实数典型例题(培优)
浙教版七上数学第三章:实数培优训练试题(附答案)
浙教版七上数学第三章:实数培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.一个正数的算术平方根是8,则这个数的相反数的立方根是( )A .4B .-4C .±4D .±8 2.16的平方根为( )A. 4±B. 4C. 2D. 2± 3.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 4.下列说法中不正确的是( ) ①.-1的立方根是-1,-1的平方是1;②.两个有理数之间必定存在着无数个无理数,③.在1和2之间的有理数有无数个,但无理数却没有;④.如果x 2=6,则x 一定不是有理数 A.②③ B.①④ C.③ D.③④ 5.如果b a ,表示两个实数,那么下列式子正确的是( )A .若b a =,则b a =B .若b a <,则22b a <C .若33b a =,则b a =D .若b a >,则33b a >6.如果642=x ,那么=3x ( )A. 4±B. 2±C.2D. 2-7.一个正奇数的算术平方根是a ,那么与这个正奇数相邻的下一个正奇数的算术平方根是( ) A .2+aB .22+a C.22+aD .2+±a8.已知35.703.54=,则005403.0的算术平方根是( ) A .0.735B .0.0735C .0.00735D .0.0007359.已知实数139-的整数部分为a ,小数部分为b ,则=-b a 32( )A. 39343-B.3937-C.39343+D.3937+10.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是( )A .点CB .点DC .点AD .点B二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知一个正数的两个平方根分别为62-m 和m +3,则()2018m -的值为_________12.如果15=3.873,5.1=1.225,那么______00015.0= 13.在一次数字竞猜游戏中,大屏幕上出现的一列有规律的数是,21,52,103,174,265,376,507…则第100个数为14.按如图所示的程序计算:若开始输入的x 值为64时,输出的y 值是_______15.如图所示的方格中,每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是_______________16.在草稿纸上计算:①31;②3321+;③333321++;④33334321+++......观察你计算的结果,用你发现的规律直接写出下面式子的值:________2018...432133333=+++++三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)计算下列各式:(1)()()()33332312521442--⎪⎭⎫⎝⎛-⨯-+-⨯-(2)()()[]3233253831512812116912-⨯++⨯⎪⎭⎫⎝⎛-÷+-⨯-18(本题8分)请将图中数轴上的各点与下列实数对应起来,并把它们按从小到大的顺序排列,用“<”连接:0.3,3-,2,3.14,π-,0,27.19.(本题8分)已知实数a ,b ,c 在数轴上的对应点如图所示,化简:()()233c a c b b a --+--.20(本题10分)如图1.纸上有5个边长为1的小正方形组成的纸片,可把它剪拼成一个正方形(图2)(图3)(1)拼成的正方体的面积与边长分别是多少?(2)你能把这十个小正方体组成的图形纸(图3),剪拼成一个大正方形吗?若能,则请画出剪拼成的大正方形,并求出其边长为多少?21(本题10分).若实数a ,b ,c 在数轴上所对应点分别为A ,B ,C ,a 为2的算术平方根,b=3,C 点是A 点关于B 点的对称点, (1)求C 点所对应的数;(2)a 的整数部分为x ,c 的小数部分为y ,求2x 3+2y 的值.22(本题12分)(1)已知43=x ,且()212+-z y 与3-z 互为相反数,求333z y x ++的值.(2)现用篱笆材料在空地上围成一个绿化场地,使面积为48 m 2,现有两种设计方案:一种是围成正方形场地;另一种是围成圆形场地,试问选用哪一种方案围成的场地所需的材料少,并说明理由.(π取3)23(本题12分)有一台单一功能的计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x 1,只显示不运算,接着再输入整数x 2后则显示|x 1﹣x 2|的结果,比如依次输入1,2,则输出的结果是|1﹣2|=1.此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是(2)若小明将1到2018这2018个整数随意地一个一个地输入,全部输入完毕后显示的最后结果设为m ,求m 的最大值试题答案一.选择题:1.答案:B解析:∵一个正数的算术平方根是8,∴这个正数为64, ∴64的相反数的立方根为4643-=-,故选择B2.答案:D解析:∵416=,∴16的平方根为2±,故选择D3.答案:B解析:∵正方形的面积是15,∴边长为15, ∵4153<<,故选择B4.答案:C解析:∵-1的立方根是-1,-1的平方是1,故①正确; ∵两个有理数之间必定存在着无数个无理数,故②正确;∵在1和2之间的有理数有无数个,无理数也有无数个,故③错误; ∵x 2=6,∴x 一定不是有理数,故④正确,故选择C5.答案:D解析:如果b a =,则a 不一定等于b ,故A 选项错误; 如果b a <,例如1,5=-=b a 时,22b a >,故B 选项错误; 如果33b a =,当b a ,为负数时,负数没有平方根,故C 选项错误; 若b a >,则33b a >,故D 选项正确,故选择D6.答案:B解析:∵642=x ,∴8±=x ,∴283±=±,故选择B7.答案:C解析:∵一个正奇数的算术平方根是a ,∴这个正奇数是2a , ∴与这个正奇数相邻的下一个正奇数为22+a , ∴算术平方根是22+a ,故选择C8.答案:B解析:∵35.703.54=,∴0735.0005403.0= 故选择B9.答案:A 解析:∵61395<-<,∴639,5-==b a ,∴()39343183932563932532-=+-=--=-b a故选择A10.答案:D解析:当正方形在转动第一周的过程中,1所对应的点是A ,2所对应的点是B ,3所对应的点是C ,4所对应的点是D , ∴四次一循环, ∵2018÷4=504…2, ∴2018所对应的点是B . 故选:D .二.填空题:11.答案:1解析:∵一个正数的两个平方根分别为62-m 和m +3, ∴0362=++-m m ,解得:1=m ,∴()()1120182018=-=-m12.答案:01225.0解析:∵15=3.873,5.1=1.225,∴01225.000015.0=13.答案:10001100解析:∵111212+=,122522+=,1331032+=,1441742+=,…∴第100个数为1000110011001002=+14.答案:2解析:输入64,取算术平方根为8,是有理数,取立方根为2,是有理数,取算术平方根为2, 是无理数,输出2,15.答案:6 解析:∵624222122212=+=⨯⨯+⨯⨯⨯=阴影S , ∴把阴影部分剪拼成一个正方形的边长为616.答案:2036162解析:∵113=,32133=+,6321333=++,1043213333=+++,......∴20361622201920182018...43212018...432133333=⨯=+++++=+++++三.解答题:17.解析:(1)原式25352132581448-=++-=+⨯+⨯-=(2)原式=()()13601352829182141318-=-+=⨯-+⨯⨯+-⨯-18.解:各实数对应数轴上的点为:A :π-, B :3-, C :0, D :0.3, E :2, F :3.14, G :27, 从小到大排列为:π-<3-<0<0.3<2<3.14<2719.解析:根据数轴上点的位置得:a <b <0<c ,且|b|<|c|, ∴b+c >0,a ﹣c <0,则原式=a ﹣b ﹣b ﹣c+a ﹣c=2a ﹣2b ﹣2c .20.解析:(1)由图2得,正方形的面积为5,边长为5; (2)能,如图4所示:∵正方形的面积为10,∴边长为1021.解析:(1)设点A 关于点B 的对称点为点C , 则322=+m,解得26-=m ; 故C 点所对应的数为:26-;(2)∵1<2<2,∴a 的整数部分为x=1,4<26-<5,所以26-的整数部分是4,小数部分y=6﹣2﹣4=2﹣2, ∴2x 3+2y=2×13+2×(2﹣2)=6﹣22.22.解析:(1)∵43=x ,∴64=x ,∵()212+-z y 与3-z 互为相反数,∴()212+-z y 03=-+z∴⎩⎨⎧=-=+-03012z z y 解得:⎩⎨⎧==35z y∴6216271256433333==++=++z y x(2)方案1:设正方形的边长为x m ,则482=x ,解得,48±=x∵48-=x 不符合题意,舍去.∴正方形周长为484m .方案2:设圆的半径为x m ,则482=x π,解得4±=x ,4-=x 不符合题意,舍去.∴圆周长为8π≈24(m ),又∵24<484,故选用方案2围成圆形场地所需的篱笆材料较少.23.解析:(1)根据题意可以得出:||3﹣4|﹣5|=|1﹣5|=4; 故答案为:4.(2)对于任意两个正整数x 1,x 2,|x 1﹣x 2|一定不超过x 1和x 2中较大的一个,对于任意三个正整数x 1,x 2,x 3,||x 1﹣x 2|﹣x 3|一定不超过x 1,x 2和x 3中最大的一个,以此类推,设小明输入的n 个数的顺序为x 1,x 2,…x n ,则m=|||…|x 1﹣x 2|﹣x 3|﹣…|﹣x n |, m 一定不超过x 1,x 2,…x n ,中的最大数,所以0≤m ≤n ,易知m 与1+2+…+n 的奇偶性相同; 1,2,3可以通过这种方式得到0:||3﹣2|﹣1|=0;任意四个连续的正整数可以通过这种方式得到0:|||a ﹣(a+1)|﹣(a+3)|﹣(a+2)|=0(*);下面根据前面分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算.当n=4k时,1+2+…+n为偶数,则m为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n,则最大值为n;当n=4k+1时,1+2+…+n为奇数,则m为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n,则最大值为n;当n=4k+2时,1+2+…+n为奇数,则m为奇数,从1开始连续四个正整数结合得到0,仅剩下n和n ﹣1,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n,最大值为n﹣1;当n=4k+3时,1+2+…+n为偶数,则m为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n,则最大值为n﹣1.∴当n=2018时,m的最大值为2017,最小值为0,故答案为:2017.。
金溪县第一中学七年级数学下册第六章【实数】经典练习(培优练)
1.若227(7)0x y z -+++-=,则x y z -+的平方根为( ) A .±2B .4C .2D .±42.下列各式计算正确的是( ) A .31-=-1B .38= ±2C .4= ±2D .±9=33.在实数3-,-3.14,0,π,364中,无理数有( ) A .1个B .2个C .3个D .4个4.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2 D .8的平方根是45.下列说法正确的是( ) A .2的平方根是2 B .(﹣4)2的算术平方根是4 C .近似数35万精确到个位 D .无理数21的整数部分是5 6.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12-B .12C .2-D .27.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间8.下列说法中,错误的有( ) ①符号相反的数与为相反数; ②当0a ≠时,0a >; ③如果a b >,那么22a b >;A .0个B .1个C .2个D .3个9.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( ) A .3B .3-C .3±D .3±10.估计30的值在哪两个整数之间( ) A .5和6B .6和7C .7和8D .8和911.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.13.求下列各式中x 的值 (1)()328x -= (2)21(3)753x -= 14.求下列各式中的x 的值. (1)4x 2=9; (2)(2x ﹣1)3=﹣27. 15.把下列各数填在相应的横线上 1.4,2020,2-,32-,0.31,0,38-,π-,1.3030030003…(每相邻两个3之间0的个数依次加1) (1)整数:______ (2)分数:______ (3)无理数:______16.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;③16的平方根是4±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)17.请你写出一个比3大且比4小的无理数,该无理数可以是:____.18.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .111(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +与4d +互为相反数,求23c d -的平方根.20.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______21.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.三、解答题22.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------23.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0.24.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2. (1)求a 与b 的值;(2)求2a +4b 的平方根.251327(2)2(1)218x -+=.1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5C .6D .72.-18的平方的立方根是( ) A .4 B .14C .18D .1643.下列说法中,正确的是 ( ) A .64的平方根是8 B .16的平方根是4和-4 C .()23-没有平方根D .4的平方根是2和-24.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★ab b;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③5.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 136.下列实数31,7π-,3.1438,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个7.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线497的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .18.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-689.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n -10.在3223.14,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( ) A .5B .2C .3D .411.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 81二、填空题12.已知31a +的算数平方根是4,421c b +-的立方根是3,c 1322a b c +-的平方根.13.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9. 问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.14.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来.03272192215.计算:(1)2323615--- (2)12233416.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ; (2)若(-3)*x=6,求x 的值; 17.计算:(1238127(5)-- (2)03(0)8|32|π--+ (3)解方程:4x 2﹣9=0. 18.求下列各式中x 的值 (1)21(1)64x +-=; (2)3(1)125x -=.19.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x x x x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解.(3)解方程:2(x 2)100-=(4)计算:201723(1)|7|9(527-----20.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.21.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位100三、解答题22.一个四位正整数的千位、百位、十位、个位上的数字分别为a,b,c,d,如果a b c d≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.23.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b->>⎧⎪-==⎨⎪-<<⎩则则则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题:(1_______3;(2)比较23-的大小,并说明理由.24.已知31a+的算数平方根是4,421c b+-的立方根是3,c22a b c+-的平方根.25.3=,31a b-+的平方根是4±,c3a b c++的平方根.1.