数学几何定理符号语言实用版

合集下载

直线与平面垂直的判定定理符号语言

直线与平面垂直的判定定理符号语言

直线与平面垂直的判定定理符号语言直线与平面垂直的判定定理是几何学中的一个重要定理,用来判断一条直线与一个平面是否垂直相交。

本文将使用符号语言来描述这一定理,以增强准确性和简洁性。

1. 引言直线与平面垂直的判定定理是研究三维空间中直线和平面相互关系的基本内容之一。

通过使用符号语言,我们可以更加准确地描述这个定理,并帮助读者更好地理解其中的数学原理。

2. 符号定义在使用符号语言描述直线与平面垂直的判定定理之前,我们首先需要明确一些符号的定义:- 直线:用L表示;- 平面:用P表示;- 垂直关系:用⊥表示。

3. 直线向量首先,我们需要定义直线的向量表示。

对于直线L,我们可以用向量→d⃗来表示。

即:L:→d⃗。

4. 平面法线向量接下来,我们定义平面的法线向量。

对于平面P,我们用向量→n⃗来表示。

即:P:→n⃗。

5. 垂直关系表示根据垂直关系的定义,直线L与平面P垂直相交等价于直线L的方向向量→d⃗与平面P的法线向量→n⃗互相垂直。

因此,我们可以用数学形式来表示这一关系:L⊥P,当且仅当→d⃗⋅→n⃗ = 0。

解释:当直线的方向向量与平面的法线向量的点积等于0时,表示直线与平面垂直相交。

6. 应用举例为了更好地理解直线与平面垂直的判定定理的应用,我们来看一个实际的例子。

假设直线L的向量表示为→d⃗ = (1, 2, 3),平面P的法线向量表示为→n⃗ = (2, -1, 1)。

我们可以通过计算点积来判断直线与平面的关系:→d⃗⋅→n⃗ = 1 × 2 + 2 × (-1) + 3 × 1 = 2 - 2 + 3 = 3。

由于→d⃗⋅→n⃗≠ 0,我们可以得出结论:直线L与平面P不垂直相交。

7. 其他判定定理除了上述直线与平面垂直的判定定理,还存在其他几个相关的定理:- 平行判定定理:两个向量的点积等于0时,表示它们垂直相交。

- 一般平面垂直判定定理:对于平面Ax + By + Cz = D 和直线P0(r0, s0, t0) + t(a, b, c),当且仅当Aa + Bb + Cc = 0时,平面与直线垂直相交。

数学几何定理符语言

数学几何定理符语言

数学几何定理符语言 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】1、基本事实:经过两点有且只有一条直线。

(两点确定一条直线)2、基本事实:两点之间线段最短。

3、补角性质:同角或等角的补角相等。

几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴∠B=∠D(等角的补角相等)4、余角性质:同角或等角的余角相等。

几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴∠B=∠D(等角的余角相等)5、对顶角性质:对顶角相等。

∠1=∠26、过一点有且只有一条直线与已知直线垂直。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

几何语言:∵ a∥b,a∥c ∴b∥c10、两条直线平行的判定方法:几何语言:如图所示(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b(3)同旁内角互补,两直线平行。

∵∠5+∠6=180°∴a∥b11、平行线性质:几何语言:如图所示(1)两直线平行,同位角相等。

∵a∥b ∴∠1=∠2(2)两直线平行,内错角相等。

∵a∥b ∴∠3=∠4(3)两直线平行,同旁内角互补。

∵a∥b ∴∠5+∠6=180°12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

立体几何公理、定理推论汇总

立体几何公理、定理推论汇总

立体几何公理、定理推论汇总一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。

公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l αβαβ∈⇒=∈I I 且作用:① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。

