最新北师大版七年级数学下册第一次月考试题
北师大版七年级(下)数学第一次月考试卷
北师大版七年级(下)数学第一次月考试卷(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)计算a3·a2的结果是()A.a6B.a5C.2a5D.2a62.(4分)在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中,因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积3.(4分)下列运算正确的是( )A.a5+a5=a10B.(-3ab)2=-6a2bC.a6÷a=a6D.2a4·3a5=6a94.(4分)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10-10 B.9.9×10-10C.9.9×10−9D.0.99×10-85.(4分)下列各式能用平方差公式计算的是( )A.(2x+y)(2y+x)B.(-x+y)(-x+y)C.(x+1)(-x-1)D.(3x-y)(-3x+y)6.(4分)下列计算正确的是()A.(-a-b)2=a2+2ab+b2B.(2a+b)(-2a+b)=2a2-b2C.(a+1)(a-2)=a2-2D.(a-b)2=a2-b27.(4分)如图:内、外两个四边形都是正方形,阴影部分的宽为3,且面积为51,则内部小正方形的面积是( )A.47B.49C.51D.538.(4分)计算(-0.5)2016•(-2)2017的结果是( )A.1B.2C.−1D.-229.(4分)小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2-20xy+,不小心把最后一项染黑了,你认为这一项是( )A.5y2B.10y2C.100y2D.25y210.(4分)已知:8x=256,32y=256,则2018(x-1)(y-1)=( )A.0B.1C.2018D.256二、填空题(本题共计6小题,总分24分)11.(4分)(-3)0=_____12.(4分)(2x3y2−2xy2)÷2xy2=_____13.(4分)若a n=3,则a3n=_____14.(4分)若(m+n)=3,mn=-3,则(1-m)(1-n)=_____15.(4分)若(x-ay)(x+ay)=x2-16y2,则a=__________16.(4分)已知(α-2018)2+(2019-α)2=5,则(α-2018)(2019-α)=_____三、解答题(本题共计9小题,总分86分)17.(8分)利用整式乘法公式简算(1).1992-1(2).20202-2019×202118.(10分)(1).-7xy2·(-2x2y)3÷14x4y;(2).(a-b)(a+2b)-3a(2a-b)19.(6分)先化简,再求值:[(2x+y)2-(x+y)(y-x)]÷2x,其中x=-2,y=1220.(8分)卫星绕地球的速度是7.9×103米/秒,求卫星绕地球运行5×102秒走过的路程.(结果用科学记数法表示)21.(8分)一个长方形活动场地的长为2a米,宽比长少5米,实施“阳光体育”行动后,学校将长方形的长与宽都增加了4米,求:(1).原长方形活动场地的面积为多少平方米?(2).场地面积增加了多少平方米?22.(10分)为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如下数据:(1).该轿车油箱的容量为_____L,行驶120km 时,油箱剩余油量为_____L;(2).根据上表的数据,写出油箱剩余油量w(L)与轿车行驶的路程s(km)之间的表达式__________(3).某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时邮箱剩余油量22L,求A,B 两地之间的距离.23.(10分)已知多项式(ax+1)(x 2-3x-2)的结果中不含有x 的一次项(a 是常数),求代数式(2a+1)2-(2a+1)(2a-1)的值.24.(12分)从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分 拼成一个长方形(如图2).(1).比较两图的阴影部分面积,可以得到乘法公式是(a+b)(a-b)=__________;(2).请应用这个公式完成下列各题:①已知4m 2-n 2=15,2m+n=3,求2m-n 的值.②计算:(1+12)(1+122)(1+124)(1+128)+121525.(14分)探究题:(1).计算下列各式,并把结果直接写在横线上:①(x-1)(x+1)=__________;②(x-1)(x 2+x+1)=__________;③(x-1)(x 3+x 2+x+1)=__________;(2).由此我们可以猜想结论:(n 均为正整数)①(x-1)(x n +x n-1+…+x 2+x+1)=__________②(x n -1)÷(x-1)=__________(3).请你利用上面的结论,完成计算:①求1+3+32+...+32014+32015+32016值的个位数字.②已知1+x+x2+·+x2015+x2016=0求x2017的值.。
最新北师大版七年级数学下册第一次月考试题
北师大版七年级数学下册第一次月考试题一、选择题(共12小题,每小题3分,共36分)1.下列计算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x32.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()A.沙漠B.体温C.时间D.骆驼3.如图所示,下列判断正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠3+∠ADC=180°,则AB∥CD4.(﹣2xy)4的计算结果是()A.﹣2x4y4B.8x4y4C.16x4y4D.16xy45.纳米是非常小的长度单位,0.22纳米是0.00000000022米,将0.00000000022用科学记数法表示为()A.0.22×10﹣9B.2.2×10﹣10C.22×10﹣11D.0.22×10﹣86.从如图的变形中验证了我们学习的公式()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b 2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)7.如图是某市一天的温度随时间变化的图象,通过观察可知,下列说法中错误的是()A.这天15时的温度最高B.这天3时的温度最低C.这天最高温度与最低温度的差是13℃D.这天21时的温度是30℃8.下列各式的计算中不正确的个数是()①100÷10﹣1=10;②(﹣2a+3)(2a﹣3)=4a2﹣9;③(a﹣b)2=a2﹣b2;④3a2b﹣3ab2=﹣ab.A.4 B.3 C.2 D.19.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B .第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°10.已知a2+b2=2,a+b=1,则ab的值为()A.﹣1 B.﹣C.﹣D.311.下列命题中的假命题是()A.两直线平行,内错角相等B.两直线平行,同旁内角相等C.同位角相等,两直线平行D.平行于同一条直线的两直线平行12.如图,已知a∥b,小华把三角板的直角顶点放在直线a上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°二、填空题(每小题3分,共12分):14.若4x 2+kx+25是一个完全平方式,则k= .15.一个角的余角等于它补角的,则这个角是度.16.若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为.17.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是.三、解答题:(72分)18.(18分)计算:(1)()0﹣5﹣2 (2)201×199+1(简便运算)(3)(﹣y)8÷(﹣y2)(4)4a(a﹣b+1)(5)(﹣9a2b4)•(﹣a2c)(6)(a﹣2)2+2(a﹣1)(a+2)19.(6分)先化简再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=﹣,y=2.20.(5分)如图所示,在一个三角形支架上要加一根横杆DE,使DE∥BC,请你用尺规作出DE的位置.(不写作法,保留作图痕迹)21.(6分)如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.解:∠A=∠3,理由如下:∵DE⊥BC,AB⊥BC(已知)∴∠DEB=∠ABC=90°()∴∠DEB+()=180°∴DE∥AB ()∴∠1=∠A()∠2=∠3()∵∠l=∠2(已知)∴∠A=∠3()22.(8分)如图所示,图象反映的是:小明从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示小明离家的距离.根据图象回答下列问题:(1)体育场离小明家多远,小明从家到体育场用了多少时间?(2)体育场离文具店多远?(3)小明在文具店逗留了多少时间?(4)小明从文具店回家的平均速度是多少?23.(8分)如图,已知AD∥BC,∠DBC与∠C互余,BD平分∠ABC,∠A=112°,(1)求∠ABC的度数;(2)求∠C的度数.24.(9分)(1)如图1,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若图1中的阴影部分剪下来,重新拼叠成如图2的一个矩形,则它长为;宽为;面积为.(2)由(1)可以得到一个公式:.(3)利用你得到的公式计算:20192﹣2018×2020.25.(12分)如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).。
北师大版七年级数学下册第一次月考试卷
七年级数学下第一次月考试题一、选择题(每小题2分,共20分)1.计算n m a a ⋅3)(的结果是( ) A .n m a +3 B .n m a +3 C .)(3n m a + D .mn a 32、下列运算正确的有( )(1) (a 3)7=a 10 (2) x 2+x 2=x 4 (3) a 4·a 4= a 6(4) x 3·x 3=2x 3 (5) (x 5)3=x 15 (6)a 4+ a 4= 2a 4A.1个B.2个C. 3个D.4个3 .已知n 28232=⨯,则n 的值为 ( )A .18B .8C .7D .114. 下列各式中,能用平方差公式计算的是 ( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+D 、))((b a b a -+-5.下列各式中,结果错误的是( )A. (x+2)(x –3) =x 2–x –6B. (x –4)(x+4)= x 2–16C. (2x +3)(2x –6) = 2x 2–3x-18D. (2x-1)(2x+2)=4x 2 +2x –26、已知,5,3==b a x x 则=-b a x( ) A 、35 B 、109 C 、53 D 、15 7、(-2a 4b 2)(-3a)2的结果是( )A.-18a 6b 2B.18a 6b 2C.6a 5b 2D.-6a 5b 2 8.(2x 2y)3.(-7xy 2)÷14x 4y 3的结果是( )A. 4x 3y 2B.-4x 3y 2C.3x 3y 2D.以上答案都不对9、下列各式中哪些可以运用完全平方公式计算( )(1)()()x y y x +-+ (2)()()a b b a --(3)()()ab x x ab +--33 (4)()()n m n m +--A. (1)B .(1)(4) C .(2)(3)(4) D.(1)(2)10、 若x 2+kx+49是完全平方式,则k = ( )A.7B.14C.-14D.+14或-14 二. 填空题(每空2分,共14分)11.用科学记数方法表示0000907.0,得____________________12.(-2)-3=________若()120=-x ,则x 应满足条件___________。
