛朗级数,此时,根据基本展式01(1)n n u u ∞=-=∑成立的范围是1u <,我们可以先将函数变形为1111()211(1)f z z z z -==⋅----, 然后将1(1)z --作为一个整体,对111(1)z ---在圆环11z <-<+∞内用基本展式11n n u u ∞==-∑. ●解析函数在使其解析的圆形区域内的幂级数展式,也就是它在此圆形区域内的洛朗展式,即洛朗展式是幂级数展式的推广.8.了解解析函数孤立奇点(包括∞)的含义,会用解析函数在其孤立奇点去心邻域内的罗郎展式,对解析函数的孤立奇点进行分类.注意:若函数()f z 以∞为孤立奇点,()f z 在∞的主要部分(或奇异部分)是指()f z 在圆环r z <<+∞内的罗郎展式中的1n n n c z ∞=⋅∑部分.这与函数在有限孤立奇点处的主要部分不同.关于函数()f z 的孤立奇点∞的类型的判别,虽有类似于有限孤立奇点类型判别的方法,但在实际判别时,我们也可以通过变换1z ξ=将它化为判别函数1()f ξ的孤立奇点0ξ=的类型. 9.掌握解析函数的各类孤立奇点的特征,并能熟练地运用这些特征来判断解析函数的孤立奇点的类型.10.初步了解刻画本性奇点本质特征的维尔斯特拉斯定理和毕卡定理的含义,初步掌握整函数与亚纯函数的定义,并会用其奇点(包括∞)的类型对它们进行初步的分类.11.几个有用的结论:(1)若0z 分别为解析函数()f z 和()g z 的n 阶零点和m 阶零点,则① 0z 必为()()f z g z ⋅的n m +阶零点.② 当n m ≠时,0z 必为()()f z g z ±的min(,)n m 阶零点;当n m =时,或者0z 为()()f z g z ±的至少n m =阶零点,或者()()0f z g z ±≡.③ 当n m >时,0z 必为()()f z g z 的n m -阶零点;当n m =时,0z 不是()()f zg z 的零点,且为解析点(可去奇点);当n m <时,0z 不是()()f z g z 的零点,且为()()f z g z 的m n -阶极点.(2) 解析函数的四种等价性定义:设()(,)(,)f z u x y iv x y =+是定义在区域D 内的一个复变函数,则下面的四种说法是等价的Ⅰ.函数()f z 在区域D 内可导(可微);Ⅱ.(,)u x y 和(,)v x y 都在区域D 内可微(或具有连续的偏导数)且在区域D 内满足柯西—黎曼条件,即u v x y ∂∂=∂∂,u v y x∂∂=-∂∂; Ⅲ.()f z 在区域D 内连续,且对D 内任一条围线C ,只要C 的内部仍含于D ,就有()0C f z dz =⎰;Ⅳ.()f z 在区域D 内任一点的邻域内都可展开成幂级数.(3) 若0z 分别为解析函数()f z 和()g z 的n 阶极点和m 阶极点,则① 0z 必为()()f z g z ⋅的n m +阶极点.② 当n m ≠时,0z 必为()()f z g z ±的max(,)n m 阶极点;当n m =时,或者0z 为()()f z g z ±的至多n m =阶极点,或者()()f z g z ±的可去奇点.③ 当n m >时,0z 必为()()f z g z 的n m -阶极点;当n m =时,0z 是()()f z g z 的可去奇点);当n m <时,0z 是()()f z g z 的零点,且为()()f zg z 的m n -阶零点. (4)设函数()f z 不恒为零且以z a =为可去奇点(解析点)或极点,而()g z 以z a=为本性奇点,则z a =必为()()f z g z ±,()()f z g z ⋅和()()g z f z 的本性奇点. (5)若a 为函数()f z 的本性奇点,且在点a 的某去心邻域0z a ρ<-<内()0f z ≠,则a 必为1()f z 的本性奇点.二.问题研究1.泰勒定理类似于数学分析的证明方法:设函数()f z 在0z 的某邻域00():U z z z R -<解析,()000()()!n n n f z z z n ∞=-∑称为()f z 在0z 的泰勒级数,记()000()()()!k n k n k f z S z z z k ==-∑,则 (1)任意0()z U z ∈,0z z ρ-<,0R ρ<<,有1010()()()()d 2()()n n n C z z f f z S z i z z ρξξπξξ++--=--⎰ (()f z 在0z 的泰勒公式) 其中0:C z ρξρ-=,记1010()()()d 2()()n n n C z z f R z i z z ρξξπξξ++---⎰@称为泰勒公式的余项.(2)对任意0R ρ<<,()n R z 在闭圆0z z ρ-≤上一致收敛于0,从而()n R z 在0()U z 内内闭一致收敛于0. (3)由(1)和(2)得,在00():U z z z R -<内()000()()()!n n n f z f z z z n ∞==-∑(()f z 在0z 的泰勒展式) (4)若()f z 在00():U z z z R -<内还有展式00()()n n n f z a z z ∞==-∑,则对任意正整数n ,有 ()0()!n n f z a n =,即()f z 在0z 的泰勒展式是惟一的. (注意:此问题的讨论方法同课本上第4章习题20的讨论方法是类似的)2.阿贝尔(Abel )第二定理及其应用.按下面的步骤考虑阿贝尔第二定理,并利用阿贝尔第二定理求一类Fourier 级数的和:(1)若幂级数0()nn n f z a z ∞==∑的收敛半径1R =,且在1z =收敛于s ,即0n n s a ∞==∑收敛,则0n n n a z ∞=∑在如图示以1z =为顶点,以[0,1]为角平分线,张度为02θπ<的四边形角域1A 上一致收敛;提示:记0n σ=,1n k n k i i n a σ++=+=∑,利用阿贝尔变换将变成然后再利用一致收敛的柯西准则.(2)11lim ()z z A s f z →∈=. 提示:逐项求极限立即可得.(3)若幂级数0()n n n f z a z ∞==∑的收敛半径1R =,且在ia z e =(02a π<<)收敛于a s ,即0ina a n n s a e∞==∑收敛,则0n n n a z ∞=∑在以ia z e =为顶点,以线段0,:ia ia e z te =([0,1]t ∈)为角平分线,张度为02θπ<的四边形角域a A 上一致收敛,且lim ()ia aa z e z A s f z →∈=. 提示:作旋转变换ia z e ω-=⋅利用(1)(2)即可.(4)(阿贝尔(Abel )第二定理)若幂级数00()()n n n f z a z z ∞==-∑的收敛半径0R >,且在0ia z z Re =+(02a π<<)收敛于a S ,即0n inaa n n S a R e ∞==∑收敛,则00()n n n a z z ∞=-∑在以0ia z z Re =+为顶点,以线段000,:ia ia z z Re z z te +=+([0,]t R ∈)为角平分线,张度为02θπ<的四边形角域A 上一致收敛,且0lim()ia a z z Re z A S f z →+∈=. 提示:作变换z Rω=利用(3)即可. (5)求出幂级数1n n z n∞=∑的和函数,并利用阿贝尔第二定理证明下面的两个Fourier展式:1cos ln(2sin )2n n n θθ∞==-∑,1sin 2n n n θπθ∞=-=∑ 其中02θπ<<.参考文献:[1]方企勤.复变函数教程.北京:北京大学出版社,1996:121~124.[2]余家荣.复变函数(第三版).北京:高等教育出版社,2000:64~87.[3]郑建华.复变函数.北京:清华大学出版社,2005:95~101.[4]范宜传,彭清泉.复变函数习题集.北京:高等教育出版社,1980:88~112.。

