(北师大版)初中数学《认识无理数》第二课时参考教案
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。
北师大版初中数学八年级上册第二章《2.1认识无理数》 教案
北师大版数学八年级上册《认识无理数(2)》教案一、学生起点分析学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是: 1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.三、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <21<s<4 1.4<a <1.5[来源:学+科+1.96<s<2.25 1.41<a <1.42 1.9881<s<2.0164 1.414<a <1.415 1.999396<s<2.002225 1.4142<a <1.41431.99996164<s<2.00024449归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础. 2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).[来源:学.科.网Z.X.X.K]目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念. 第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力. 第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数.有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数例1填空: 0.351, 4.96••-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形; (D ) 面积为1.44的正方形. [来源:Z 。
井冈山市第一中学八年级数学上册第二章实数1认识无理数教案新版北师大版2
第二章实数1 认识无理数【知识与技能】1.通过拼图活动,让学生感受无理数产生的必要性.2.借助计算器探索无理数是无限不循环小数.3.会判断一个数是有理数还是无理数.【过程与方法】让学生亲自动手做拼图活动,培养学生的动手能力和合作精神,通过辨别一个数是有理数还是无理数,训练大家的思维判断能力.【情感态度】1.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.2.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.【教学重点】1.无理数的探索过程.2.了解无理数与有理数的区别,并能正确判断.【教学难点】把两个边长为1的正方形拼成一个大正方形的动手操作过程.一、创设情境,导入新课同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?在小学我们学过自然数、小数、分数.在初一我们还学过负数.对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.【教学说明】随着学习的深入,知识层次的提高,有理数的范围不能适应现代生活的需要,这就要对数进行扩充,为学生学习新知识作准备.二、思考探究,获取新知无理数的概念拼一拼:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?【教学说明】通过小组合作交流,动手操作得到一个大的正方形,学生非常高兴地投入到活动中,调动了学生的积极性.同学们展示,拼图的结果.下面大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?【教学说明】探索拼图的过程,对于学生理解大正方形的边长是a是不是有理数很有帮助.【归纳结论】因为12=1,22=4,32=9,……整数的平方越来越大,所以a应在1和2之间,故a不可能是整数,又(1/2)2=1/4,(1/3)2=1/9,(2/3)2=4/9,…两个相同因数的乘积都为分数,所以a不可能是分数.做一做:大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.【教学说明】结合图形,让学生进一步理解面积为2的正方形边长不是有理数,而是一种新数.同学们能不能确定一下面积为2的正方形的边长为a的大致范围呢?请大家用计算器探索,用表格的形式整理如下.还可以进行下去吗?a是有限小数吗?【教学说明】教师引导学生探索,让学生对这种不是有理数的新数有了初步的认识,为下面引出无理数的概念打下了基础.【归纳结论】像这种无限不循环小数就叫做无理数.如:圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.而3,45,0.38,.,它们都能化成有限小数或循环小数,这些数都是有理数.017三、运用新知,深化理解1.判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.2.下列各数中,哪些是有理数?哪些是无理数?0.351,-23,4.9·6·,3.14159,-5.2323332……(由相继的正整数组成).在下列每一个圈里,至少填入三个适当的数.【教学说明】学生自主完成,加深了对无理数的理解以及有理数与无理数的区别所在,让学生的疑难及时得到矫正与强化.【答案】1.(1);(2);(3)√;(4)√;.,3.14159;-5.2323332……(由相继的正整数组成).2. 0.351,-2/3,496四、师生互动,课堂小结通过本节课的学习,你是如何判断一个数是有理数还是无理数?还有哪些困难?【教学说明】引导学生寻找知识点间的区别和联系,加深对易错点的理解,有助于学生正确解题.2.完成练习册中本课时相应练习.检测内容:期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(毕节中考)在下列长度的三条线段中,不能组成三角形的是(C)A.2 cm,3 cm,4 cm B.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cm D.5 cm,6 cm,7 cm2.如图,在△ABC中,AB=AC,∠B=50°,P是边AB上的一个动点(不与顶点A重合),则∠BPC的值可能是(B)A.135° B.85° C.50° D.40°第2题图第3题图第5题图第6题图3.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的是(D)A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD4.(贵港中考)若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是(D) A.-5 B.-3 C.3 D.15.将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E,D分别落在E′,D′点.已知∠AFC=76°,则∠CFD′等于(C)A.15° B.25° C.28° D.31°6.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有(D)A.4对 B.5对 C.6对 D.7对7.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知EH=EB=3,AE=4,则CH的长是(A)A.1 B.2 C.3 D.4第7题图 第8题图 第10题图8.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ACF =48°,则∠ABC 的度数为(A )A .48°B .36°C .30°D .24°9.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于(C )A .45°B .120°C .45°或135°D .45°或120°10.如图,在等腰直角△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC ,AD 于E ,F 两点, M 为EF 的中点,延长AM 交BC 于点N ,连接DM ,NE .下列结论:①AE =AF ;②AM ⊥EF ;③△AEF 是等边三角形,④DF =DN ,⑤AD ∥NE .其中正确的结论有(D )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =__36°__.第11题图 第12题图 第14题图12.如图,BC ⊥ED ,垂足为M ,∠A =35°,∠D =25°,则∠ABC =__30°__.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作K .若K =12,则该等腰三角形的顶角度数为__36°__. 14.(镇江中考)如图,直线a ∥b ,△ABC 的顶点C 在直线b 上,边AB 与直线b 相交于点D .若△BCD 是等边三角形,∠A =20°,则∠1=40°.15.(永州中考)已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过点D 作直线DE ⊥OA ,垂足为E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =4.第15题图 第16题图 第17题图 第18题图16.如图,在△ABC 中,点D 为BC 边的中点,点E 为AC 上一点,将∠C 沿DE 翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为__65°__.17.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,若AB =18,AC =12,△ABC 的面积等于36,则DE =__125__.18.