公理3 经过不在同一条直线上的三点,有且只有一个平面。

符号语言:,,,,A B C A B C ⇒不共线确定一个平面推论1 经过一条直线和这条直线外的一点,有且只有一个平面。

符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使,推论2 经过两条相交直线,有且只有一个平面。

符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使,推论3 经过两条平行直线,有且只有一个平面。

符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。

公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:作用:用来证明线线平行。

二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。

(1)符号语言://////a b a c c b ⎫⇒⎬⎭ 图形语言:线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(2)符号语言:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭ 图形语言:线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(3)符号语言:////a b a a b βαβα⎫⎪⊂⇒⎬⎪=⎭I图形语言:面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),a b b b O a a ββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭I 图形语言: 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。

(最新)初中八年级数学几何定理符号语言

(最新)初中八年级数学几何定理符号语言
正三角形
正方形
正五边形
正六边形正十二边形
要点诠释:
(2)多边形的对角线
多边形的对角线:连接多边形不相邻的两个顶点的线
段,叫做多边形的对角线•如图2,BD为四边形ABCD的 一条对角线。
(4)多边形的外角和:多边形的外角和等于360°第十二章一、全等来自角形1全等三角形的概念
(1)能够完全重合的两个图形叫做 全等形。
2、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
1判断三条已知线段能否组成三角形
2当已知两边时,可确定第三边的范围。
3证明线段不等关系。
3、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。 推论:①直角三角形的两个锐角互余。
•••/ A=Z D,Z B=Z E,Z C=Z F,
AB=DE,BC=EF,AC=DF
(1)边边边:三边对应相等的两个三角形全等。(SSS
几何语言:如图所示 在厶ABC和厶DEF中,
(AB=DE,
v J BC=EF,
AC=DF
•••△ ABC^ADEF (SSS
(2)边角边:两边和它们的夹角对应相等的两个三角形全等。(SAS
几何语言:如图所示在厶ABC和厶DEF中,
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质
(1)全等三角形的对应边相等、对应角相等。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
全等三角形的性质:全等三角形的对应边、对应角相等。

初中八年级数学几何定理符号语言

初中八年级数学几何定理符号语言

初中数学“图形与几何”内容20.全等三角形的性质:全等三角形的对应边、对应角相等。

如图所示:几何语言:∵△ABC≌△DEF∴∠A=∠D∠B=∠E∠C=∠FB C E F AB=DEBC=EFAC=DF21.边边边:三边对应相等的两个三角形全等。

(SSS)几何语言:如图所示∵AB=DE FEDAB CBC=EFAC=DF∴△ABC≌△DEF22.边角边:两边和它们的夹角对应相等的两个三角形全等。

(SAS)几何语言:如图所示∵AB=DE FEDAB C∠A=∠DAC=DF∴△ABC ≌△DEF23.角边角:两角和它们的夹边对应相等的两个三角形全等。

(ASA )几何语言:如图所示FEDABC∵∠A=∠DAB=DE ∠B=∠E ∴△ABC ≌△DEF24.角角边:两角和其中一个角的对边对应相等的两个三角形全等。

(AAS )几何语言:如图所示FEDABC∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF25.斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。

(H L )∵AB=DE ,BC=EF (AB=DE ,AC=DF ) ∴△ABC ≌△DEF对对应点连线的垂直平分线。

29.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

(等边对等角) E FPA BCD几何语言:如图所示,在△ABC 中∵AB =AC∴∠B =∠C (等边对等角)32.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

33.那几何语言:如图所示,在△ABC 中∵∠B =∠C∴AB =AC (等角对等边) 34.等边三角形的性质定理:等边三角形的三个内角都相等,并且每一个角都等于60° 。

半。

几何语言:如图所示C∵∠C =90°,∠B =30° ∴AC =21AB (或者AB =2AC ) 40.平行四边形的对边平行。

∵四边形ABCD 是平行四边形 ∴AB ∥CD ,AD ∥BC 41.平行四边形的对边相等。

数学几何定理符号语言(学生版本)

数学几何定理符号语言(学生版本)