七年级(下)第一次月考(北师大版)
七年级(下)第一次月考数学试卷班级_________姓名__________得分_____一、填空题:(每小题4分,共40分)1.观察下列整式,并填空:53,,23,5,2,,25423223221-+-+---a a R xy y x y x xyz x mn a π 单项式有 ;多项式有 . 2.系数为21-且只含字母x 、y 的3次单项式有 个,它们分别是 . 3.填表:4.计算:(1)_______245=⋅-x x x ; (2) __________)3()3(34=-⋅-.5.已知一个长方形的周长为()42a ab b +-,且长为(b a ab 422-+-),则这个长方形的宽是 __________.6.已知A=a+b,B=2a-b,那么A+B= ; A-2B= .7.如图,直线AB 、CD 、EF 相交于点O,则∠AOE 的对顶角是 ,∠AOF 的邻补角是 . 8.如图,⑴若AB ∥CD,则相等的角有 ;⑵若∠6=∠8,则 ∥ ;⑶若AD ∥BC9.如图,AB ∥CD,∠A=110°,∠FDA=50°,则∠CDE= 度.10.长方体中: ⑴和任意一条棱平行的棱都有 条; ⑵和任意一个面垂直的面都有 个. ⑶和任意一个面垂直的棱都有 条. 二、选择题:(每题4分,共32分) 1. 计算ba55⋅的结果是( )。
B O E F DC A 第7题A. ab 25B. ab 5C. ba +25 D. ba +52.下列计算中正确的是( )。
A .632=B .8134=-C .m m mx x x532=⋅ D .n n n a a a a 43=⋅⋅3.下列说法中正确的是( )A.单项式m 既没有系数,也没有次数 ;B.-2004不是单项式;C.单项式5×105t 的系数是5; D.单项式x32-的系数是32-4.一个多项式减去-3x 的差是2x 2-3x-4,则这个多项式是( )A.2x 2-4B.-2x 2+4C.2x 2-6x-4D.-2x 2+6x+4 5.若a+b=3,a-c=5,则b+c 的值是( )。
北师版初中七年级数学下册第一次月考数学试卷含答案解析
2020-2021学年七年级(下)第一次月考数学试卷一.选择题(共12小题)1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x32.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±203.如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠34.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.5.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a >0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm26.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115° D.125°7.如图,下列条件能判断两直线AB,CD平行的是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠5 D.∠3=∠58.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价m%,再降价n% B.先涨价n%,再降价m%C.行涨价%,再降价% D.先涨价%,再降价%9.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2 C.(4R+4)cm2D.以上都不对10.代数式+相乘,其积是一个多项式,它的次数是()A.3 B.5 C.6 D.211.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定12.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交二.填空题(共4小题)13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.15.若(x﹣1)x+1=1,则x=.16.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=三.解答题(共7小题)17.计算:(1)(2).18.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.19.已知a+b=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.20.先化简,在求值:(2a﹣b)(2a+b)+b(a+b),其中a=2,b=﹣1.21.如图,DB∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG的度数.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C 作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案与试题解析一.选择题(共12小题)1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3【解答】解:A、x•x6=x7,原式计算错误,故本选项错误;B、(x2)3=x6,原式计算正确,故本选项正确;C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;D、(2x)3=8x3,原式计算错误,故本选项错误.故选B.2.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选B.3.如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠3【解答】解:∵a∥b,∴∠1=∠3,故A正确∵∠3=∠4,∴∠1=∠4,故C正确,∵∠2+∠1=180°,∴∠2+∠4=180°,故B正确,故选D.4.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选D.5.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a >0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2【解答】解:长方形的面积为:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).答:矩形的面积是(6a+15)cm2.故选:D.6.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115° D.125°【解答】解:∵l1∥l2,∴∠1=∠3=65°,∵∠3+∠2=180°,∴∠2=180°﹣65°=115°,故选:C.7.如图,下列条件能判断两直线AB,CD平行的是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠5 D.∠3=∠5【解答】解:能判断直线AB∥CD的条件是∠3=∠4;理由如下:∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行);A、C、D不能判定AB∥CD;故选B.8.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价m%,再降价n% B.先涨价n%,再降价m%C.行涨价%,再降价% D.先涨价%,再降价%【解答】解:经过计算可知A、100(1+m%)(1﹣n%);B、100(1+n%)(1﹣m%);C、100(1+%)(1﹣%);D、100(1+%)(1﹣%).∵0<n<m<100,∴100(1+n%)(1﹣m%)最小.故选B.9.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2 C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选D.10.代数式+相乘,其积是一个多项式,它的次数是()A.3 B.5 C.6 D.2【解答】解:∵(a2b2)(a+b)(1++)=a3b2+ab2+a3+a2b+a2b3+b3.∴根据结果可知,它的次数是5.故选B.11.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定【解答】解:a2+b2+c2﹣ab﹣ac﹣bc,=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc),= [(a2+b2﹣2ab)+(a2+c2﹣2ac)+(b2+c2﹣2bc)],= [(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a﹣b=2,a﹣c=,∴b﹣c=﹣,∴原式=(4++)=.故选A.12.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交【解答】解:A、过一点须指明过直线外一点,错误;B、在同一平面内,过一点有且只有一条直线与已知直线垂直,是垂线的性质,正确;C、只有垂直相交,交点才叫垂足,错误;D、过直线上一点与已知直线相交的直线有无数条,错误.故选B.二.填空题(共4小题)13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=45°.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠2=30°,∴∠EPM=∠2=30°,又∵∠EPF=75°,∴∠FPM=45°,∴∠1=∠FPM=45°,故答案为:45°.14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=80度.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.15.若(x﹣1)x+1=1,则x=﹣1或2.【解答】解:当x+1=0,即x=﹣1时,原式=(﹣2)0=1;当x﹣1=1,x=2时,原式=13=1;当x﹣1=﹣1时,x=0,(﹣1)1=﹣1,舍去.故答案为:x=﹣1或2.16.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=2或﹣3【解答】解:∵实数a满足a3+a2﹣3a+2=﹣﹣,∴a3+a2﹣3a+2﹣++=0,∴a3++a2++2﹣3(a+)=0,(a+)(a2﹣1+)+(a+)2﹣3(a+)=0,(a+)(a2﹣1++a+﹣3)=0,∴(a+)[(a+)2+(a+)﹣6]=0,∴(a+)(a++3)(a+﹣2)=0,而a+≠0,∴a++3=0,或a+﹣2=0,∴a+=﹣3或2.故答案为:﹣3或2.三.解答题(共7小题)17.计算:(1)(2).【解答】解:(1)原式=﹣9+49﹣×16=40﹣4=36;(2)原式=1﹣1+27÷3=9.18.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.【解答】解:原式=(x3y2﹣x2y﹣x2y+x3y2)÷3x2y=.19.已知a+b=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.【解答】解:当a+b=0时,原式=a2+4ab﹣a2+4b2=4ab+4b2=4b(a+b)=020.先化简,在求值:(2a﹣b)(2a+b)+b(a+b),其中a=2,b=﹣1.【解答】解:当a=2,b=﹣1时,原式=4a2﹣b2+ab+b2=4a2+ab=4×4+2×(﹣1)=1421.