高考物理一轮复习 第十四章 动量守恒定律 波粒二象性 原子结构与原子核 第2讲 波粒二象性课件
(新课标)高考物理大一轮复习-第13章 动量守恒定律 波粒二象性 原子结构与原子核 第2节 光电效应 波粒二象

光电效应具有瞬 时性
光照射金属时,电子吸收一个光子的能量 后,动能立即增大,不需要能量积累的过 程
光较强时饱和电 光较强时,包含的光子数较多,照射金属
流大
时产生的光电子较多,因而饱和电流较大
1.(2014·高考广东卷)(多选)在光电效应实验中,用频率为ν 的光照射光电管阴极,发生了光电效应,下列说法正确的是 ()
2.(2015·高考全国卷Ⅰ)在某次光电效应实验中,得到的遏 止电压Uc与入射光的频率ν的关系如图所示.若该直线的斜率和 截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表 示为________,所用材料的逸出功可表示为________.
解析:根据光电效应方程Ekm=hν-W0及Ekm=eUc得Uc=
题组一 高考题组
1.(2014·高考海南卷)(多选)在光电效应实验中,用同一种单
色光,先后照射锌和银的表面,都能发生光电效应.对于这两个
过程,下列四个物理量中,一定不同的是( )
A.遏止电压
B.饱和光电流
C.光电子的最大初动能 D.逸出功
解析:选ACD.同一束光照射不同的金属,一定相同的是入 射光的光子能量,不同的金属,逸出功不同,根据光电效应方程 Ek=hν-W0知,最大初动能不同,则遏止电压不同;同一束光照 射,光中的光子数目相等,所以饱和光电流是相同的.
解析:根据爱因斯坦光电效应方程Ek=hν-W,Ek-ν图象的 横轴的截距大小等于截止频率,由图知该金属的截止频率为ν0= 4.77×1014 Hz≈4.8×1014Hz.根据光电效应方程得Ekm=hν-W0, 当入射光的频率为ν=6.0×1014 Hz时,最大初动能为Ekm=0.5 eV. 当入射光的频率为ν0=4.77×1014 Hz时,光电子的最大初动能为0.
江苏省近年高考物理大一轮复习 第十四章(选修3-5)教师用书(2021年整理)

江苏省2017高考物理大一轮复习第十四章(选修3-5)教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017高考物理大一轮复习第十四章(选修3-5)教师用书)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017高考物理大一轮复习第十四章(选修3-5)教师用书的全部内容。
第十四章(选修3—5)考 试 说 明内容要求说明命题趋势动量 动量守恒定律Ⅰ 选修3—5模块在江苏高考方案中单独考查,整体来说,容易题两道,中等难度题一道。
在一轮复习过程中,要严格按照考试说明,认真研读教材,因为3-5教材有很多知识点,但有些知识点江苏高考不涉及,如动量定理、康普顿效应、核电站等.需要特别指出的是:对动量守恒定律的简单计算、质能方程的字母计算同学们还需要掌握,因为通过简单计算可以熟悉公式,知道公式的含义动量守恒定律部分要注意矢量计算,该部分只有一个实验:验证动量守恒定律;波粒二象性部分要知道黑体辐射规律和量子化的建立历程,物质波的发现过程和相关公式,光电效应现象和分析,光电效应方程的计算,结合光电管分析的问题;原子结构部分知道α粒子散射实验及其结论,掌握以氢原子能级图为基础,分析能级间跃迁时吸收或放出光子的问题;原子核部分考查的内容是核反应方程式,处理时关键是要抓住反应前后的质量数与电荷数守恒,有时也会涉及一些关于原子核内部的问题,比如半衰期问题,熟练掌握这部分知识点,并能简单应用验证动量守恒定律(实验、探究)Ⅰ弹性碰撞和非弹性碰撞 Ⅰ 只限于一维碰撞的问题 原子核式结构模型Ⅰ 氢原子光谱 原子的能级 Ⅰ 原子核的组成Ⅰ 原子核的衰变 半衰期 Ⅰ 放射性同位素 放射性的应用与防护Ⅰ核力与结合能 质量亏损 Ⅰ 核反应方程Ⅰ 裂变反应 聚变反应 链式反应Ⅰ普朗克能量子假说 黑体和黑体辐射 Ⅰ光电效应Ⅰ 光的波粒二象性 物质波Ⅰ知 识 网 络第1讲 动量守恒定律及其应用 (本讲对应学生用书第216219页)考纲解读1。
(新课标)高考物理大一轮复习第13章动量守恒定律波粒二象性原子结构与原子核第2节光电效应波粒二象性课时

光电效应 波粒二象性1.关于光的本性,下列说法正确的是( )A .光既具有波动性,又具有粒子性,这是互相矛盾和对立的B .光的波动性类似于机械波,光的粒子性类似于质点C .大量光子才具有波动性,个别光子只具有粒子性D .由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的—切行为,只能认为光具有波粒二象性解析:选 D.光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子,波动性和粒子性是光在不同的情况下的不同表现,是同一客体的两个不同的侧面、不同属性,只能认为光具有波粒二象性,A 、B 、C 错误,D 正确.2.(2014·高考上海卷)在光电效应的实验结果中,与光的波动理论不矛盾的是( ) A .光电效应是瞬时发生的 B .所有金属都存在极限频率 C .光电流随着入射光增强而变大D .入射光频率越大,光电子最大初动能越大解析:选 C.光具有波粒二象性,即光既具有波动性又具有粒子性.光电效应证实了光的粒子性.因为光子的能量是一份一份的,不能积累,所以光电效应具有瞬时性,这与光的波动性矛盾,A 项错误;同理,因为光子的能量不能积累,所以只有当光子的频率大于金属的极限频率时,才会发生光电效应,B 项错误;光强增大时,光子数量和能量都增大,所以光电流会增大,这与波动性无关,C 项正确;一个光电子只能吸收一个光子,所以入射光的频率增大,光电子吸收的能量变大,所以最大初动能变大,D 项错误.3.如果一个电子的德布罗意波长和一个中子的相等,则它们的________也相等. A .速度 B .动能 C .动量D .总能量解析:选C.由德布罗意波长λ=hp 知二者的动量应相同,故C 正确,由p =mv 可知二者速度不同,E k =12mv 2=p22m,二者动能不同,由E =mc 2可知总能量也不同,A 、B 、D 均错.4.(多选)分别用波长为λ和2λ的光照射同一种金属,产生的速度最快的光电子速度之比为2∶1,普朗克常量和真空中光速分别用h 和c 表示,那么下列说法正确的有( )A .该种金属的逸出功为hc3λB .该种金属的逸出功为hcλC .波长超过2λ的光都不能使该金属发生光电效应D .波长超过4λ的光都不能使该金属发生光电效应解析:选AD.由hν=W 0+E k 知h c λ=W 0+12mv 21,h c 2λ=W 0+12mv 2,又v 1=2v 2,得W 0=hc3λ,A 正确、B 错误.光的波长小于或等于3λ时都能发生光电效应,C 错误、D 正确. 5.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子的最大初动能E k 随入射光频率ν变化的E k -ν图象,已知钨的逸出功是3.28 eV ,锌的逸出功是3.34 eV ,若将二者的图线画在同一个E k -ν坐标系中,下图中用实线表示钨,虚线表示锌,则正确反映这一过程的是( )解析:选 A.依据光电效应方程E k =hν-W 0可知,E k -ν图线的斜率代表普朗克常量h ,因此钨和锌的E k -ν图线应该平行.图线的横截距代表极限频率νc ,而νc =W0h,因此钨的νc 小些,A 正确.6.(2016·常州模拟)1927年戴维孙和汤姆孙分别完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如下图所示的是该实验装置的简化图,下列说法不正确的是( )A .亮条纹是电子到达概率大的地方B .该实验说明物质波理论是正确的C .该实验再次说明光子具有波动性D .该实验说明实物粒子具有波动性解析:选 C.