1、基本事实:经过两点有且只有一条直线 。

(两点确定一条直线)2、基本事实:__________________最短。

________________最短3、补角性质:同角或等角的补角相等 。

几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴__________________(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴__________________(等角的补角相等)4、余角性质:同角或等角的余角相等。

几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C (同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴__________________(等角的余角相等)5、对顶角性质:对顶角相等。

∠1=∠26、过一点有且只有一条直线与已知直线垂直。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行 。

几何语言:∵ a ∥b ,a ∥c ∴∴____________10、两条直线平行的判定方法:几何语言:如图所示(1) 同位角相等,两直线平行。

(2)内错角相等,两直线平行。

∵∠1=∠2 ∴____________ ∵∠3=∠4 ∴____________(3)同旁内角互补,两直线平行。

∵∠5+∠6=180°∴________________11、平行线性质:几何语言:如图所示(1) 两直线平行,同位角相等。

∵a ∥b ∴________________(2) 两直线平行,内错角相等。

∵a ∥b ∴________________(3) 两直线平行,同旁内角互补。

∵a ∥b ∴________________12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

初中八年级数学几何定理符号语言

初中八年级数学几何定理符号语言

初中数学“图形与几何”内容在中考中,几何解答题、几何证明题就是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表小,因此学生必须熟练掌握每个定理的几何表小法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:初中八年级数学几何定理符号语言初中数学“图形与几何”内容八年级上册20、全等三角形的性质:全等三角形的对应边、对应角相等。

21、全等三角形的判定方法:(1) 边边边:三边对应相等的两个三角形全等。

(SSS 几何语言:如图所示 .• AB=DE,BC=EF,AC=DF 二△ AB(^A DEF(2) 边角边:两边与它们的火角对应相等的两个三角形全等。

(SAS 几何语言:如图所示.• AB=DE, Z A= Z D,AC=DF 二 AAB(^A DEF (3) 角边角:两角与它们的夹边对应相等的两个三角形全等。

(ASA 几何语言:如图所示. Z A= Z D,AB=DE, Z B= Z E . AB(^A DEF(4) 角角边:两角与其中一个角的对边对应相等的两个三角形全等。

(AAS 几何语言:如图所示/ A= Z D, Z B=Z E,BC=EF . AB(^A DEF (5) 斜边、直角边:斜边与一条直角边对应相等的两个直角三角形全等。

(H L)■ 几何语言:如图所示[.• AB=DE,BC=EF(AB=DE,AC=DF) . AB(^A DEF22、角平分线的性质:角的平■分线上的点到角的两边的距离相等。

23、 推论:角的内部到角的两边的距离相等的点在角的平■分线上。

24、 轴对称的性质:如果两个图形关丁某条直线对称,那么对称轴就是任何一对对应 点连线的垂直平■分线。

25、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相LHJ (推论)几何语言: 如图所示 .• EC±PA 丁 C,ED±PB 于 D,EC=ED.••点E 在Z APB 的平■分26、 推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

几何符号语言

几何符号语言
线段的中点 :
∵AM=BM(已知)
∴点M是线段AB的中点 (线段中点的意义)
A
M
B
反之:
∵ 点M是线段AB的中点(已知)

(已知)
∴点M是线段AB的中点
(线段中点的意义)
∴AM=MB(线段中点的意义)
∵ 点M是线段AB的中点(已知)

(线段中点的意义)

(已知)
∴点M是线段AB的中点
(线段中点的意义)
b
平行线性质3:两直线平行,同旁内角互补.
l
∵a∥b(已知),
3 14
a ∴∠2+∠4=180° (两直线平行,同旁内角互补).
2 b
∵OC平分∠AOB (已知)
∴ ∠AOC=∠BOC(角平分线的意义) 或
∵OC平分∠AOB (已知)

∠BOC=1 2
∠AOB (角平分线的意义)