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .42.若a =b =-,c =,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>3.下列实数中,是无理数的为( )A .3.14B .13C D4.0215中,是无理数的是( )A B .0C D .2155.下列实数220.010*******;; (相邻两个1之依次多一个0)2,其中无理数有( ) A .2个B .3个C .4个D .5个6.已知n 是正整数,并且n -1<3+<n ,则n 的值为( ) A .7B .8C .9D .107.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列实数中,属于无理数的是( )A .3.14B .227CD .π9.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π10 )A .8B .8-C .D .±11A .2是正数B .2是2的平方根C .122<<D .22是分数 二、填空题12.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;13.计算:(1)238127(5)÷---;(2)03(0)8|32|π--+-(3)解方程:4x 2﹣9=0.14.(1)计算:①231698(2)-+-;②3121125|63|6+-+--.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.15.27-的立方根是___________;81的平方根是___________;| 3.14|π-的绝对值是___________.16.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.17.实数2-2,227,π-327-中属于无理数的是________. 18.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:2π、而常用的“……”或者“≈”的表示方法都不够百分百准确;2 2.520.5 2.52323<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10可以表示为10a b <+<则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数. 19.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 20.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x ) –x 有最大值是0;③[x )–x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).21.若3109,b a =-且b 的算术平方根为4,则a =__________.三、解答题22.已知21a -的平方根是31a b +-的算术平方根是6,求4a b +的平方根. 23.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值. 24.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空:1891(2)由以上几个式子及你找到的规律计算:1 12⨯+123⨯+134⨯+............+120152016⨯。
初中数学数学第六章 实数的专项培优练习题(含答案
初中数学数学第六章 实数的专项培优练习题(含答案一、选择题1.在有理数中,一个数的立方等于这个数本身,这种数的个数为( )A .1B .2C .3D .42.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 3.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17B .3C .13D .-17 4.280x y -+=,则x y +的值为( ) A .10 B .-10 C .-6 D .不能确定5.下列各组数中,互为相反数的是( )A .22B .2-与12-C .()23-与23-D 38-38-6.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个7.设n 为正整数,且n 65n+1,则n 的值为( ) A .5 B .6 C .7D .8 8.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个9.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个 B .2个 C .3个 D .4个10.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.64的立方根是___________. 13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.17.31.35 1.105≈3135 5.130≈30.000135-≈________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.若x <0323x x ____________.20.若x 、y 分别是811-2x -y 的值为________.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
《易错题》初中七年级数学下册第六单元《实数》经典题(培优专题)
一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有()A.0个B.1个C.2个D.3个C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.下列各式计算正确的是()A B= ±2 C= ±2 D. A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A.0个B.1个C.2个D.3个D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D.【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.4.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.5.下列实数中,是无理数的为()A.3.14 B.13C D解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.7.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】8.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.9.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.二、填空题11.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---; (4)(x +2)2=25.(1);(2)x=;(3);(4)【分析】(1)方程整理后利用平方根定义开方即可求出解;(2)先求出x3的值再根据立方根的定义解答;(3)直接利用绝对值的性质平方根定义和负指数幂的性质分别化简得出答解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-,x=35; (3)21|12|(2)16----- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.12.计算:3011(2)(20043)22-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(20043)22-+--- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.13.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:22+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,(1)1BC =-=, ∴1AB BC ==, ∵1AB a =--, ∴11a --=, ∴2a =-∴22a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.14.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.15.已知290x ,310y +=,求x y +的值.2或4【分析】根据平方根和立方根的性质计算得到x 和y 的值再结合绝对值的性质计算即可得到答案【详解】∵∴∵∴∴当时=当时=【点睛】本题考查了平方根立方根绝对值的知识;解题的关键是熟练掌握平方根立方根绝解析:2或4【分析】根据平方根和立方根的性质计算,得到x 和y 的值,再结合绝对值的性质计算,即可得到答案.【详解】∵290x∴3x =±∵310y +=∴1y =- ∴当3x =,1y =-时,x y +=312-=当3x =-,1y =-时,x y +=314--=.【点睛】本题考查了平方根、立方根、绝对值的知识;解题的关键是熟练掌握平方根、立方根、绝对值的性质,从而完成求解.16.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______【分析】先根据题意求得发现规律即可求解【详解】解:∵a1=3∴∴该数列为每4个数为一周期循环∵∴a2020=故答案为:【点睛】此题主要考查规律的探索解题的关键是根据题意发现规律 解析:43. 【分析】 先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解.【详解】解:∵a 1=3 ∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环,∵20204505÷=∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.17.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键 解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键. 20.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键.三、解答题21.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=- 143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =. 解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】 (1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算.【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b ) =4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.23.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg2)2+lg2•1g5+1g5﹣2018解析:(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.25.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字).解析:(1);(2)2.6【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】(1)(2)100.2=-⨯ 2 1.732 2.23622≈⨯+÷-2.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.26.解方程:(1)2810x -=;(2)38(1)27x +=.解析:(1)9x =±;(2)12x =. 【分析】 (1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 27.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
2021七年级下册数学《实数》培优精选
2021七年级下册数学《实数》培优精选一.选择题(共15小题)1.实数a,b在数轴上对应的点的位置如图所示,那么化简的结果()A.2a+b B.b C.2a﹣b D.3b2.如图,数轴上有O,A,B,C,D五点,根据图中各点所表示的数,表示数的点会落在()A.点O和A之间B.点A和B之间C.点B和C之间D.点C和D之间3.规定:一个数的平方等于﹣1,记作i2=﹣1,于是可知i3=i2×i=(﹣1)×i,i4=(i2)2=(﹣1)2=1……,按照这样的规律,i2019等于()A.1B.﹣1C.i D.﹣i4.实数a、b、c、d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|b﹣d|=|b|+|d|C.|a﹣c|=c﹣a D.|d﹣1|>|c﹣a| 5.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个6.如图,数轴上A、B、C三点所表示的数分别是a、6、c.已知AB=8,a+c=0,且c是关于x的方程mx﹣4x+16=0的一个解,则m的值为()A.﹣4B.2C.4D.67.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是()A.0B.2C.4D.68.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.49.如图所示,数轴上点A所表示的数为a,则a的值是()A.+1B.C.﹣1D.﹣+110.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+711.定义运算a⊗b=a(b﹣1),下面给出了关于这种运算的四个结论:①2⊗(﹣1)=﹣4;②a⊗b=b⊗a;③若a+b=1,则a⊗a=b⊗b;④若b⊗a=0,则a=0或b=1.其中正确结论的序号是()A.②④B.②③C.①④D.①③12.已知a>1,下列各式正确的是()A.>a B.>()2C.<D.a>13.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 14.设.其中a,b,c,d是正实数,且满足a+b+c+d=1.则p满足()A.p>5B.p<5C.p<2D.p<315.设a,b,c为不为零的实数,那么的不同的取值共有()A.6种B.5种C.4种D.3种二.填空题(共10小题)16.,,,…,,其中n为正整数,则的值是.17.一个长方形ABCD在数轴上的位置如图所示,AB=3,AD=2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A所对应的数为1,求翻转2018次后,点B所对应的数.18.对于实数x,规定[x]表示不大于x的最大整数,如[4]=4,[]=1,如[﹣2.5]=﹣3,现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是.19.已知a,b为实数,下列说法:①若ab<0,且a,b互为相反数,则=﹣1;②若a+b <0,ab>0,则|2a+3b|=﹣2a﹣3b;③若|a﹣b|+a﹣b=0,则b>a;④若|a|>|b|,则(a+b)×(a﹣b)是正数;⑤若a<b,ab<0且|a﹣3|<|b﹣3|,则a+b>6,其中正确的是.20.已知,实数x满足x=20202+20212,求代数式的值等于.21.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)=;(2)若,则x的取值范围是.22.比较3,,的大小,其从小到大的顺序是.23.已知a6m=8,则a2m的算术平方根为.24.若m的两个平方根为a﹣1和a﹣5,则代数式3m﹣2的值是.25.定义“如果一个数的平方等于﹣1,记为i2=﹣1,数i叫做虚数单位,我们把形如a+bi (a,b为有理数或无理数)的数称为复数,它们的加,减,乘法运算与整式的加,减,乘法类似,例如:计算(2+3i)(3﹣2i)=6﹣4i+9i﹣6i2=6+5i+6=12+5i,计算(﹣3+4i)(3+4i)=.三.解答题(共9小题)26.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是的整数部分.(1)求a,b,c的值;(2)求2a﹣b+的平方根.27.(1)已知:(x+5)2=49,求x;(2)计算:+|1﹣|﹣+(﹣)2.28.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5.且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,求当x多少秒时,OM=ON.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,当两个长方形重叠部分的面积为6时,求长方形ABCD运动的时间.29.如图,数轴上从左到右依次有A、B、C、D四个点,A、B之间的距离为a+b,B、C之间的距离为2a﹣b,B、D之间的距离为5a+2b,将直径为1的圆形纸片按如图所示的方式放置在点A处,并沿数轴水平方向向右滚动.(1)若圆形纸片从点A处滚到点C处,恰好滚动了n(n为正整数)圈,则a=(用含n的代数式表示),a是(填“有理数”或“无理数”);(2)若圆形纸片从点A处滚动1圈后,恰好到达点B处,求C、D之间的距离(结果保留π);(3)若点A表示的数为π,圆形纸片从点A处滚动到点B、C、D处的圈数均为整数,其中圆形纸片从点A处滚动3圈后,恰好到达点C处,求点D表示的数.30.(1)如图,每个小正方形的边长是1,在图中画出①一个面积是2的直角三角形;②一个面积是2的正方形;(两个面积部分涂上阴影)(2)请在同一个数轴上用尺规作出和的对应的点.31.解方程:(1)(x+1)2=16;(2)125(x﹣1)3=﹣64.32.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.33.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.34.根据数学研究对象本质属性的共同点和差异点,将事物分类,然后对划分的每一类进行研究的方法叫做“分类讨论”方法.(1)在探究“有理数加法法则”的过程中,我们根据加数的符号和绝对值的大小将法则分类归纳.下列给出的算式中:①3+(﹣1);②4+3;③(﹣3)+(﹣2);④5+(﹣5);⑤﹣3+0;⑥6+(﹣4);⑦4+(﹣7);⑧.可以代表有理数加法法则的不同种类的算式组合是.A.①②③④⑤⑥B.②③④⑤⑥⑦C.①③④⑤⑥⑧D.①②④⑤⑦⑧(2)若|a+b|=|a|+|b|,请说明a、b需要满足的条件.(3)在数轴上有A、B两点,分别表示实数a、b,若a的绝对值是b的绝对值的6倍,且A、B两点的距离是15,求a、b的值.。