《复变函数论》第四章

《复变函数论》第四章

第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。

按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。

设0z 是一个复常数。

如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。

如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。

令0z a ib =+,其中a 和b 是实数。

由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。

注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。

注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。

定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。

定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。

复变函数 第四章第一节

复变函数 第四章第一节
n
n
i n ,
:

lim S n S 的充要条件
lim n X , n Y lim
n n



xn X ,
n1

yn Y
6
n1
说明
复数项级数的收敛问题


(定理二)
实数项级数的收敛问题
例 解 因为
级数
n ( 1 n ) 是否收敛?
n 1
.
21
注: f n ( z )在 D 内一致收敛
n 1


一致收敛 .
n

n 1


f n ( z )在 D 内内闭
例、 z 在 | z | 1内内闭一致收敛,但不
n1
一致收敛 .
22
四.解析函数项级数
定理 4 . 9 设 ( 1) f n ( z )( n 1 , 2 , ) 在区域 D 内解析, ( 2) f n ( z )在 D 内内闭一致收敛于
n
f z ), 则称 f ( z )为级数 ( 1 )的和 (

fn (z)
若记 S n

n1
f k ( z )为级数( 1)的部分和,则
k 1
f ( z )为( 1)的和函数,即, 对 z E , lim S n ( z ) f ( z ).
n
15
N 语言:
z E , 对 0 , N N ( , z ), 当 n N 时, | f ( z ) S n ( z ) | ,
定义4.(一致收敛) 4
对于级数( 1)若 f ( z ), z E , 使得