∵OC平分∠AOB (已知)
∴ ∠AOB=2∠BOC. (角平分线的意义)
互余的意义:
12
互补的意义:
2 1
∵∠1+∠2= 90°(已知) ∴∠1与∠2互为余角(互余的意义) 反之: ∵∠1与∠2互为余角(已知) ∴∠1+∠2= 90°(互余的意义)
A
0
B
∴ ABCD (垂直的意义)
反之: ∵ ABCD,垂足为O,
D
∴AOC=COB=BOD=DOA=90
(垂直的意义)
线段的垂直平分线:
符号语言: ∵ CD是线段AB的垂直平分线,点O为垂足(已知)
C
∴ CD⊥AB,AO=BO(线段垂直平分线意义)
反之,如图:
A
O
B
∵ CD⊥AB,AO=BO(已知),

完整版)高中立体几何八大定理

完整版)高中立体几何八大定理

完整版)高中立体几何八大定理以下是格式正确、经过修改的文章:线面位置关系的八大定理一、直线与平面平行的判定定理:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行。

符号语言:a//b作用:线线平行→ 线面平行二、直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

符号语言:l//m。

l∥m∩β=m作用:线面平行→ 线线平行三、平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

符号语言:a∥β。

b∥β。

AB=ab。

A→β→γ。

B→β→γ作用:线线平行→ 面面平行四、平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。

符号语言:α∥β。

α∩γ=a。

β∩γ=b。

a//b作用:面面平行→ 线线平行五、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

符号语言:a⊥α。

a⊥β。

α∩β=A。

m⊥α。

n⊥α。

m∥β。

n∥β作用:线线垂直→ 线面垂直六、直线与平面垂直的性质定理:若两条直线垂直于同一个平面,则这两条直线平行。

符号语言:a⊥α。

b⊥α。

a//b作用:线面垂直→ 线线平行七、平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

符号语言:a⊥α。

α∥β。

a⊥β作用:线面垂直→ 面面垂直八、平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面。

符号语言:α⊥β。

α∩β=l。

AB⊥β。

AB∥α作用:面面垂直→ 线面垂直。

经典:几何符号语言

经典:几何符号语言
2
∴∠2=∠4(等角的余角相等)
4
4
同角(或等角)的补角相等.
1
∵∠1+∠2= 180°, ∠3+∠2= 180° (已知)
∴∠1=∠2(同角的补角相等)
3
∵∠1+∠2= 180°, ∠3+∠4= 180°(已知) 又∠1=∠3(已知)
2
∴∠2=∠4(等角的补角相等)
4
5
垂直的意义
C
符号语言
如图: ∵AOC=90 (已知)
线段的中点 :
∵AM=BM(已知)
∴点M是线段AB的中点 (线段中点的意义)
A
M
B
反之:
∵ 点M是线段AB的中点(已知)

(已知)
∴点M是线段AB的中点
(线段中点的意义)
∴AM=MB(线段中点的意义)
∵ 点M是线段AB的中点(已知)

(线段中点的意义)

(已知)
∴点M是线段AB的中点
(线段中点的意义)
9
平行线的判定方法3
l
同旁内角互补,两直线平行.
a
1
° ∵∠1+∠2=180 (已知),
b
2
∴a//b(同旁内角互补,两直线平行).
10
在同一平面内,垂直于同一条直线的两条直线平行.
a
b
c
1
2
∵ a c b c (已知)
∴ a∥ b
(在同一平面内,垂直于
同一条直线的两条直线平行. )
11
平行线的传递性:平行于同一条直线的两条直线平行.
D
∴ CD是线段AB的垂直平分线(线段垂直平分线意义).
7
平行线的判定方法1.