北京101中学七年级数学下册第六单元《实数》经典练习(培优)
一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4B .5C .6D .7A 解析:A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:20192020,52-2332,是整数,属于有理数;0.36是有限小数,属于有理数;无理数有:π2π,0.3737737773…(相邻两个3之间7的个数逐次加1)共4个.故选:A .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 3.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1A 解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A 、正数的算术平方根一定是正数,故选项正确;B 、如果a 表示一个实数,那么-a 不一定是负数,例如a=0,故选项错误;C 、和数轴上的点一一对应的数是实数,故选项错误;D 、1的平方根是±1,故选项错误;故选:A .【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质.4.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C 解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.5.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.6.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间B解析:B【分析】借助O 、A 、B 、C 的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d ﹣5|=|d ﹣c |∴BD=CD ,∴D 点介于O 、B 之间.故答案为B .【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.7.下列实数中,属于无理数的是( )A .3.14B .227C .4D .πD 解析:D 【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误; C 、4=2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.9.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9C解析:C【分析】 根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.10.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭(1);(2)-7+【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方再计算乘法运算进而算加减运算即可求出值【详解】(1)原式=6-3×=6-=;(2)原式=-1+-1-×=解析:(1)32;(2). 【分析】 (1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.12.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.(1)x=3或x=-1;(2)x=-3【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可【详解】(1)直接开平方得:解得:(2)两边同时除以3得:开立方得:【点睛】本题考查了平方解析:(1)x=3或x=-1;(2)x=-3.【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可.【详解】(1)()214x -=直接开平方得:12x -=±,解得:13x =,21x =-(2)3381x =-两边同时除以3得:327x =-,开立方得:3x =-.【点睛】本题考查了平方根和立方根的性质,解题的关键是利用平方根和立方根的性质求解方程. 13.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题.14.比较大小:12π-________1【分析】利用估值比较法再利用不等式的性质3不等式两边都乘以-1不等式方向改变最后利用不等式性质1不等式两边都加1不等号方向不变即可确定大小【详解】∵∴∴∴故答案为:【点睛】本题考查无理数的比较大小问解析:<【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小. 【详解】∵322π>32<,∴2π>,∴2π-<, ∴12π-<1. 故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.15.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若a ,b 的整数部分和小数部分,则a-b 的值为__.【分析】先估算出的整数部分再用减去整数部分得出小数部分从而确定出a 和b 的值然后代入要求的式子进行计算即可得出答案【详解】解:的整数部分是3即的小数部分是即故答案为:【点睛】本题考查了估算无理数大小的解析:6【分析】减去整数部分得出小数部分,从而确定出a 和b 的值,然后代入要求的式子进行计算即可得出答案.【详解】 解:3114<<, ∴的整数部分是3,即3a =, ∴3-,即3b =,33)6a b ∴-=-=-.故答案为:6【点睛】本题考查了估算无理数大小的知识,难度不大,解题的关键是找到3<4. 17.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.(1)8888;(2)1134【分析】(1)根据进步数的定义分别求出四位正整数中的最大进步数与最小进步数即可得解;(2)根据进步数的定义可以推得所求数为1114112411341144中的某一个再根解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.18.(12;(2)求 (x-1)2-36=0中x的值.(1);(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算立方根运算算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可【详解】解:(1)=4﹣﹣3=1﹣=;(2)(x-1)2-3解析:(1)12;(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12=4﹣12﹣3=1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.19.若3109,b a =-且b 的算术平方根为4,则a =__________.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-解析:数轴见解析,13-< 1.5-<0<38<4-.【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可.【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-.【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键. 22.已知31a +的算数平方根是4,421c b +-的立方根是3,c 1322a b c +-的平方根.解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据3134,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,3==±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键. 23.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键.24.计算:(12)-+(2解析:(1)-2;(2)【分析】(1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.25.(12;(2)求 (x-1)2-36=0中x的值.解析:(1)12;(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12=4﹣12﹣3=1﹣1 2=12;(2)(x-1)2-36=0,移项得:(x-1)2=36,开平方得:x-1=±6,解得:x1=7,x2=﹣5,即(x-1)2-36=0中的x值为7或﹣5.本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.26.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭ (2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.27.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5(1)根据立方根,即可解答; (2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
【学生卷】初中数学七年级数学下册第六单元《实数》经典练习(培优)
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.在实数,-3.14,0,π中,无理数有( )A .1个B .2个C .3个D .4个B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.4)A.2 B.4 C.2±D.-4A解析:A【分析】【详解】解:∵,∴=2.故选:A.【点睛】.5.下列说法正确的是()A.2-是4-的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.8的平方根是4B解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A选项:4-没有平方根,故A错误;B选项:()224-=,4的算术平方根为2,故B正确;C选项:()224-=,4的平方根为2±,故C错误;D选项:8的平方根为±,故D错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.6.定义运算:132x y xy y=-※,若211a=-※,则a的值为()A.12-B.12C.2-D.2C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.7.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间B 解析:B【分析】借助O 、A 、B 、C 的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d ﹣5|=|d ﹣c |∴BD=CD ,∴D 点介于O 、B 之间.故答案为B .【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.8.若53a =,则a 在( ) A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间C 解析:C【分析】5案.【详解】解:∵4<5<9,∴253.∴-1<0.故选:C .【点睛】9.设,A B 均为实数,且A B ==,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ D 解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0, ∴m≥3, ∵B =∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.10. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题11.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根.【分析】根据算术平方根的定义得到3a+1=16可解得a 值根据3<<4可得c=3再根据立方根的定义可得可解得b 然后将abc 的值代入计算即可【详解】解:根据题意可得:∴∵∴即的平方根为【点睛】本题考查了 解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据3<13<4,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,22225833a b c ∴±+-=±⨯+-=±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键. 12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.13.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--(1)4;(2)【分析】(1)变减号为加号同时省略括号和加号先两个分数相加再和最后一个数相加;(2)先算乘方和开方再算乘除最后算加减【详解】(1)原式;(2)原式【点睛】此题考查有理数混合运算其关键解析:(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.14.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=,移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=,整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.15.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数,∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.16. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.(1)2;(2)1;(3)【分析】(1)先估算出的取值范围再确定的整数部分和小数部分;(2)先估算出和的取值范围再确定a 与b 的值最后代入代数式计算即可;(3)先估算出的取值范围再确定xy 的值最后代入解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.17.已知21a -的平方根是31a b +-的算术平方根是6,求4a b +的平方根.【分析】根据算术平方根和平方根的定义列式求出ab 的值然后代入代数式求出的值再根据平方根的定义解答即可【详解】解:根据题意得解得所以∵∴的平方根是【点睛】本题考查了算术平方根和平方根的定义能够熟记概念 解析:7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.18.定义一种新运算“”规则如下:对于两个有理数a ,b ,a b ab b =-,若()()521x -=-,则x =______【分析】根据给定新运算的运算法则可以得到关于x 的方程解方程即可得到解答【详解】解:由题意得:(5x-x )⊙(−2)=−1∴-2(5x-x )-(-2)=-1∴-8x+2=-1解之得:故答案为【点睛】本 解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:38x=,故答案为38.【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键.19.比较大小:3-(用“>”,“<”或“=”填空).>【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:因为<<所以2<<3所以-3<-<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法解析:>【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】所以2<3所以,-3<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.已知1a-的平方根是2±,则a的值为_______.5【分析】根据平方根的定义求解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】1a-的平方根是2±,∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.三、解答题21.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d + ∴240c d d ++=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-=∴23164c d -==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.22.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 23.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---;(4)(x +2)2=25.解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.24.求出x 的值:()23227x += 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.25.计算:3011(2)(200422-+-- 解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.26.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,27.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键. 28.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯ 解析:(1)①1189-,②111n n -+;(2)20152016 【分析】(1)仔细观察所给式子的结构,发现规律111=(1)1n n n n -⨯++,即可解答; (2)根据发现的规律变形原式,进行合并化简即可解答.【详解】(1)仔细观察,发现111=(1)1n n n n -⨯++,则1118989=-⨯, 故答案为:①1189-,②111n n -+; (2)根据111=(1)1n n n n -⨯++, 则112⨯+123⨯+134⨯+............+120152016⨯=1111111 (1)()()()2233420152016 -+-+-++-=1 12016 -=2015 2016.【点睛】本题考查数字规律的探索、有理数的混合运算,解答的关键是发现式子的变化规律,根据规律变形原式,从而使计算简单化.。