如图,DB∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG的度数.【解答】解:∵DB∥FG∥EC,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=96°;∵AP为∠BAC的平分线,∴∠BAP=∠CAP=48°,∴∠PAG=∠CAP﹣∠GAC=12°.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.【解答】解:(1)CD∥EF,理由:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C 作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【解答】解:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,∴a﹣3b=0,且a+b﹣4=0,∴a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(20+t)×1,解得t=10;②当60<t<120时,3t﹣3×60+(20+t)×1=180°,解得t=85;③当120<t<160时,3t﹣360=t+20,解得t=190>160,(不合题意)综上所述,当t=10秒或85秒时,两灯的光束互相平行;(3)设A灯转动时间为t秒,∵∠CAN=180°﹣3t,∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,而∠ACD=90°,∴∠BC D=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,∴∠BAC:∠BCD=3:2,即2∠BAC=3∠BCD.。
北师版下学期第一次数学月考试卷
七年级数学第一次月考试卷(满分100分:时间90分钟)得分 :一、填空题(每小题3分,共30分)1.是 ,系数是__ ___,次数是___ __;2.多项式x 2y 2-3xy 2 +11xyz +7的次数是____,它是 次 项式。
3.x 2+x 2 = ; (-x)2x 3 = ; (2x 2 )3 = ;4. =)1(x x ;()=-232ab ______;=-32)3(b a ; 5. =÷23a a ; (∏-1)0 ; (-2)0 +213-⎛⎫ ⎪⎝⎭= 6. )7(142223=-÷y x y x ; +=+22)3(x x +9; ( )(9)32x x =+7.若则的关系是 ;若则的关系是 ;对顶角的度数是 的关系。
8.若则的关系是 ,若则的关系是 ,理由是 。
9.12+a y x 与313y x b -的和仍是一个单项式,a = .b= .和是 .10.(1)=-⨯20012000)125.0(8 (2) 22)(______)(b a b a -=++(3)请写出一个关于x 的二次三项式,使它的二次项的系数为-1,22yx π-,9021︒=∠+∠21∠∠与,18021︒=∠+∠21∠∠与,9021︒=∠+∠,9023︒=∠+∠31∠∠与,18021︒=∠+∠,18023︒=∠+∠31∠∠与一次项系数为3,常数项为-4:二、选择题(每小题2分,共20分)11.下列代数式中是单项式的是( )A.1+xB.ab 21-C.x 1D.)1(3+a12.下列计算正确的是 ( )A .22422b a ab ab =⋅ B.222)2(x x = C.22422=-x x D.954a a a =+13.设2294y mxy x ++是一个完全平方式,则m =( )A.6xyB.±6xyC. 12xyD.±12xy14.已知,3,2==b a x x 则=-b a x 23( )A.1B.1-C.32D.9815.一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )A.6cmB.5cmC.8cmD.7cm16.如图,在下图中有对顶角的图形是( )A .①B .①②C .②④D .②③17.=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20032003532135( )A.1-B.1C.0D.200318.A 与B 互余,B 与C ∠互补,若A =则C 度数是 ( ) A 、 B 、 C 、 D 、19.下列各题中, 能用平方差公式的是 :( ) A.(a -2b)(a +2b) B.(a -2b)( -a +2b)∠∠∠∠050∠04005001300140C.( -a -2b)( -a -2b)D. ( -a -2b)(a +2b)20.如果(3x 2y -2xy 2)÷M=-3x+2y ,则单项式M 等于( )A 、xyB 、-xyC 、xD 、-y三.计算(无计算过程不得分)(4×3=12分)21m m a a +-÷ )()()(32x x x ⋅⋅(27a 3-15a 2+6a )÷(3a) )41()32(-⋅+a a四.用整式乘法公式计算(无计算过程不得分)(3×3=9分):20052 1999×2001 (2x +y +1)(2x -y -1)五.计算求值(21题5分.22题4分.23题4分):21.若5,7==+ab b a ,求2)(b a -的值。
新北师大版七年级数学下册第一次月考试题-精选全文完整版
可编辑修改精选全文完整版最新北师大版七年级数学下册第一次月考试题一、选择题(本大题10小题,每小题3分,共30分)1.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣82.图中,∠1、∠2是对顶角的为()A.B.C.D.3.一个角有余角,这个角的余角()A.一定是钝角B.一定是锐角C.可能是钝角,可能是锐角D.以上答案都不对4.下列运算正确的是()A.a2•a 3=a6B.(ab)2=a2b2C.(a3)2=a5D.a8÷a2=a45.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110° D.120°6.如图所示,下列说法错误的是()A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角7.下列各式计算正确的是()A.(a+b)(a﹣b)=a2+b2B.(﹣a﹣b)(a﹣b)=a2﹣b2C.(1﹣m)2=1﹣2m+m2D.(﹣m+n)2=m2+2mn+n28.已知(x﹣y)2=49,xy=2,则x2+y2的值为()A.53 B.45 C.47 D.519.如图,下列条件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判断直线l1∥l2的有()A.5个 B.4个 C.3个 D.2个10.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2 cm2B.2a cm2C.4a cm2D.(a2﹣1)cm2二、填空题(共8小题,每小题3分,共24分)11.若(2x+1)0=1,则X的取值范围是.12.用小数表示:﹣3.27×10﹣5=.13.a m=2,a n=3,a2m+3n=.14.•2ab2=8a3b2c.15.一个角补角比它的余角的2倍多30°,这个角的度数为.16.计算:(a+1)(a﹣1)(a2+1)(a4+1)=.17.如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有个.18.如图,A0⊥OB,OD⊥AB,能表示点到直线(或线段)的距离的线段有条.三、计算题(30分)19.(4分)|﹣2|﹣(2﹣π)0++(﹣2)3.20.(4分)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3.21.(4分)简便计算(x +y)2(x﹣y)2.22.(4分)(x﹣2y+3z)(x+2y﹣3z)23.(4分)简便计算:103×97.24.(4分)(a﹣b)10÷(b﹣a)3÷(b﹣a)3.25.(6分)化简求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.四、解答题(30分)26.(5分)已知a,b,c是△ABC的三条边长,当a2+c2+2b(b﹣a﹣c)=0时,试判断△ABC的形状.27.(5分)已知x2+2x+y2﹣4y+5=0,求代数式y x的值.28.(5分)如图,CD ⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.求∠BCA的度数.29.(6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.30.(9分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()七年级数学下册期中试题一、选择题(共12小题,每小题3分,共36分)1.下列计算正确的是()A.a2•a3=a6B.a3÷a3=0C.(﹣a2)3=a6D.(3a2)3=27a62.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×104米B.3.5×10﹣4米 C.3.5×10﹣5米 D.3.5×10﹣9米3.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A.∠DOE为直角B.∠DOC和∠AOE互余C.∠AOD和∠DOC互补D.∠AOE和∠BOC互补4.已知长方形的周长为16cm,其中一边长为x cm,面积为y cm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)5.利用乘法公式计算正确的是()A.(2x﹣3)2=4x2+12x﹣9B.(4x +1)2=16x2+8x+1C.(a+b)(a+b)=a2+b2D.(2m+3)(2m﹣3)=4m2﹣36.如图,∠ACB=90°,CD⊥AB,垂足为点D,则下面的结论中,正确的有()①BC与AC互相垂直;②AC与CD互相垂直;③点A到BC的垂线段是线段BC;④点C到AB的垂线段是线段CD;⑤线段BC是点B到AC的距离;⑥线段AC的长度是点A 到BC的距离.A .2个B .3个 C.4个 D.5个7.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°8.如图,长方形的长为a,宽为b,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是()A.ab﹣bc+ac﹣c2B.ab﹣bc﹣ac+c2C.ab﹣ac﹣bc D.ab﹣ac﹣bc﹣c2 9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.10.如图所示,OA、BA 分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快()A.2.5m B.2m C.1.5m D.1m11.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC 与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°12.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009 B.﹣1008 C.﹣2017 D.﹣2016二、填空题(本大题共6小题,每小题3分,共18分)13.(π﹣3)0+()﹣3=.14.如果一个长方形的长是(x+2y)米,宽为(x﹣2y)米,则该长方形的面积是平方米.15.请从以下两个小题中任选一题作答,若多选,则按第一题计分.A.如图1,∠1的内错角是.B.如图2,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=70°,则∠2=.16.一辆汽车由甲地开往相距130km的乙地,若它的平均速度为65km/h,则汽车距乙地的路程s(km)与行驶时间t(h)之间的关系式是.17.