初中八年级数学几何定理符号语言

初中八年级数学几何定理符号语言

初中数学“图形与几何”内容八年级下册1、全等三角形的性质:全等三角形的对应边、对应角相等。

FEDABC2、全等三角形的判定方法:(1)边边边:三边对应相等的两个三角形全等。

(SSS ) 几何语言:如图所示∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF(2)边角边:两边和它们的夹角对应相等的两个三角形全等。

(SAS ) 几何语言:如图所示∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF(3)角边角:两角和它们的夹边对应相等的两个三角形全等。

(ASA ) 几何语言:如图所示∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF(4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。

(AAS ) 几何语言:如图所示∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF(5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。

(H L )3、角平分线的性质:角的平分线上的点到角的两边的距离相等。

4、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。

5 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

E F P A B CD N M A B C D6、线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

7、等腰三角形的性质:(1)等腰三角形的两个底角相等。

(等边对等角) 几何语言:如图所示,在△ABC 中∵AB =AC∴∠B =∠C (等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

8、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)几何语言:如图所示,在△ABC 中∵∠B =∠C∴AB =AC (等角对等边) 9、等边三角形的性质定理:等边三角形的三个内角都相等,并且每一个角都等于60° 。

初中八年级数学几何定理符号语言

初中八年级数学几何定理符号语言

初中数学“图形与几何”内容八年级下册1、全等三角形的性质:全等三角形的对应边、对应角相等。

FEDABC2、全等三角形的判定方法:(1)边边边:三边对应相等的两个三角形全等。

(SSS ) 几何语言:如图所示∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF(2)边角边:两边和它们的夹角对应相等的两个三角形全等。

(SAS ) 几何语言:如图所示∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF(3)角边角:两角和它们的夹边对应相等的两个三角形全等。

(ASA ) 几何语言:如图所示∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF(4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。

(AAS ) 几何语言:如图所示∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF(5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。

(H L )3、角平分线的性质:角的平分线上的点到角的两边的距离相等。

4、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。

5 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

E F P A B CD N M A B C D6、线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

7、等腰三角形的性质:(1)等腰三角形的两个底角相等。

(等边对等角) 几何语言:如图所示,在△ABC 中∵AB =AC∴∠B =∠C (等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

8、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)几何语言:如图所示,在△ABC 中∵∠B =∠C∴AB =AC (等角对等边) 9、等边三角形的性质定理:等边三角形的三个内角都相等,并且每一个角都等于60° 。

两直线平行内错角相等的符号语言

两直线平行内错角相等的符号语言

两直线平行内错角相等是几何学中的一个基本定理,它涉及到直线和角度的关系,是在数学领域中被广泛运用的一个重要定理。

在几何学中,两直线平行内错角相等的定理给出了两条平行线之间角度的关系,是在解决相关问题时的一个有力工具。

本文将就两直线平行内错角相等的符号语言进行较为详细的探讨,旨在帮助读者加深对这一定理的理解。

在数学中使用符号语言是一种非常普遍的表达方式,它能够简洁明了地传达数学定理和公式,是数学研究中不可或缺的一部分。

对于两直线平行内错角相等这一定理,同样可以通过符号语言进行表达和证明。

接下来将详细介绍这一定理的符号语言表示。

1. 定理表述两直线平行内错角相等的定理可以用如下的方式进行表述:若直线l和m平行,则对于任意一点A和B,当A在l线上,B在m线上时,角∠AOB等于角∠COD。

其中O是直线l和m的交点,C点在m线上,D点在l线上。

2. 符号语言的表示在数学中,通常使用字母表示点、直线或角,这些字母一般为大写或小写的拉丁字母。

对于两直线平行内错角相等这一定理,可以使用如下符号语言进行表示:a. 直线l和m平行:l // mb. 点的表示:A、B、C、D、Oc. 角的表示:∠AOB、∠COD3. 证明过程对于两直线平行内错角相等这一定理,可以通过简单的几何推理进行证明。

a. 连接AO和OD两条线段,连接BO和OC两条线段;b. 因为l和m平行,则根据平行线性质,∠AOB和∠COD为同旁内错角;c. 则根据同旁内错角的性质,∠AOB=∠COD。