(完整版)七年级数学下册名校课堂训练:实数测试(一)培优试题
一、选择题1.求1+2+22+23+…+22020的值,可令S =1+2+22+23+…+22020,则2S =2+22+23+24+…+22021,因此2S -S =22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A .2020202012020-B .2021202012020-C .2021202012019-D .2020202012019-2.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥D .()0f k =或13.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2- C .()10090,2- D .()10090,24.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣105.下列命题是真命题的有( )个 ①两个无理数的和可能是无理数;②两条直线被第三条直线所截,同位角相等;③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A .2B .3C .4D .56.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点CC .点A 和点CD .点A 和点B7.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+8.若1a >,则a ,a -,1a的大小关系正确的是( ) A .1a a a>->B .1a a a>-> C .1a a a>>- D .1a a a->>9.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根.A .1B .2C .3D .410.已知f(1)=2 (取12⨯的末位数字),f(2)=6 (取2?3的末位数字),f(3)=2 (取34⨯的末位数字),…, 则()()()()f 1f 2f 3f 2021++++的值为( )A .4036B .4038C .4042D .4044二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为2﹣2和﹣2,则M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.若(a ﹣1)2与1b +互为相反数,则a 2018+b 2019=_____.13.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 16.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①, 然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②, ②-①得,3S-S=39-1,即2S=39-1, 所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是 ______ .17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________. 18.20b a -=,则2+a b 的值是__________; 19.(y +1)2=0,则(x +y )3=_____.20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.三、解答题21.对于有理数a 、b ,定义了一种新运算“※”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※如:532537=⨯-=※,2131313=-⨯=-※. (1)计算:①()21-=※______;②()()43--=※______;(2)若313m x =-+※是关于x 的一元一次方程,且方程的解为2x =,求m 的值; (3)若3241A x x x =-+-+,3262B x x x =-+-+,且3A B =-※,求322x x +的值. 22.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=-即202121S =-. 即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______; (2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 23.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?24.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”. (初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= .(2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ; 26.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?27.观察下列各式,并用所得出的规律解决问题:(11.414≈14.14141.4,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873 1.225≈≈_____≈______.(31=10=100=,…… 小数点的变化规律是_______________________.(4 2.154≈0.2154≈-,则y =______. 28.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值.29.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考) 2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a≠0)的圈n (n≥3)次方写成幂的形式等于多少. (4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 30.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S 的值. 【详解】解:设S = 1+2020+20202+20203+…+20202020① 则2020S =2020+20202+20203+…+20202020+20202021② 由②-①得: 2019S =20202021-1 ∴2021202012019S -=.故答案为:C . 【点晴】本题主要考查探索数与式的规律,有理数的加减混合运算.2.C解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.3.D解析:D 【详解】因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D.4.B解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->, x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.5.B解析:B 【分析】分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可. 【详解】解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题; ②两条直线被第三条直线所截,同位角不一定相等,故②是假命题; ③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题; ④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题; ⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题. 故选:B 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大.6.A解析:A 【分析】的范围,结合数轴可得答案. 【详解】 解:∵4<6<9, ∴2<3,∴的是点C 和点D .故选:A .【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.7.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x-=∴2x=22x=(舍去)则24BC x==,故选:C.【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.8.C解析:C【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.9.C解析:C【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.10.C解析:C 【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可. 【详解】解:f(1)=2, f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2, 每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10, 2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C . 【点睛】本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.二、填空题 11.2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为21-+;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1,∴点C 为AB 的中点,2AB =,∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下: 1>若点A 位于点B 左边:①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边:①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72, 故答案为:2;21;12或72. 【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.0【分析】根据相反数的概念和非负数的性质列出方程,求出a、b的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a﹣1)2+=0,则a﹣1=0,b+1=0,解得,a=1,b=﹣1,解析:0【分析】根据相反数的概念和非负数的性质列出方程,求出a、b的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a﹣1)20,则a﹣1=0,b+1=0,解得,a=1,b=﹣1,则a2018+b2019=12018+(﹣1)2019=1+(﹣1)=0,故答案为:0.【点睛】本题考查了相反数的性质和算术平方根非负性的性质,正确运用算术平方根非负性的性质是解答本题的关键.13.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000= 401401.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.16..【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:解析:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:mS―S=m2017-1.∴S=.考点:阅读理解题;规律探究题.17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x>﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x<﹣2时,则有,解得:x=﹣5,成立解析:12或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5. 【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 解析:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵20b a -=,∴2020a b a -=⎧⎨-=⎩, ∴24a b =⎧⎨=⎩, ∴22810a b +=+=.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.19.0根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5【详解】∵,∴,∴,∴故答案为−5..三、解答题21.(1)①5;②2-;(2)1;(3)16.【分析】(1)根据题中定义代入即可得出;(2)根据2x =,讨论3和 m 的两种大小关系,进行计算;(3)先判定A 、B 的大小关系,再进行求解.【详解】(1)根据题意:∵21>-,∴()()212215-=⨯--=※,∵43-<-,∴()()()243434223--=--⨯-=-+=-※. (2)∵2x =,∴31325m =-+⨯=※,① 若3m >,则235m ⨯-=,解得1m =,②若3m <, 则2353m -⨯=,解得3m =-(不符合题意), ∴1m =.(3)∵()()323224162210A B x x x x x x x -=-+-+--+-+=--<,∴A B <, ∴()3232224162333A B A B x x x x x x =-=-+-+--+-+=-※, 得380x x +-=,∴3222816x x +=⨯=.【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键.22.(1)15;(2)11514-;(3)111. 【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T =+++++①,把等式①两边同时乘以5,得 112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.23.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.24.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.25.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】 解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.26.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.27.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(11.41414.14≈141.4≈,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一;(2 3.873 1.225≈12.25≈0.3873;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵ 2.154≈0.2154≈-,∴0.2154≈,∴0.2154≈-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.28.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:∵2210x y-=+∴()22100x y--+-=,∴2210x y--=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.29.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a⎛⎫⎪⎝⎭;(4)7-28.【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a ,则aⓝ=a×(1a)n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2;(2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8;(3)aⓝ=a×1a×1a×…×n-211a a⎛⎫= ⎪⎝⎭;(4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3)7 -(﹣12)9×(-2)6=-3-(-12)3=-3+1 8=7 -28.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.30.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a-中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.。
数学第六章 实数的专项培优练习题(及解析