如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,下面四个结论:①∠AFE =∠AEF ;②AD 垂直平分EF ;③S △BFD S △CED =BF CE ;④EF 一定平行于BC .其中正确的有①②③(填序号).三、解答题(共66分)19.(6分)(宜昌中考)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°,∴∠CBD =130°.∵BE 是∠CBD 的平分线,∴∠CBE =12∠CBD =65° (2)∵∠ACB =90°,∠CBE =65°,∴∠CEB =90°-65°=25°.∵DF ∥BE ,∴∠F =∠CEB =25°20.(6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.解:(1)点B 1的坐标为(-2,-1),图略(2)点C 2的坐标为(1,1),图略21.(8分)(温州中考)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.解:(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F ,∵AD 是BC 边上的中线,∴BD =CD ,∴△BDE ≌△CDF (AAS)(2)∵△BDE ≌△CDF ,∴BE =CF =2,∴AB =AE +BE =1+2=3,∵AD ⊥BC ,BD =CD ,∴AC =AB =322.(10分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD =AC ,AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G .求证:(1)DF ∥BC ;(2)FG =FE .证明:(1)∵AF 平分∠CAB,∴∠CAF =∠DAF.在△ACF 和△ADF 中,∵⎩⎪⎨⎪⎧AC =AD ,∠CAF =∠DAF,AF =AF ,∴△ACF ≌△ADF(SAS ).∴∠ACF=∠ADF.∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠CAE=90°,∠CAE +∠B=90°.∴∠ACF =∠B,∴∠ADF =∠B.∴DF∥BC(2)∵DF∥BC,BC ⊥AC ,∴FG ⊥AC.∵FE ⊥AB ,又AF 平分∠CAB,∴FG =FE23.(10分)如图,在四边形ABCD 中,AD ∥BC ,点E 是AB 的中点,连接DE 并延长,交CB 的延长线于点F ,点G 在边BC 上,且∠GDF =∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG ,判断EG 与DF 的位置关系并说明理由.解:(1)证明:∵AD∥BC,∴∠ADE =∠BFE.∵点E 为AB 的中点,∴AE =BE.在△ADE和△BFE 中,⎩⎪⎨⎪⎧∠ADE=∠BFE,∠AED =∠BEF,AE =BE ,∴△ADE ≌△BFE(AAS)(2)EG 与DF 的位置关系是EG 垂直平分DF.理由:∵∠GDF =∠ADE ,∠ADE =∠BFE,∴∠GDF =∠BFE.∴FG=DG.∴△FGD 为等腰三角形.由(1)中△ADE≌△BFE 得DE =FE ,即GE 为DF 上的中线,∴GE 垂直平分DF24.(12分)如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α.以OC 为一边作等边三角形OCD ,连接AD .(1)当α=150°时,试判断△AOD 的形状,并说明理由;(2)探究:当α为多少度时,△AOD 是等腰三角形?解:(1)∵△OCD 是等边三角形,∴OC =CD .∵△ABC 是等边三角形,∴BC =AC .∵∠ACB =∠OCD =60°,∴∠BCO =∠ACD ,在△BOC 与△ADC 中,∵⎩⎪⎨⎪⎧OC =CD ,∠BCO =∠ACD ,BC =AC ,∴△BOC ≌△ADC ,∴∠BOC =∠ADC ,而∠BOC =α=150°,∠ODC =60°,∴∠ADO =150°-60°=90°,∴△ADO 是直角三角形(2)∠AOD =360°-∠AOB -∠α-∠COD =360°-100°-∠α-60°=200°-∠α,∠ADO =∠ADC -∠CDO =∠α-60°,∠OAD =180°-∠ADO -∠AOD =180°-(∠α-60°)-(200°-∠α)=40°. 若∠ADO =∠AOD ,即∠α-60°=200°-∠α,解得∠α=130°;若∠ADO =∠OAD ,则∠α-60°=40°,解得∠α=100°;若∠OAD =∠AOD ,即40°=200°-∠α,解得∠α=160°.即当α为130°或100°或160°时,△AOD 是等腰三角形25.(14分)已知在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC .(1)【特殊情况,探索结论】如图①,当点E 为AB 的中点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”);(2)【特例启发,解答题目】如图②,当点E 为AB 边上任意一点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”),并给出证明;(3)【拓展结论,设计新题】在等边三角形ABC 中,点E 在直线AB 上,点D 在线段CB 的延长线上,且ED =EC ,若△ABC 的边长为1,AE =2,求CD 的长.解:(2)AE =DB .证明:过点E 作EF ∥BC ,交AC 于点F ,∵△ABC 为等边三角形,∴△AEF 为等边三角形,∴AE =EF ,BE =CF .∵ED =EC ,∴∠D =∠ECD .∵∠DEB =60°-∠D ,∠ECF =60°-∠ECD ,∴∠DEB =∠ECF ,在△DBE 和△EFC 中,⎩⎪⎨⎪⎧DE =CE ,∠DEB =∠ECF ,BE =FC ,∴△DBE ≌△EFC (SAS),∴DB =EF ,∴AE=DB(3)如图所示,点E 在AB 延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F ,同(2)仍可证得△DBE ≌△EFC ,∴DB =EF =2,BC =1,则CD =BC +DB =3第十四章:勾股定理知识点内容备注平方根概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术平方根:正数a的正的平方根记作:性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根考点:(a的取值范围a)②()③(a的取值范围为任意实数)④=例:=()=5⑤=a(a为任意实数)例:=2, =—2立方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是011。
2.1 ++认识无理数 第二课时 教学设计 2023—2024学年北师大版数学八年级上册
2.1.2 认识无理数一、 板书课题 :认识无理数二、 出示目标:1、借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2、无理数概念的建立及估算,会判断一个数是有理数还是无理数.三、自学指导认真看课本2322P P -内容,要求:1.完成引例,理解估算数值的大小2.了解无限逼近思想,会表示无限不循环小数3.完成“做一做”、“议一议”,思考什么是有理数4.细看例题的解题过程四分钟后检测,比谁能正确的完成与例1同类型的题四、学自学 (教师巡视,督促每位学生认真自学)五、测与导问题一: 面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.引导学生在引例(1)答案的基础上提出问题,21<<a ,那么a 是1点几呢? 边长a面积S 1<a <21<S <4 1.4<a <1.51.96<S <2.25 1.41<a <1.42 1.9881<S <2.01641.414<a <1.4151.999396<S <2.002225 1.4142<a <1.4143 1.99996164<S <2.00024449【归纳总结】a 是介于1和2之间的一个数,既不是整数,也不是分数,则 a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.2、做一做:用上面的方法估计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时,它的平方恰好等于5?小组讨论:如果b 算到某一位时,它的平方恰好等于5,即b 是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b 不可能是有限小数.事实上,b=2.236 067 978…它是一个无限不循环小数.同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.3、议一议: 把下列各数表示成小数,你发现了什么?3,1124589554,,,- 师:分数化成小数,最终此小数的形式有哪几种情况?生:分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.师:什么是无理数?生:无限不循环小数称为无理数4、举例判断哪些是有理数,哪些是无理数?)之间依次加和(每个,1333131131113.2,7302.0,722π-⋅⋅结果对不对,若对,为什么对?若错, 问什么错?(引导学生回答无理数和有理数的概念)5、例一:下列各数中,哪些是有理数?哪些是无理数?3.14 ,34, 0.57, 0.101 000 100 000 1……(相邻两个1之间0的个数逐次加2)6、小结:我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).六、 练必做题25P 1、2选做题 练习册教学反思。
北师大版数学八年级上册《认识无理数》教学课件
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?