亮条纹是电子到达概率大的地方,该实验说明物质波理论是正确的,说明实物粒子具有波动性,但该实验不能说明光子具有波动性,C 错误,A 、B 、D 正确.7.(多选)图为一真空光电管的应用电路,其阴极金属材料的极限频率为 4.5×1014Hz ,则以下判断中正确的是( )A.发生光电效应时,电路中光电流的饱和值取决于入射光的频率B.发生光电效应时,电路中光电流的饱和值取决于入射光的强度C.用λ=0.5 μm的光照射光电管时,电路中有光电流产生D.光照射时间越长,电路中的电流越大解析:选BC.在光电管中若发生了光电效应,单位时间内发射光电子的数目只与入射光的强度有关,光电流的饱和值只与单位时间内发射光电子的数目有关.据此可判断A、D错误.波长λ=0.5 μm的光子的频率ν=cλ=3×1080.5×10-6Hz=6×1014Hz>4.5×1014Hz,可发生光电效应,所以B、C正确.8.(多选)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标为4.27,与纵轴交点坐标为0.5).由图可知( )A.该金属的截止频率为4.27×1014 HzB.该金属的截止频率为5.5×1014 HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eV解析:选AC.图线在横轴上的截距为截止频率,A正确,B错误;由光电效应方程E k=hν-W0可知图线的斜率为普朗克常量,C正确;金属的逸出功为W0=hν0=6.63×10-34×4.27×10141.6×10-19eV=1.77 eV,D错误.9.以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图.用频率为ν的普通光源照射阴极K,没有发生光电效应.换同样频率为ν的强激光照射阴极K,则发生了光电效应;此时,若加上反向电压U,即将阴极K接电源正极,阳极A接电源负极,在K、A之间就形成了使光电子减速的电场.逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U可能是下列的(其中W为逸出功,h为普朗克常量,e为电子电荷量)( )A .U =hνe -W eB .U =2hνe -W eC .U =2hν-WD .U =5hν2e -We解析:选B.由光电效应方程可知:nhν=W +12mv 2m (n =2,3,4…)①在减速电场中由动能定理得 -eU =0-12mv 2m ②联立①②得:U =nhνe -We(n =2,3,4,…),选项B 正确.10.(多选)某半导体激光器发射波长为 1.5×10-6m ,功率为 5.0×10-3W 的连续激光.已知可见光波长的数量级为10-7m ,普朗克常量h =6.63×10-34J·s,该激光器发出的( )A .是紫外线B .是红外线C .光子能量约为1.3×10-18JD .光子数约为每秒3.8×1016个解析:选BD.由于该激光器发出的光波波长比可见光长,所以发出的是红外线,A 错误,B 正确.光子能量E =hν=h c λ≈1.3×10-19J ,C 错误.每秒发射的光子数n =P×1E ≈3.8×1016个,D 正确.11.图示是研究光电管产生的电流的电路图,A 、K 是光电管的两个电极,已知该光电管阴极的极限频率为ν0.现将频率为ν(大于ν0)的光照射在阴极上,则:(1)________是阴极,阴极材料的逸出功等于________.(2)加在A 、K 间的正向电压为U 时,到达阳极的光电子的最大动能为__________________,将A 、K 间的正向电压从零开始逐渐增加,电流表的示数的变化情况是________________.(3)为了阻止光电子到达阳极,在A 、K 间应加上U 反=________的反向电压. (4)下列方法一定能够增加饱和光电流的是( ) A .照射光频率不变,增加光强 B .照射光强度不变,增加光的频率 C .增加A 、K 电极间的电压 D .减小A 、K 电极间的电压解析:(1)被光照射的金属将有光电子逸出,故K 是阴极,逸出功与极限频率的关系为W 0=hν0.(2)根据光电效应方程可知,逸出的光电子的最大初动能为hν-hν0,经过电场加速获得的能量为eU ,所以到达阳极的光电子的最大动能为hν-hν0+eU ,随着电压增加,单位时间内到达阳极的光电子数量将逐渐增多,但当从阴极逸出的所有光电子都到达阳极时,再增大电压,也不可能使单位时间内到达阳极的光电子数量增多.所以,电流表的示数先是逐渐增大,直至保持不变.(3)从阴极逸出的光电子在到达阳极的过程中将被减速,被电场消耗的动能为eU c ,如果hν-hν0=eU c ,就将没有光电子能够到达阳极,所以U c =hν-hν0e.(4)要增加单位时间内从阴极逸出的光电子的数量,就需要增加照射光单位时间内入射光子的个数,所以只有A 正确.答案:(1)K hν0 (2)hν-hν0+eU 逐渐增大,直至保持不变 (3)hν-hν0e(4)A12.如图甲所示是研究光电效应规律的光电管.用波长λ=0.50 μm 的绿光照射阴极K ,实验测得流过○G 表的电流I 与AK 之间的电势差U AK 满足如图乙所示规律,取h =6.63×10-34J·s.结合图象,求:(结果保留两位有效数字)(1)每秒钟阴极发射的光电子数和光电子飞出阴极K 时的最大动能; (2)该阴极材料的极限波长.解析:(1)光电流达到饱和时,阴极发射的光电子全部到达阳极A ,阴极每秒钟发射的光电子的个数n =Im e =0.64×10-61.6×10-19(个)=4.0×1012(个)光电子的最大初动能为:E km =eU 0=1.6×10-19C×0.6 V=9.6×10-20 J(2)设阴极材料的极限波长为λ0,根据爱因斯坦光电效应方程:E km =h c λ-h cλ0,代入数据得λ0=0.66 μm.答案:(1)4.0×1012个 9.6×10-20J(2)0.66 μm。
高考物理一轮复习 第十四章 动量守恒定律 波粒二象性 原子结构与原子核 第1讲 动量定理 动量守恒定

第1讲动量定理动量守恒定律及其应用一、选择题(每小题6分,共60分)1.对于任何一个质量不变的物体,下列说法正确的是(B)A.物体的动量发生变化,其动能一定变化B.物体的动量发生变化,其动能不一定变化C.物体的动能不变时,其动量也一定不变化D.物体的动能发生变化,其动量不一定变化【解析】当质量不变的物体的动量发生变化时,可以是速度的大小发生变化,也可以是速度的方向发生变化,还可以是速度的大小和方向都发生变化,当物体的速度方向发生变化而速度的大小不变时,物体的动量(矢量)发生变化,但动能(标量)并不发生变化,例如匀速圆周运动,故A项错误,B项正确;当质量不变的物体的动能不变时,其动量的大小不变,方向可以相反,故C项错误;当质量不变的物体的动能发生变化时,必定是其速度的大小发生了变化,而无论其速度方向是否变化,物体的动量必定发生变化,故D项错误。
2.在距地面高为h,同时以大小为v0的速度分别平抛、竖直上抛、竖直下抛质量相等的物体,当它们从抛出到落地时,比较它们的动量的增量Δp,有(B)A.平抛过程最大B.竖直上抛过程最大C.竖直下抛过程最大D.三者一样大【解析】由动量定理可知动量的增量Δp=I合=mgt,又因竖直上抛运动的时间最长,竖直下抛运动的时间最短,而各物体质量相等,所以竖直上抛过程中动量增量最大,B项正确。
3.(多选)质量都为m的小球a、b、c以相同的速度分别与另外三个质量都为M的静止小球相碰后,a球被反向弹回,b球与被碰球黏合在一起仍沿原方向运动,c球碰后静止,则下列说法正确的是(AC)A.m一定小于MB.m可能等于MC.b球与质量为M的球组成的系统损失的动能最大D.c球与质量为M的球组成的系统损失的动能最大【解析】由a球被反向弹回,可以确定三小球的质量m一定小于M,A项正确,B项错误;当两小球发生完全非弹性碰撞时损失的动能最大,b球与被碰球黏合在一起,发生的是完全非弹性碰撞,C项正确,D项错误。
2022年高考物理总复习第一部分第十四章波粒二象性、原子结构、原子核第2讲原子结构、氢原子光谱