数学第六章 实数的专项培优练习题(及解析一、选择题1.对于实数a ,我们规定,用符号为a 的根整数,例如:3=,3=.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5B .10C .15D .16 2.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n3.2,估计它的值( )A .小于1B .大于1C .等于1D .小于0 4.下列说法正确的是 ( ) A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等 5.定义a *b =3a -b ,2a b b a ⊕=-则下列结论正确的有( )个. ①3*2=11.②()215⊕-=-. ③(13*25)712912425⎛⎫⊕⊕=- ⎪⎝⎭. ④若a *b=b *a ,则a=b. A .1个B .2个C .3个D .4个 6.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A .1个B .2个C .3个D .4个7.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4 8.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 9.下列各组数的大小比较正确的是( )A .﹣5>﹣6B .3>πC .5.3>29D . 3.1->﹣3.1 10.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( )A .5B .6C .7D .8二、填空题11.若实数a 、b 满足240a b ++-=,则a b=_____. 12.一个正数的平方根是21x -和2x -,则x 的值为_______.13.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.已知72m =-,则m 的相反数是________.18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++=_____.19.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 22.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;23.观察下列各式﹣1×12=﹣1+12﹣1123⨯=﹣11+23 ﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯). 24.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n a a a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___ A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 25.对于实数a,我们规定用{a }表示不小于a 的最小整数,称{a}为 a 的根整数.如{10}=4.(1)计算{9}=?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次{12}=4,再进行第二次求根整数{4}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.26.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】对各选项中的数分别连续求根整数即可判断得出答案.【详解】解:当x=5时,5221,满足条件;当x=10时,10331,满足条件;当x=15时,15331,满足条件;当x=16时,16442,不满足条件;∴满足条件的整数x的最大值为15,故答案为:C.【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.2.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.3.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.4.D解析:D【分析】当m 是负数时,-m 表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A 选项错误;B. 平方根等于它本身的数为0,故B 选项错误;C. 倒数是本身的数为1和﹣1,故C 选项错误;D. 互为相反数的绝对值相等,故D 选项正确;故选D【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键. 5.B解析:B【分析】根据新定义的运算把各式转化成混合运算进行计算,即可得出结果.【详解】解:∵a *b =3a -b ,2a b b a ⊕=-,∴①3*2=3×3-2=7,故①错误;②()22112145,⊕-=--=--=-故②正确; ③(13*25)7124⎛⎫⊕⊕ ⎪⎝⎭. 21217(3)()3542⎡⎤=⨯-⊕-⎢⎥⎣⎦3(12)5=⊕- 2312()5=-- 30925=- 故③错误;④若a *b=b *a ,则有3a -b=3b-a,化简得a=b,故④正确;正确的有②④,故选:B【点睛】本题考查了含有乘方的有理数的混合运算,熟练掌握计算法则是解题关键.6.C解析:C【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可.【详解】①当a≤0时,-a≥0,故-a 一定是负数错误;②当a=2,b=-2时, ||||a b = ,但是a≠b ,故②的说法错误;③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误.所以错误的个数是3个.故答案为C【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键.7.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .本题主要考查了实数的有关概念,正确把握相关定义是解题关键.8.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….9.A解析:A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A 符合题意;,∴选项B 不符合题意;∵5.3∴选项C 不符合题意;∵ 3.1-<﹣3.1,∴选项D 不符合题意.故选A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10.B解析:B根据绝对值是非负数,所以不考虑m为整数,则m取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,m∴=,m∴=,解得:m=240m=,67m∴<<,且m更接近6,∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.12.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.13.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!16.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.17.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.18.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.19.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x =7时,第1次输出的结果为10,x =10时,第2次输出的结果为11052⨯=, x =5时,第3次输出的结果为5+3=8,x =8时,第4次输出的结果为1842⨯=, x =4时,第5次输出的结果为1422⨯=, x =2时,第6次输出的结果为1212⨯=, x =1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。
七年级数学下册第六单元《实数》经典练习(课后培优)
一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4C 解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;②2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.2.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.3.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.4.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .4A 解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.若a =b =-,c =,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> D解析:D【分析】 根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵3a ==-,b =,()22c ==--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.6.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时, a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时, a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b a a a a b b b b a b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意.③当a b ≥时,0a >,0b >, ∴1a b≥, ∴()1122a b ab a a b ab ab ab ab a b a b b b a b a ab ab a b+⨯+=+=+=+=≥≥★★, 当a b <时,∴()1122a b ab b b a ab ab ab ab a b a b a a b a b ab ab b a+⨯+=+=+=+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.7.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C D解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.8.8)A.4 B.5 C.6 D.7B解析:B【分析】<<,进而得出答案.直接利用估算无理数的大小的方法得出23【详解】<<,解:459<<,<<23∴-<<-,83882586∴<,∴5.8故选:B.【点睛】9)A.8B.8-C.D.± D 解析:D【分析】=,再根据平方根的定义,即可解答.8【详解】=,8的平方根是±8故选:D.【点睛】=.本题考查了平方根,解决本题的关键是先化简64810.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.2-B.7C.11D.无法确定B解析:B【分析】首先利用估算的方法分别得到2-,7,11前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【详解】∵221,273<<,3114<<而墨迹覆盖的范围是1-3∴能被墨迹覆盖的数是7故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.二、填空题11.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长然后由正方形的面积公式进行解答【详解】解析:(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(1=18(cm ),答:正方形纸板的边长为18厘米;(2=7(cm ),则剪切纸板的面积=7×7×6=294(cm 2),剩余纸板的面积=324﹣294=30(cm 2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.12.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9(1)x =;(2)x =或x =【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解【详解】(1)解:;(2)解:或或【点睛】本题考查解方程熟练掌握立方根平方根的定义是关键解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.13.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.14.计算:(1)225--(2)1+(1)-4;(2)1【分析】(1)根据乘方开方绝对值的意义化简再计算即可;(2)先根据绝对值的意义脱去绝对值再计算即可求解【详解】解:(1)=-4+6-1-5=-4;(2)=-1+2=1【点睛】本题解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.15.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.±3【分析】结合平方根的定义以及估算无理数大小的方法得出abc 的值进而得出答案【详解】解::由题意得:2a−1=1解得:a=13a+b−1=4解得:b=2因为<<所以c=8所以b ﹣a +c =2﹣1+8解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.16.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______(1)20200;(2)14;(3)130********…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可【详解】解:=-2(1)整数:20200(2)分数:14(3)无理数解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0,38-;1.4,32-,0.31;2-,π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】 本题考查了实数的分类,掌握实数的分类是解题的关键.17.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.【分析】所给的一系列数是4个数一循环(157)表示第15排从左往右数的第7个数根据奇数排最中间数的规律可得出最终结果【详解】(157)表示第15排从左往右数的第7个数由图可得:1四个数一循环并且每个6【分析】所给的一系列数是4个数一循环,(15,7)表示第15排从左往右数的第7个数,根据奇数排最中间数的规律可得出最终结果.【详解】(15,7)表示第15排从左往右数的第7个数, 由图可得:1236四个数一循环,并且每个奇数排最中间的一个数为1, 15为奇数排,最中间的数为这一排的第8个数,故可知,第76,则(15,76.6.【点睛】本题主要考查规律探索的数字变化类,还有实数,弄清题中的规律是解题的关键. 18.3331.5115.10.1510.5325===31510的值是______________________.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.19.(12; (2)求 (x -1)2-36=0中x 的值.(1);(2)x 的值为7或﹣5【分析】(1)分别进行算术平方根运算立方根运算算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可【详解】解:(1)=4﹣﹣3=1﹣=;(2)(x -1)2-3解析:(1)12;(2)x 的值为7或﹣5 【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12 =4﹣12﹣3 =1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.20.10b +=,则20132014a b +=___________.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 三、解答题21.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.22.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 23.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.解析:(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(11622⨯=18(cm ),答:正方形纸板的边长为18厘米;(23343=7(cm ),则剪切纸板的面积=7×7×6=294(cm 2),剩余纸板的面积=324﹣294=30(cm 2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.24.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(21-的值.解析:(1)见解析;(2)13=-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.25.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键.26.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】 解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.27.211a -=,31a b +-的平方根是±2,C 70的整数部分,求-+b a c 的平方根.解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,647081c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
实数(单元测试培优卷)-2023-2024学年八年级数学上册基础知识专项突破讲与练(北师大版)