数
教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章
实
1. 认识无理数
数
教学内容
第二章
1.1
认识无理数
实
数
教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)
实
数
教学目标——温故知新
实
活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数
负整数
分数
正分数
负分数
正整数
正数
正分数
负整数
负数
负分数
实
数
教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为
北师大版初中数学八年级上册第二章《 2.1认识无理数》教案
北师大版数学八年级上册第二章《认识无理数》教案2.1 认识无理数(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢? [生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了. 2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗? [师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a 2+b 2=c 2.[师]在这题中,两条直角边分别为1和2,斜边为b ,根据勾股定理得b 2=12+22,即b 2=5,则b 是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b 不可能是整数. [生乙]没有两个相同的分数相乘得5,故b 不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a ,b 都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四、课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五、课后作业:见作业本。
北师大版七年级数学上册教案:2.1认识无理数
-无理数在实际问题中的应用:培养学生将无理数应用于解决实际问题的能力,如计算圆形面积、周长等。
举例:在讲解无理数与有理数的区别时,可以通过比较√2和1.414(√2的近似值)的关系,让学生明白无理数是无限不循环的,而有理数是有限或循环的。此外,通过实际例子,如计算圆的面积,让学生体会无理数在实际问题中的应用,并学会如何处理无理数的近似值。
直接输出以下内容:
四、教学流程
1.导入新课:以提问方式引导学生思考日常生活中遇到的与无理数相关的问题,激发学生的兴趣和好的定义、特点及其与有理数的区别。
-案例分析:通过具体实例,展示无理数在实际问题中的应用。
3.重点难点解析:
-强调无理数与有理数的本质区别,通过对比分析,帮助学生理解难点。
-掌握无理数的表示方法:介绍根号表示、无限不循环小数等,让学生熟练掌握无理数的表达方式。
-常见无理数的性质:分析π、e、√2等无理数的性质,强调它们的特点和应用。
举例:讲解√2是无理数时,可以通过实际计算说明它不能表示为两个整数之比,从而加深学生对无理数定义的理解。
2.教学难点
-无理数与有理数的区别:解释无理数与有理数的本质区别,如无限不循环小数与有限小数、循环小数的区别,这是学生容易混淆的地方。
2.学会无理数的表示方法,提高学生数学表达和符号意识。
3.通过探索无理数的性质和应用,发展学生的逻辑推理和数学建模能力。
4.培养学生勇于探索、积极思考的学习态度,提高数学素养和解决问题的能力。
5.激发学生对数学学科的兴趣,增强学生的数学情感,为后续学习奠定基础。
三、教学难点与重点
1.教学重点
北师版八年级数学 2.1 认识无理数(学习、上课课件)
2.1 认识无理数
学习目标
1 课时讲解 生活中存在不是有理数的数
无理数的概念
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 生活中存在不是有理数的数
知1-讲
整数和分数统称为有理数 . 随着研究的深入,人们发现
了不是有理数的数,现实生活中存在大量不是有理数的数 .
如图 2-1-1,用剪拼的方法将两个边长为 1 的小正方形 拼成
感悟新知
知识点 2 无理数的概念
知2-讲
1. 无理数的概念 无限不循环小数称为无理数,如圆周率 π =3.141 592 65…,1.010 010 001…(相邻两个 1 之间 0 的 个数逐次加 1)等 .
感悟新知
特别提醒 从小数观点理解无理数 :
(1)小数; (2)位数无限 ; (3)不循环 . 三者一不可 .
无理数
认识的 过程
产生 大小的估计 概念
感悟新知
知1-练
1-1. 已知直角三角形的两直角边长分别是9 cm和5 cm,斜 边长是x cm.
(1)估计x在哪两个连续整数之间; 解:根据题意,可得x2=92+52=106. 因为100<x2<121, 所以10<x<11,即x在整数10与11之间.
感悟新知
(2)如果把x的结果精确到0.1,估计x的值;如果精确到 知1-练
数或无限循环小数; 2.有理数可化为分数,无理数不能化为分数 .
知2-讲
感悟新知
知2-练
例2 [母题 教材P23例题]下列各数中,哪些是有理数?哪些 是无理数? 3.14,π,0,-272,2.3.,7.141 441 444 1…(相邻两个1 之间4的个数逐次加1).