复变函数第4章word精品文档6页

复变函数第4章word精品文档6页

第四章 解析函数的级数表示法1. 复数列和复数列的极限 (1)定义 4.1 设{}(1,2,)n a n =为一复数列,其中.n n n a i a i αβαβ=+=+为一确定的复数. 如果对任意的正数ε,存在正整数N ,使得当n N >时,有n a a ε-<(4.1)成立,则称a 为复数列{a n }当n →∞时的极限,记作lim n n a a →∞=.并称复数列{a n }收敛于a .(2)与实数列极限的关系:定理 4.1 复数列{a n }收敛于a 的充分必要条件是:lim ,lim n n n n a a ββ→∞→∞==.lim .n n a a →∞=2. 复级数 (1)定义设(1,2,3,) n n n a i n αβ=+=为一复数列,表达式121nn n aa a a ∞==+++∑ (4.2)称为复数域上的无穷级数,简称复级数或级数.记该级数的前n 项部分和为12,1,2,,n n S a a a n =+++={}n S 称为该级数的部分和数列.显然,若一般项a n 的虚部0(1,2,)n n β==则级数1n n a ∞=∑实质上是实级数,因此实级数可以看作是复级数的特例.定义 4.2 若级数1nn a∞=∑对应的部分和数列{}n S 收敛于常数S ,即lim n n S S →∞=那么1nn a∞=∑称为收敛的级数.数S 叫做该级数的和,记为1.nn aS ∞==∑若lim n n S →∞不存在,则称1nn a∞=∑为发散的级数.我们首先研究级数(4.2)的收敛性问题. (2)收敛的条件: 定理 4.2复级数1nn a∞=∑收敛于S 的充要条件是实级数1nn α∞=∑和1nn β∞=∑分别收敛于δ和τ,其中i ,(1,2,).n n n S a n δταβ=+=+=定理 4.3 复级数1nn a∞=∑收敛的必要条件是lim 0.n n a →∞=3.绝对收敛与条件收敛 (1)定义4.3 对于复级数1nn a∞=∑,若1nn a∞=∑收敛,则称级数1nn a∞=∑绝对收敛;若1nn a∞=∑发散,而1nn a∞=∑收敛,则称级数1nn a∞=∑条件收敛.(2)定理 4.4 如果级数1nn a∞=∑绝对收敛,则1nn a∞=∑也收敛,且不等式11n nn n a a∞∞==≤∑∑成立.(3)推论 4.1 设i ,1,2,n n n a n αβ=+=. 则级数1nn a∞=∑绝对收敛的充要条件是级数1nn α∞=∑和1nn β∞=∑都绝对收敛.4. 幂级数的概念所谓幂级数,是指形如01000()()()nn nn n a z z a a z z a z z ∞=-=+-++-+∑ (4.3)的表达式.给定z 的一个确定值z 1,则(4.3)为复数项级数100110100()()()n n n n n a zz a a z z a z z ∞=-=+-++-+∑ (4.4)若(4.4)所表示的级数收敛,则称幂级数(4.3)在z 1处收敛,z 1称为(4.3)的一个收敛点,否则则称为发散点.若D 为级数(4.3)所有收敛点的集合,则级数在D 上的和确定一个函数S (z ):0100()()(),,n n S z a a z z a z z z D =+-++-+∈ (4.5)称S (z )为(4.3)的和函数. 5.收敛半径和收敛圆定理 4.5 如果幂级数nn n a z∞=∑在1(0)z z =≠收敛,则对于满足1z z <的z ,级数必绝对收敛;如果在2z z =处级数发散,则对于2z z >的z ,级数必发散.根据定理4.5,幂级数(4.6)的收敛情况必是下列情形之一: 1°除z =0外,级数处处发散;2°对于所有z 级数都收敛,由定理4.5知,级数在复平面内处处绝对收敛; 3°存在一个正实数R ,使级数在|z |<R 中收敛,在|z |>R 中发散(如图4.1).我们把该正实数R 称为级数(4.6)的收敛半径,以原点为中心,半径为R 的圆盘称为级数的收敛圆.对幂级数(4.3)来说,它的收敛圆是以z 0为中心的圆盘.值得注意的是,在收敛圆的圆周上级数是收敛还是发散,不能作出一般的结论,要对具体级数进行具体分析 6. 收敛半径的求法定理4.6 若nn n a z∞=∑的系数满足1lim ,n n na a ρ→∞+==则1°当0ρ<<+∞时,1R ρ=;2°当0ρ=时,R =+∞(处处收敛); 3°当ρ=+∞时,R =0(仅有一个收敛点z =0). 定理 4.7 若幂级数nn n a z∞=∑的系数满足,n ρ=则1°当0ρ<<+∞时,1R ρ=;2°当0ρ=时,R =+∞; 3°当ρ=+∞时,0R =.图4.17. 