新人教版八年级下册数学复习提纲【最新整理】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册知识点总结
第十六章 二次根式
1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a
4.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 5.同类二次根式:
二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。 6.二次根式的性质:
(1)(a )2=a (a ≥0); (2)==a a 2 7.二次根式的运算:
(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
=·(a ≥0,b ≥0);
(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
1、概念与性质 例1下列各式1)
, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围
ab a b b b
a a
=
22211
,2)5,3)2,4)4,5)(),6)1,7)2153
x a a a --+---+(>0)
(<0)
0 (=0);
(1)
x x --
+31
5; (2)
2
2)-(x
例3、 在根式,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:
的值。求代数式22,211881-+-+++
-+-=x y
y x x
y y x x x y
例5、 (2009龙岩)已知数a ,b =b -a ,则 ( )
A. a>b
B. a
C. a≥b
D. a≤b 2、二次根式的化简与计算 例1. 将
根号外的a 移到根号内,得 ( ) A.
; B. -
; C. -
; D.
例2. 把(a -b )
-1
a -
b 化成最简二次根式
例3、计算:
例4、先化简,再求值:
,其中,.
例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -
4、
比较数值
(1)、根式变形法