八年级数学上册《认识无理数》教案、教学设计
4.思活中的应用有哪些?请举例说明。”让学生在课后继续思考,培养他们的观察力和创新意识。
5.自主学习任务:要求学生利用网络资源或图书馆资料,了解一位数学家在无理数领域的研究成果,并撰写一篇200字左右的简短报告,以提高学生的数学素养和自主学习能力。
4.利用信息技术手段,如几何画板、数学软件等,帮助学生直观地认识无理数,提高学习效果。
(三)情感态度与价值观
1.培养学生勇于探索、敢于质疑的精神,使他们认识到数学知识的无穷魅力;
2.增强学生对数学美的感知,激发他们对数学学科的兴趣和热爱;
3.培养学生严谨、细致的学习态度,提高他们分析问题和解决问题的能力;
2.教学内容:介绍勾股定理和无理数的定义。
过程设计:让学生回顾勾股定理,然后教师解释:“在勾股定理中,当一个直角三角形的两条直角边长度分别为1时,根据定理,对角线的长度为根号2。然而,根号2并不能精确表示为两个整数的比,这样的数就是无理数。”接着,正式引入无理数的定义。
(二)讲授新知
1.教学内容:讲解无理数的性质、分类及其表示方法。
2.探究活动:组织学生进行小组合作,探索无理数的性质和运算规则。通过讨论、验证和归纳,让学生在自主探究中发现问题、解决问题。
-设想一:利用数学游戏或竞赛,增加学习的趣味性,如“谁找到了最多的无理数?”
-设想二:设计思维导图,帮助学生梳理无理数的相关知识点,形成知识网络。
3.实践应用:将无理数知识应用于解决实际问题,如测量物体的长度、计算面积等,让学生在实际操作中深化对无理数的理解。
2.学生在四则运算中处理无理数的能力,引导他们运用已有知识解决新问题;
北师版八年级上册第二章2.1.2认识无理数(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如π在实际中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用纸片折出√2的近似值,演示无理数的近似求解方法。
实践活动环节,学生分组讨论和实验操作进行得如火如荼,大家积极性很高。但在成果展示环节,我发现部分小组对无理数在实际生活中的应用理解不够深入。这说明在今后的教学中,我需要加强引导学生关注数学知识在现实生活中的运用,提高他们的应用能力。
学生小组讨论环节,我尽量以引导者的身份参与其中,让学生充分发表自己的观点。但在讨论过程中,我也发现部分学生较为内向,不敢表达自己的想法。针对这个问题,我计划在今后的教学中多给予这些学生鼓励和支持,提高他们的自信心。
五、教学反思
在今天的教学中,我发现学生在理解无理数概念上存在一定难度,这是我在今后教学中需要重点关注和改进的地方。在讲解无理数定义时,我尝试通过生活实例和数学历史故事来引导学生理解,但感觉效果并不理想。可能是因为这个概念本身较为抽象,需要更多具体、直观的例子来帮助学生理解。
在讲授无理数的表示和运算时,我注意到学生们的兴趣有所提高,尤其是案例分析部分。这说明结合实际情境进行教学更能激发学生的学习兴趣。但在讲解难点部分,如无理数的乘除运算,我发现学生们仍然感到困惑。因此,我需要寻找更有效的教学方法,如通过具体例子、图形演示等方式,帮助学生突破这个难点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是无限不循环小数,与有理数(整数和分数)不同。无理数在数学中具有重要地位,如在几何图形中描述长度和面积。
北师大版数学八年级上册2.1认识无理数第二课时教学设计
1.布置一些有关无理数的练习题,让学生独立完成。
2.选取部分题目进行讲解,分析解题思路,强调注意事项。
五、总结与反思
1.让学生回顾本节课所学内容,总结无理数的性质和表示方法。
2.引导学生反思学习过程,提高他们自主探究、合作交流的能力。
3.鼓励学生勇于探索、敢于创新,激发他们对数学的兴趣。
2.我们知道,圆的周长与直径的比值是一个固定的数,这个数是有理数还是无理数?
3.除了这些,还有哪些数是无理数?
(二)讲授新知,500字
1.无理数的定义:无法表示为两个整数之比的数称为无理数。例如,π、√2等。
2.无理数的性质:无理数具有无限不循环性、不可约性等特点。
3.无理数的表示方法:
-数轴:在数轴上表示无理数,如π在数轴上的位置。
3.实践应用,巩固知识:通过具体的例题和练习题,让学生将无理数知识应用于实际问题,巩固所学。
-设计具有层次性的练习题,从简单到复杂,帮助学生逐步掌握无理数的运算和应用。
-在解题过程中,强调数形结合思想,培养学生运用数学工具解决问题的能力。
4.总结反思,提升能力:在教学结束时,引导学生进行总结反思,提高他们的自主学习和思考能力。
3.无理数在实际问题中的应用:将无理数知识应用于解决实际问题,如圆的周长和面积计算,是教学的难点,需要培养学生的数学建模和解决问题的能力。
(二)教学设想
1.创设情境,激发兴趣:通过引入实际生活中的问题,如测量圆的直径和周长,激发学生对无理数的探究兴趣。
-利用多媒体展示圆的相关现象,引导学生思考圆的周长与直径之间的关系。
1.引导学生观察、分析,发现无理数的存在,如π、√2等。
2.学生自主探究无理数的性质,如无限不循环性、不可约性等。
北师大版八年级上册2.1认识无理数(第2课时)教学设计
1.针对无理数概念的教学,我设想通过以下步骤进行:
a.利用历史故事或实际情境引入无理数的概念,如通过讲述古希腊数学家希伯斯发现√2是无理数的故事,激发学生的好奇心。
b.通过数轴展示无理数和有理数的关系,让学生直观感受无理数的无限不循环性。
c.引导学生通过自我探索和小组讨论,总结无理数的特点,形成对无理数的深刻理解。
1.教学内容:设计具有代表性的练习题,涵盖无理数的概念、性质、运算等方面,让学生在实际操作中巩固所学知识。
2.教学方法:采用个别指导、集体讲解等方式,帮助学生解决练习中的问题。
3.教学实施:学生独立完成练习题,教师对学生的答题情况进行点评,指出错误原因,引导学生总结经验教训。
(五)总结归纳
1.教学内容:对本节课学习的无理数的概念、性质、运算和应用等方面进行总结。
b.教师对学生的作业进行及时批改和反馈,针对学生的个性化问题给予指导,帮助学生提高。
4.学生的学习兴趣:部分学生对数学学习可能存在恐惧心理,教师应通过生动的教学情境、有趣的教学活动,激发学生的学习兴趣,使他们愿意主动投入到无理数的学习中。
5.学生的合作交流能力:在教学过程中,教师应注重培养学生的合作交流能力,让他们在小组讨论、互帮互助中提高解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
b.通过数学建模的方式,让学生尝试将无理数应用于解决更复杂的数学问题,提高他们的问题解决能力。
4.为了突破教学难点,我设想采用以下策略:
a.利用多媒体教学资源,如动画、视频等,帮助学生形象理解无理数的性质和运算规则。
b.开展小组合作学习,让学生在交流讨论中互相启发,共同解决难题。
c.鼓励学生提出疑问,给予个别指导,针对学生的个性化问题进行针对性教学。
北师大版八年级数学上册:2.1《认识无理数》说课稿
北师大版八年级数学上册:2.1《认识无理数》说课稿一. 教材分析《认识无理数》是北师大版八年级数学上册第2.1节的内容。
本节内容是在学生已经掌握了有理数的概念和实数的概念的基础上进行的,是学生对实数系统的一次重要扩展。
无理数是实数的一个子集,它不能表示为两个整数的比例,其小数部分是无限不循环的。
这个概念的引入,不仅丰富了学生的数的概念,也为后续的三角函数、微积分等数学分支的学习打下了基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数和有理数有一定的了解。
但是,对于无理数的概念和性质,他们可能是初次接触,理解起来可能会有一定的困难。
因此,在教学过程中,我将会注意通过生活中的实例和具体的数学问题,引导学生理解和接受无理数的概念。
三. 说教学目标1.知识与技能:使学生理解无理数的概念,掌握无理数的性质,能够识别和估算无理数。
2.过程与方法:通过观察、实验、推理等方法,让学生体验发现和探究的过程,培养学生的数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心,使学生体验到数学的乐趣。
四. 说教学重难点1.教学重点:无理数的概念和性质。