第2章实数(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列实数中,()是无理数.A .3.14B C D .2272.下列式子中是二次根式的是()A BCD 3.下列运算正确的是()A =B .4=CD 2=4)A .2和3B .4和5C .5和6D .6和75.如果一个比m 小2的数的平方等于2(4)-,那么m 等于()A .4-B .4±C .2-D .2-或66.下列二次根式在实数范围内有意义,则x 的取值范围是1x ≥的选项是()AB C .2x -D 7.若2m =,则m n-=()A .425B .254C .254-D .425-8.化简|2)A .5B 1C .2D .29.若0,0mn m n >+<=()A .mB .-mC .nD .-n10.下列说法中,正确的是()AB .若)21x ->则x >C3x +与3不一定相等D .若0a b +<=二、填空题(本大题共8小题,每小题4分,共32分)11.36的平方根是,的立方根是.12.比较大小:1.13=.14.若两个代数式M 与N 满足1M N ⋅=-,则称这两个代数式为“互为友好因式”“互为友好因式”是.15.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为.16.如图,某品牌的计算器上三个按键是并列的按键,是算术平方根按键;是倒数按键;是平方按键.计算器显示屏上现在显示100这个数字,小敏第一下按,第二下按,第三下按,之后以的顺序轮流按,当他共按2023下后,该计算器荧幕显示的数是.17.观察上表中的数据信息:则下列结论: 1.51=;1=;③只有3个正整数a 满足15.215.3<<; 1.510<.其中正确的是.(填写序号)a 1515.115.215.315.4…a 2225228.01231.04234.09237.16…18.仔细观察图,认真分析各式,然后请利用用上述变化规律求出2322221n S S S S +++⋯+的值为.222212OA =+=,12S=222313OA =+=,22S =222414OA =+=,3S =三、解答题(本大题共6小题,共58分)19.(8分)(1)已知27-的立方根是12m -,2是3n -的一个平方根,求m n +的值.(2)若a 、b 、c 是三角形ABC 的三条边长,且222c a b =+,其中25c =,15b =,求a 的值.20.(8分)计算:(1)(2)())(21111-++-.21.(10分)完成下列各小题:(1)已如1,1x y ==-,求22232x xy y ++的值;(2)已知210x -+=,求式子1x x-的值;22.(10分)(1)已知x 1x +=121()x x-的值;(2)已知x ﹣2(x ﹣1)2﹣2(x ﹣1)+1的值.23.(10分)在数学课本36页的阅读材料中,运用反证法说明是一个无理数”,请模仿这种方法,说明阅读材料:“无理数”的由来是一个有理数,a b =,其中a 、b 是整数且a 、b 互素且0b ≠,这时,就有:22a b ⎛⎫= ⎪⎝⎭,于是222a b =,则a 是2的倍数.再设2a m =,其中m 是整数,就有:222)2(m b =,也就是:222b m =,所以b也是2的倍数,可见a、b不是互素数,与前面所假设的a与b不可能是一个有理数.ab+=(a、b是整数且a、b互素且0b≠),ab=-两边同时平方得:_____________,所以:21ab⎛⎫=-⎪⎝⎭,可得:a bb a=-,=______________,因为:______________,是一个无理数.24.(12分)【阅读材料】小华根据学习“二次根式“及”乘法公式“积累的经验,通过“由特殊到一般”的方法,探究”当00a b>>、与a b+的大小关系”.下面是小单的深究过程:①具体运算,发现规律:当00a b>>、时,特例1:若2a b+=,则2≤;特例2:若3a b+=,则3≤;特例3:若6a b+=,则0≤.②观察、归纳,得出猜想:当00a b>>、时,a b+.③证明猜想:当00a b>>、时,∵20a b =-+≥,∴2a b ab a b +≥≥++,∴a b ≤+.当且仅当a b =时,a b =+.请你利用小华发现的规律解决以下问题:(1)当0x >时,1x x+的最小值为(2)当0x <时,2x x--的最小值为;(3)当0x <时,求226x x x++的最大值.参考答案1.B【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判断选项.【详解】解:A.3.14是有理数,故A 不符合题意;是无理数,故B 符合题意;2=是有理数,故C 不符合题意;D.227是有理数,故D 不符合题意;故选:B .【点拨】本题主要考查无理数的定义,其中初中范围内学习的无理数有:π,2π等;开不尽方的数;以及像0.101001000100001…等有这样规律的数.2.C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B1x <-时,不是二次根式,故此选项不符合题意;C ,()210x +≥恒成立,因此该式是二次根式,故此选项符合题意;D20-<,不是二次根式,故此选项不符合题意;故选:C .0a ≥)的式子叫做二次根式.3.C【分析】根据二次根式的加减法法则,乘除法法则计算并依次判断.【详解】解:A 选项:A 选项不符合题意;B 选项:=B 选项不符合题意;C 选项:原式C 选项符合题意;D 选项:原式=,故D 选项不符合题意.故选:C .【点拨】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键.4.A【分析】根据469<<<23<<,即可得.【详解】解:∵469<<,<<23<<∴最接近的两个整数是2和3,故选:A .【点拨】本题考查了运用算术平方根知识对无理数进行估算的能力,关键是能准确理解并运用该知识.5.D【分析】根据题意得出22(2)(4)m -=-,解方程即可.【详解】解:根据题意得:22(2)(4)m -=-,即2(2)16m -=,∴24m -=±,∴2m =-或6,故选:D .【点拨】本题考查了平方根,根据题意列出方程结合平方根的意义求解是关键.6.B【分析】根据二次根式有意义的条件,A 选项保证被开放式大于等于0,且分母不为0;B 选项保证被开放式大于等于0;C 选项保证被开放式大于等于0,且坟墓不为0;D 选项保证被开放式大于等于0,且分母不为0,求出x 的取值范围即可.【详解】解:A.x 的取值范围是1x >,故此项不符合题意;B.x 的取值范围是1x ≥,故此项符合题意;C.x 的取值范围是1x ≥,且2x ≠,故此项不符合题意;D.x 的取值范围是1x >,故此项不符合题意;故选B .【点拨】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键.7.A【分析】先根据二次根式的意义求出n ,再求出m ,最后根据负整数指数幂的运算法则得到最终解答.【详解】解:由题意可得:2n-5=5-2n=0,∴52n=,m=0+0+2=2,∴n-m=22524 2525-⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,故选A.【点拨】本题考查二次根式和负整数指数幂的综合应用,熟练掌握二次根式有意义的条件及负整数指数幂的计算方法是解题关键.8.A【分析】先化简各数,再求和即可.【详解】解:|2235-=-故选:A.【点拨】本题考查了立方根和绝对值,掌握相关运算法则是解题的关键.9.B【分析】先由已知条件得到m、n的符号,再根据二次根式的乘除法则化简计算即可.【详解】解:由已知条件可得:m<0,n<0,∴原式=|m|=-m,故选:B.【点拨】本题考查二次根式的应用,熟练掌握二次根式的乘除法是解题关键.10.C【分析】根据二次根式的性质及运算法则计算判断即可.【详解】1-,不是互为倒数,选项错误;B.若)21x>20<,则xC.3x +与3不一定相等,选项正确;D.0a b ≥,结合0a b +<可得0a ≤,0b <=故选:C【点拨】本题考查了二次根式的混合运算,熟记相关概念是解题是解题的关键.11.6±2-【分析】根据平方根的定义,立方根的定义,开平方运算解答即可.【详解】解:①∵()2636±=,∴36的平方根是6±,故答案为6±;②∵8=-,∴()328-=-,∴8-的立方根为2-,∴2-,故答案为2-.【点拨】本题考查了平方根的定义,开平方运算,立方根的定义,掌握平方根的定义是解题的关键.12.<【分析】可得()11=10<,即可求解.【详解】解:()11=1<10∴<,()10∴<()1∴<,故答案:<.【点拨】本题主要考查了用作差法比较实数的大小,掌握比较的方法是解题的关键.13.0【分析】根据二次根式有意义的条件可得2210,10a a -=-=,进而即可求解.都是二次根式,∴2210,10a a -≥-≥∴2210,10a a -=-=,=0,故答案为:0.【点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.14.2/2【分析】根据“互为友好因式”的概念解答即可.“互为友好因式”为:()112-´-´===-,【点拨】本题考查了定义新运算,二次根式的分母有理化,解题的关键是掌握二次根式的分母有理化的方法.15.11+【分析】根据勾股定理求得AB ,根据题意可得BC AB ==【详解】解:∵l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===∴BC AB ==∴1OC OB BC =+=O 为原点,OC 为正方向,则C 点的横坐标为1故答案为:1.【点拨】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.16.10【分析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.10=,10.110=,20.10.01=,0.1=,1100.1=,210100=,……,∵202363371=⨯+,∴当他共按2023下后,该计算器荧幕显示的数是10,故答案为:10.【点拨】本题考查了求一个数的算术平方根,倒数,有理数的乘方,找到规律是解题的关键.17.①②③【分析】由表格中的信息:①利用被开方数的小数点与其算术平方根的小数点之间的变化规律解答即可;②利用被开方数的小数点与其算术平方根的小数点之间的变化规律,分别确定被减数和减数的值,再相减即可;③先确定a④【详解】解:①∵15.1222801=,1.51=,故①正确;②∵215.3234.09=,215.2231.04=,1531521=-=,故②正确;③∵15.215.3<,∴231.04234.09a <<,其中整数有:232,233,234共3个,故③正确;④由①1.51=,1.510=,故④错误.综上,正确的是:①②③,故答案为:①②③.【点拨】本题考查无理数的估计,解答时需要从表格中获取信息,运用到无理数大小比较,有理数的运算,整数的概念等,熟练掌握被开方数的小数点与其算术平方根的小数点之间的变化规律是解题的关键.18.()18n n +【分析】由题意得到122124S ⎛== ⎝⎭,222224S ⎛== ⎝⎭,223324S ⎛== ⎝⎭,……,2224n n S ⎛== ⎝⎭,求和即可得到2322221n S S S S +++⋯+的值.【详解】解:由题意知,222212OA =+=,1S =122124S == ⎪⎝⎭,222313OA =+=,22S =,222224S ⎛== ⎝⎭,222414OA =+=,32S =,22334S ==⎝⎭,……222111n OA n +=+=+,2n S =,2224n n S ⎛== ⎝⎭,∴()()23222211112314444428n S S S n S n n n n ++=++++=⨯=+++⋯+⋯,故答案为:()18n n +【点拨】此题考查了勾股定理的规律题,还考查了二次根式的运算,熟练掌握勾股定理和二次根式的运算法则是解题的关键.19.(1)16;(2)20【分析】(1)根据立方根、平方根的意义可得到123m -=-,34n -=,进而得到m 、n 的值,再将m 、n 的值代入m n +即可求得答案;(2)将b 、c 的值代入222c a b =+中即可得到a 的值.【详解】解:(1)27- 的立方根是12m -,2是3n -的一个平方根,123m ∴-=-,34n -=,9m ∴=,7n =,9716m n ∴+=+=.(2)222c a b =+ ,且25c =,15b =,2222515a ∴=+,2400a ∴=,20a ∴=±,a 是三角形ABC 的边长,0a ∴>,20a ∴=.【点拨】本题考查了平方根、立方根,熟练掌握平方根、立方根的意义是解题的关键.20.(1)-(2)21-【分析】(1)根据二次根式的混合运算进行计算即可求解;(2)根据完全平方公式以及平方差公式,零指数幂进行计算即可求解.【详解】(1()2-==-(2)解:())(21111++-=181211-+-+=21-【点拨】本题考查了二次根式的混合运算,零指数幂,熟练掌握二次根式的运算法则是解题的关键.21.(1)15;(2)±4【分析】(1)利用完全平方公式把原式变形,代入计算得到答案.(2)根据已知等式可得1x x+=【详解】解:(1)∵1,1x y ==-,∴x y +=)111xy ==,∴原式=2(x +y )2-xy =15.(2)∵210x -+=,∴1x x+=∴(222114416x x x x ⎛⎫⎛⎫-=+-=-= ⎪ ⎪⎝⎭⎝⎭,∴1x x-=±4.【点拨】本题考查的是二次根式的化简求值,一元二次方程的解,掌握二次根式的混合运算法则、完全平方公式是解题的关键.22.(1)(2)(x ﹣2)2,2.【分析】(1)利用完全平方公式222)2(a ab b a b ±+=±推出2211()()4x x x x-=+-,然后整体代入即可;(2)先对原代数式利用完全平方公式2222()a ab b a b -+=-进行化简,然后整体代入求值即可.【详解】(1)∵22211(2x x x x -=+-,22211()2x x x x +=++∴2211()()4x x x x-=+-∵x 1x+=1∴原式=2(14(13)4-=++-=(2)(x ﹣1)2﹣2(x ﹣1)+1=(x ﹣2)2,把x ﹣2=)2=2.【点拨】本题主要考查代数式求值,掌握完全平方公式和整体代入法是解题的关键.23.232ab ⎛⎫=- ⎪⎝⎭;12a b b a ⎛⎫- ⎪⎝⎭;,a b b a 为有理数,a b b a -盾【分析】仿照题干方法进行证明即可.+是一个有理数.a b +=(a 、b 是整数且a 、b 互素且0b ≠),a b=-两边同时平方得:232a b ⎛⎫=- ⎪⎝⎭,所以:21a b ⎛⎫=- ⎪⎝⎭,可得:a b b a =-,=12a b b a ⎛⎫- ⎪⎝⎭,因为:,a b b a 为有理数,a b b a-为无理数,与前面所设矛盾,是一个无理数.【点拨】本题考查了无理数的证明,能够理解并运用题干的反证法是解题的关键.24.(1)2(2)(3)2-+【分析】(1)直接由题中规律即可完成;(2)当0x <时,200x x->->,,则可由题中规律完成;(3)原式226x x x++变形为62x x ++,由0x <,计算出6()x x ⎛⎫-+- ⎪⎝⎭的最小值,即可求得6x x +的最大值,则最后可求得原式的最大值.【详解】(1)解:当0x >时,1x x,均为正数,由题中规律得:12x x +≥=,当且仅当1x x=,即1x =时,12x x +=,∴当x >0时,1x x +的最小值为2;故答案为:2;(2)解:当0x <时,200x x->->,,由题中规律得:22()x x x x ⎛⎫--=-+-≥= ⎪⎝⎭当且仅当2x x-=-,即x =2x x --=,∴当x <0时,2x x--的最小值为故答案为:(3)解:∵2226266622x x x x x x x x x x x x ++⎛⎫=++=++=++ ⎪⎝⎭,∴当0x <时,600x x ->->,,∴6()x x ⎛⎫-+-≥= ⎪⎝⎭,当且仅当6x x -=-,即x =6x x--=,∵6()x x ⎛⎫-+-≥ ⎪⎝⎭,∴6x x +≤-∴622x x++≤-,∴2262x x x++≤-,当且仅当x =226x x x++的最大值为2-+,∴当0x <时,226x x x++的最大值为2-.【点拨】本题考查了求代数式的最大值或最小值问题,读懂题目中的规律是解题的关键,另外特别注意规律中两个字母均为正数,在使用时要注意.。
初二数学培优学案3实数 二次根式及运算 最简二次根式
初二数学培优学案(3)-----实数 二次根式及运算 最简二次根式一、 实数(一)典型例题1. 已知22(4)0,()y x y xz -+++求的平方根。
2. a 2,小数部分为b ,求-16ab-8b 的立方根。
3. 已知m ,n 是有理数,且2)(370m n +-+=,求m ,n 的值。
4. △ABC 的三边长为a 、b 、c ,a 和b 2440b b -+=,求c 的取值范围。
(二)练习1.已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为 米。
2. 2(1)0,b -= 。
3. 已知x y y +=则= 。
4. 已知实数a 满足21999,1999a a a -+=-=则 。
5. 已知x 、y 是有理数,且x 、y 满足22323x y ++=-,则x+y= 。
6. 已知实数a 满足0,11a a a =-++=那么 。
7. 设A B =则A 、B 中数值较小的是 。
二、 二次根式及其运算(一) 典型例题例1.(1)44162+⋅-=-x x x 成立的条件是(2)x x -=-2)2(2成立的条件是(3)2121+-=+-x x x x 成立的条件是例2(1)化简: =24 . =⨯1259 . =-222129 =c b a 324 . =499 =944 =224cb a =⋅1510 . =⋅x xy 1312 =÷65321 (2)判断题:下列运算是否正确.( )(1)ππ-=-14.3)14.3(2 ( )(2)767372=⨯ ( )(3)636)9()4(94==-⨯-=-- ( )(4)5125432516925169=⨯=⋅= ( )(5)5.045.16= ( )(6)73434342222=+=+=+( )(7)228= ( )(8)32123= 例3. (1))2732(3+ (2)24)654(- (3) )82(2+ (4) a a a 5)5320(+ (5) ab abb a a b ab ⋅--+)12( (6)21223222330÷⨯ (7))23(62325b a a b b a ab b -⨯÷(二)练习计算324213-+⋅-三、 最简二次根式及有理化 什么是最简二次根式(1)被开方数因数是整数,因式是整式.(2)被开方数中不含有能开得尽方的因式或因数.分母有理化:把分母中的根号化去,叫做分母有理化.方法:①单项二次根式:利用a =来确定.②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定.如: a a同类二次根式(1)定义:几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。
上海民办张江集团学校七年级数学下册第六单元《实数》经典题(专题培优)