4. 应用举例两直线平行内错角相等的定理,在解决相关几何问题时经常会用到。

考虑如下问题:已知直线l和m平行,AB是l线上的一点,C是m线上的一点,若∠AOB=60°,求∠COD的度数。

根据两直线平行内错角相等的定理,∠AOB=∠COD,则∠COD=60°。

通过以上的讨论,相信读者对于两直线平行内错角相等的定理有了更深入的理解。

符号语言的使用能够让数学表达更加简洁明了,有助于增强数学知识的理解和应用。

直线与平面垂直的判定定理符号语言

直线与平面垂直的判定定理符号语言

直线与平面垂直的判定定理符号语言(实用版)目录1.直线与平面垂直的判定定理的符号语言概述2.直线与平面垂直的判定定理的符号表示3.直线与平面垂直的判定定理的适用条件4.直线与平面垂直的判定定理的证明方法5.直线与平面垂直的判定定理在实际中的应用正文一、直线与平面垂直的判定定理的符号语言概述直线与平面垂直的判定定理,是一种用于判断一条直线是否与一个平面垂直的数学定理。

其符号语言表述为:若一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

在这个定理中,直线用“l”表示,平面用“S”表示,相交直线用“AB”和“CD”表示。

二、直线与平面垂直的判定定理的符号表示直线与平面垂直的判定定理的符号表示为:l 垂直于 S,表示为“l ⊥S”;同时,l 与平面 S 内的两条相交直线 AB 和 CD 都垂直,表示为“l⊥AB”且“l⊥CD”。

三、直线与平面垂直的判定定理的适用条件直线与平面垂直的判定定理的适用条件为:直线 l 与平面 S 内的两条相交直线 AB 和 CD 都垂直。

这意味着,若 l 与 AB 或 l 与 CD 不垂直,则不能使用该定理判断直线 l 与平面 S 是否垂直。

四、直线与平面垂直的判定定理的证明方法要证明直线与平面垂直的判定定理,可以采用反证法。

假设直线 l 与平面 S 不垂直,那么 l 与 S 要么相交,要么平行。

如果 l 与 S 相交,那么它们必有一个公共点,假设为 O。

连接 OA、OC,由于 OA 垂直于 AB,OC 垂直于 CD,根据垂直平面的性质,可知 OA 平行于 CD,OC 平行于 AB。

然而,这与假设的 l 与 AB 和 CD 都垂直相矛盾。

所以,假设不成立,即直线 l 与平面 S 垂直。

五、直线与平面垂直的判定定理在实际中的应用直线与平面垂直的判定定理在实际中有广泛的应用,例如在几何学、物理学、工程学等领域。

数学几何定理符号语言之欧阳学文创编

数学几何定理符号语言之欧阳学文创编

1、基本事实:经过两点有且只有一条直线。

(两点确定一条直线)欧阳歌谷(2021.02.01)2、基本事实:两点之间线段最短。

3、补角性质:同角或等角的补角相等。

几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴∠B=∠D(等角的补角相等)4、余角性质:同角或等角的余角相等。

几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴∠B=∠D(等角的余角相等)欧阳歌谷创编欧阳歌谷创编5、对顶角性质:对顶角相等。

∠1=∠26、过一点有且只有一条直线与已知直线垂直。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行 。

几何语言:∵ a ∥b ,a ∥c ∴b ∥c10、两条直线平行的判定方法:几何语言:如图所示(1) 同位角相等,两直线平行。

(2)内错角相等,两直线平行。

∵∠1=∠2 ∴a ∥b ∵∠3=∠4∴a ∥b(3)同旁内角互补,两直线平行。

∵∠5+∠6=180°∴a ∥b11、平行线性质:几何语言:如图所示(1)两直线平行,同位角相等。

∵a∥b ∴∠1=∠2(2)两直线平行,内错角相等。

∵a∥b ∴∠3=∠4(3)两直线平行,同旁内角互补。

∵a∥b ∴∠5+∠6=180°12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

数学几何定理符号语言(学生版本)

数学几何定理符号语言(学生版本)