2.教学难点:无理数的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。
六. 说教学过程1.导入:通过一个生活中的实例,如测量物体长度时遇到无法精确测量的情况,引出无理数的概念。
2.新课讲解:讲解无理数的概念,通过具体的例子和数学性质,使学生理解和掌握无理数。
3.案例分析:分析一些实际问题,让学生运用无理数的概念和性质解决问题。
4.小组讨论:让学生分组讨论,探索无理数的性质,分享自己的发现。
5.总结提升:对无理数的概念和性质进行总结,引导学生思考无理数在实际生活中的应用。
6.课后作业:布置一些有关无理数的练习题,巩固所学知识。
七. 说板书设计板书设计包括无理数的概念、无理数的性质和无理数的应用等方面的内容。
034.北师大版八年级数学上册2.1 第2课时 认识无理数(教案)
2.1认识无理数第2课时教学目标【知识与能力】掌握无理数的概念;能用所学定义正确判断所给数的属性.【过程与方法】借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.【情感态度价值观】在掌握估算方法的过程中,发展学生的数感和估算能力.教学重难点【教学重点】能用所学定义正确判断所给数的属性.【教学难点】无理数概念的建立.教学准备计算器、立方体、多媒体课件.教学过程第一环节:情境引入导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如−1,0,2,3,…)分数(如13,−25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a 2=2,b 2=5中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图] 通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.第二环节:新知构建面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)【思考】 a ,哪个更接近正方形的实际边长?【归纳总结】 a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a =1.41421356…,它是一个无限不循环小数.【做一做】 (1)请大家用上面的方法估计面积为5的正方形的边长b 的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b ≈2.2,精确到0.01,b ≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.25992105…,它也是一个无限不循环小数.[设计意图] 让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,c =1.25992105…是无限不循环小数的过程,体会无限逼近的思想.2.有理数的小数表示,明确无理数的概念思路一:请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么?3,45,59,-845,211. 【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况?思路二:回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.3.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2).解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2).【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q 的形式(q ≠0,p ,q 为整数且互质),而无理数不能.[设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.[知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法:1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.第三环节:课堂小结数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数第四环节:检测反馈1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数答案:C2.以下各正方形的边长是无理数的是 ( )A .面积为25的正方形B .面积为425的正方形C .面积为8的正方形D .面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.故选C . 3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数. 4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n . (2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第五环节:布置作业1.教材作业【必做题】教材随堂练习.【选做题】教材习题2.2第2,4题.2.课后作业【基础巩固】1.面积为3的正方形的边长为x ,则x ( )A .1<x <2B .2<x <3C .3<x <4D .4<x <52.一个正三角形的边长是4,高为h ,则h 是 ( )A .整数B .分数C .有限小数D .无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是 ,则斜边长是 数.【拓展探究】4.设半径为a 的圆的面积为20 π.(1)a 是有理数吗?说说你的理由;(2)估计a 的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)a≈4.5.(3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米.(2)1.73米.板书设计2.1.2认识无理数1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.教学设计反思成功之处本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.不足之处对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.再教设计知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20平行四边形判定定理1两组对角分别相等的四边形是平行四边形21平行四边形判定定理2两组对边分别相等的四边形是平行四边形22平行四边形判定定理3对角线互相平分的四边形是平行四边形23平行四边形判定定理4一组对边平行相等的四边形是平行四边形24矩形性质定理1矩形的四个角都是直角25矩形性质定理2矩形的对角线相等26矩形判定定理1有三个角是直角的四边形是矩形27矩形判定定理2对角线相等的平行四边形是矩形28菱形性质定理1菱形的四条边都相等29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角30菱形面积= 对角线乘积的一半,即S= (a×b )÷231菱形判定定理1四边都相等的四边形是菱形32菱形判定定理2对角线互相垂直的平行四边形是菱形33正方形性质定理1正方形的四个角都是直角,四条边都相等34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35定理1关于中心对称的两个图形是全等的36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38等腰梯形性质定理等腰梯形在同一底上的两个角相等。
北师大版 初中数学八年级上册第二章《2.1认识无理数》教案