幂级数的运算及性质性质 4.1 若幂级数nn n a z∞=∑和nn n b z∞=∑的收敛半径分别为R 1和R 2,则幂级数()n nn n ab z ∞=±∑的收敛半径不小于12min(,)R R R =,且在R z <内有:().nnn nnnn n n n a z b z ab z ∞∞∞===±=±∑∑∑性质 4.2 若幂级数nn n a z∞=∑和nn n b z∞=∑的收敛半径分别为R 1和R 2,则幂级数20001100211200()()()n i n i i a b a b a b z a b a b a b z a b z ∞-=++++++++∑的收敛半径不小于12min(,)R R R =,且在R z <内有:().nn nn nni n i n n n i a z b za b z ∞∞∞-====⋅=∑∑∑∑上述性质说明了由两个幂级数经过相加或相乘的运算后,所得到的幂级数的收敛半径只是大于或等于R 1和R 2中较小的一个.定理 4.8 设幂级数()nnn a z z ∞=-∑的收敛半径为R ,那么1°它的和函数0()()nn f z a z z ∞==-∑在收敛圆0z z R -<内是解析函数.2°()f z 的导数可通过对其幂级数逐项求导得到,即100()()n n n f z na z z ∞-='=-∑.3°()f z 在0z z R -<内可以逐项积分,即()()d d nnn CCf z z a z z z ∞==-∑⎰⎰其中C 为0z z R -<内的曲线(证明略). 8.泰勒(Taylor)展开式定理 4.9 设K 表示以z 0为中心,半径为r 的一个圆,()f z 在K 内解析,则()f z 可以在K 内展开成幂级数,即()000()()(),,!n n n f z f z z z z K n ∞==-∈∑(4.8) 并称它为()f z 在z 0的泰勒(Taylor)展开式,(4.8)式右端的级数称为()f z 的泰勒级数. 间接展开法:由于解析函数在一点的泰勒展开式是唯一的,借助于已知函数的展开式并利用幂级数的一些性质来求得另一函数的泰勒展开式,这种方法称为间接法211, 1.1n z z z z z=+++++<- (4.13)1,!e n zz z z n =++++<∞ (4.14)20252cos (1)(2)!1(1),.2!5!(2)!nnn nnz z n z z zz n ∞==-=-+++-+<∞∑ (4.15)213521sin (1)(21)!(1),.3!5!(21)!n nn n nz z n z z zz z n +∞=+=-+=-+++-+<∞+∑ (4.16)9.罗朗级数,收敛圆环,罗朗展开式定理 4.11 双边级数10100100()()()()(),nn nn n n n a z z a z z a z z a a z z a z z ∞----=-∞-=+-++-++-++-+∑ 的收敛域若存在必为圆环:0r z z R <-<,且在其收敛圆环内的和函数是解析的,而且可以逐项求积分和逐项求导数.定理 4.12 设()f z 在圆环0r z z R <-<内解析,那么 0()(),,nnf z a z z r z zR ∞-∞=-<-<∑(4.20)其中101()d ,0,1,2,,2π()n n Cf a n iz ξξξ+==±±-⎰(4.21)这里C 为圆环0r z z R <-<内任何一条绕0z 的正向简单闭曲线(如图4.5),且(4.20)式是唯一的.注:罗朗展开式只能用间接展开法10. 孤立奇点(1)定义 4.4 若0z z =为函数()f z 的一个奇点,且存在一个去心邻域00z z δ<-<,()f z 在其中处处解析,则0z 称为()f z 的孤立奇点.(2)孤立奇点的罗朗级数:设0z 为()f z 的一个孤立点,因为在00z z δ<-<中()f z 解析,由上一节的定理4.12知()f z 可展成0z z -的罗朗级数,即001()()()nn nnn n f z a z z az z ∞∞--===-+-∑∑(2)孤立奇点的分类:我们按展开式中的负幂项部分的状况把孤立奇点分为三类:1︒ 级数中不出现负幂项,此时称点0z 为()f z 的可去奇点;2︒ 级数中只含有有限个负幂项,则点0z 称为()f z 的极点; 3︒ 级数中含有无穷多个负幂项,点0z 称为()f z 的本性奇点.例 4.7 求函数1()(1)(2)f z z z =--在下列圆环内的罗朗级数.(1)01z <<; (2)12z <<;(3)2z <<+∞; (4)011z <-<; (5)11z <-<+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章级数复级数也是研究解析函数的一种重要的工具,实际上,解析函数的许多重要性质,还需要借助适当的级数才能得到比较好的解决。

