新人教版八年级下册数学复习提纲【最新整理】
初二八年级数学下册复习知识点提纲
初二八年级数学下册复习知识点提纲变量与函数一、变量与常量1、变量:在某一变化过程中,可以取不同的数值,级数值发生变化的量,叫做变量。
常量:在某一变化过程中,取值(数值)始终保持不变的量,叫做常量。
2、注意事项:(1)常量和变量是相对的,在不同的研究过程中有些是可以相互转化的;(2)离开具体的过程抽象地说一个量是常量还是变量是不允许的;(3)在各种关于变量、常量的例子中,变量之间有一定的依赖关系。
如三角形的面积,当底边一定时,高与面积之间是有关联的,不是各自随意变化。
二、函数概念1、定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有的值与其对应,那么,我们就说y是x的函数,其中x叫做自变量,y叫做因变量。
2、对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。
三、函数的表示法:(1)列表法;(2)图象法;(3)解析法。
四、求函数自变量的取值范围1.实际问题中的自变量取值范围按照实际问题是否有意义的要求来求。
2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)解析式为整式的,x取全体实数;(2)解析式为分式的,分母必须不等于0式子才有意义;(3)解析式的是二次根式的被开方数必须是非负数式子才有意义;(4)解析式是三次方根的,自变量的取值范围是全体实数。
3.函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。
函数的图象一、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。
在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。
2、坐标平面内被x轴、y轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限注意:x轴、y轴原点不属于任何象限。
新人教版八年级下册数学总复习提纲
八年级数学下册知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 _________ 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a ≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质: 例1下列各式1), 其中是二次根式的是______________________________(填序号). 例2、求下列二次根式中字母的取值范围:(1)x x --+315; (2)22)-(xab a b b ba a=22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+(>0)(<0)0 (=0);例3、 在根式1) ,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算: 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式:例3、计算:例4、先化简,再求值:,其中a=,b=.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值(1)、根式变形法:当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。
八年级下册数学复习提纲人教版
八年级下册数学复习提纲人教版有的同学认为数学很难,但是其实数学也是一门靠背的科目,只要用心去记忆都可以学的很好。
以下是小编给大家整理的八年级下册数学复习提纲人教版,希望对大家有所帮助,欢迎阅读!八年级下册数学复习提纲人教版一.平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形。
二.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
三.平行四边形的判定:1.两组对边分别相等的四边形是平行四边形;2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
5.三角形的中位线平行于三角形的第三边,且等于第三边的一半。
四.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半。
五.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
六.矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
七.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
八.菱形的判定定理:1.一组邻边相等的平行四边形是菱形(rhombus)。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)九.正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
十.正方形判定定理:1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
十一。
梯形的概念:一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。
十二。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
十三。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
十四。
重心线段的重心就是线段的中点。
平行四边形的重心是它的两条对角线的交点。
新人教版八年级数学下复习提纲
八年级数学下知识点总结班级____________姓名_____________第十六章 分式 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则: 分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±=混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n aa 1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m aa a +=⋅; (2)幂的乘方:mn n m aa =)(; (3)积的乘方:n n nb a ab =)(;(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn ba b a =)(();(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