第2讲原子结构氢原子光谱【课程标准】1.了解人类探索原子结构的历史。
2.知道原子核式结构模型。
3.通过对氢原子光谱的分析,了解原子的能级结构。
【素养目标】物理观念:知道原子的核式结构和氢原子光谱。
科学思维:掌握氢原子光谱的规律,并利用规律进行解题。
科学态度与责任:了解人类探索原子及其结构的历史、人类对物质结构的探索历程。
一、原子的核式结构1.电子的发现:英国物理学家汤姆孙研究阴极射线发现了电子,证明了原子可以再分。
2.原子的核式结构:(1)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(如图所示)(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
命题·教材情境如图是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
实验中,α粒子主要是受到谁的作用力发生偏转?显微镜在哪个位置单位时间内观察的粒子数最多?根据实验结果卢瑟福提出的原子结构学说是什么?提示:原子核的库仑力;正对放射源位置;原子核式结构。
二、光谱1.光谱:用光栅或棱镜可以把各种颜色的光按波长(频率)展开,获得光的波长(频率)和强度分布的记录,即光谱。
2.光谱分类3.氢原子光谱的实验规律:巴耳末系是氢原子光谱在可见光区的谱线,其波长公式1λ=R(122-1n2)(n=3,4,5,…,R是里德伯常量,R=1.10×107 m-1)。
4.光谱分析:线状谱和吸收光谱都对应某种元素,都可以用来进行光谱分析。
在发现和鉴别化学元素上有着重大的意义。
2017高考物理一轮复习 动量守恒定律 波粒二象性 原子结构 基础课时1 动量守恒定律及其应用课件(选修3-5)

解析
动量守恒的条件是系统不受外力或所受外力的合力为零,
本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力, 竖直方向上所受外力的合力为零,所以动量守恒。机械能守恒的 条件是除重力、弹力对系统做功外,其他力对系统不做功,本题 中子弹射入木块瞬间有部分机械能转化为内能 ( 发热 ) ,所以系统
的机械能不守恒。故C正确,A、B、D错误。
答案 D
4.(2016· 浙江温州十校联考)如图8所示,在光滑水平面上质量分别
为mA=2 kg、mB=4 kg,速率分别为vA=5 m/s、vB=2 m/s的A、 B两小球沿同一直线相向运动,则下列叙述正确的是_______。
图8 A.它们碰撞前的总动量是18 kg· m/s,方向水平向右
B.它们碰撞后的总动量是18 kg· m/s,方向水平向左
方案二:利用等长悬线悬挂等大小球完成一维 碰撞实验(如图2所示)
1.测质量:用天平测出两小球的质量m1、m2。
2.安装:把两个等大小球用等长悬线悬挂起来。
静止 ,拉起另一个小球,放 3.实验:一个小球_____
相碰 。 下时它们_____ 图2
4.测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小
5.A球的质量是m, B球的质量是2m,它们在光滑的水平面上以 相同的动量运动。 B在前, A在后,发生正碰后, A球仍朝原 方向运动,但其速率是原来的一半,碰后两球的速率比
vA′∶vB′为______。
A.1∶2 B.1∶3 C.2∶1 D.2∶3
解析
设碰前 A 球的速率为 v, 根据题意, pA=pB, 即 mv=2mvB,
统动量守恒。
大于 外 ②近似守恒:系统受到的合力不为零,但当内力远 ______ 力时,系统的动量可近似看成守恒。 ③分方向守恒:系统在某个方向上所受合力为零时,系统在 该方向上动量守恒。
高三物理一轮复习 动量守恒定律波粒二象性 原子结构与原子核 第1讲 动量守恒定律课件(选修35)

二、冲量 1.定义:力和力的作用时间的乘积,大小 I=Ft. 2.物理意义:表示力对时间的积累效应. 3.单位:在国际单位制中,冲量的单位是牛顿·秒,符号为 N·s.
4.性质 (1)矢量性: 冲量的方向即力的方向或动量改变的方向.其运算遵守平行 四边形定则. (2)过程量: 冲量是力在时间上的积累,讨论冲量一定要明确是哪个力在 哪段时间上的冲量,所以冲量是过程量.
(4)动量与动能的区别与联系: ①动量的大小与动能的关系:由 p=mv 及 Ek=12mv2 易导出 下列两个反映动量大小和动能关系的常用式:p= 2mEk,Ek= p2 2m. ②动量是矢量、动能是标量,因此物体的动量变化时动能未 必变化,物体的动能变化时动量必变化.
(5)动量的变化及其计算: 动量的变化为矢量,即物体某一运动过程中的末动量减去初 动量,也常说为动量的增量.其计算方法: 若初末动量均在一条直线上,转化为代数运算.首先规定正 方向,一般默认初态为正,动量变化Δ p=p2-p1,若Δ p>0, 则动量的变化Δ p 与所规定正方向同向,若Δ p<0,则动量的变 化Δ p 与所规定正方向相反.
一直线相向而行,他们的速度大小之比 vA∶vB=2∶1,则动量大 小之比 pA∶pB=________;两者碰后粘在一起运动,总动量与 A 原来动量大小之比为 p∶pA=________.
解析 动能 Ek=12mv2,则 m=2vE2k,
2Ek 两物体质量之比:mmBA=2vEA2k=(vvBA)2=14
3.动量守恒定律成立的条件 (1)系统不受外力或所受外力的矢量和为零则系统动量守恒. (2)系统所受内力远远大于系统所受外力则系统动量守恒. (3)系统在某方向上不受外力或所受外力的矢量和为零则该 方向动量守恒.
基础随堂训练 1.(2014·上海)动能相等的两物体 A、B 在光滑水平面上沿同
高考物理(全国通用)一轮总复习配套课件:第十四章 动量守恒定律 波粒二象性 原子结构与原子核14.1

名师考点精 讲
考点 一 考点 二 考点 三 考点 四
方法二 运动员从 3.2 m 高处自由下落的时间 t1=
2ℎ1 2×3.2 = ������ 10 2ℎ2 2×5 = ������ 10
s=0.8 s
运动员离开网弹回 5.0 m 高处所用的时间 t2= s=1 s
整个过程中运动员始终受重力作用,仅在与网接触的 t3=1.2 s 时间内受到网对他 向上的弹力 F 的作用,对全过程应用 动量定理得 Ft3-mg(t1+t2+t3)=0 代入数据得 F=1.5×103 N,方向竖直向上 【参考答案】 1.5×103 N,方向竖直向上
典例1 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并在空中做 各种动作的运动项目。一个质量为60 kg的运动员,从离水平网面3.2 m高处自由下落,着网后沿竖直方向蹦回离水平网面5.0 m高处。已知 运动员与网接触的时间为1.2 s。若把这段时间内网对运动员的作用 力当作恒力处理,求此力的大小和方向(g取10 m/s2)。
2014
2013
2012 2011 新课标 卷 ,T35
新课标卷 Ⅰ,T35(2)
新课标卷 Ⅰ,T35(2); 新课标卷 Ⅱ,T35(2) 新课标 卷 ,T35
氢原子光谱、氢原子的能级结构、能 级公式 (Ⅰ ) 新课标卷 原子核的组成、放射性、原子核衰变、 Ⅰ,T35(1); 半衰期放射性同位素、核力、核反应 新课标卷 方程 Ⅱ,T35(1) 结合能、质量亏损、裂变反应和聚变 反应、 裂变反应堆、射线的危害和防护(Ⅰ ) 新课标卷 实验 :验证动量守恒定律(Ⅰ ) Ⅱ,T35(2) 新课标 卷 ,T35 新课标卷 Ⅱ,T35(1)
名师考点精 讲
考点 一 考点 二 考点 三 考点 四
最新届高三物理一轮复习-动量守恒定律波粒二象性-原子结构与原子核-第3讲-原子结构-原子核课件概要教

(2)半衰期表示的是一种统计规律.只适合于含有大量原子的 样品.当原子的数目少到统计规律不起作用时,就无法确定原子 衰变所需的时间.即半衰期对某一个或某几个原子核来说,是无 意义的.因此由半衰期不能推算出放射性物质完全衰变的寿命 期.