例如,解析函数零点的孤立性、解析函数的惟一性、解析函数在其孤立奇点去心邻域内的取值特点等等。

根据所研究的解析函数所涉及的问题的需要,在本章中,我们重点介绍两类特殊的复函数项级数,一类是幂级数,通常考虑函数在其解析的区域内的整体性质或函数在其解析点邻域内的性质时,用这类级数;另一类是洛朗级数,通常考虑函数在其孤立奇点附近的有关性质时,用这类级数.本章,我们主要介绍以下内容:首先,平行介绍复数项级数和复函数项级数一般理论.其次,作为函数项级数的特例,我们平行介绍形式简单且在实际中的应用广泛的幂级数,并建立如何将圆形区域内解析的函数表示成幂级数的方法,以及如何利用这种方法来研究解析函数的有关良好的性质(比如:解析函数零点的孤立性、解析函数的惟一性以及作为解析函数基本理论之一的最大模原理等).第三,进一步介绍由正、负整数次幂项构成的形式幂级数(也称为洛朗级数或双<-<(0r≤,边幂级数)的概念及其性质,并建立(挖去奇点a的)圆环形区域r z a RR≤+∞)内解析函数的级数表示(即解析函数在圆环形区域内的洛朗展式),然后再用洛朗展式作为工具研究解析函数在其孤立奇点附近的性质.作为解析函数孤立奇点性质的应用,再简要介绍复变函数的进一步研究中经常涉及到的两类重要的函数,即整函数与亚纯函数及其简单分类.一、学习的基本要求1.能正确理解复级数收敛和发散以及绝对收敛等概念.掌握复级数收敛的必要条件和充要条件,特别是复级数收敛与实、虚部级数收敛之间的关系,并能熟练地运用这种关系来讨论复级数的有关问题以及利用复级数来讨论实级数的有关问题(比如:利用复级数的和求实级数的和的问题等).2.了解复级数绝对收敛与条件收敛,掌握收敛以及绝对收敛级数的若干性质(比如收敛级数的线性性、添项减项性和添加括号性;绝对收敛级数的项的重排性、乘积性等;二次求和的可交换性,即在,11()n mn m A∞∞==∑∑,,11()n m m n A ∞∞==∑∑以及,,1n m n m A ∞=∑都收敛的条件下,有,,1111()()n mn m n m m n AA ∞∞∞∞=====∑∑∑∑成立).3.了解复函数项级数收敛、一致收敛和内闭(紧)一致收敛的含义,掌握一致收敛的柯西准则和魏尔斯特拉斯判别法,并能熟练运用此判别法判断复函数项级数的一致或内闭一致收敛,掌握一致或内闭一致收敛的函数项级数和函数的连续性、逐项积分性以及解析函数项级数和函数的解析性、逐项求任意阶导数性.4.熟练掌握幂级数收敛半径的两种计算方法:记00()()n n n f z a z z ∞==-∑,l =1z 是()f z 的不解析点中距0z 最近的点,利用系数计算的公式:1R l =.利用和函数的计算公式:10R z z =-.熟练掌握同类幂级数的运算性质.比如:设有两个同类幂级数00()()nn n f z a z z ∞==-∑,00()()n n n g z b z z ∞==-∑其收敛半径分别为1R ,2R ,不妨设12R R ≤,则在它们收敛的公共范围01z z R -<内 ● 加、减性:00()()()()nnn nnnn n n n a z z b z z ab z z ∞∞∞===-±-=±-∑∑∑.● 乘积性: 0000(())(())()()nnnn n n n k k n n n k a z z b z z a b z z ∞∞∞-====-⋅-=⋅-∑∑∑∑.注意:在用乘积性时,级数不能缺项,若缺项需要将所缺项补齐后,再用乘积性. 设00()()n n n f z a z z ∞==-∑的收敛半径0R >,则在其收敛圆0z z R -<内● 逐项积分性:10000()d ()d ()1z znn nn n n a f a z z z n ξξξξ∞∞+===-=-+∑∑⎰⎰.● 逐项微分性:1001()()(1)()n n n n n n f z na z z n a z z ∞∞-=='=-=+-∑∑.● 收敛半径在逐项积分和逐项微分下的不变性,即00()nn n a z z ∞=-∑,101()n n n na z z ∞-=-∑(逐项微分),100()1n nn a z z n ∞+=-+∑(逐项积分)这三个幂级数具有相同的收敛半径,从而有相同的收敛圆和收敛圆周.