八年级下册数学复习提纲(汇总9篇)
八年级下册数学复习提纲(汇总9篇)八年级下册数学复习提纲(1)一、课内重视听讲,课后及时复习数学新知识的学习,数学能力的培养主要在课堂上进行。
所以要特别重视课内的学习效率,不干有一丝马虎,一定要形成正确的学习方法。
上课时要紧跟老师的思路,积极拓展自己的思维,比较自己的解题思路与老师讲的有那些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,多想几个为什么?应尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,一定要让自己冷静下来认真分析题目,尽量自己解决,理清思路。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系,形成自己的学习体系。
二、适当多做题,并养成良好的解题习惯要想学好数学,多做题,是学好数学的必有之路,熟悉掌握各种题型的解题思路。
刚开始要以基础题目入手,以课上的题目为准,提高自己的分析能力。
掌握一般的解题思路。
对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。
在平时养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异。
如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态、正确对待考试首先,把主要精力放在基础知识、基本技能、基本方法这三个方面上学习。
因为每次考试占绝大部分的是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候都保持镇静,思路有条不紊,克服浮躁情绪。
特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能把我打垮的自豪感。
人教版八年级数学下册知识点总结和复习要点
人教版八年级数学下册知识点总结和复习要点一、分式1分式的概念概念:一般地,如果A、B表示两个整式,且B中含有字母,那么式子A/B就叫做分式。
2分式的基本性质性质:分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变。
3分式的约分与通分约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
通分:把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分。
例子:对于分式(2x^2y)/(4xy^2),我们可以约分为(x/2y)。
二、反比例函数1反比例函数的概念概念:一般地,函数y=k/x (k为常数且k≠0)叫做反比例函数。
2反比例函数的性质性质:反比例函数的图像是双曲线;当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限。
例子:函数y=2/x的图像是一个位于第一、三象限的双曲线。
三、勾股定理1勾股定理的概念概念:直角三角形两直角边的平方和等于斜边的平方。
2勾股定理的逆定理逆定理:如果三角形三边满足两边平方和等于第三边平方,那么这个三角形是直角三角形。
例子:在△ABC中,若AB^2 + BC^2 = AC^2,则△ABC是直角三角形。
四、四边形1平行四边形的性质与判定性质:对边平行且相等;对角相等;邻角互补。
判定:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
2矩形的性质与判定性质:四个角都是直角;对角线相等且互相平分。
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形。
3菱形的性质与判定性质:四条边都相等;对角线互相垂直且平分。
判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
4正方形的性质与判定性质:具有矩形和菱形的所有性质。
判定:有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;邻边相等的矩形是正方形。
例子:一个四边形的对角线互相平分且垂直,那么这个四边形是菱形。
2024年八年级下册数学知识点总结归纳(2篇)
2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。
新人教版八年级数学全册复习提纲
新人教版八年级数学全册复习提纲TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-初二数学全册总复习提纲第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
八年级下册数学知识点提纲
八年级下册数学知识点提纲
一、有理数的运算
1. 加减乘除有理数的规律及运算法则
2. 有理数的乘方和绝对值的计算方法
二、平面图形的认识
1. 平行线、垂线、角度及其性质
2. 三角形、四边形、多边形的定义和性质
3. 圆的定义和性质
三、一次函数
1. 一次函数的概念及表示方法
2. 一次函数的图象、解析式和性质
3. 一次函数的应用
四、比例与相似
1. 比例的定义及性质
2. 分离变量法求解问题
3. 相似三角形的定义及判定方法
五、统计与概率
1. 统计调查中的基本概念与方法
2. 随机事件与概率的计算方法
3. 概率统计在生活中的应用
六、立体图形的认识
1. 立体图形的基本概念及分类
2. 等腰三角形的性质及应用
3. 正方体、长方体、棱柱、棱锥、圆锥、圆台的定义及性质
七、二次根式及其运算
1. 二次根式的概念及性质
2. 二次根式的化简与运算
3. 二次根式在几何中的应用
八、解线性方程组
1. 线性方程组及其解法
2. 利用线性方程组解决实际问题
九、立方与立方根
1. 立方数、立方根的概念
2. 立方根的求法及性质
3. 立方与立方根在几何中的应用
十、三角函数
1. 弧度制与角度制的转换
2. 常用三角函数的概念和性质
3. 三角函数的图象及其应用
以上为八年级下册数学重点知识点提纲,希望同学们能够认真学习,掌握这些知识点,提高数学成绩。
同时也要注意练习,多做一些实践性强的题目,加深对知识点的理解和应用。
最新新人教版八年级下册数学期末知识点复习提纲
八年级数学下册知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质: (1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a ≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式1 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x=a (a >0)a -(a <0)0 (a =0);例3、 在根式) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy yx x x y例5、 (2009龙岩)已知数a ,b =b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中.例5、如图,实数a 、b 在数轴上的位置,化简4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >>a b <。