已知x﹣=5,则x2+=.18.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.三、解答题(本大题共66分)19.(8分)计算题:(1)2a2•3a2+a8÷a4﹣(﹣a)4;(2)(3ab)2÷(﹣ab)+(a﹣2b)2﹣(a+2b)(a﹣2b).20.(6分)化简求值:[(x+3y)2﹣(x+y)(3x﹣y)﹣10y2]÷(2x),其中x=﹣3,y=21.(8分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求a、b的值分别是多少?22.(8分)如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,()∴∠ADC=∠EGC=90°,(),∴AD∥EG,()∴∠1=∠2,()=∠3,()又∵∠E=∠1(已知),∴=()∴AD平分∠BAC()23.(8分)如图,分别表示甲步行与乙汽自行车(在同一条路上)行走的路程S甲、S乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)甲行走的平均速度是多少千米/小时?(5)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?24.(8分)图(1)是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图(2)的形状拼成一个正方形.(1)你认为图(2)中阴影部分的正方形的边长等于多少?;(2)请用两种不同的方法求图(2)中阴影部分面积.方法一:;方法二:;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,4mn.;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求(a﹣b)2的值.25.(10分)如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD ∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)如果DG是角∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,说明AB 和CD又怎样的位置关系.26.(10分)(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.由条件可知:∠1与∠3的大小关系是,理由是;∠2与∠4的大小关系是;反射光线BC与EF的位置关系是,理由是;(2)解决问题:①如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=35°,则∠2= ,∠3= ;在①中,若∠1=40°,则∠3= ,由①②请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a 和b的两次反射后,入射光线m与反射光线n总是平行的?请说明理由.。
北师大版数学七年级下册第一次月考试卷及答案
北师大版数学七年级下册第一次月考试题一、选择题(本大题共6小题,共18分)1.下列运算中,计算结果正确的是()A.a2•a3=a6 B.(a2)3=a5C.(a2b)2=a2b2 D.a3+a3=2a32.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0 D.x≠13.已知x2+kxy+64y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±164.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)5.已知a m=6,a n=10,则a m-n值为()A.-4B.4C.D.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn= ______ .8. 某红外线遥控器发生的红外线波长为0.00000094m,用科学记数法表示这个数据是。
9.(-13)2013·(-3)2015=_______.10.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc ,上述记号就叫做2阶行列式.若,则x= . 11. 如图所示,BD AC //,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2的度数为_____ .12.在下列代数式:①(x-21y )(x+21y ),②(3a+bc )(-bc-3a ),③(3-x+y )(3+x+y ),④(100+1)(100-1)⑤(-a+b)(-b+a )中能用平方差公式计算的是______ (填序号)三、(本大题共5小题,共30分)13. 计算(本小题共两小题,每小题3分):(1)(4x 2y-2x 3)÷(-2x )2(2)x •(-x )3-(-x 2)214.用乘法公式计算:(本小题共两小题,每小题3分):(1)(2)(2a-1)2-(-2a+1)(-2a-1)15.先化简并求值:(本小题6分)[(x+2y )2-(x+y)(3x-y )-5y 2]÷2x ,其中x= -2,y=21.16. 如图,由相同边长的小正方形组成的网格图形,A 、B 、C 都在格点上,利用网格画图:(注:所画线条用黑色签字笔描黑............) (1)过点C 画AB 的平行线CF,标出F 点;(2)过点B 画AC 的垂线BG ,垂足为点G,标出G 点;(3)点B 到AC 的距离是线段 的长度;(4)线段BG 、AB 的大小关系为:BG AB (填“>”、“<”或“=”),理由是 .17.一个角的补角比它的余角的2倍大20゜,求这个角的度数。
北师大版七年级下第一次月考数学试卷含答案解析
七年级(下)第一次月考数学试卷一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣112.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a3.化简(a2)3的结果为()A.a5B.a6C.a8D.a94.x﹣(2x﹣y)的运算结果是()A.﹣x+y B.﹣x﹣y C.x﹣y D.3x﹣y5.下列各式中不能用平方差公式计算的是()A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a﹣b+c)(a+b﹣c)6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.20° B.30° C.35° D.40°7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°8.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能够将黑球直接撞入袋中,那么打白球时必须保证∠1为()A.30° B.45° C.60° D.75°9.如图,在下列四组条件中,能得到AB∥CD的是()A.∠ABD=∠BDC B.∠3=∠4C.∠BAD+∠ABC=180°D.∠1=∠210.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是角.12.如图,直线l1、l2、l3相交于一点O,对顶角一共有对.13.计算:(a+b)2+ =(a﹣b)2.14.一个多项式除以3xy商为9x2y﹣xy,则这个多项式是.15.边长为a厘米的正方形的边长减少3厘米,其面积减少.16.若a+b=5,ab=5,则a2+b2.17.已知a+=,则a2+= .18.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,则∠BFD的度数为°.三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ab)2.21.(x+2)2﹣(x+1)(x﹣1)22.计算:1652﹣164×166(用公式计算).23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.四、作图题(7分)24.如图,已知∠AOB,求作一个角,使它等于2∠AOB(不写作法,保留作图痕迹)五、完成下列填空(共19分)25.如图,①若∠1=∠BCD,则∥,根据是;②若∠ADE=∠ABC,则∥,根据是;③若∠1=∠EFG,则∥,根据是.26.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).七年级(下)第一次月考数学试卷参考答案与试题解析一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂乘法、幂的乘方的运算法则进行计算,然后利用排除法求解.【解答】解:A、a3与a2不是同类项,不能合并,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为(a3)2=a6,故本选项错误;D、应为a3﹣a2=a2(a﹣1),故本选项错误;故选B.【点评】本题考查了合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算法则是解题的关键,不是同类项的一定不能合并.3.化简(a2)3的结果为()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】利用幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.4.x﹣(2x﹣y)的运算结果是()A.﹣x+y B.﹣x﹣y C.x﹣y D.3x﹣y【考点】整式的加减.【分析】此题考查了去括号法则,括号前面是负号时,去括号后括号里的各项都变号,再合并同类项.【解答】解:x﹣(2x﹣y)=x﹣2x+y=﹣x+y.故选A.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.5.下列各式中不能用平方差公式计算的是()A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a﹣b+c)(a+b﹣c)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中不能用平方差公式计算的是(a﹣2b)(2b﹣a),故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.20° B.30° C.35° D.40°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线定义求出∠AOC=∠EOC=35°,根据对顶角的定义即可求出∠BOD的度数.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=35°,∴∠BOD=∠AOC=35°.故选:C.【点评】本题考查了对顶角、角平分线定义的应用,关键是求出∠AOC的度数.7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°【考点】平行线的性质.【专题】应用题.【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:B.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.8.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能够将黑球直接撞入袋中,那么打白球时必须保证∠1为()A.30° B.45° C.60° D.75°【考点】平行线的性质;余角和补角.【专题】应用题;压轴题.【分析】根据两直线平行,内错角相等及余角定义即可解答.【解答】解:∵AB∥CD,∠3=30°,∴∠4=∠3=30°∴∠1=∠2=90°﹣30°=60°.故选C.