北师大版数学八年级上册《认识无理数》教案教学目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.探索无理数与有理数的区别,并能辨别出一个数是无理数还是有理数.2.通过学生活动准确认识到有理数都可以划成有限小数和无限循环小数,发展学生的抽象概括能力. 3.让学生理解估算的意义,掌握估算的方法,同时发展学生的估算能力,在数学活动发挥学生的积极作调学生参与数学问题的积极性,培养学生的合作精神. 教学重点与难点:重点:无理数概念的建立过程;了解无理数与有理数的区别,并能正确判断.难点:无理数概念的建立及估算;会判断一个数是无理数还是有理数,有理数与无理数的区别.教法与学法指导:本节课是在上一节课对无理数定性分析的基础上,借助于计算器,采用估算等方法,对无理数的产生进行定性的研究.在教学中要强调让学生探究概念形成的过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调小组之间的合作与交流,强化应用意识,培养学生多方面的能力.学生要借助工具多动手、动口、动脑,自主探究,提高学习的兴趣,进一步体会数学的地位和作用. 课前准备:多媒体课件、计算器. 教学过程:一、创设情境,导入新课教师:同学们还记得有理数是如何分类的吗?教师:很好!上节课我们了解到一些数,如a 2=2,b 2=5中的a ,b 既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来探究这些数的真面目.设计意图:通过这些问题让学生发现有理数不够用了,这些数既不是整数,也不是分数,激发学生的求知欲,去揭示它的真面目.实际效果:激发学生的好奇心和求知欲,吸引学生注意力,引出本节课题“数怎么又不够用了”. 二、合作探究,发现新知探究一:计算器探索面积为2的正方形的边长a .(课件展示) 教师:大家还记的我们上节课是怎样得到面积为2的正方形的吗?学生:有理数 整数(如-1,0,2,3,…):都可看成有限小数.分数 (如-13,25,911,… ):可不可能都化成有限小数或无限小数?学生:把两个边长为1的小正方形,通过剪切、拼图拼成一个大的正方形,它的面积就是2.教师:面积为2的正方形的边长a究竟是多少呢?你能不能估计大正方形的边长a在什么范围内?学生:(观察课件后回答)通过图形可以看出1<a<2.因为12=1,22=4,而a的平方等于2,所以1<a<2.教师:非常好!既然1<a<2,那么a是1点几呢?为什么?学生:(探究后回答)1.4<a<1.5.因为1.42=1.96,1.52=2.25,而a的平方等于2,所以1.4<a<1.5.教师:你能精确到它的百分位吗?千分位呢?万分位呢?下面给大家几分钟的时间,借助计算器进行探索.(学生小组合作,探索交流)教师:谁能说一下小组探索的结果?学生:a=1.4142.教师:恰好是1.4142吗?学生:约等于1.4142,在1.4142与1.4143之间.教师:还有几位小数?学生:无数位.它是一个无限小数.教师:对,大家可以看一下小明同学的探索过程.(展示课件)边长a面积S1<a<2 1<S<41.4< a<1.5 1.96<S<2.251.41< a<1.42 1.9881<S<2.01641.414< a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449教师:如果继续探索下去,你会有什么发现?学生:这个数是无限小数而且不循环.教师:对,事实上,它是一个无限不循环小数.探究二:计算器探索面积为5的正方形的边长b(课件展示)教师:模仿上一个探索过程,你能探索面积为5的正方形的边长b吗?如果能,把探究的结果填入下表.边长b面积S保留整数<b <<S <保留十分位< b <<S <学生:(小组合作,交流探索)把探究结果填入表格. 教师:谁能说一下你能得到什么结论?学生:b =2.23606…,它也是一个无限不循环小数.教师:同学们探索的非常好. 模仿刚才的探索方法,我们也可以探索体积为2的正方体的棱长.借助计算器,可以得到它的棱长为1.25992105…,它也是一个无限不循环小数.设计意图:借助计算器探索出a =1.41421356…,b =2.2360679…,是一个无限不循环小数,并从中感受无限逼近的数学思想.实际效果:通过探究让学生真切感受到无理数确实是无限不循环的,为无理数概念打下基础. 议一议(课件展示):把下列有理数表示成小数,你发现了什么? 3,45,59,845,211. 学生1:3=3.0,54=0.8,95=•5.0,•=71.0458,••=818.1112.学生2:我发现3,54是有限小数,112,458,95是无限循环小数.教师:好!上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像1.41421356…,2.2360679…等这些数的小数位数都是无限的,但是又不是循环的,是无限不循环小数.你能给这类数取个名字吗?生:无理数.教师:很好,哪位同学给无理数下个定义? 学生:无理数就是无限不循环小数.教师:好,圆周率π=3,14159265…也是一个无限不循环小数,目前π值已精确计算到了将近65亿位,但是仍然不是一个精确的数值.故π是无理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数都是无理数.教师:理解无理数的概念一定要抓住哪两方面? 学生:一是无限小数;二是不循环小数.教师:同学们一定要抓住这两点,只要有一点不符合,它就不是无理数.你能举出其他的无理数例子吗?保留百分位 < b < < S < 保留千分位 < b < < S < 保留万分位< b << S <学生:(学生踊跃的)1.2345678987…,2π等等. 教师:无理数多不多? 学生:多.教师:在我们生活中除了π以外,还有非常多的无理数.下面我们看例1,你能分清有理数和无理数吗? 设计意图:通过学生的活动与探究,得出无理数的概念.教学效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.三、例题示范,应用概念 (课件展示)例1 下列各数中,哪些是有理数?哪些是无理数?3.14,34-,••75.0,0.1010010001…(相邻两个1之间0的个数逐次加1),-π.学生:有理数有3.14,34-,••75.0;无理数有0.1010010001…(相邻两个1之间0的个数逐次加1), -π.教师:回答得很好,大家鼓励一下.只要你抓住了无理数的两个特征,你就能把它识别出来. 跟踪练习: 1.填空:0.351,π+1,.68.4,23-, 3.14159, -5.2323332…, -3π ,1.234567891011…(由相继的正整数组成).有理数有: ; 无理数有: . 2.判断下列说法是否正确:(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限小数. ( ) 教师强调:1.无理数是无限不循环小数,有理数是有限小数或无限循环小数. 2.任何一个有理数都可以化成分数形式,而无理数则不能.例2 (1)设面积为10的正方形的边长为x ,x 是有理数吗?说说你的理由. (2)估计x 的值(结果精确到0.1),并用计算器验证你的估计. (3)如果结果精确到百分位呢?解:(1)由题意得x2=10,因为32=9,42=16,而 32 <x2<42.故3<x<4,所以x不是整数,没有一个分数的平方等于10,所以x不是分数.因为x即不是整数也不是分数,故x不是有理数.(2) 估计x≈3.2.(3) x≈3.16.设计意图:通过例1及练习的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类,培养学生总结归纳的能力.而例2属于数的估算.,进一步发展学生的思维判断能力.实际效果:通过师生的共同探究,形成对中学阶段数的系统认识,提高了总结归纳能力.四、课堂总结,盘点收获教师:通过本节课的学习你有哪些收获呢?你还存在疑问吗?学生:我的主要收获是认识了无理数,并且能把无理数与有理数区别开.有理数包括整数和分数,能够化成有限小数或者是无限循环小数,而无理数是无限不循环小数.教师:还有要补充的吗?学生:我还学会了π是无理数以及利用估算的方法探索无理数的范围.教师:大家总结的很全面.以后我们还会学到很多关于无理数的知识,希望同学们继续努力.设计意图:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成良好的学习习惯,提高学生的归纳总结能力,进一步发展学生的思维判断能力。