3.公式 m 余=(12)τtm0,N 余=(12)τt·N0 式中 m0、N0 为初态原子核的质量或个数,m 余、N 余为经 t 时间后,剩余的原子核的质量或个数,τt 为半衰期的个数,τ为 半衰期时间.
④原子核半径数量级. 由 α 粒子散射实验可以估算出原子核半径的数量级:10-14 -10-15 米.注意:原子的半径的数量级:10-10 m.
三、玻尔的原子模型 1.玻尔的原子模型(玻尔假说内容) 玻尔根据当时已被发现的氢光谱的规律性,把普朗克的量子 理论运用到原子系统,提出了玻尔的原子模型——玻尔理论.玻 尔引入了三点假设.
(1)定态假设: 原子只能处于一系列不连续的能量状态中,在这些状态中原 子是稳定的,电子虽绕核运动,但并不向外辐射能量,这些状态 叫定态. (2)轨道假设: 原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相 对应,原子的定态是不连续的,因此电子的可能轨道的分布也是 不连续的.
(3)跃迁假设: 原子从一种定态(设能量为 E 初)跃迁到另一种定态(设能量为 E 终)时.它辐射(或吸收)一定频率的光子,光子的能量由这两种 定态的能量差决定,即 hν=E 初-E 终
七、原子核的人工转变 1.通式:X+24He→Y+y 2.典例 (1)卢瑟福的第一次实现人工转变,并发现质子的方程 714N +24He→ 817O+11H (2)查德威克发现中子的方程:49Be+24He→ 612C+01n (3)约里奥·居里夫妇首次发现放射性同位素方程 1327Al+24He→1530P+01n
高三物理一轮复习 高考热点探究动量守恒律 波粒二象性 原子结构与原子核

图1图2峙对市爱惜阳光实验学校【步步高】高三物理一轮复习高考热点探究〔13〕动量守恒律波粒二象性原子结构与原子核一、动量守恒律的考查1.一炮艇总质量为M,以速度v0匀速行驶,从艇上以相对艇的速度u水平地沿方向射出一质量为m的炮弹,不计水的阻力,那么发炮后炮艇的速度v′满足以下各式中的哪一个( )A.Mv0=(M-m)v′+muB.Mv0=(M-m)v′+m(u+v0)C.Mv0=(M-m)v′+m(u-v′)D.Mv0=(M-m)v′+m(u+v′)2. (2021·单科·19(2))一质量为2m的物体P静止于光滑水平地面上,其截面如图1所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s.3.(2021·理综·38(2))如图2所示,滑块A、C质量均为m,滑块B质量为32m.开始时A、B分别以v1、v2的速度沿光滑水平轨道向固在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远.假设B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起.为使B能与挡板碰撞两次,v1、v2满足什么关系?二、原子与原子核4.(2021·理综·2)以下关于原子和原子核的说法正确的选项是( )A.β衰变现象说明电子是原子核的组成B.玻尔理论的假设之一是原子能量的量子化C.放射性元素的半衰期随温度的升高而变短D.比结合能越小表示原子核中的核子结合得越牢固5.(2021·单科·1)卢瑟福提出了原子的核式结构模型,这一模型建立的根底是 ( )A.α粒子的散射 B.对阴极射线的研究C.天然放射性现象的发现 D.质子的发现6.(2021·理综·16)核电站泄漏的污染物中含有碘131和铯137.碘131的半衰期约为8天,会释放β射线;铯137是铯133的同位素,半衰期约为30年,发生衰变时会辐射γ射线.以下说法正确的选项是( )A.碘131释放的β射线由氦核组成B.铯137衰变时辐射出的γ光子能量小于可见光光子能量C.与铯137相比,碘131衰变更慢D.铯133和铯137含有相同的质子数三、能级跃迁7.(2021·理综·18)氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,普朗克常量为h,假设氢原子从能级k跃迁到能级m,那么( ) A.吸收光子的能量为hν1+hν2B.辐射光子的能量为hν1+hν2C.吸收光子的能量为hν2-hν1D.辐射光子的能量为hν2-hν1四、质能方程与核反方程8.(2021··12)(1)以下描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是( )(2)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大〞或“越小〞).氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h).(3)有些核反过程是吸收能量的.例如,在X+14 7N→17 8O+11H中,核反吸收的能量Q=[(m O+m H)-(m X+m N)]c2.在该核反方程中,X表示什么粒子?X粒子以动能E k轰击静止的14 7N核,假设E k=Q,那么该核反能否发生?请简要说明理由.解析 (3)根据公式v =ΔxΔt由题图可知,撞前v A =164 m/s =4 m/s ,v B = 0(1分)撞后v A ′=v B ′=v =20-168-4 m/s =1 m/s (1分)那么由m A v A =(m A +m B )v (1分)解得:m B =m A v A -m A vv=3 kg (1分)答案 (1)BD (2)13755Cs→13756Ba + 0-1e E /c 2(3)3 kg试题分析本试题在课标区多以拼盘式呈现.一般第一问为选择题,考查能级、原子核、核反问题.第二问为计算题,多考查动量守恒,两次或屡次碰撞,有时涉及临界问题.氢原子光谱、能级图及跃迁、核反方程、半衰期,动量守恒为考查的.知识链接1.动量守恒律:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.2.碰撞:(1)碰撞是指两个或两个以上的相对运动的物体相遇时,作用时间极短、而相互作用力很大的现象.(2)分类弹性碰撞:碰撞过程中机械能守恒.非弹性碰撞:碰撞过程中总机械能不守恒.完全非弹性碰撞:碰撞后物体合为一个整体,具有相同的速度.这种碰撞系统的机械能损失最大.3.玻尔的原子模型:(1)①轨道不连续;②能量不连续;③在各个态中,原子稳,不向外辐射能量.(2)能级:原子的各个不连续的能量值,叫做能级.4.氢原子能级图及跃迁规律.5.氢原子光谱.6.天然放射现象及三种射线的比拟. 7.原子核的衰变、半衰期. 8.核反及反方程式. 9.核能及计算.1.以下说法正确的选项是 ( ) A .光电效中的光电子是从原子核内部释放出来的 B .天然的放射现象揭示了原子核结构的复杂性C .氢原子从高能级向低能级跃迁可以解释氢原子的发光现象D .根据α粒子散射,建立起原子的能级结构模型2.以下说法中正确的选项是图4( )A .实物粒子只具有粒子性,不具有波动性B .卢瑟福通过α粒子散射实现现象,提出了原子的核式结构模型C .光波是概率波,光子在和传播过程中,其位置和动量能够同时确D .在工业和医疗中经常使用激光,是因为其光子的能量远大于γ光子的能量3.三个原子核X 、Y 、Z ,X 核射出一个正电子后变为Y 核,Y 核与质子发生核反后生成Z 核并放出一个氦(He),那么下面说法正确的选项是 ( )A .X 核比Z 核多一个质子B .X 核比Z 核少一个中子C .X 核的质量数比Z 核质量数大3D .X 核与Z 核的总电荷是Y 核电荷的3倍4.14C 是一种半衰期为5 730年的放射性同位素.假设考古工作者探测到某古木中14C 的含量为原来的14,那么该古树死亡的时间距今大约 ( )A .22 9B .11 460年C .5 730年D .2 865年5.(1)核能作为一种能源在社会中已不可缺少,但平安是核电站面临的非常严峻的问题.