【点评】本题主要考查的知识点为:两直线平行,内错角相等.9.如图,在下列四组条件中,能得到AB∥CD的是()A.∠ABD=∠BDC B.∠3=∠4C.∠BAD+∠ABC=180°D.∠1=∠2【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、若∠ABD=∠BDC,则AB∥CD,故本选项正确;B、若∠3=∠4,则AD∥BC,故本选项错误;C、若∠BAD+∠ABC=180°,则AD∥BC,故本选项错误;D、若∠1=∠2,则AD∥BC,故本选项错误;故选A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【考点】平行线的性质;余角和补角.【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是直角.【考点】余角和补角.【分析】根据补角的定义进行计算即可.【解答】解:设这个角为x,则x+x=180°,所以x=90°,故答案为:直.【点评】本题考查了余角和补角,掌握它们的性质是解题的关键.12.如图,直线l1、l2、l3相交于一点O,对顶角一共有 6 对.【考点】对顶角、邻补角.【分析】识别图中的对顶角应从这个较复杂的图形中分解出三个基本图形(即定义图形)即直线AB、CD相交于O;直线AB,EF相交于O;直线CD,EF相交于O.由于两条直线相交组成对顶角,所以上述图中共有6对对顶角.【解答】解:如图,图中共有6对对顶角:∠AOC和∠BOD,∠AOD和∠BOC;∠AOF和∠BOE,∠AOE 和∠BOF;∠COF和∠DOE,∠COE和∠DOF.故答案为:6【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.13.计算:(a+b)2+ (﹣4ab)=(a﹣b)2.【考点】完全平方公式.【专题】计算题.【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴(a+b)2+(﹣4ab)=(a﹣b)2.故答案为:(﹣4ab)【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.14.一个多项式除以3xy商为9x2y﹣xy,则这个多项式是27x3y2﹣x2y2.【考点】整式的除法.【分析】根据被除数等于除数乘以商,即可求出结果.【解答】解:根据题意得:3xy(9x2y﹣xy)=27x3y2﹣x2y2.故答案为:27x3y2﹣x2y2.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.边长为a厘米的正方形的边长减少3厘米,其面积减少4a .【考点】平方差公式.【分析】分别计算出两种边长下正方形的面积,继而可得出答案.【解答】解:边长为a厘米的正方形的面积为:a2;边长为(a﹣2)厘米的正方形的面积为:(a﹣2)2,则面积减小=a2﹣(a﹣2)2=(a+a﹣2)(a﹣a+2)=4a.故答案为:4a.【点评】本题考查了平方差公式的知识,掌握平方差公式的形式是关键.16.若a+b=5,ab=5,则a2+b215 .【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab来计算即可.【解答】解:∵a+b=5,ab=5,∴a2+b2=(a2+b2+2ab)﹣2ab,=(a+b)2﹣2ab,=52﹣2×5,=15.故答案为:15.【点评】本题考查对完全平方公式的理解掌握情况,对式子的合理变形会使运算更加简便,解题时,常用到a2+b2=(a+b)2﹣2ab=(a﹣b)2+2ab的变化,结合已知去计算.17.已知a+=,则a2+= 1 .【考点】完全平方公式.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+=,∴a2+=(a+)2﹣2=3﹣2=1,故答案为:1【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.18.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,则∠BFD的度数为110 °.【考点】平行线的性质;多边形内角与外角.【专题】计算题.【分析】根据平行线的性质可得∠ABE+∠CDE+∠E=360°,∠E=140°由此得出∠FBE+∠EDF的值,再根据四边形的内角和为360°可得出∠BFD的度数.【解答】解:过点E作EG∥AB,则可得∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠E=360°;又∵∠E=140°,∴∠ABE+∠CDE=220°,∴∠FBE+∠EDF=(∠ABE+∠CDE)=110°;∵四边形的BFDE的内角和为360°,∴∠BFD=110°,故填110.【点评】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补.三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则即可求出答案.【解答】解:原式=18x2﹣24x+54x﹣72=18x2+30x﹣72;【点评】本题考查多项式乘以多项式法则,属于基础题型.20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ab)2.【考点】整式的除法;幂的乘方与积的乘方.【专题】常规题型.【分析】先算乘方,再算乘除.【解答】解:原式=:(a3b5﹣3a2b2+2a4b3)÷a2b2=4ab3﹣12+8a2b.【点评】本题考查了积的乘方和多项式除以单项式,掌握运算顺序,理解多项式除以单项式法则,是解决本题的关键.多项式除以单项式,一般多项式几项,相除后的结果是几项.21.(x+2)2﹣(x+1)(x﹣1)【考点】完全平方公式;平方差公式.【专题】计算题.【分析】利用完全平方公式与平方差公式展开,然后再合并同类项即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5.故答案为:4x+5.【点评】本题考查了完全平方公式与平方差公式,熟记公式结构是解题的关键.22.计算:1652﹣164×166(用公式计算).【考点】平方差公式.【分析】先把原式变形为1652﹣(165﹣1)(165+1),再用平方差公式进行计算即可.【解答】解:原式=1652﹣(165﹣1)(165+1)=1652﹣1652+1=1.【点评】本题考查了平方差公式,掌握平方差公式是解题的关键.23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;压轴题.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.四、作图题(7分)24.如图,已知∠AOB,求作一个角,使它等于2∠AOB(不写作法,保留作图痕迹)【考点】作图—复杂作图.【分析】利用基本作图(作一个角等于已知)先作出∠CMD=∠α,再作∠DMN=∠α,则∠CMN=2∠α.【解答】解:如图,∠CMN即为所求角.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.五、完成下列填空(共19分)25.如图,①若∠1=∠BCD,则DE ∥BC ,根据是内错角相等,两直线平行;②若∠ADE=∠ABC,则DE ∥BC ,根据是同位角相等,两直线平行;③若∠1=∠EFG,则FG ∥DC ,根据是同位角相等,两直线平行.【考点】平行线的判定.【专题】推理填空题.【分析】根据平行线的判定定理即可解答.【解答】解:①若∠1=∠BCD,则DE∥BC,根据是:内错角相等,两直线平行;②若∠ADE=∠ABC,则 DE∥BC,根据是同位角相等,两直线平行;③若∠1=∠EFG,则 FG∥DC,根据是同位角相等,两直线平行.故答案是:DE,BC,内错角相等,两直线平行;DE,BC,同位角相等,两直线平行;FG,DC,同位角相等,两直线平行.【点评】本题考查了平行线的判定定理,正确理解定理内容是关键.26.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a﹣b ,长是a+b ,面积是(a+b)(a﹣b)(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式(a+b)(a﹣b)=a2﹣b2;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).【考点】平方差公式的几何背景.【专题】计算题.【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.2)×(10﹣0.2),=102﹣0.22,=100﹣0.04,=99.96;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)],=(2m)2﹣(n﹣p)2,=4m2﹣n2+2np﹣p2.【点评】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.。
北师大版七年级下册数学第一次月考试卷
北师大版七年级下册数学第一次月考试卷一.选择题(共10小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a63.下列计算正确的是()A.x2+x5=x7B.x5﹣x2=3x C.x2•x5=x10 D.x5÷x2=x34.下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y95.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)6.已知a+b=3,ab=2,则a2+b2=()A.4 B.6 C.3 D.57.下列运算正确的是()A.a3+a2=2a5 B.(﹣ab2)3=a3b6C.2a(1﹣a)=2a﹣2a2 D.(a+b)2=a2+b28.如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM 的度数为()A.36°B.44°C.46°D.54°9.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°10.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73°B.56°C.68°D.146°二.填空题(共10小题)11.已知,如图,直线AB与CD相交于点O,OE平分∠AOC,若∠EOC=25°,则∠BOD 的度数为.12.化简:(﹣2a2)3=.13.已知10m=3,10n=2,则102m﹣n的值为.14.计算5a2b•3ab4的结果是.15.(﹣3x2+2y2)()=9x4﹣4y4.16.已知a+b=8,a2b2=4,则﹣ab=.17.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b)7的展开式共有项,第二项的系数是,(a+b)n的展开式共有项,各项的系数和是.18.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=.19.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=.20.已知x2﹣5x+1=0,则x2+=.三.解答题(共10小题)21.已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.22.已知a+b=5,ab=7,求a2+b2,a2﹣ab+b2的值.23.如图,已知AC∥ED,AB∥FD,∠A=65°,求:∠EDF的度数.24.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.25.如图.直线AB与CD相交于点O,OF⊥OC,∠BOC:∠BOE=1:3,∠AOF=2∠COE (1)求∠COE的度数;(2)求∠AOD的度数.26.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.27.