1、基本事实:经过两点有且只有一条直线 。

(两点确定一条直线)2、基本事实:__________________最短。

________________最短3、补角性质:同角或等角的补角相等 。

几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴__________________(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴__________________(等角的补角相等)4、余角性质:同角或等角的余角相等。

几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C (同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴__________________(等角的余角相等)5、对顶角性质:对顶角相等。

∠1=∠26、过一点有且只有一条直线与已知直线垂直。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行 。

几何语言:∵ a ∥b ,a ∥c ∴∴____________10、两条直线平行的判定方法:几何语言:如图所示(1) 同位角相等,两直线平行。

(2)内错角相等,两直线平行。

∵∠1=∠2 ∴____________ ∵∠3=∠4 ∴____________(3)同旁内角互补,两直线平行。

∵∠5+∠6=180°∴________________11、平行线性质:几何语言:如图所示(1) 两直线平行,同位角相等。

∵a ∥b ∴________________(2) 两直线平行,内错角相等。

∵a ∥b ∴________________(3) 两直线平行,同旁内角互补。

∵a ∥b ∴________________12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学几何定理符号语言1、基本事实:经过两点有且只有一条直线。

(两点确定一条直线)2、基本事实:两点之间线段最短。

3、补角性质:同角或等角的补角相等。

几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C∴∠B=∠D(等角的补角相等)4、余角性质:同角或等角的余角相等。

几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C∴∠B=∠D(等角的余角相等)5、对顶角性质:对顶角相等。

∠1=∠26、过一点有且只有一条直线与已知直线垂直。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短)8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

几何语言:∵a∥b,a∥c ∴b∥c10、两条直线平行的判定方法:几何语言:如图所示(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b(3)同旁内角互补,两直线平行。

∵∠5+∠6=180°∴a∥b11、平行线性质:几何语言:如图所示(1)两直线平行,同位角相等。

∵a∥b ∴∠1=∠2(2)两直线平行,内错角相等。

∵a∥b ∴∠3=∠4(3) 两直线平行,同旁内角互补。

∵a ∥b ∴∠5+∠6=180°12、平移:(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

13、三角形三边关系定理:三角形两边的和大于第三边。

a+b>c a+c>b b+c>a14、三角形三边关系推论:三角形中任意两边之差小于第三边。

a-b<c a-c<b b-c<a15、三角形内角和定理:三角形三个内角的和等于180°。

几何语言:在三角形ABC 中, ∠A+∠B+∠C=180°16、三角形的一个外角等于与它不相邻的两个内角的和。

几何语言:在三角形ABC 中, ∠1=∠A+∠C17、三角形的一个外角大于与它不相邻的任何一个内角。

几何语言:在三角形ABC 中, ∠1>∠A, ∠1>∠C18、多边形内角和 :n 边形的内角的和等于(n-2)×180°。

19、多边形的外角和等于360°。

20、全等三角形的性质:全等三角形的对应边、对应角相等。

FEDABC21、全等三角形的判定方法:B 几何语言:如图所示 ∵△ABC ≌△DEF∴∠A=∠D ,∠B=∠E ,∠C=∠F ,AB=DE ,BC=EF ,AC=DFB ACB AC24、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。

25 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

26、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

27、轴对称: (1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同;(2)新图形式的每一点,都是原图形上的某一点关于直线的对称点; (3)连接任意一对对应点的线段被对称轴垂直平分。

28、用坐标表示轴对称:点(x ,y)关于x 轴对称的点的坐标为(x ,-y); 点(x ,y)关于y 轴对称的点的坐标为(-x ,y)。

29、等腰三角形的性质:(1)等腰三角形的两个底角相等。

(等边对等角) 几何语言:如图所示,在△ABC 中∵AB =AC∴∠B =∠C (等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

N M A B C D CC30、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)几何语言:如图所示,在△ABC 中∵∠B =∠C∴AB =AC (等角对等边)31、等边三角形的性质定理:等边三角形的三个内角都相等,并且每一个角都等于32、等边三角形的判定定理:(1)三个角都相等的三角形是等边三角形。