注意:对收敛半径在逐项积分和逐项微分下的不变性,只要注意到下面的上极限等式立即可得==5.掌握泰勒定理的条件和结论,了解解析函数的(幂)级数定义法,从而理解为什么只有当函数在一点解析时,函数在这一点才能展开成幂级数.熟练掌握如何将解析函数在指定的解析点展开成幂级数的方法(常用的有三种:直接法,间接法和利用解析函数的惟一性的方法)和技巧,并牢记如下几个主要初等解析函数的幂级数展开式① 01!znn e z n ∞==⋅∑,z <+∞; ② 211210111sin (1)(1)(21)!(21)!nn n n n n z z z n n ∞∞+--===-⋅=-⋅+-∑∑,z <+∞. 201cos (1)(2)!nn n z z n ∞==-⋅∑,z <+∞. ③ 110111ln(1)(1)(1)1nn n n n n z z z n n ∞∞+-==+=-⋅=-⋅+∑∑,1z <,其中ln(1)z +表示对数函数Ln(1)z +的主值支.101[Ln(1)]ln(1)22(1)1nn k n z z k i k i z n ππ∞+=+=++=+-⋅+∑,1z <. ④ 11(1)(1)(1)11!nn n n n n z z z n ααααα∞∞==⎛⎫--++=+⋅=+ ⎪⎝⎭∑∑,1z <,其中α为复常数,(1)z α+表示一般幂函数的主值支.22121(1)(1)[(1)](1)(1)!(1),1.k ik ink n k i n n n z z eez n n e z z ααπαπαπααααα∞=∞=--++=+⋅=+⋅⎛⎫=+< ⎪⎝⎭∑∑特别,当1α=-时,01(1)1n nn z z ∞==-+∑;011n n z z ∞==-∑,1z <.6.掌握解析函数零点以及零点阶数的定义,掌握解析函数零点阶数的判别方法(即解析函数()f z 以0z 为m 阶零点⇔存在0z 的某邻域0z z R -<,使得在其中0()()()m f z z z z ϕ=-,其中()z ϕ在0z z R -<内解析,且0()0z ϕ≠.)并能合理地利用零点阶数的定义或零点阶数的判别法确定解析函数零点的阶数.能正确地理解并掌握解析函数零点孤立性.掌握解析函数的惟一性及其初步的应用(比如,利用惟一性证明三角恒等式,解析函数的幂级数展式,解析函数的最大模和最小模原理等).补充解析函数的最大模原理及其几个相关的结论:最大模原理:设函数()f z 在区域D 内解析,则()f z 在区域D 内取得最大值的充要条件是()f z 在区域D 内为常函数.设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,则max ()max ()z Cz Df z f z ∈∈=,即()f z 在D D C =+上的最大值一定能在边界C 上取得.最小模原理:设函数()f z 在区域D 内解析,且()0f z ≠,则()f z 在区域D 内取得最小值的充要条件是()f z 在区域D 内为常函数.设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,且()0f z ≠,则min ()min ()z Cz Df z f z ∈∈=,即()f z 在D D C =+上的最小值一定能在边界C 上取得.7.了解形式幂级数(即洛朗级数)的含义及其收敛的定义,并能解释其收敛范围为什么一般只能是圆环.掌握洛朗级数在其收敛圆环内的性质(解析性,逐项积分和逐项微分性).掌握圆环形区域内解析函数的洛朗展开定理(即洛朗定理),并能熟练地将解析函数在指定的解析圆环内展开成洛朗级数.注意:●求解析函数在指定圆环形区域内的洛朗展式的方法,基本上是沿用求幂级数展式的方法.不过在运用"基本展式"时要注意,先根据所求展式的要求(一般由指定的圆环或去心邻域来确定),并兼顾所要用的"基本展式"成立的范围,把0z z -的"适当幂"作为一个整体,再用基本展式.