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+ =180°又∵EG平分∠BEF(已知)∴∠1=∠又∵FG平分∠EFD(已知)∴∠2=∠∴∠1+∠2=()∴∠1+∠2=90°∴∠3+∠4=90°即∠EGF=90°.28.已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时.(1)求多项式A.(2)若2x2+3x+l=0,求多项式A的值.29.完成下面的推理过程,并在括号内填上依据.如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D,求证:AC∥DF证明:∵∠1=∠2()∠1=∠3(对角线相等)∴∠2=∠3()∴∥()∴∠C=∠ABD()又∵∠C=∠D(已知)∴∠D=∠ABD()∴AC∥DF()30.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).北师大版七年级下册数学第一次月考试卷参考答案与试题解析一.选择题(共10小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2016•青岛)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式=a6﹣4a6=﹣3a6.故选:D.【点评】此题主要考查了同底数幂的乘法运算法则以及积的乘方运算,正确掌握运算法则是解题关键.3.(2016•绵阳)下列计算正确的是()A.x2+x5=x7B.x5﹣x2=3x C.x2•x5=x10 D.x5÷x2=x3【分析】根据合并同类项法则、同底数幂的乘法法则和除法法则进行判断.【解答】解:x2与x5不是同类项,不能合并,A错误;x2与x5不是同类项,不能合并,B错误;x2•x5=x7,C错误;x5÷x2=x3,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的乘除法,掌握合并同类项法则、同底数幂的乘法法则和除法法则是解题的关键.4.(2016•桂林)下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y9【分析】A、原式利用积的乘方运算法则计算得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.【解答】解:A、原式=x3y3,错误;B、原式=1,错误;C、原式=15x5,正确;D、原式=7x2y3,错误,故选C【点评】此题考查了单项式乘单项式,合并同类项,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.5.(2016春•商河县期末)下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)【分析】可以用平方差公式计算的式子的特点是:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:A、(2a+b)(2b﹣a)=ab﹣2a2+2b2不符合平方差公式的形式,故错误;B、原式=﹣(+1)(+1)=(+1)2不符合平方差公式的形式,故错误;C、原式=﹣(3x﹣y)(3x﹣y)=(3x﹣y)2不符合平方差公式的形式,故错误;D、原式=﹣(n+m)(n﹣m)=﹣(n2﹣m2)=﹣n2+m2符合平方差公式的形式,故正确.故选D.【点评】本题考查了平方差公式,比较简单,关键是要熟悉平方差公式的结构.公式(a+b)(a ﹣b)=a2﹣b2.6.(2016•丰润区二模)已知a+b=3,ab=2,则a2+b2=()A.4 B.6 C.3 D.5【分析】把a+b=3两边平方,利用完全平方公式化简,将ab=2代入计算即可求出所求式子的值.【解答】解:把a+b=3两边平方得:(a+b)2=a2+b2+2ab=9,把ab=2代入得:a2+b2=5,故选D【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(2016•青海)下列运算正确的是()A.a3+a2=2a5 B.(﹣ab2)3=a3b6C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b2【分析】直接利用合并同类项、积的乘方与幂的乘方的性质与整式乘法的知识求解即可求得答案.【解答】解:A、a3+a2,不能合并;故本选项错误;B、(﹣ab2)3=﹣a3b6,故本选项错误;C、2a(1﹣a)=2a﹣2a2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.【点评】此题考查了合并同类项、积的乘方与幂的乘方的性质与整式乘法.注意掌握符号与指数的变化是解此题的关键.8.(2016•河北模拟)如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°【分析】由对顶角相等可求得∠COB,由垂直可得∠MOB,再根据角的和差可求得答案.【解答】解:∵∠AOD=136°,∴∠BOC=136°,∵MO⊥OB,∴∠MOB=90°,∴∠COM=∠BOC﹣∠MOB=136°﹣90°=46°,故选C.【点评】本题主要考查对顶角和垂线的定义,掌握对顶角相等是解题的关键,注意由垂直可得到角为90°.9.(2016•来宾)如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【分析】直接用平行线的判定直接判断.【解答】解:A、∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B、∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C、∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D、∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C【点评】此题是平行线的判定,解本题的关键是熟练掌握平行线的判定定理.10.(2016•西宁)将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73°B.56°C.68°D.146°【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC的度数.【解答】解:∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.故选A.【点评】本题考查了平行线的性质,这道题目比较容易,根据折叠的性质得出∠ABC=∠ABE=∠CBE是解答本题的关键.二.填空题(共10小题)11.(2016•西山区二模)已知,如图,直线AB与CD相交于点O,OE平分∠AOC,若∠EOC=25°,则∠BOD的度数为50°.【分析】由角平分线的定义可求得∠AOC=50°,最后根据对顶角的性质求得∠BOD的度数即可.【解答】解:∵OE平分∠AOC,∠EOC=25°,∴∠AOC=2∠EOC=25°×2=50°.由对顶角相等可知:∠BOD=∠AOC=50°.故答案为:50°.【点评】本题主要考查的是对顶角的性质和角平分线的定义,掌握对顶角的性质是解题的关键.12.(2016•静安区一模)化简:(﹣2a2)3=﹣8a6.【分析】根据积得乘方与幂的乘方的运算法则计算即可.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.【点评】本题主要考查的是积得乘方与幂的乘方的运算,掌握积得乘方与幂的乘方的运算法则是解题的关键.13.(2016•阜宁县二模)已知10m=3,10n=2,则102m﹣n的值为.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:102m=32=9,102m﹣n=102m÷10n=,故答案为:.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.14.(2016•太原二模)计算5a2b•3ab4的结果是15a3b5.【分析】依据单项式乘单项式法则进行计算即可.【解答】解;原式=5×3a2•a•b•b4=15a3b5.故答案为:15a3b5.【点评】本题主要考查的是单项式乘单项式法则的应用,熟练掌握单项式乘单项式法则以及同底数幂的乘法法则是解题的关键.15.(2016•陕西校级模拟)(﹣3x2+2y2)(﹣3x2﹣2y2)=9x4﹣4y4.【分析】根据两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,就可以用平方差公式计算,结果是乘式中两项的平方差(相同项的平方减去相反项的平方)计算即可.【解答】解:∵相同的项是含x的项,相反项是含y的项,∴所填的式子是:﹣3x2﹣2y2.【点评】本题考查了平方差公式,熟记公式结构并准确找出相同的项和相反的项是解题的关键.16.(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=28或36.【分析】根据条件求出ab,然后化简﹣ab=﹣2ab,最后代值即可.【解答】解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.【点评】此题是完全平方公式,主要考查了完全平方公式的计算,平方根的意义,解本题的关键是化简原式,难点是求出ab.17.(2016•延庆县一模)下面的图表是我国数学家发明的“杨辉三角",此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b)7的展开式共有8项,第二项的系数是7,(a+b)n的展开式共有n+1项,各项的系数和是2n.【分析】根据“杨辉三角”,寻找解题的规律.【解答】解:根据规律,(a+b)7的展开式共有8项,各项系数依次为1,7,21,35,35,21,7,1,系数和为27,故第二项的系数是7,由此得:(a+b)n的展开式共有(n+1)项,各项系数依次为2n.故答案为:8,7,n+1,2n.【点评】本题考查了完全平方公式.关键是由“杨辉三角"图,由易到难,发现一般规律.18.(2016•富顺县校级模拟)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=13或﹣11.【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵4a2﹣(k﹣1)a+9是一个关于a的完全平方式,∴k﹣1=±12,解得:k=13或﹣11,故答案为:13或﹣11【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.(2016•绥化)如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=15°.【分析】根据平行线的性质得到∠A=∠AFE=30°,由角的和差得到∠CFE=∠AFE﹣∠AFC=15°,根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠A=∠AFE=30°,∴∠CFE=∠AFE﹣∠AFC=15°,∵CD∥EF,∴∠C=∠CFE=15°,故答案为:15°.【点评】本题考查了平行线的性质:两直线平行,同位角相等.熟记平行线的性质是解题的关键.20.(2016春•淮阴区期末)已知x2﹣5x+1=0,则x2+=23.【分析】将方程x2﹣5x+1=0,两边同时除以x,可得出x+=5,再平方可得出的值.【解答】解:∵x2﹣5x+1=0,∴x+=5(方程两边同时除以x),故可得则+2=25,解得:=23.故答案为:23.【点评】此题考查了完全平方式的知识,将方程变形得出x+=5是解答本题的关键,难度一般.三.解答题(共10小题)21.(2016•菏泽)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.