八年级数学下册复习提纲(初二)
八年级数学下册复习提纲【篇一】变量与函数一、变量与常量1、变量:在某一变化过程中,可以取不同的数值,级数值发生变化的量,叫做变量。
常量:在某一变化过程中,取值(数值)始终保持不变的量,叫做常量。
2、注意事项:(1)常量和变量是相对的,在不同的研究过程中有些是可以相互转化的;(2)离开具体的过程抽象地说一个量是常量还是变量是不允许的;(3)在各种关于变量、常量的例子中,变量之间有一定的依赖关系。
如三角形的面积,当底边一定时,高与面积之间是有关联的,不是各自随意变化。
二、函数概念1、定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与其对应,那么,我们就说y是x的函数,其中x叫做自变量,y叫做因变量。
2、对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。
三、函数的表示法:(1)列表法;(2)图象法;(3)解析法。
四、求函数自变量的取值范围1.实际问题中的自变量取值范围按照实际问题是否有意义的要求来求。
2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)解析式为整式的,x取全体实数;(2)解析式为分式的,分母必须不等于0式子才有意义;(3)解析式的是二次根式的被开方数必须是非负数式子才有意义;(4)解析式是三次方根的,自变量的取值范围是全体实数。
3.函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。
函数的图象一、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。
在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。
2、坐标平面内被x轴、 y轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限注意: x轴、 y轴原点不属于任何象限。
(完整word版)八年级下册人教版数学复习提纲
数学复习提纲第16章.二次根式第17章.勾股定理第18章 .平行四边形第19章.一次函数第20章.数据的分析一个处处像别人表明自己优秀的,恰恰证明了他(她)并不优秀,或者说缺什么,便炫耀什么。
真正的优秀,并不是指一个人完美无缺,偶像般的光芒四射。
而是要真实地活着,真实地爱着。
对生活饱有热情,满足与一些小确幸,也要经得起诱惑,耐得住寂寞,内心始终如孩童般的纯真。
要知道,你走的每一步,都是为了遇见更好的自己,都是为了不辜负所有的好年华。
一个真实的人,一定也是个有担当的。
不论身处何地,居于何种逆境,他(她)们都不会畏惧坎坷和暴风雨的袭击。
因为知道活着的意义,就是真实的直面风浪。
生而为人,我们可以失败,却不能败的没有风骨,甚至连挑战的资格都不敢有。
人当如玉,无骨不去其身。
生于尘,立于世,便该有一颗宽厚仁德之心,便有一份容天下之事的气度。
一个真实的人,但是又不会过于执着。
因为懂得,水至清则无鱼,人至察则无徒的道理。
完美主义者最大的悲哀,就是活得不真实,不知道审时度势,适可而止。
一扇窗,推开是艳阳天,关闭,也要安暖向阳。
不烦不忧,该来的就用心珍惜,坦然以对;要走的就随它去,无怨无悔。
人活着,就是在修行,最大的乐趣,就是从痛苦中寻找快乐。
以积极的状态,过好每一天,生活不完美,我们也要向美而生。
一个真实的人,一定是懂爱的。
时光的旅途中,大多数都是匆匆擦肩的过客。
只有那么微乎其微的人,才可以相遇,结伴同行。
而这样的结伴一定又是基于志趣相投,心性相近的品性。
最好的爱,不是在于共富贵,而是可以共患难,就像一对翅膀,只有相互拥抱着才能飞翔。
爱似琉璃,正是因为纯粹干净,不沾染俗世的美。
懂爱的人,一定是真实的人。
正是因为懂得真爱的不易,所以更是以真面目面对彼此,十指紧扣,甘愿与爱的人把世间各种风景都看透,无论风雨,安暖相伴。
一个真实的人,定然是有着大智慧的。
人生在世,什么都追求好,追求完美,虽然这是一种积极的思想,却会很累,不仅自己累,身边人也会因为你而累。
人教版八年级数学下册复习提纲
人教版八年级数学下册复习提纲
一、整数和有理数
1. 整数概念及性质
2. 整数的加减法运算
3. 整数的乘法和除法运算
4. 整数的混合运算和运算规律
5. 有理数概念及性质
6. 有理数的加减法运算
7. 有理数的乘法和除法运算
8. 有理数的混合运算和运算规律
二、平方根和实数
1. 平方根的概念及性质
2. 平方根的运算法则
3. 二次根式的概念及性质
4. 二次根式的加减法运算
5. 二次根式的乘法和除法运算
6. 实数的概念及性质
7. 实数的加减法运算
8. 实数的乘法和除法运算
三、图形的性质
1. 平面直角坐标系
2. 点、线、面的基本概念
3. 图形的相似性质
4. 图形的对称性质
5. 图形的投影性质
6. 图形的旋转性质
四、一元一次方程与一元一次不等式
1. 一元一次方程的基本概念
2. 一元一次方程的解集及解的性质
3. 一元一次方程的加减消元和倍增消元
4. 一元一次方程的应用问题
5. 一元一次不等式的基本概念
6. 一元一次不等式的解集及解的性质
7. 一元一次不等式的加减消元和倍增消元
8. 一元一次不等式的应用问题
以上为人教版八年级数学下册复习提纲,以帮助复习重要知识点和概念。
请根据提纲进行系统性的复习和练习,以加深对数学知识的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2 7.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a ≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式1), 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围ab a b b ba a=22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+(>0)(<0)0 (=0);(1)x x --+315; (2)22)-(x例3、 在根式,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b =b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中,.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。