北师大版八年级数学上册:2.1《认识无理数》教案
北师大版八年级数学上册:2.1《认识无理数》教案一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。
本节课的主要内容是让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握一些估算无理数大小方法。
教材通过引入π和√2等实际例子,帮助学生建立起无理数的直观印象,进而引导学生通过观察、思考、探究,发现无理数的特点和性质。
二. 学情分析学生在学习本节课之前,已经学习了有理数的相关知识,对数的概念有一定的了解。
但是,学生对无理数的概念和性质可能感到陌生,理解起来有一定难度。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动具体的例子和实际操作,帮助学生理解和掌握无理数的概念。
三. 教学目标1.了解无理数的概念,理解无理数与有理数的关系。
2.能够运用逼近法估算无理数的大小。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.重点:无理数的概念和性质。
2.难点:理解无理数与有理数的关系,以及运用逼近法估算无理数的大小。
五. 教学方法1.采用情境教学法,通过引入实际例子,激发学生的学习兴趣。
2.采用探究教学法,引导学生通过观察、思考、动手操作,自主发现无理数的特点和性质。
3.采用讲解法,教师详细讲解无理数的概念和性质,引导学生理解和掌握。
4.采用小组合作学习法,鼓励学生互相讨论、交流,共同解决问题。
六. 教学准备1.准备相关课件和教学素材。
2.准备计算器、纸张等学习工具。
七. 教学过程1.导入(5分钟)利用课件展示π和√2的实际应用场景,如圆的周长和物体尺寸的测量等,引发学生对无理数的兴趣。
同时,提出问题:“你们认为π和√2是什么类型的数?”让学生思考并发表观点。
2.呈现(15分钟)教师讲解无理数的概念,通过PPT展示无理数的定义和性质,让学生了解无理数的特点。
同时,举例说明无理数与有理数的关系,如π和√2都是无理数,而2和3是有理数。
3.操练(10分钟)教师提出问题:“如何估算无理数的大小?”引导学生运用逼近法估算无理数的大小。
《认识无理数》word教案 (公开课)2022年北师大版 (9)
2.1 认识无理数本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,开展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比拟无理数与有理数的区别,并能区分出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力. 三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与稳固;第五环节:课堂小结;第六环节:作业布置. 第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数〔如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <2 1<s<4 1.4<a 1.41<a 1.414<a 1.4142<a归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,那么a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值. 2. 探索有理数的小数表示,明确无理数的概念请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885……,-…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).第三个环节:知识分类整理 有理数和无理数统称为实数。
北师大版初二上册第二章认识无理数第二课时教案
北师大版初二上册第二章认识无理数第二课时教案(第二课时)一、传授目标叙写1.学生议决预习课本22-23页,初步感知无理数的估算历程.2.学生议决合作探究“活动1”部分,让学生有充分的时间举行思考和交流,逐渐地缩小范畴,借助谋略器探索出a =1.41421356…,b =2.2360679…,是无穷不循环小数的历程,领会无穷逼近的思想,议决学生的活动2并探究得出无理数的概念.3.学生议决交流知识点、易错点和思想要领,培育学生概括能力和有条理的表达能力. 4.学生议决完成“五、当堂评价”,能正确地对给出的数举行分类,加深对有理数和无理数的理解.二、传授重难点1.重点:明白无理数与有理数的区别并能正确鉴别.2.难点:无理数概念的建立及估算,会鉴别一个数是无理数还是有理数.三、传授历程(一)、温习引入1. 有理数是怎样分类的?整数(如1-,0,2,3,…)有理数分数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020190002…上节课又明白到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们结局是什么数呢?本节课我们就来展现它们的真面目.(二)、自主探究1.探索无理数的小数表示请看图,鉴别下面3个正方形的边长之间有怎样的巨细干系?边长a 的取值范畴大抵是几多?怎样估算的?是否存在一个小数的平方即是2?说说你的理由.(概括总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.要是写成小数形式,它们是无穷不循环小数).[生]因为3个正方形的面积分别为1,2,4,而面积又即是边长的平方,所以面积大的正方形边长就大.[师]大众能不能鉴别一下面积为2的正方形的边长a 的大抵范畴呢?[生]因为a 2大于1且a 2小于4,所以a 大抵为1点几.[师]很好.a 肯定比1大而比2小,可以表示为1<a <2.那么a 结局是1点几呢?请大众用谋略器举行探索,首先确定十分位,十分位结局是几呢?如 1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a 2=2,故a 应比1.4大且比1.5小,可以写成1.4<a <1.5,所以a 是1点4几,即十分位上是4,请大众用同样的要领确定百分位、千分位上的数字.[生]因为1.412=1.9881,1.422=2.0164,所以a 应比1.41大且比1.42小,所以百分位上数字为1.[生]因为 1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a 应比1.414大而比1.415小,即千分位上的数字为4.[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a 应比1.4142大且比1.4143小,即万分位上的数字为2.[师]大众特殊聪明,请一位同砚把自己的探索历程整理一下,用表格的形式反应出来.[师]还可以连续下去吗?[生]可以. [师]请大众连续探索,并鉴别a 是有限小数吗? [生]a =1.41421356…,还可以再连续举行,且a 是一个无穷不循环小数.[师]请大众用上面的要领预计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时,它的平方恰恰即是5?请大众分组合作后回答.(约4分钟)[生]b =2.236067978…,还可以再连续举行,b 也是一个无穷不循环小数.[生]边长b 不会算到某一位时,它的平方恰恰即是5,但我不知道为什么.[师]好.这位同砚很坦诚,不会就要大胆地发起来,而不要冒充会,这样才华把知识学扎实,学透,大众应该向这位同砚学习.这个标题我来回答.要是b 算到某一位时,它的平方恰恰即是5,即b 是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b 不可能是有限小数.2.