例如,将函数()1(2)f z z =-在11z <-<+∞内展成洛朗级数,此时,根据基本展式01(1)n n u u ∞=-=∑成立的范围是1u <,我们可以先将函数变形为1111()211(1)f z z z z -==⋅----, 然后将1(1)z --作为一个整体,对111(1)z ---在圆环11z <-<+∞内用基本展式11n n u u ∞==-∑. ●解析函数在使其解析的圆形区域内的幂级数展式,也就是它在此圆形区域内的洛朗展式,即洛朗展式是幂级数展式的推广.8.了解解析函数孤立奇点(包括∞)的含义,会用解析函数在其孤立奇点去心邻域内的罗郎展式,对解析函数的孤立奇点进行分类.注意:若函数()f z 以∞为孤立奇点,()f z 在∞的主要部分(或奇异部分)是指()f z 在圆环r z <<+∞内的罗郎展式0111()n n n n n n f z c c c z z ∞∞-===⋅++⋅∑∑中的1n n n c z ∞=⋅∑部分.这与函数在有限孤立奇点处的主要部分不同.关于函数()f z 的孤立奇点∞的类型的判别,虽有类似于有限孤立奇点类型判别的方法,但在实际判别时,我们也可以通过变换1z ξ=将它化为判别函数1()f ξ的孤立奇点0ξ=的类型.9.掌握解析函数的各类孤立奇点的特征,并能熟练地运用这些特征来判断解析函数的孤立奇点的类型.10.初步了解刻画本性奇点本质特征的维尔斯特拉斯定理和毕卡定理的含义,初步掌握整函数与亚纯函数的定义,并会用其奇点(包括∞)的类型对它们进行初步的分类.11.几个有用的结论:(1)若0z 分别为解析函数()f z 和()g z 的n 阶零点和m 阶零点,则① 0z 必为()()f z g z ⋅的n m +阶零点.② 当n m ≠时,0z 必为()()f z g z ±的min(,)n m 阶零点;当n m =时,或者0z 为()()f z g z ±的至少n m =阶零点,或者()()0f z g z ±≡.③ 当n m >时,0z 必为()()f z g z 的n m -阶零点;当n m =时,0z 不是()()f zg z 的零点,且为解析点(可去奇点);当n m <时,0z 不是()()f z g z 的零点,且为()()f zg z 的m n -阶极点.(2) 解析函数的四种等价性定义:设()(,)(,)f z u x y iv x y =+是定义在区域D 内的一个复变函数,则下面的四种说法是等价的Ⅰ.函数()f z 在区域D 内可导(可微);Ⅱ.(,)u x y 和(,)v x y 都在区域D 内可微(或具有连续的偏导数)且在区域D 内满足柯西—黎曼条件,即u v x y ∂∂=∂∂,u vy x∂∂=-∂∂; Ⅲ.()f z 在区域D 内连续,且对D 内任一条围线C ,只要C 的内部仍含于D ,就有()0Cf z dz =⎰;Ⅳ.()f z 在区域D 内任一点的邻域内都可展开成幂级数. (3) 若0z 分别为解析函数()f z 和()g z 的n 阶极点和m 阶极点,则① 0z 必为()()f z g z ⋅的n m +阶极点.② 当n m ≠时,0z 必为()()f z g z ±的max(,)n m 阶极点;当n m =时,或者0z 为()()f z g z ±的至多n m =阶极点,或者()()f z g z ±的可去奇点.③ 当n m >时,0z 必为()()f z g z 的n m -阶极点;当n m =时,0z 是()()f zg z 的可去奇点);当n m <时,0z 是()()f z g z 的零点,且为()()f zg z 的m n -阶零点. (4)设函数()f z 不恒为零且以z a =为可去奇点(解析点)或极点,而()g z 以z a =为本性奇点,则z a =必为()()f z g z ±,()()f z g z ⋅和()()g z f z 的本性奇点. (5)若a 为函数()f z 的本性奇点,且在点a 的某去心邻域0z a ρ<-<内()0f z ≠,则a 必为1()f z 的本性奇点.二.问题研究1.