核泄漏中的钚(Pu)是一种具有放射性的超铀元素,钚的危险性在于它对人体的毒性,与其他放射性相比钚这方面更强,一旦侵入人体,就会潜伏在人体肺部、骨骼组织细胞中,破坏细胞基因,提高罹患癌症的风险.钚的一种同位素23994Pu 的半衰期为24 100年,其衰变方程为23994Pu→X+42He +γ,以下有关说法正确的选项是 ( ) A .X 原子核中含有143个中子B .100个23994Pu 经过24 100年后一还剩余50个 C .由于衰变时释放巨大能量,根据E =mc 2,衰变过程总质量增加 D .衰变发出的γ放射线是波长很短的光子,具有很强的穿透能力 (2)氢原子的光谱在可见光范围内有四条谱线,其中在靛紫色区内的一条是处于量子数n=4能级的氢原子跃迁到n =2的能级发出的,氢原子的能级如图4所示,普朗克常量h =3×10-34J·s,那么该条谱线光子 的能量为______ eV ,该条谱线光子的频率为____ Hz.(结果保存3位有效数字)(3)金属铷的极限频率为5×1014 Hz ,现用波长为5.0×10-7m的一束光照射金属铷,能否使金属铷发生光电效?假设能,请算出逸出光电图5子的最大初动能.(结果保存两位有效数字)6.(1)以下说法中错误的选项是 ( )A .卢瑟福通过发现了质子的核反方程为42He +147N→178O +11H B .铀核裂变的核反是23592U→14156Ba +9236Kr +210nC .质子、中子、α粒子的质量分别为m 1、m 2、m 3,质子和中子结合成一个α粒子,释放的能量是(2m 1+2m 2-m 3)c2D .原子从a 能级状态跃迁到b 能级状态时发射波长为λ1的光子;原子从b 能级状态跃迁到c 能级状态时吸收波长为λ2的光子,λ1>λ2,那么原子从a 能级状态跃迁到c 能级状态时将要吸收波长为λ1λ2λ1-λ2的光子(2)如图5所示,质量M =40 g 的靶盒A 静止在光滑水平导轨上的O 点,水平轻质弹簧一端拴在固挡板P 上,另一端与靶盒A 连接.Q 处有一固的发射器B ,它可以瞄准靶盒发颗水平速度为v 0=50 m/s ,质量m =10 g 的弹丸.当弹丸打入靶盒A后,便留在盒内.碰撞时间极短,不计空气阻力.问:弹丸进入靶盒A 后,弹簧的最大弹性势能为多少?7.(1)核泄漏物中的碘-131具有放射性,它在自发地进行β衰变时,生成元素氙(元素符号为Xe),同时辐射出γ射线,请完成后面的核反方程13153I→____+____+γ.碘-131的半衰期为8天,经过32天(约为一个月),其剩余的碘-131为原来的________,所以在自然状态下,其辐射强度会较快减弱,不必恐慌.(2)甲、乙两冰球运发动为争抢冰球而迎面相撞,甲运发动的质量为60 kg ,乙运发动的质量为70 kg ,接触前两运发动速度大小均为5 m/s ,冲撞后甲被撞回,速度大小为2 m/s ,问撞后乙的速度多大?方向如何?答案 考题展示 1.B2.(1)mv 20-3mgh 3L (2)v 20-6gh v 20-3ghL3.v 2<v 1≤2v 2或12v 1≤v 2<23v 14.B 5.A 6.D 7.D 8.(1)A (2)越大2(hν+E 1)m(3)42He ;不能发生,因为不能同时满足能量守恒和动量守恒的要求 预测演练1.BC 2.B 3.C 4.B 5.(1)AD (2)5 5×1014(3)能 ×10-20J6.(1)B (2) J 7.(1)13154Xe0-1e 1/16(2)1 m/s 方向与乙撞前(或甲撞后)的运动方向相反(或与甲撞前的运动方向相同)TP。
2023年高考物理一轮复习讲义——原子结构和波粒2象性

自主命题卷全国卷考情分析2021·广东卷·T1原子核的衰变2021·全国甲卷·T17原子核的衰变2021·湖南卷·T1衰变、半衰期2021·全国乙卷·T17半衰期2021·河北卷·T1衰变、半衰期2020·全国卷Ⅰ·T19核反应2021·浙江6月选考·T14核反应2020·全国卷Ⅱ·T18核能2020·天津卷·T1原子核式结构实验2020·全国卷Ⅲ·T19原子核的衰变2020·江苏卷·T12(1)(2)黑体辐射、能级跃迁、光子的动量2019·全国卷Ⅰ·T14能级跃迁2020·浙江7月选考·T14核聚变、核能2019·全国卷Ⅱ·T15核能2019·天津卷·T5光电效应2018·全国卷Ⅱ·T17光电效应试题情境生活实践类医用放射性核素、霓虹灯、氖管、光谱仪、原子钟、威耳逊云室、射线测厚仪、原子弹、反应堆与核电站、太阳、氢弹、环流器装置等学习探究类光电效应现象、光的波粒二象性、原子的核式结构模型、氢原子光谱、原子的能级结构、射线的危害与防护、原子核的结合能、核裂变反应和核聚变反应等第1讲原子结构和波粒二象性目标要求 1.了解黑体辐射的实验规律.2.知道什么是光电效应,理解光电效应的实验规律.会利用光电效应方程计算逸出功、截止频率、最大初动能等物理量.3.知道原子的核式结构,掌握玻尔理论及能级跃迁规律.4.了解实物粒子的波动性,知道物质波的概念.考点一黑体辐射及实验规律1.热辐射(1)定义:周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.(2)特点:热辐射强度按波长的分布情况随物体温度的不同而有所不同.2.黑体、黑体辐射的实验规律(1)黑体:能够完全吸收入射的各种波长的电磁波而不发生反射的物体.(2)黑体辐射的实验规律①对于一般材料的物体,辐射电磁波的情况除与温度有关外,还与材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动,如图.3.能量子(1)定义:普朗克认为,当带电微粒辐射或吸收能量时,只能辐射或吸收某个最小能量值ε的整数倍,这个不可再分的最小能量值ε叫作能量子.(2)能量子大小:ε=hν,其中ν是带电微粒吸收或辐射电磁波的频率,h称为普朗克常量.h =6.626×10-34 J·s(一般取h=6.63×10-34 J·s).1.黑体能够反射各种波长的电磁波,但不会辐射电磁波.(×)2.黑体辐射电磁波的强度按波长的分布只与温度有关,随着温度的升高,各种波长的辐射强度都增加,辐射强度极大值向波长较短的方向移动.(√)3.玻尔为得出黑体辐射的强度按波长分布的公式,提出了能量子的假说.(×)例1(多选)关于黑体辐射的实验规律如图所示,下列说法正确的是()A.黑体能够完全吸收照射到它上面的光波B .随着温度的降低,各种波长的光辐射强度都有所增加C .随着温度的升高,辐射强度极大值向波长较长的方向移动D .黑体辐射的强度只与它的温度有关,与形状和黑体材料无关 答案 AD解析 能完全吸收照射到它上面的各种频率的电磁辐射的物体称为黑体,A 正确;由题图可知,随温度的降低,各种波长的光辐射强度都有所减小,选项B 错误;随着温度的升高,黑体辐射强度的极大值向波长较短的方向移动,选项C 错误;一般物体辐射电磁波的情况与温度有关,还与材料的种类及表面情况有关,但黑体辐射电磁波的情况只与它的温度有关,选项D 正确.例2 在“焊接”视网膜的眼科手术中,所用激光的波长λ=6.4×10-7 m ,每个激光脉冲的能量E =1.5×10-2 J .求每个脉冲中的光子数目.(已知普朗克常量h =6.63×10-34J·s ,光速c =3×108 m/s.计算结果保留一位有效数字) 答案 5×1016解析 每个光子的能量为E 0=hν=h cλ,每个激光脉冲的能量为E ,所以每个脉冲中的光子数目为:N =EE 0,联立且代入数据解得:N =5×1016个.考点二 光电效应1.光电效应及其规律 (1)光电效应现象照射到金属表面的光,能使金属中的电子从表面逸出,这个现象称为光电效应,这种电子常称为光电子.(2)光电效应的产生条件入射光的频率大于或等于金属的截止频率. (3)光电效应规律①每种金属都有一个截止频率νc ,入射光的频率必须大于或等于这个截止频率才能产生光电效应.