(2)有一个角是60°的等腰三角形是等边三角形。

33、直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

几何语言:如图所示∵∠C =90°,∠B =30°∴AC =21AB (或者AB =2AC )34、勾股定理:如果直角三角形两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2。

35、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个36、平行四边形的性质:C DE A B CD(1)平行四边形的对边平行。

(2)平行四边形的对边相等。

(3)平行四边形的对角相等。

(4)平行四边形的对角线互相平分。

37、平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形。

(定义)(2)两组对边分别相等的四边形是平行四边形。

(3)对角线互相平分的四边形是平行四边形。

(4)一组对边平行且相等的四边形是平行四边形。

(5)两组对角分别相等的四边形是平行四边形。

38、三角形的中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

几何语言:如图所示,在△ABC 中 ∵D 、E 分别是AB 、AC 的中点 ∴DE ∥BC ,DE=21BC 39、两条平行线间的任何一组平行线段相等 。

40、矩形的性质:(平行四边形具有的性质都具有) (1)矩形的四个角都是直角。

(2)矩形的对角线相等。

(性质)几何语言:如图所示, (1)∵四边形ABCD 是平行四边形 ∴AB ∥CD ,AD ∥BC (2)∵四边形ABCD 是平行四边形 ∴AB=CD ,AD=BC (3)∵四边形ABCD 是平行四边形 ∴∠ABC=∠ADC ,∠ BAD=∠BCD (4)∵四边形ABCD 是平行四边形 ∴OA=OC ,OB=ODODCB A (判定)几何语言:如图所示,(1)∵AB ∥CD ,AD ∥BC ∴四边形ABCD 是平行四边形 (2)∵AB=CD ,AD=BC ∴四边形ABCD 是平行四边形 (3)∵OA=OC ,OB=OD ∴四边形ABCD 是平行四边形 (4)∵AB CD (或AD BC ) ∴四边形ABCD 是平行四边形 (5)∵∠ABC=∠ADC ,∠ BAD=∠BCD ∴四边形ABCD 是平行四边形A C D(性质)几何语言:如图所示, (1)∵四边形ABCD 是矩形 ∴∠ABC=∠BCD =∠CDA =∠DAB =90°(2)∵四边形ABCD 是矩形 ∴AC=BD41、直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半。

(2)直角三角形的两个锐角互余。

42、矩形的判定方法:(1)有一个是直角的平行四边形是矩形。

(定义) (2)有三个角是直角的四边形是矩形。

(3)对角线相等的平行四边形是矩形。

43、菱形的性质:(平行四边形具有的性质都具有)(1)菱形的四条边都相等。

(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

44、菱形的判定方法:(1)一组邻边相等的平行四边形是菱形。

(定义) (2)四边相等的四边形是菱形。

(3)对角线互相垂直的平行四边形是菱形。

45、菱形的面积=对角线(AC 、BD )乘积的一半,即S=21(AC×BD ) 。

AC B A D46、正方形的性质:(矩形、菱形具有的性质都具有) (1)正方形的四个角都是直角,四条边都相等。

(2)正方形的两条对角线相等,且互相垂直平分,每条对角线平分一组对角。

(1)有一组邻边相等的矩形是正方形。

(2)有一个内角是直角的菱形是正方形。

(3)对角线相等且互相垂直平分的四边形是正方形。

48、等腰梯形的性质:(1)等腰梯形在同一底上的两个角相等。

(2)等腰梯形的两条对角线相等。

49、等腰梯形的判定方法: (1)两腰相等的梯形是等腰梯形。

(2)同一底上的两个角相等的梯形是等腰梯形 。

(3)对角线相等的梯形是等腰梯形。

(教材中没有)50、重心:线段的重心是它的中点; 三角形的重心是三条中线的交点;平行四边形的重心是对角线的交点。

A B D CD C B B。

相关文档
最新文档