探索有理数的小数表示,明确无理数的概念思考:分数化成小数,最终此小数的形式有哪几种环境?——分数只能化成有限小数或无穷循环小数,即任何有限小数或无穷循环小数都是有理数.3,112,458,95,54,并看它们是有限小数还是无穷小数,是循环小数还是不循环小数.大众可以每个小组谋略一个数,这样可以减少时间.[生]3=3.0,54=0.8,95=•5.0, [生]3,54是有限小数,112,458,95是无穷循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无穷循环小数表示.反过来,任何有限小数或无穷循环小数都是有理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无穷不循环小数.无穷不循环小数叫无理数(irrational number).除上面的a ,b 外,圆周率π=3.14159265…也是一个无穷不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无穷不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无穷不循环小数,有理数是有限小数或无穷循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.(三)、合学应用例1:填空:0.351, 4.96••-,0.4583,•7.3,-π,-71,18. 3.14159, 6, -5.2323332…,1234567891011…(由相继的正整数组成).例2 :鉴别下列说法是否正确:(1)有限小数是有理数; ( )(2)无穷小数都是无理数; ( )(3)无理数都是无穷小数; ( )(4)有理数是有限数. ( )(四)、整理反思1.无理数的定义.2.你是怎样鉴别一个数是无理数还是有理数的?3.请把已学过的数怎样分类?易错点: .(五)、当堂评价1、以下各正方形的边长是无理数的是( )(A)面积为25的正方形;(B)面积为254 的正方形; (C)面积为8的正方形; (D)面积为1.44的正方形.2.已知:在下数中254 ,5, 1.42••-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…, (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用标记“<”相连.(六)、变练拓展1. 设面积为5π的圆的半径为a .(1)a 是有理数吗?说说你的理由.(2)预计a 的值(准确到十分位,并利用谋略器验证你的预计).(3)要是准确到百分位呢?解:∵πa 2=5π∴a 2=5(1)a 不是有理数,因为a 既不是整数,也不是分数,而是无穷不循环小数.(2)预计a ≈2.2.(3)a ≈2.24.有理数聚集 无理数聚集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 认识无理数(二)
教学目标:
(一)教学知识点
1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是无理数.
(二)能力训练要求
1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,
并在活动中进一步发展学生独立思考、合作交流的意识和能力.
2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是
无理数还是有理数,训练大家的思维判断能力.
(三)情感与价值观要求
1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.
2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力. 教学重点:
1.无理数概念的探索过程.
2.用计算器进行无理数的估算.
3.了解无理数与有理数的区别,并能正确地进行判断.
教学难点:
1.无理数概念的建立及估算.
2.用所学定义正确判断所给数的属性.
教学过程:
Ⅰ.创设问题情境,引入新课
[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.
Ⅱ.讲授新课
1.导入
[师]请看图
大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.
[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.
[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?
[生]因为a2大于1且a2小于4,所以a大致为1点几.
[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来.
[生]我的探索过程如下.
边长a 面积S
1<a<2 1<S<4
1.4<a<1.5 1.96<S<
2.25
1.41<a<1.42 1.9881<S<
2.0164
1.414<a<1.415 1.999396<S<
2.002225
1.4142<a<1.4143 1.99996164<S<
2.00024449
[师]还可以继续下去吗?
[生]可以.
[师]请大家继续探索,并判断a是有限小数吗?
[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.
[师]请大家用上面的方法估计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
[生]b =2.236067978…,还可以再继续进行,b 也是一个无限不循环小数.
2.无理数的定义
请大家把下列各数表示成小数.
3,11
2,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.
[生]3=3.0,54=0.8,9
5=•5.0, •=71.045
8,••=818.1112 [生]3,54是有限小数,11
2,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.
像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.
无限不循环小数叫无理数(irrational number).
除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.
3.有理数与无理数的主要区别
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.
4.例题讲解
下列各数中,哪些是有理数?哪些是无理数?
3.14,-3
4,••75.0,0.1010010001…(相邻两个1之间0的个数逐次加1). Ⅲ.课堂练习
(一)随堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,•
7.3,-π,-71,18. (二)补充练习:①判断题
(1)有理数与无理数的差都是有理数.
(2)无限小数都是无理数.
(3)无理数都是无限小数.
(4)两个无理数的和不一定是无理数.
②下列各数中,哪些是有理数?哪些是无理数?
0.351,-••69.4,3
2,3.14159,-5.2323332…, 123456789101112…(由相继的正整数组成).
在下列每一个圈里,至少填入三个适当的数.
Ⅳ.课时小结
本节课我们学习了以下内容.
1.用计算器进行无理数的估算.
2.无理数的定义.
3.判断一个数是无理数或有理数.
Ⅴ.课后作业
1.P25习题
2.2.
Ⅵ.探究与活动
设面积为5π的圆的半径为a .
(1)a 是有理数吗?说说你的理由.
(2)估计a 的值(精确到十分位,并利用计算器验证你的估计).
(3)如果精确到百分位呢?
解:∵πa 2=5π
∴a 2=5
(1)a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.
(2)估计a ≈2.2.
(3)a ≈2.24.
板书设计:。