②光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大. ③光电效应的发生几乎是瞬时的,一般不超过10-9 s.④当入射光的频率大于或等于截止频率时,在光的颜色不变的情况下,入射光越强,饱和电流越大,逸出的光电子数越多,逸出光电子的数目与入射光的强度成正比,饱和电流的大小与入射光的强度成正比.2.爱因斯坦光电效应方程(1)光电效应方程①表达式:hν=E k+W0或E k=hν-W0.②物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.(2)逸出功W0:电子从金属中逸出所需做功的最小值,W0=hνc=h cλc.(3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.1.光子和光电子都不是实物粒子.(×)2.只要入射光的强度足够大,就可以使金属发生光电效应.(×)3.要使某金属发生光电效应,入射光子的能量必须大于或等于金属的逸出功.(√) 4.光电子的最大初动能与入射光子的频率成正比.(×)1.光电效应的分析思路2.光电效应图像图像名称图线形状获取信息最大初动能E k与入射光频率ν的关系图线①截止频率(极限频率)νc:图线与ν轴交点的横坐标②逸出功W0:图线与E k轴交点的纵坐标的绝对值W0=|-E|=E③普朗克常量h:图线的斜率k=h遏止电压U c 与入射光频率ν的关系图线①截止频率νc:图线与横轴的交点的横坐标②遏止电压U c:随入射光频率的增大而增大③普朗克常量h:等于图线的斜率与电子电荷量的乘积,即h=ke(注:此时两极之间接反向电压)颜色相同、强度不同的光,光电流与电压的关系①遏止电压U c:图线与横轴的交点的横坐标②饱和电流:电流的最大值;③最大初动能:E k=eU c颜色不同时,光电流与电压的关系①遏止电压U c1、U c2②饱和电流③最大初动能E k1=eU c1,E k2=eU c2考向1光电效应的规律例3研究光电效应的电路图如图所示,关于光电效应,下列说法正确的是()A.任何一种频率的光,只要照射时间足够长,电流表就会有示数B.若电源电动势足够大,滑动变阻器滑片向右滑,电流表的示数能一直增大C.调换电源的正负极,调节滑动变阻器的滑片,电流表的示数可能变为零D.光电效应反映了光具有波动性答案 C解析能否发生光电效应取决于光的频率,与照射时间长短无关,A错误;增加极板间电压,会出现饱和电流,电流表示数不会一直增大,B错误;调换电源正负极,若反向电压达到遏止电压,则电流表示数变为零,C正确;光电效应反映了光具有粒子性,D错误.考向2光电效应的图像例4 (多选)如图所示,甲、乙、丙、丁是关于光电效应的四个图像,以下说法正确的是( )A .由图甲可求得普朗克常量h =be aB .由图乙可知虚线对应金属的逸出功比实线对应金属的逸出功小C .由图丙可知在光的颜色不变的情况下,入射光越强,饱和电流越大D .由图丁可知电压越高,则光电流越大 答案 BC解析 根据光电效应方程,结合动能定理可知eU c =E k =hν-W 0=hν-hνc ,变式可得U c =he ν-h e νc ,斜率k =b 2a =h e ,解得普朗克常量为h =be2a ,故A 错误;根据爱因斯坦光电效应方程E k =hν-W 0可知,纵轴截距的绝对值表示逸出功,则实线对应金属的逸出功比虚线对应金属的逸出功大,故B 正确;入射光频率一定,饱和电流由入射光的强度决定,即光的颜色不变的情况下,入射光越强,光子数越多,饱和电流越大,故C 正确;分析题图丁可知,当达到饱和电流以后,增加光电管两端的电压,光电流不变,故D 错误.例5 (多选)一定强度的激光(含有三种频率的复色光)沿半径方向入射到半圆形玻璃砖的圆心O 点,如图甲所示.现让经过玻璃砖后的A 、B 、C 三束光分别照射相同的光电管的阴极(如图乙所示),其中C 光照射时恰好有光电流产生,则( )A .若用B 光照射光电管的阴极,一定有光电子逸出B .若用A 光和C 光分别照射光电管的阴极,A 光照射时逸出的光电子的最大初动能较大 C .若入射光的入射角从0开始增大,C 光比B 光先消失D .若是激发态的氢原子直接跃迁到基态辐射出B 光、C 光,则C 光对应的能级较低 答案 BC解析 由题图甲可得,B 光和C 光为单色光,C 光的折射率大,频率高;A 光除了B 、C 光的反射光线外,还含有第三种频率的光,为三种光的复合光.C 光照射光电管恰好有光电流产生,用B 光照射同一光电管,不能发生光电效应,故A 错误;A 光为三种频率的复合光,但A 光中某频率的光发生了全反射,其临界角最小,折射率最大,频率最高,则A 光和C 光分别照射光电管的阴极时,A 光照射时逸出的光电子的最大初动能较大,故B 正确;根据sin C =1n 可知,C 光的临界角比B 光小,若入射光的入射角从0开始增大,C 光比B 光先消失,故C 正确;C 光的频率比B 光高,根据能级跃迁规律可知,若是激发态的氢原子直接跃迁到基态辐射出B 光、C 光,则C 光对应的能级较高,故D 错误.考点三 光的波粒二象性与物质波1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 2.物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波:任何一个运动着的物体,小到微观粒子,大到宏观物体,都有一种波与它对应,其波长λ=hp,p 为运动物体的动量,h 为普朗克常量.1.光的频率越高,光的粒子性越明显,但仍具有波动性.( √ )2.法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现为波动性.( √ )例6(2022·上海师大附中高三学业考试)用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图(a)(b)(c)所示的图像,则()A.图像(a)表明光具有波动性B.图像(c)表明光具有粒子性C.用紫外线观察不到类似的图像D.实验表明光是一种概率波答案 D解析题图(a)只有分散的亮点,表明光具有粒子性;题图(c)呈现干涉条纹,表明光具有波动性,A、B错误;紫外线也具有波粒二象性,也可以观察到类似的图像,C错误;实验表明光是一种概率波,D正确.考点四原子结构1.电子的发现:英国物理学家汤姆孙发现了电子.2.α粒子散射实验:1909年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来.3.原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.1.在α粒子散射实验中,少数α粒子发生大角度偏转是由于它跟金原子中的电子发生了碰撞.(×)2.原子中绝大部分是空的,原子核很小.(√)3.核式结构模型是卢瑟福在α粒子散射实验的基础上提出的.(√)例7关于α粒子散射实验的下述说法中正确的是()A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°B.使α粒子发生明显偏转的力来自带正电的核及核外电子,当α粒子接近核时是核的排斥力使α粒子发生明显偏转,当α粒子接近电子时,是电子的吸引力使之发生明显偏转C.实验表明原子中心有一个极小的核,它占有原子体积的极小部分,实验事实肯定了汤姆孙的原子结构模型D.实验表明原子中心的核带有原子的全部正电及全部质量答案 A解析在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°,所以A正确;使α粒子发生明显偏转的力是来自带正电的核,当α粒子接近核时,核的排斥力使α粒子发生明显偏转,电子对α粒子的影响忽略不计,所以B错误;实验表明原子中心有一个极小的核,它占有原子体积的极小部分,实验事实否定了汤姆孙的原子结构模型,所以C错误;实验表明原子中心的核带有原子的全部正电及绝大部分质量,所以D错误.考点五玻尔理论能级跃迁1.