一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .102 )A .2B .4C .2±D .-43.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等4.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1 5.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .26.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .47.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a bb ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③8.若3a =,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间 9.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .10.已知:m 、n 为两个连续的整数,且m n <,以下判断正确的是( )A 4B .3m =C 0.236D .9m n +=11.在1.414,213,5π,2-中,无理数的个数是( ) A .1 B .2C .3D .412.已知下列结论:①;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③B .②③C .③④D .②④ 13.下列等式成立的是( )A .±1B =±2C 6D 3 14.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数.A .1个B .2个C .3个D .4个 15.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7 二、填空题16.已知31a +的算数平方根是4,421c b +-的立方根是3,c 22a b c +-的平方根.17.计算:(1.(2)()23540.255(4)8⨯--⨯⨯-.18.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值.19.计算:3011(2)(200422-+--- 20.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 21.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.22.设2x 、y ,试求x 、y 的值与1x -的立方根.23.已知10x ,小数部分是y ,求x ﹣y 的相反数_____.24.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.25.设a ,b 是一个无理数,若a b <<,是,则a b =____.26.已知a 是5的整数部分,b 是5的小数部分.则2=ab _____. 三、解答题27.求出x 的值:()23227x +=28.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.29.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1) (1)整数:______ (2)分数:______ (3)无理数:______ 30.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.。
完整版)实数培优专题
完整版)实数培优专题实数培优拓展1、利用概念解题:例1.已知:$M=b^{-1}a+8$是$a+8$的算术数平方根,$N=2a-b+4b-3$是$b-3$的立方根,求$M+N$的平方根。
练:1.若一个数的立方根等于它的算术平方根,则这个数是多少?34x-3y=-2,求$x+y$的算术平方根与立方根。
2.已知$x+2y=3$,求$(x+y)x$的值。
3.若$2a+1$的平方根为$\pm3$,$a-b+5$的平方根为$\pm2$,求$a+3b$的算术平方根。
例2、解方程$(x+1)^2=36$.练:(1)$(x-1)^2=9$(2)$(x+1)^2=25$2、利用性质解题:例1已知一个数的平方根是$2a-1$和$a-11$,求这个数.变式:①已知$2a-1$和$a-11$是一个数的平方根,则这个数是多少;②若$2m-4$与$3m-1$是同一个数的两个平方根,则$m$为多少。
例2.若$y=3-x+x-3+1$,求$(x+y)x$的值。
例3.$x$取何值时,下列各式在实数范围内有意义:⑴⑵⑶⑷例4.已知$31-2x$与$33y-2$互为相反数,求$\frac{1+2x}{y}$的值。
例5.若$(a+3)^2=3+a$,则$a$的取值范围是多少?例6.对于每个非零有理数$a,b,c$,式子$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$的所有可能的值是什么?练:1.若一个正数$a$的两个平方根分别为$x+1$和$x+3$,求$a$。
2.若$(x-3)^2+\frac{2005abcabc}{abcabc}$的值为$y-1=0$,求$x+y$的平方根。
3.已知$y=1-2x+4x^{-2}+2$,求$x$的值。
4.当$x$满足下列条件时,求$x$的范围:①$(2-x)^2=x-2$;②$3-x=x-3$;③$x=x^7$。
5.若$-3a=3y+2$,求$a$与$y$的大小关系。
3、利用取值范围解题:例1.已知$2\leq x\leq 5$,$3\leq y\leq 6$,求$\frac{(x+y)^3-20}{7}$的取值范围。
(完整版)初中七年级下册实数数学附答案(一)培优试卷
一、选择题1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .862.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④()()**22aa b c b c +=+. A .①②③B .①②④C .①③④D .②④ 3.若9﹣13的整数部分为a ,小数部分为b ,则2a +b 等于( ) A .12﹣13B .13﹣13C .14﹣13D .15﹣134.如示意图,小宇利用两个面积为1 dm 2的正方形拼成了一个面积为2 dm 2的大正方形,并通过测量大正方形的边长感受了2dm 的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( )A .利用两个边长为2dm 8的大小B .利用四个直角边为3dm 18的大小C 2的正方形以及一个直角边为2dm 6dm 的大小D .利用四个直角边分别为1 dm 和3 dm 的直角三角形以及一个边长为2 dm 的正方形感知10的大小5.已知a ,b 为两个连续的整数,且18a b <<a b + ) A .4B .3C .5D 106.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;164±,其中正确的个数有( ) A .0个B .1个C .2个D .3个7.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n8.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为()A.﹣40 B.﹣32 C.18 D.109.设n为正整数,且n<65<n+1,则n的值为()A.5 B.6 C.7 D.810.任何一个正整数n都可以进行这样的分解:n=p×q(p,q都是正整数,且p≤q),如果p×q在n的所有分解中两个因数之差的绝对值最小,我们就称p×q是n的黄金分解,并规定:F(n)=pq,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n是一个完全平方数,则F(n)=1,其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题11.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.12.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.13.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 ______ .14.若[x]表示不超过x的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③x=﹣2.75是方程4x﹣[x]+5=0的一个解;④当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2.其中正确的结论有 ___(写出所有正确结论的序号).15.将1236按如图方式排列.若规定m,n表示第m排从左向右第n个数,则()7,3所表示的数是___________.16.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.17.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.18.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______. 19.定义运算“@”的运算法则为:xy 4+2@6 =____.20.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________.三、解答题21.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n aa a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ; (2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭;(4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ;(5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.22.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ;(2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点AB 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点AB 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.23.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即; 仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++ 24.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭;(2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 25.阅读下面的文字,解答问题22的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:4<7<9,即2<7<3, ∴7的整数部分为2,小数部分为(7﹣2)请解答:(1)57整数部分是 ,小数部分是 .(2)如果11的小数部分为a ,7的整数部分为b ,求|a ﹣b |+11的值. (3)已知:9+5=x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数. 26.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b ,求b a 的值. 解:由题意得(3)(2)20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数, 由于2是无理数,所以a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+,求x+y 的值.27.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)28.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n aa a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ; (2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭;(4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ;(5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.29.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a 代表这个整数分出来的左边数,b 代表的这个整数分出来的中间数,c 代表这个整数分出来的右边数,其中a ,b ,c 数位相同,若b ﹣a =c ﹣b ,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数.(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T 是等差数,且T 是24的倍数,求该等差数T .30.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”.(初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-12)⑩=___.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___; (3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。
(完整版)七年级数学下册名校课堂训练:实数测试培优试卷
一、选择题1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .862.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2- C .()10090,2- D .()10090,23.下列命题是真命题的有( )个 ①两个无理数的和可能是无理数;②两条直线被第三条直线所截,同位角相等;③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A .2B .3C .4D .54.若225a =,3b =,则a b +所有可能的值为( ) A .8B .8或2C .8或2-D .8±或2±5.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( ) A .135 B .220C .345D .4076.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 327.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个 B .6个C .5个D .4个8.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120B .125C .-120D .-1259.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间二、填空题11.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___12.已知57a ,57b ,则2019()a b +=________. 13.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________. 14.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.16.若我们规定[)x 表示不小于x 的最小整数,例如[)33=,[)1.21-=-,则以下结论:①[)0.21-=-;②[)001-=;③[)x x -的最小值是0;④存在实数x 使[)0.5x x -=成立.其中正确的是______.(填写所有正确结论的序号)17.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.18.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.19.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先52)⊕3=___.三、解答题21.若一个四位数t 的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t 与它的“中介数”的差为P (t ).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P (5536)=5536﹣6553=-1017.(1)P (2215)= ,P (6655)= .(2)求证:任意一个“前介数”t ,P (t )一定能被9整除.(3)若一个千位数字为2的“前介数”t 能被6整除,它的“中介数”能被2整除,请求出满足条件的P (t )的最大值.22.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n aa a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ; (2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭;(4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ;(5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.23.观察下面的变形规律:;;;….解答下面的问题: (1)仿照上面的格式请写出= ;(2)若n 为正整数,请你猜想= ;(3)基础应用:计算:.(4)拓展应用1:解方程: =2016 (5)拓展应用2:计算:.24.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算. 定义:如果b a N =(a >0,a ≠1,N >0),那么b 叫做以a 为底N 的对数,记作log a N b =.例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=.根据“对数”运算的定义,回答下列问题: (1)填空:6log 6= ,3log 81= . (2)如果()2log 23m -=,求m 的值.(3)对于“对数”运算,小明同学认为有“log log log a a a MN M N =⋅(a >0,a ≠1,M >0,N >0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.25.阅读材料:求1+2+22+23+24+…+22017的值. 解:设S=1+2+22+23+24+…+22017, 将等式两边同时乘以2得: 2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1 即1+2+22+23+24+…+22017=22018-1 请你仿照此法计算: (1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数); (3)1+2×2+3×22+4×23+…+9×28+10×29.26.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n aa a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ; (2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭;(4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ;(5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.27.阅读下面的文字,解答问题:,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 28.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.29.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f = 根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值. 30.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。