泰勒定理类似于数学分析的证明方法:设函数()f z 在0z 的某邻域00():U z z z R -<解析,()000()()!n n n f z z z n ∞=-∑称为()f z 在0z 的泰勒级数,记()000()()()!k nk n k f z S z z z k ==-∑,则 (1)任意0()z U z ∈,0z z ρ-<,0R ρ<<,有1010()()()()d 2()()n n n C z z f f z S z i z z ρξξπξξ++--=--⎰ (()f z 在0z 的泰勒公式) 其中0:C z ρξρ-=,记1010()()()d 2()()n n n C z z f R z i z z ρξξπξξ++---⎰称为泰勒公式的余项.(2)对任意0R ρ<<,()n R z 在闭圆0z z ρ-≤上一致收敛于0,从而()n R z 在0()U z 内内闭一致收敛于0.(3)由(1)和(2)得,在00():U z z z R -<内()000()()()!n n n f z f z z z n ∞==-∑(()f z 在0z 的泰勒展式) (4)若()f z 在00():U z z z R -<内还有展式00()()n n n f z a z z ∞==-∑,则对任意正整数n ,有 ()0()!n n f z a n =,即()f z 在0z 的泰勒展式是惟一的.(注意:此问题的讨论方法同课本上第4章习题20的讨论方法是类似的)2.阿贝尔(Abel )第二定理及其应用.按下面的步骤考虑阿贝尔第二定理,并利用阿贝尔第二定理求一类Fourier 级数的和:(1)若幂级数0()nn n f z a z ∞==∑的收敛半径1R =,且在1z =收敛于s ,即0n n s a ∞==∑收敛,则0n n n a z ∞=∑在如图示以1z =为顶点,以[0,1]为角平分线,张度为02θπ<的四边形角域1A 上一致收敛; 提示:记0n σ=,1n kn k ii n aσ++=+=∑,利用阿贝尔变换将12121n pn n n pkn n n p kk n a z a za za z+++++++=++++=∑变成1111111111()()(1)n pn pn p kkk k n pkkk kn p k n k n k n n p n k n n pkn p k n a zz z z z z z z z σσσσσσ+++-++-+=+=+=++-+--++=+=-=-+=-+∑∑∑∑然后再利用一致收敛的柯西准则. (2)11lim ()z z A s f z →∈=.提示:逐项求极限立即可得.(3)若幂级数0()n n n f z a z ∞==∑的收敛半径1R =,且在ia z e =(02a π<<)收敛于a s ,即0inaa n n s a e∞==∑收敛,则0n n n a z ∞=∑在以ia z e =为顶点,以线段0,:ia ia e z te =([0,1]t ∈)为角平分线,张度为02θπ<的四边形角域a A 上一致收敛,且lim ()iaaa z ez A s f z →∈=. 提示:作旋转变换ia z e ω-=⋅利用(1)(2)即可.(4)(阿贝尔(Abel )第二定理)若幂级数00()()n n n f z a z z ∞==-∑的收敛半径0R >,且在0iaz z Re =+(02a π<<)收敛于a S ,即0n inaa n n S a R e∞==∑收敛,则00()nn n a z z ∞=-∑在以0ia z z Re =+为顶点,以线段000,:ia ia z z Re z z te +=+([0,]t R ∈)为角平分线,张度为02θπ<的四边形角域A 上一致收敛,且0lim ()iaa z z Re z AS f z →+∈=.提示:作变换zRω=利用(3)即可. (5)求出幂级数1nn z n∞=∑的和函数,并利用阿贝尔第二定理证明下面的两个Fourier展式:1cos ln(2sin )2n n n θθ∞==-∑,1sin 2n n n θπθ∞=-=∑ 其中02θπ<<.参考文献:[1]方企勤.复变函数教程.北京:北京大学出版社,1996:121~124. [2]余家荣.复变函数(第三版).北京:高等教育出版社,2000:64~87. [3]郑建华.复变函数.北京:清华大学出版社,2005:95~101.[4]范宜传,彭清泉.复变函数习题集.北京:高等教育出版社,1980:88~112.。

相关文档
最新文档