玻尔理论(1)定态假设:电子只能处于一系列不连续的能量状态中,在这些能量状态中电子绕核的运动是稳定的,电子虽然绕核运动,但并不产生电磁辐射.(2)跃迁假设:电子从能量较高的定态轨道(其能量记为E n)跃迁到能量较低的定态轨道(能量记为E m,m<n)时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E n-E m.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道量子化假设:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.2.氢原子的能量和能级跃迁(1)能级和半径公式:①能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.②半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态轨道半径,其数值为r1=0.53×10-10 m.(2)氢原子的能级图,如图所示1.处于基态的氢原子可以吸收能量为11 eV 的光子而跃迁到高能级.( × ) 2.氢原子吸收或辐射光子的频率条件是hν=E n -E m (m <n ).( √ ) 3.氢原子各能级的能量指电子绕核运动的动能.( × ) 4.玻尔理论能解释所有元素的原子光谱.( × )1.两类能级跃迁(1)自发跃迁:高能级→低能级,释放能量,发射光子. 光子的频率ν=ΔE h =E 高-E 低h.(2)受激跃迁:低能级→高能级,吸收能量. 吸收光子的能量必须恰好等于能级差hν=ΔE . 2.光谱线条数的确定方法(1)一个氢原子跃迁发出可能的光谱线条数最多为n -1. (2)一群氢原子跃迁发出可能的光谱线条数N =C 2n =n (n -1)2. 3.电离(1)电离态:n =∞,E =0.(2)电离能:指原子从基态或某一激发态跃迁到电离态所需要吸收的最小能量. 例如:氢原子从基态→电离态: E 吸=0-(-13.6 eV)=13.6 eV(3)若吸收能量足够大,克服电离能后,获得自由的电子还具有动能.例8 (2019·全国卷Ⅰ·14)氢原子能级示意图如图所示.光子能量在1.63 eV ~3.10 eV 的光为可见光.要使处于基态(n =1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为()A.12.09 eV B.10.20 eVC.1.89 eV D.1.51 eV答案 A解析因为可见光光子的能量范围是1.63 eV~3.10 eV,所以处于基态的氢原子至少要被激发到n=3能级,要给氢原子提供的能量最少为E=(-1.51+13.60) eV=12.09 eV,故选项A 正确.例9氢原子的能级图如图所示.用氢原子从n=4能级跃迁到n=1能级辐射的光照射逸出功为6.34 eV的金属铂,下列说法正确的是()A.产生的光电子的最大初动能为6.41 eVB.产生的光电子的最大初动能为12.75 eVC.氢原子从n=2能级向n=1能级跃迁时辐射的光不能使金属铂发生光电效应D.氢原子从n=4能级向n=2能级跃迁时辐射的光也能使金属铂发生光电效应答案 A解析从n=4能级跃迁到n=1能级辐射的光子能量为-0.85 eV-(-13.6 eV)=12.75 eV,产生的光电子的最大初动能为E k=hν-W0=12.75 eV-6.34 eV=6.41 eV,故A正确,B错误;氢原子从n=2能级向n=1能级跃迁时辐射的光子能量为10.2 eV,能使金属铂发生光电效应,故C错误;氢原子从n=4能级向n=2能级跃迁时辐射的光子能量小于金属铂的逸出功,故不能使金属铂发生光电效应,故D错误.课时精练1.(多选)波粒二象性是微观世界的基本特征,以下说法正确的有()A.光电效应现象揭示了光的粒子性B.热中子束射到晶体上产生衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波的波长也相等答案AB2.关于光电效应,下列说法正确的是()A.截止频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能发生光电效应C.从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多答案 A解析逸出功W0=hνc,W0∝νc,A正确;只有照射光的频率ν大于或等于金属截止频率νc,才能发生光电效应,B错误;由光电效应方程E k=hν-W0知,入射光频率ν不确定时,无法确定E k与W0的关系,C错误;频率一定,入射光的光强越大,单位时间内逸出的光电子数越多,D错误.3.频率为ν的光照射某金属时,产生光电子的最大初动能为E km.改为频率为2ν的光照射同一金属,所产生光电子的最大初动能为(h为普朗克常量)()A.E km-hνB.2E kmC.E km+hνD.E km+2hν答案 C解析根据爱因斯坦光电效应方程得E km=hν-W0,若入射光频率变为2ν,则E km′=h·2ν-W0=2hν-(hν-E km)=hν+E km,故选项C正确.4.如图所示为氢原子的能级图,下列说法正确的是()A.用能量为9.0 eV的电子激发n=1能级的大量氢原子,可以使氢原子跃迁到高能级B.n=2能级的氢原子可以吸收能量为3.3 eV的光子而发生电离C.大量处于n=4能级的氢原子跃迁到基态放出的所有光子中,n=4能级跃迁到n=1能级释放的光子的粒子性最显著D.大量处于基态的氢原子吸收12.09 eV的光子后,只可以放出两种频率的光子答案 C解析n=1能级与n=2能级的能量差为10.2 eV,由于9.0 eV<10.2 eV,因此用能量为9.0 eV 的电子激发n=1能级的大量氢原子,不能使氢原子跃迁到高能级,故A错误;n=2能级的氢原子的能量为-3.40 eV,因此欲使其发生电离,吸收的能量至少为3.40 eV,故B错误;光子的波长越长波动性越显著,光子的频率越高,粒子性越显著,由玻尔理论可知,从n=4能级跃迁到n=1能级释放的光子能量最大,由E=hν可知,该光子的频率最高,该光子的粒子性最显著,故C正确;大量处于基态的氢原子吸收12.09 eV的光子后,由跃迁规律可知,大量的氢原子可以跃迁到n=3能级,则放出C23=3种频率的光子,故D错误.5.(多选)(2017·全国卷Ⅲ·19)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b,光电子的最大初动能分别为E k a和E k b.h 为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b答案BC解析由爱因斯坦光电效应方程得,E k=hν-W0,由动能定理得,E k=eU,用a、b单色光照射同种金属时,逸出功W0相同.当νa>νb时,一定有E k a>E k b,U a>U b,故选项A错误,B正确;若U a<U b,则一定有E k a<E k b,故选项C正确;因逸出功相同,有W0=hνa-E k a =hνb-E k b,故选项D错误.6.(2020·江苏卷·12(1)(2))(1)“测温枪”(学名“红外线辐射测温仪”)具有响应快、非接触和操作方便等优点.它是根据黑体辐射规律设计出来的,能将接收到的人体热辐射转换成温度显示.若人体温度升高,则人体热辐射强度I及其极大值对应的波长λ的变化情况是________.A.I增大,λ增大B.I增大,λ减小C.I减小,λ增大D.I减小,λ减小(2)大量处于某激发态的氢原子辐射出多条谱线,其中最长和最短波长分别为λ1和λ2,则该激发态与基态的能量差为________,波长为λ1的光子的动量为________.(已知普朗克常量为h,光速为c)答案 (1)B (2)h c λ2 h λ1解析 (1)若人体温度升高,则人体的热辐射强度I 增大,由ε=hν,故对应的频率ν变大,由c =λν知对应的波长λ变小,选项B 正确.