【分析】首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可.【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y).∵4x=3y,∴原式=0.【点评】此题考查整式的化简求值,注意先化简,再代入求得数值即可.22.(2016春•扬州校级期末)已知a+b=5,ab=7,求a2+b2,a2﹣ab+b2的值.【分析】利用完全平方公式将a2+b2和a2﹣ab+b2的变形为只含a+b、ab的代数式,再代入a+b、ab的值即可得出结论.【解答】解:a2+b2=(a2+b2)=(a+b)2﹣ab,当a+b=5,ab=7时,a2+b2=×52﹣7=;a2﹣ab+b2=(a+b)2﹣3ab,当a+b=5,ab=7时,a2﹣ab+b2=52﹣3×7=4.【点评】本题考查了完全平方公式,解题的关键是利用完全平方公式将a2+b2化成(a+b)2﹣ab,将a2﹣ab+b2化成(a+b)2﹣3ab.本题属于基础题,难度不大,解决该题型题目时,熟练掌握完全平方公式的应用是关键.23.(2016•槐荫区二模)如图,已知AC∥ED,AB∥FD,∠A=65°,求:∠EDF的度数.【分析】根据平行线的性质,即可解答.【解答】解:∵AC∥ED,∴∠BED=∠A=65°,∵AB∥FD,∴∠EDF=∠BED=65°.【点评】本题考查了平行线的性质,解决本题的关键是熟记平行线的性质.24.(2016•江西模拟)如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.【分析】根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据平行线的性质得出∠ADE=∠BAD即可.【解答】解:∵在△ABC中,∠B+∠C=110°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=35°,∵DE∥AB,∴∠ADE=∠BAD=35°.【点评】本题考查了平行线的性质,三角形内角和定理,角平分线定义的应用,注意:两直线平行,内错角相等.25.(2016春•固镇县期末)如图.直线AB与CD相交于点O,OF⊥OC,∠BOC:∠BOE=1:3,∠AOF=2∠COE(1)求∠COE的度数;(2)求∠AOD的度数.【分析】(1)设∠BOC=x,根据已知条件得到∠COE=2x,求得∠COF=4x,由垂直的定义得到∠BOC+∠AOF=90°即可得到结论;(2)由(1)的结论即可得到结果.【解答】解:(1)设∠BOC=x,∵∠BOC:∠BOE=1:3,∴∠COE=2x,∵∠AOF=2∠COE,∴∠COF=4x,∵OF⊥CD,∴∠DOF=90°,∴∠BOC+∠AOF=90°,即5x=90°,∴x=18°,∴∠COE=36°;(2)由(1)得∠AOD=∠BOC=18°.【点评】本题考查了对顶角、邻补角,利用了角的和差,角平分线的性质,对顶角相等的性质.26.(2016春•宜春期末)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点评】本题重点考查平行线的性质和判定,难度适中.27.(2016春•赵县期末)完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG 平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3两直线平行、内错角相等又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+ ∠EFD=180°两直线平行、同旁内角互补又∵EG平分∠BEF(已知)∴∠1=∠∠BEF又∵FG平分∠EFD(已知)∴∠2=∠∠EFD∴∠1+∠2=(∠BEF+∠EFD)∴∠1+∠2=90°∴∠3+∠4=90°等量代换即∠EGF=90°.【分析】此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.【解答】解:∵HG∥AB(已知)∴∠1=∠3 (两直线平行、内错角相等)又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)又∵EG平分∠BEF,FG平分∠EFD∴∠1=∠BEF,∠2=∠EFD,∴∠1+∠2=(∠BEF+∠EFD),∴∠1+∠2=90°∴∠3+∠4=90°(等量代换),即∠EGF=90°.故答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.【点评】此题考查的知识点是平行的性质,关键是运用好平行线的性质及角平分线的性质.28.(2016•花都区一模)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时.(1)求多项式A.(2)若2x2+3x+l=0,求多项式A的值.【分析】(1)原式整理后,化简即可确定出A;(2)已知等式变形后代入计算即可求出A的值.【解答】解:(1)A﹣(x﹣2)2=x(x+7),整理得:A=(x﹣2)2+x(x+7)=x2﹣4x+4+x2+7x=2x2+3x+4;(2)∵2x2+3x+1=0,∴2x2+3x=﹣1,∴A=﹣1+4=3,则多项式A的值为3.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.29.(2016春•尚志市期末)完成下面的推理过程,并在括号内填上依据.如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D,求证:AC∥DF证明:∵∠1=∠2(已知)∠1=∠3( 对角线相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)【分析】推出∠2=∠3,根据平行线判定推出BD∥CE,推出∠C=∠ABD,推出AC∥DF,即可得出答案.【解答】证明:∵∠1=∠2(已知)∠1=∠3(对角线相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行).故答案为:已知,等量代换,BD,CE,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.【点评】本题考查了平行线的性质和判定,关键是掌握平行线的判定定理和性质定理.30.(2016春•吴中区校级期末)AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).【分析】(1)根据角平分线的定义可得∠EDC=∠ADC,然后代入数据计算即可得解;(2)根据角平分线的定义表示出∠CBE,再根据两直线平行,内错角相等可得∠BCD=∠ABC,然后根据三角形的内角和定理列式整理即可;(3)根据角平分线的定义求出∠ADE、∠ABE,根据两直线平行,同旁内角互补求出∠BAD,再根据四边形的内角和定理列式计算即可得解.【解答】解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=35°;(2)∵BE平分∠ABC,∴∠CBE=∠ABC=n°,∵AB∥CD,∴∠BCD=∠ABC=n°,∴∠CBE+∠BED=∠EDC+∠BCD,即n°+∠BED=35°+n°,解得∠BED=35°+n°;(3)如图,∵BE平分∠ABC,DE平分∠ADC,∴∠ADE=∠ADC=35°,∠ABE=∠ABC=n°,∵AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣70°=110°,在四边形ADEB中,∠BED=360°﹣110°﹣35°﹣n°=215°﹣n°.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.。
北师大版七年级下数学第一次月考测试卷
北师大版七年级下数学第一次月考练习题一、选择题(每小题3分,共24分)1、下列运算正确的是( )。
A 、 2a+3b=5abB 、 ()045≠=÷a a a aC 、()3362a a = D 、632a a a =• 2、如图,下列推理正确的是( )A 、因为∠1=∠2,所以AB//CDB 、 因为∠1+∠2=180°,所以AB//CDC 、因为∠3=∠4,所以AB//CD D 、 因为∠1+∠4=180°,所以AB//CD3、将0.000 000 105用科学记数法表示是( )A 、71005.1⨯B 、610105.0-⨯C 、71005.1-⨯D 、8105.10-⨯4、下列各式中,能应用平方差公式进行计算的是( )A 、()()b a b a -+B 、()()b a b a 322+--C 、()()a a --33D 、()()y x y x 22-+5、如图,已知AB ⊥AC ,AD ⊥BC ,垂足分别为A ,D ,则图中互余的角共有( )A 、2对B 、3对C 、4对D 、5对5、下列说法中,正确的个数是( )①在同一平面内,不相交的两条直线一定平行;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,一对内错角的角平分线互相平行;④从直线外一点到这条直线的垂线段,叫做这个点到直线的距离。
A 、1B 、2C 、3D 、47、若m+n-3=0,则624222-++n mn m 的值是( )A 、12B 、2C 、3D 、08、如图,将一幅三角尺和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上则∠1的度数是( )A 、15°B 、22.5°C 、30°D 、45°二、填空题(每小题3分,共15分)9、一个角的余角是它的补角的52,则这个角等于 。
最新-七年级数学第二学期第一次月考试卷 北师大版 精
564321七年级第二学期数学第一次月考试卷1.在代数式:1,2,3,1,2,222+-+++++x x b ab b a ab ππ中,多项式有( ) A.2个 B.3个 C.4个 D.5个2.下列计算正确的是( ) A 、()110-=- B 、()111=-- C 、3322aa =- D 、()()122=-÷-a a 3.如图1,下列说法错误的是( )A.∠1和∠3是同位角;B.∠1和∠5是同位角C.∠1和∠2是同旁内角;D.∠5和∠6是内错角4.如果一个角的补角是150°,那么这个角的余角的度数是( ) 图1A.30°B.60°C.90°D.120°5.下列等式中,成立的是( )A.222)(b a b a +=+ B.222)(b a b a -=- C.()2222b ab a b a +-=- D.22))((b a b a b a -=-+-6、已知∠A 与∠B 互余,∠B 与∠C 互补,若∠A =50°,则∠C 的度数是..( )A. 75°B. 90°C. 140°D. 180° 7.已知(2x +K 2)= ,91242+-x x 则k 的值为( ) A 、3 B 、3± C 、-3 D 、9± 8.1)1)(21)(21)(2(2842++++…(232+1)+1 的个位数字为( )A .2B.4C.6D.8 9.如图2,在下列条件中, AD//CB 的条件是( )A 、41∠=∠B 、5∠=∠BC 、︒=∠+∠+∠18021D D 、 32∠=∠ 10.如图3,某建筑物两边是平行的,则∠1 + ∠2 + ∠3 = .( )A .180°B .270°C .360°D .540° 二.用心填一填(每题2分,共20分)11. 如图4,在△ABC 中,∠ABC=90°,BD ⊥AC ,则图中互余 的角有 对.12.若46xy -与133m nxy-是同类项,则m n=_________________。
最新(北师大版)七年级下学期第一次月考数学试卷(含答案)
七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
(完整版)新北师大版七年级数学下册第一次月考试题