(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
222;2);3);4)275xa b x xy abc +-2()a b -11()ba b b a a b ++++51+51-例2、比较 (3)、分母有理化法通过分母有理化,利用分子的大小来比较。
例3、的大小。
(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4、 (5)、倒数法例5的大小。
(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、33的大小。
(7)、作差比较法在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔<例7、(8)、求商比较法它运用如下性质:当a>0,b>0时,则: ①1aa b b>⇔>; ②1aa b b<⇔<例8、比较5与2+的大小。
5、规律性问题例1. 观察下列各式及其验证过程:, 验证:;验证:. (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么cba222=+。
应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90C∠=︒,则22c a b=+,22b c a-,22a c b=-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
44152.勾股定理逆定理:如果三角形三边长a ,b,c 满足c b a 222=+,那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③勾股数扩大相同的的倍数依然是一组新的勾股数。
如ka,kb,kc 4.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90° (2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°⇒BC=21AB ∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°⇒CD=21AB=BD=AD D 为AB 的中点5.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 6、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 7、常用关系式由三角形面积公式可得:AB •CD=AC •BC8、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
9、命题、定理、证明 1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义: (1)命题必须是个完整的句子; (2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理用推理的方法判断为正确的命题叫做定理。
5、证明判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤 (1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
10、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用: 位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
11、数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
第十八章 平行四边形一.平行四边形1、定义:两组对边分别平行的四边形是平行四边形.2.平行四边形的性质角:平行四边形的邻角互补,对角相等;ABDOC边:平行四边形两组对边分别平行且相等; 对角线:平行四边形的对角线互相平分; 面积:①S=底⨯高=ah ; 3.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; 一组平行且相等的四边形是平行四边形; ④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形;二、特殊的平行四边形 (一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等; 3、矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. (二)菱形1、定义:有一组邻边相等的平行四边形是菱形。
2、菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补; ③对角线:对角线互相垂直平分且每条对角线平分每组对角; 3、菱形的判定方法:⎪⎭⎪⎬⎫+行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. (三)正方形1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形2、正方形的性质:A D BCADBCOCDBAO①边:四条边都相等;②角:四角都是直角; ③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。
3、正方形的判定方法:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 如图:∵DE 是△ABC 的中位线 ∴DE ∥BC ,DE=21BC(五)几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a ,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为b ,c ,则S 菱形=bc 21③ 设正方形ABCD 的一边长为a ,则a S 2=正方形;若正方形的对角线的长为b ,则bS 221=正方形四边形CDA BE DCBA一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理 ※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四常识:※1.若n是多边形的边数,则对角线条数公式是:2)3n(n .2.规则图形折叠一般“出一对全等,一对相似”.3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形……;仅是中心对称图形的有:平行四边形……;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆…… .注意:线段有两条对称轴.第十九章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。