(2)该激发态与基态的能量差ΔE 对应着辐射最短波长的光子,故能量差为ΔE =hν=h c λ2;波长为λ1的光子的动量p =h λ1.7.(多选)对于钠和钙两种金属,其遏止电压U c 与入射光频率ν的关系如图所示.用h 、e 分别表示普朗克常量和电子电荷量,则( )A .钠的逸出功小于钙的逸出功B .图中直线的斜率为h eC .在得到这两条直线时,必须保证入射光的光强相同D .若这两种金属产生的光电子具有相同的最大初动能,则照射到钠的光频率较高 答案 AB解析 根据U c e =E k =hν-W 0,即U c =h e ν-W 0e,则由题图可知钠的逸出功小于钙的逸出功,选项A 正确;题图中直线的斜率为h e,选项B 正确;在得到这两条直线时,与入射光的光强无关,选项C 错误;根据E k =hν-W 0,若这两种金属产生的光电子具有相同的最大初动能,则照射到钠的光频率较低,选项D 错误.8.用金属铷为阴极的光电管,观测光电效应现象,实验装置示意如图甲所示,实验中测得铷的遏止电压U c 与入射光频率ν之间的关系如图乙所示,图线与横轴交点的横坐标为5.15× 1014 Hz.已知普朗克常量h =6.63×10-34 J·s.则下列说法中正确的是( )A.欲测遏止电压,应选择电源左端为正极B.当电源左端为正极时,滑动变阻器的滑片向右滑动,电流表的示数持续增大C.增大照射光的强度,产生的光电子的最大初动能一定增大D.如果实验中入射光的频率ν=7.00×1014Hz,则产生的光电子的最大初动能约为E k=1.2×10-19 J答案 D解析遏止电压产生的电场对电子起阻碍作用,则电源的右端为正极,故A错误;当电源左端为正极时,滑动变阻器的滑片向右滑动,加速电场增强,电流增加但增加到一定值后不再增加,故B错误;由E k=hν-W0可知,最大初动能与光的强度无关,故C错误;E k=hν-W0=hν-hνc,νc=5.15×1014 Hz,代入数值求得E k≈1.2×10-19 J,故D正确.9.(多选)(2020·浙江1月选考·14)由玻尔原子模型求得氢原子能级如图所示,已知可见光的光子能量在1.62 eV到3.11 eV之间,则()A.氢原子从高能级向低能级跃迁时可能辐射出γ射线B.氢原子从n=3能级向n=2能级跃迁时会辐射出红外线C.处于n=3能级的氢原子可以吸收任意频率的紫外线并发生电离D.大量氢原子从n=4能级向低能级跃迁时可辐射出2种频率的可见光答案CD解析γ射线是放射性元素的原子核从高能级向低能级跃迁时辐射出来的,氢不是放射性元素,A错误;氢原子从n=3能级向n=2能级跃迁时辐射出的光子的能量E=E3-E2=-1.51 eV-(-3.4 eV)=1.89 eV,1.62 eV<1.89 eV<3.11 eV,故氢原子从n=3能级向n=2能级跃迁时辐射出的光为可见光,B错误;根据E=hν及题给条件可知,紫外线光子的能量大于3.11 eV,要使处于n=3能级的氢原子发生电离,需要的能量至少为1.51 eV,故C正确;大量氢原子从n=4能级向低能级跃迁时辐射出的光子能量有0.66 eV、2.55 eV、12.75 eV、1.89 eV、12.09 eV、10.2 eV,故大量氢原子从n=4能级向低能级跃迁时可辐射出2种频率的可见光,D正确.10.如图所示为氢原子的能级示意图,则关于氢原子在能级跃迁过程中辐射或吸收光子的特征,下列说法中正确的是()A.一群处于n=4能级的氢原子向基态跃迁时,能辐射出5种不同频率的光子B.一群处于n=3能级的氢原子吸收能量为0.9 eV的光子可以跃迁到n=4能级C.处于基态的氢原子吸收能量为13.8 eV的光子可以发生电离D.若氢原子从n=3能级跃迁到n=1能级辐射出的光照在某种金属表面上能发生光电效应,则从n=5能级跃迁到n=2能级辐射出的光也一定能使该金属发生光电效应答案 C解析一群处于n=4能级的氢原子向基态跃迁时,能辐射出C24=6种不同频率的光子,故A 错误;一群处于n=3能级的氢原子吸收能量为0.9 eV的光子后的能量为E=-1.51 eV+0.9 eV=-0.61 eV,0.9 eV不等于能级间的能量差,该光子不能被吸收,故B错误;处于基态的氢原子吸收能量为13.8 eV的光子可以发生电离,剩余的能量变为光电子的初动能,故C 正确;氢原子从n=3能级跃迁到n=1能级辐射出的光子能量为ΔE1=E3-E1=12.09 eV,从n=5能级跃迁到n=2能级辐射出的光子能量为ΔE2=E5-E2=2.86 eV,所以若氢原子从n =3能级跃迁到n=1能级辐射出的光照在某种金属表面上能发生光电效应,则从n=5能级跃迁到n=2能级辐射出的光不一定能使该金属发生光电效应,故D错误.11.(多选)为了解决光信号长距离传输中的衰减问题,常常在光纤中掺入铒元素.如图所示是铒离子的能级示意图,标识为4I13/2的铒离子处在亚稳态,不会立即向下跃迁:如果用光子能量约为2.03×10-19J的激光把处于基态能级4I15/2的铒离子激发到4I11/2能级,再通过“无辐射跃迁”跃迁到能级4I13/2,从而使该能级积聚的离子数远超过处于基态的离子数.当光纤中传输某波长的光波时,能使处在亚稳态能级的离子向基态跃迁,产生大量能量约为1.28×。
人教版高考一轮复习专题:动量守恒定律 波粒二象性 原子结构与原子核(含答案)

人教版物理高考复习专题动量守恒定律波粒二象性原子结构与原子核一、单选题(共10小题,每小题5.0分,共50分)1.下列说法正确的是()A.结合能越大表示原子核中核子结合得越牢靠,原子核越稳定B.β射线和光电效应中逸出的电子都是原子核衰变产生的C.均匀变化的电场可以产生电磁波D.在任何惯性系中,光在真空中沿任何方向的传播速度都相同。
2.以下说法正确的是()A.所有原子核中的质子数和中子数都相等B.在核反应中,质量数守恒、电荷数守恒C.氢原子从高能级向低能级跃迁时能辐射出γ射线D.只要光照射金属电极的时间足够长,就能发生光电效应3.在光滑的水平面上,质量m1=2 kg 的球以速度v1=5 m/s和静止的质量为m2=1 kg的球发生正碰,碰后m2的速度v2′=4 m/s,则碰后m1( )A.以3 m/s的速度反弹B.以3 m/s的速度继续向前运动C.以1 m/s的速度继续向前运动D.立即停下4.关于下列四幅图说法中错误的是A.原子中的电子绕原子核高速运转时,运行轨道的半径是任意的B.光电效应实验说明了光具有粒子性C.电子束通过铝箔时的衍射图样证实了电子具有波动性D.在光颜色保持不变的情况下,入射光越强,饱和光电流越大5.下列有关原子结构和原子核的认识,其中正确的是()(填选项前的字母)A.γ射线是高速运动的电子流B.氢原子辐射光子后,其绕核运动的电子动能增大C.太阳辐射能量的主要来源是太阳中发生的重核裂变D.Bi的半衰期是5天,100克Bi经过10天后还剩下50克6.Th具有放射性,它能放出一个新的粒子而变为镤Pa,同时伴随有γ射线产生其方程为Th→Pa+x,钍的半衰期为24天.则下列说法中正确的是()A. x为质子B. x是钍核中的一个中子转化成一个质子时产生的C.γ射线是钍原子核放出的D. 1g钍Th经过120天后还剩0.2g钍7.(多选)如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量不守恒8.如图是氢原子从n=3、4、5、6能级跃迁到n=2能级时辐射的四条光谱线,其中频率最大的是( )A. HαB. HβC. HγD. Hδ9.如图4所示,“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()图4A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点时,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变10.如图,若x轴表示时间,y轴表示位置,则该图像反映了某质点做匀速直线运动时,位置与时间的关系。