七年级数学第一次月考 姓名 班级一、细心地选一选(本题共10小题,每题4分,共40分) 1.下列各式不是..单项式的是( ). A .4x 2 B .a C .-1 D .5m —1 2、下列计算正确的是( ) A .325⋅=a a aB .523a a a =+C .923)(a a =D .32-=a a a3、计算23()a 的结果是( ) A .a 5B .a 6C .a 8D .a 94、x – (2x – y)的运算结果是( )A .-x + yB .-x -yC .x -yD .3x -y 5、下列各式中不能用平方差公式计算的是( ) A 、(-x +y )(-x -y ) B 、(a -2b )(2b -a ) C 、(a -b )(a +b )(a 2+b 2) D 、(a +b -c )(a +b -c )6、如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=70°,则∠BOD 的度数等于( )A .30°B .20°C .35°D .40°7、2003年10月15日,中国“神舟”五号载人飞船成功发射,圆了中国人千年的飞天梦,航天员杨利伟乘飞船在约21小时内环绕地球14圈,其长度约为591000000千米,用科学记数法表示为( )A .5.91×107千米B .5.91×108千米C .5.91×109千米D .5.91×1010千米 8、如图,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时必须保证∠1为( )A .30°B .45°C .60°D .75°9、如图,在下列四组条件中,能得到AB ∥CD 的是 ( )A 、BDC ABD ∠=∠B 、43∠=∠C 、 180=∠+∠ABC BAD D 、21∠=∠10、1)1)(21)(21)(21)(2(2842++++-…(232+1)+1 的个位数字为( )A .2 B.4 C.6 D.8 二、认真填一填:(本题共6小题,每题4分,共24分) 11、22)(______)(b a b a -=++12、一个多项式除以3xy 商为xy y x 3192- ,则这个多项式是13、边长为a 厘米的正方形的边长减少3厘米,其面积减少 平方厘米。
2024-2025学年北师大版七年级册第一次月考数学试题
2024-2025学年北师大版七年级 册第一次月考数学试题一、单选题1.有理数2024的相反数是( )A .2024B .2024-C .12024D .12024- 2.按柱、锥、球分类,下列几何体中与其余三个不属于同一类几何体的是( ) A . B .C .D .3.已知a 、b 为有理数,且000a ab a b <<+<,,,则下列结论:①()0b a b +>;②a b >;③a b b a <-<<-;④20a b a b b ---=+.其中正确结论的序号有( ) A .①②③ B .②③④ C .②④ D .①③④ 4.有理数,,a b c 在数轴上的位置如图所示,则下列说法不正确的是( )A .0a b +<B .0a c +<C .0b c +<D .0b c -+> 5.图1和图2中所有的正方形都相同,将图1的正方形放在图2中①②③④⑤的某一位置,所组成的图形能围成正方体的位置有( )A .1个B .2个C .3个D .4个6.观察下列等式:122=,224=,328=,4216=,5232=,6264=,…,则20222结果的个位数字是( )A .2B .4C .6D .8二、填空题7.在4,-2,-9,0这四个数中,最小的数比最大的数小.8.盐池某天的气温为-3℃~8℃,则这一天的温差是℃.9.如图所示,用经过A 、B 、C 三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为m ,棱数为n ,则m n +=.10.五棱柱有个面,个顶点,条棱.11.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32 + 2×3×(-2) =-3 ,则 (-2) ※3 的值为.12.如图,图1为一个长方体,85AD AB AE ===,,M 为所在棱的中点,图(2)为图1的表面展开图,则图2中ABM V 的面积为2cm .三、解答题13.(1)计算:12(3)(4)|2|----+--.(2)化简:2354m n m n -++-.14.在数轴上表示下列各数,并把这些数按从小到大的顺序用“<”号连接起来.()2--,0, 1.5--,72, 3.5-.15.把下列各数:()4+-,3-,0,213-,1.5 (1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.16.如图所示是一个几何体的表面展开图.(1)该几何体的名称是__________;(2)求该几何体体积(结果保留π).17.学校组织学生参与全民阅读,李颖同学每天坚持阅读,以阅读40分钟为标准,超过的时间记作正数,不足的时间记作负数.下表是她最近一星期阅读情况的记录(单位:分钟):(1)求星期六李颖阅读了多少分钟?她这星期平均每天阅读多少分钟?(2)李颖计划从下星期一开始阅读一本书共计294页.若她将这本书看完需要3星期,且平均每天阅读的时间与(1)中相同,求她阅读这本书的速度.18.如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为3cm .(1)请分别画出从正面、上面、左面三个方向看到的图形;(2)该几何体的表面积为 2cm .(包括底部)19.某公路检修队乘车从A 地出发,在南北走向的公路上修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):285786713+-++-+-+,,,,,,,. (1)问收工时,检修队在A 地哪边?距A 地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.3升,则检修队从A地出发到回到A地,汽车共耗油多少升?=⨯⨯+=.20.若定义一种新的运算“*”,规定有理数*2=+,如2*3223315a b ab b-的值;(1)求5*(2)-的值.(2)求(1)*(6*3)21.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为12.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为6个单位长度?22.如图是一张长方形纸片,AB长为4cm,BC长为6cm.若将此长方形纸片绕它的一边所在直线旋转一周(1)得到的几何体是,这个现象用数学知识解释为;(2)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的体积.(结果保留π)23.阅读下面材料:若点A B、两点之间的距离表示、在数轴上分别表示实数a b、,则A B=-;为AB,且AB a b回答下列问题:(1)①数轴上表示x和2的两点A和B之间的距离是;②在①的情况下,如果3AB =,那么x 为;(2)代数式12x x ++-取最小值时,相应的x 的取值范围是.(3)若点、、A B C 在数轴上分别表示数a b c 、、,a 是最大的负整数,且2(5)0-++=c a b ,①直接写出a b c 、、的值.②点、、A B C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.。
北师大版初一第二学期第一次月考测试题
初一第二学期第一次月考测试题一.填空(2×10=20分)1.3-2= ; ÷a =a 3; (2a 6x 3-9ax 5)÷(3ax 3) = ; 2.一个十位数字是a ,个位数学是b 的两位数表示为10a +b ,交换这个两位数的十位数字和个位数字,又得一个新的两位数,则新数减去原数等于 ; 3.一个角和它的补角相等,这个角是______角; 4.已知(x+y)2-2x-2y+1=0,则x+y=__________;5.222222⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-b a b a 6.已知:()()252;9222=+=-b a b a ,则a 2+4b 2=____________;7.有一道计算题:(-a 4)2,李老师发现全班有以下四种解法,①(-a 4)2=(-a 4)(-a 4)=a 4·a 4=a 8; ②(-a 4)2=-a 4×2=-a 8;③(-a 4)2=(-a )4×2=(-a )8=a 8;④(-a 4)2=(-1×a 4)2=(-1)2·(a 4)2=a 8; 你认为其中完全正确的是(填序号) ; 8.已知,x .y 是非零数,如果5=+y x xy ,则______________11=+yx 二.选择题(请将答案填在下面的空格中,否则不给分.3×12=36分)9.下列各式中: (1)()1243a a =--; (2)()()nna a 22-=-;(3)()()33b a b a -=--; (4)()()44b a b a +-=- 正确的个数是( )A .1个B .2个C .3个D .4个 10.下列叙述中,正确的是( )A .单项式y x 2的系数是0,次数是3B .a,π,0,22都是单项式C .多项式12323++a b a 是六次三项式D .2nm +是二次二项式11.减去3x 等于552-x 的代数式是( )A .5652-+x xB .5352-+x xC .255x +D .5652++-x x 12.计算)108()106(53⨯⋅⨯的结果是( )A .91048⨯B . 9108.4⨯C .16108.4⨯D .151048⨯ 13.如图,能与∠1构成同位角的角有( ) A .2个 B .3个 C .4个 D .5个 14.如图,能与∠1构成同旁内角的角有( ) A .2个 B .3个 C .4个 D .5个15.用小数表示3×10-2的结果为( )A -0.03B -0.003C 0.03D 0.003 16.下列说法中正确的是( )A .一个角的补角一定是钝角B .∠A 的补角与∠A 的余角的差一定等于直角C .互补的两个角不可能相等D .若∠A+∠B+∠C=900,则∠A+∠B 是∠C 的余角 17.∠1的补角是∠2,∠2又是∠3的余角,故∠1一定是( )A .钝角B .锐角C .直角D .无法确定18.如果a 与b 异号,那么(a+b)2与(a —b)2的大小关系是( )A .(a+b)2=(a —b)2B .(a+b)2>(a —b)2C .(a+b)2<(a —b)2D .无法确定 19.如果多项式92++mx x 是一个完全平方式,则m 的值是( )A .±3B .3C .±6D .6 20.已知a >0,且12=-a a ,则224aa -等于( ) A ..3 B .5 C .—3 D .1三.计算下列各题(5′×4)21.(2a +1)2-(2a +1)(-1+2a) 22.(x -2)(x +2)-(x +1)(x -3)23.()()3223332a a a a -+-+⋅ 24 .()()2234232-+--x x x x四.解答题(29题4分,25-28每题5分,共24分):25.解方程:()()()152212=-+-+x x x26.化简求值:()()[]()xy y x xy xy ÷+--+422222,其中10=x ,251-=y27.一个角的余角比它的补角29还多1︒,求这个角.28.古人云:凡事宜先预后立.我们做任何事都要先想清楚,然后再动手去做,才可能避免盲目性.一天,需要小华计算一个L 形的花坛的面积,在动手测量前小明依花坛形状画了如下示意图,并用字母表示了将要测量的边长(如图所标示),小明在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需测哪条边的长度?请你在图中标示出来,并用字母n 表示,然后再求出它的面积.29.如图,已知∠1=∠2,∠DAB=∠DCB , 且DE ⊥AC 于E , BF ⊥AC 于F .问:(1)AD ∥BC 吗?(2)AB ∥CD 吗? 为什么? (要写出推导过程)答案:254332,,91x a a -;9b-9a ;直;1;2ab ;17;①③④;51ABBBB,BCBAC,CA23:46a ;24:236664x x x +--;25:X=5;26:2/5;27:63度;28略;29略ABCD EF12 ABCDEF。