八年级培优第一讲·实数的概念及性质
八年级培优第一讲 实数的概念及性质班级 姓名例题讲解【例1】 设a 是一个无理数,且a 、b 满足ab -a -b+1=0,则b 是一个( ) (武汉市选拔赛试题)A .小于0的有理数B .大于0的有理数C .小于0的无理数D .大于0的无理数 思路点拨 对等式进行恰当的变形,建立a 或b 的关系式.练习1:设a 是一个无理数,且a 、b 满足ab+a -b =1,则b= .(四川省竞赛题)【例2】已知a 、b 是有理数,且032091412)121341()2331(=---++b a ,求a 、b 的值. 思路点拔 把原等式整理成有理数与无理数两部分,运用实数的性质建立关于a 、b 的方程组.练习2.设x 、y 都是有理数,且满足方程04)231()321(=--+++πππy x ,那么x -y 的值是 . ( “希望杯’邀请赛试题)【例3】已知a 、b 为有理数,x ,y 分别表示75-的整数部分和小数部分,且满足axy+by 2=1,求a+b 的值. (南昌市竞赛题)思路点拨 运用估算的方法,先确定x ,y 的值,再代入xy+by 2=1中求出a 、b 的值.课堂练习1.已知x 、y 是实数,096432=+-++y y x ,若y x axy =-3,则a= .2.一个数的平方根是22b a +和1364+-b a ,那么这个数是 .3.方程0185=++-+y y x 的解是 .4.已知实数 a 、b 、c 满足0412212=+-+++-c c c b b a ,则a(b+c)= . 5.请你观察思考下列计算过程:∵112=121,∴11121=;同样∵1112=12321,∴11112321=;…由此猜想=76543211234567898.(济南市中考题)6.如图,数轴上表示1、2的对应点分别为A 、B ,点B关于点A的对称点为C ,则点C 所表示的数是( ) (江西省中考题)A .12-B .21-C .22-D .22-7.已知x 是实数, 则πππ1-+-+-x x x 的值是( ) ( “希望杯”邀请赛试题)A .π11-B .π11+ C .11-π D .无法确定的8.代数式21-+-+x x x 的最小值是( ) ( “希望杯”邀请赛试题)A .0B .21+C .1D .不存在的9.若实数a 、b 满足032)2(2=+-+-+a b b a ,求2b+a -1的值.(山西省中考题)10.细心观察图形,认真分析各式,然后解答问题. 21)1(2=+,211=S ;31)2(2=+,222=S ;41)3(2=+,233=S ;… (1)请用含有n(n 是正整数)的等式表示上述变化规律;(2)推算出OA 10的长;(3)求出S l 2+S 22+S 32+…+S 210的值. (烟台市中考题)11.阅读下面材料,并解答下列问题:在形如a b =N 的式于中,我们已经研究过两种情况:①已知a 和b ,求N ,这是乘方运算,②已知b 和N ,求a ,这是开方运算. 现在我们研究第三种情况;已知a 和N ,求b ,我们把这种运算叫做对数运算. 定义:如果a b =N (a>0,a ≠1,N>0),则b 叫做以a 为底的N 的对数,记作b=log a N .例如:因为23=8,所以log 28=3;因为2-3=81,所以log 281=-3. (1)根据定义计算:①log 3 81= ;②log 33= ;③log 3l= ;④如果log x 16=4,那么x= .(2)设a x =M ,a y =N ,则log a M=x ;log a N =y(a>0,a ≠1,N>0,M ,N 均为正数). 用log A M ,log A N 的代数式分别表示log a MN 及log a NM ,并说明理由. (泰州市中考题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数典型问题精析(培优)例1.(2009的相反数是( )A .BC .2-D .2分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a 的相反数是-a ,选A .要谨防将相反数误认为倒数,错选D.例2.(2009年江苏省中考题)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+ ⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A ) A .第10个数 B .第11个数 C .第12个数 D .第13个数 解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是21,只要比较被减数即可,即比较141131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a 2-b ,则(1※2)※3=___.解 因为a ※b =a 2-b ,所以(1※2)※3=(12-2)※3=(-1)※3=(-1)2-3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算符号转化成有理数的运算符号.例4(河北省)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从如图所示中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A.13=3+10B.25=9+16C.36=15+21D.49=18+314=1+3 9=3+616=6+10 …解 因为15和21是相邻的两个“三角形数”,且和又是36,刚好符合“正方形数”,所以36=15+21符合题意,故应选C .(说明 本题容易错选B ,事实上,25虽然是“正方形数”,而9和16也是“正方形数”,并不是两个相邻“三角形数”).例5.(20092()x y =+,则x -y 的值为( )A .-1B .1C .2D .3分析:因为x-1≥0,1-x ≥0,所以x ≥1,x ≤1,即x =1.2()x y =+,有1+y =0,所以y =-1,x -y =1-(1)=2.例6.(2009年宜宾市中考题)已知数据:13,π,-2.其中无理数出现的频率为( )A .20%B .40%C .60%D .80%分析:,22都是无理数;л是无限不循环小数,也是无理数;而31,-2都是有理数,所以无理数出现的频率为53=0.6=60%,选C . 例7.(2009年鄂州市中考题)为了求2008322221++++ 的值,可令S =2008322221++++ ,则2S =20094322222++++ ,因此2S-S =122009-,所以2008322221++++ =122009-.仿照以上推理计算出20093255551+++++ 的值是( )A .152009- B.152010- C.4152009- D.4152010-解析:本题通过阅读理解的形式介绍了解决一类有理数运算问题的方法,利用例题介绍的方法,有:设S =20093255551+++++ ,则5S =201020093255555+++++ ,因此5S-S =20105-1,所以S =4152010-,选D.说明:你能从中得到解决这类问题的一般性规律吗?试一试.例8. (2009年枣庄市中考题)a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a = .解析:首先要理解差倒数...的概念,再按照要求写出一列数,从中找出规律,再应用规律来解决问题.根据题意可得到:113a =-,2a =433111=--)(,3a =4311-=4,4a =31411-=-,…,可见这是一个无限循环的数列,其循环周期为3,而2009=669×3+2,所以a 2009与a 2相同,即2009a =34. 典型例题的探索(利用概念)例3. 已知:M a a b =++-82是a +8的算术数平方根,N b a b =--+324是b -3立方根,求M N +的平方根。
分析:由算术平方根及立方根的意义可知a +≥80><=+-><=-+2342,122b a b a 联立<1><2>解方程组,得:a b ==13, 代入已知条件得:M N ==903,,所以M N +=+=+=903033故M +N 的平方根是±3。
练习:1. 已知x y x y +=-=-234323,,求x y +的算术平方根与立方根。
2. 若一个正数a 的两个平方根分别为x +1和x +3,求a2005的值。
(大小比较)例4. 比较a a a 、、1的大小。
分析:要比较a a a 、、1的大小,必须搞清a 的取值范围,由1a知a ≠0,由a 知a ≥0,综合得a >0,此时仍无法比较,为此可将a 的取值分别为①01<<a ;②a =1;③a >1三种情况进行讨论,各个击破。
当01<<a 时,取a =001.,则110001a a ==、.,显然有1aa a >> 当a =1时,a a a ==1,当a >1时,仿①取特殊值可得a a a>>1 (利用取值范围)例5. 已知有理数a 满足20042005-+-=a a a ,求a -20042的值。
分析:观察表达式a -2005中的隐含条件,被开方数应为非负数即a -≥20050,亦即a ≥2005,故原已知式可化为:()2005200420042005200420052005200422=-∴=-∴=-∴=-+--a a a a a a 练习: 若x 、y 、m 适合关系式y x y x m y x m y x --++-=-++--+2005200532353,试求m 的值。
(思路:x-2005+y 与2005-x-y 互为相反数,且均有算术平方根,故二者分别为0) (规律探索)例6. 借助计算器计算下列各题:(1)112-(2)111122-(3)111111222-(4)111111112222-仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一规律吗?分析:利用计算器计算得:(1)1123-=,(2)11112233-=(3)111111222333-=,(4)1111111122223333-=观察上述各式的结果,容易猜想其中的规律为:2n 个1与n 个2组成的数的差的算术平方根等于n 个3组成的数。
即1112223332123………个个个n n n-= 实数思想方法小结实数是整个数学学科的基础,对于初学者来讲,有些概念比较抽象、难懂,但是,如果我们运用数学的思想方法来指导本章的学习,却会收到良好的效果.那么,在本章中有哪些重要思想方法呢?一、估算思想估算能力是一种重要的数学思维方法,估算思想就是在处理问题时,采用估算的方法达到问题解决的目的,在遇到无理数的大小比较或确定无理数的范围等问题时,常用到估算的方法进行解决。
例1估计10+1的值是( )(A )在2和3之间(B )在3和4之间 (C )在4和5之间 (D )在5和6之间分析:此题主要考查学生的估算能力,首先要确定10的取值范围,在估算10+1的取值范围。
因为9<10<16,所以9<10<16,即3<10<4,4<10+1<5,从而可确定10+1的取值范围。
解:选C.二、数形结合思想所谓数形结合就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来的一种方法。
通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到优化解题的目的。
在数轴上表示实数,根据数轴上的数进行有关的计算等都能体现数形结合思想的重要作用。
例2如图1,数轴上点A 表示2,点A 关于原点的对称点为B ,设点B 所表示的数为x ,求()022x x -+的值.分析:此题是与数轴有关的数形结合的问题,要求()022x x -+的值,需要先根据数轴确定x 的值,由数轴易得2x =-. 从而可求出代数式的值。
解:点A 表示的数是2,且点B 与点A 关于原点对称,∴点B 表示的数是2-,即2x =-.00(2)2(22)2(2)121x x -+=--+⨯-=-=-.三、分类思想所谓分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结做出结论的思想方法。
按照不同的标准,实数会有一些不同的分类方法。
例3在所给的数据:,57.0,,31,5,232π-0.585885888588885…(相邻两个5之间8的个数逐次增加1个)其中无理数个数( ).(A)2个 (B)3 (C)4个 (D)5个解析:作此类题需要掌握实数的分类.判断一个数是哪类数,可以化简后再判断,但是对于代数式分类判断,则不能化简后再判断,如xx 2是分式,对于数、式分类时,常用策略是:“数看结果,式看形式”.2422==;3355-=-;显然22、31、0.57都是有理数;所以无理数的个数为3.选B.解释理由如下: ()31211121121233311191101111111011122211110111222111个个个个个个个个个个…………………………n n n n n n n n n n n n n =⨯=-⨯=-⨯=-+⨯=-《平方根》典例分析平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备基础,也是中考的必考内容之一.现以几道典型题目为例谈谈平方根问题的解法,供同学们学习时参考.一、基本题型例1 求下列各数的算术平方根(1)64;(2)2)3(-;(3)49151. 分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.解:(1)因为6482=,所以64的算术平方根是8,即864=;(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-;(3)因为496449151=,又4964)78(2=,所以49151的算术平方根是78,即7849151=. 点评:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根是3,而不是3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似74149161=的错误. 想一想:如果把例1改为:求下列各数的平方根.你会解吗?请试一试.例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-. 分析:±81表示81的平方根,故其结果是一对互为相反数;-16表示16的负平方根,故其结果是负数;259表示259的算术平方根,故其结果是正数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.解:(1)因为8192=,所以±81=±9.(2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53. (4)因为22)4(4-=,所以4)4(2=-.点评:弄清与平方根有关的三种符号±a 、a 、-a 的意义是解决这类问题的关键.±a 表示非负数a 的平方根.a 表示非负数a 的算术平方根,-a 表示非负数a 的负平方根.注意a ≠±a .在具体解题时,符与“”的前面是什么符号,其计算结果也就是什么符号,既不能漏掉,也不能多添.例3 若数m 的平方根是32+a 和12-a ,求m 的值.分析:因负数没有平方根,故m 必为非负数,故本题应分两种情况来解.解: 因为负数没有平方根,故m 必为非负数.(1)当m 为正数时,其平方根互为相反数,故(32+a )+(12-a )=0,解得3=a ,故32+a =9332=+⨯,912312-=-=-a ,从而8192==a .(2)当m 为0时,其平方根仍是0,故032=+a 且0433=-a ,此时两方程联立无解.综上所述,m 的值是81.二、创新题型例4 先阅读所给材料,再解答下列问题:若1-x 与x -1同时成立,则x 的值应是多少?有下面的解题过程:1-x 和x -1都是算术平方根,故两者的被开方数x x --1,1都是非负数,而1-x 和x -1是互为相反数. 两个非负数互为相反数,只有一种情形成立,那就是它们都等于0,即1-x =0,x -1=0,故1=x . 问题:已知,21221+-+-=x x y 求y x 的值.解:由阅读材料提供的信息,可得,012=-x 故21=x . 进而可得2=y .故y x =41212=⎪⎭⎫ ⎝⎛. 点评:这是一道阅读理解题.解这类问题首先要认真阅读题目所给的材料,总结出正确的结论,然后用所得的结论解决问题.(穿墙术)例5 请你认真观察下面各个式子,然后根据你发现的规律写出第④、⑤个式子. ①44141411611622=⨯=⨯=⨯=⨯=; ②244242421623222=⨯=⨯=⨯=⨯=; ③344343431634822=⨯=⨯=⨯=⨯=.分析:要写出第④、⑤个式子,就要知道它们的被开方数分别是什么,为此应认真观察所给式子的特点.通过观察,发现前面三个式子的被开方数分别是序数乘以16得到的,故第④、⑤个式子的被开方数应该分别是64和80.解:④84244441646422=⨯=⨯=⨯=⨯=; ⑤544545454516580222=⨯=⨯=⨯=⨯=⨯=.点评:这是一个探究性问题,也是一道发展数感的好题,它主要考查观察、归纳、概括的能力.解这类题需注意分析题目所给的每个式子的特点,然后从特殊的例子,推广到一般的结论,这是数学中常用的方法,同学们应多多体会,好好掌握!平方根概念解题的几个技巧平方根在解题中有着重要的应用.同学们想必已经知到.但是,今天要告诉同学们的是它的几个巧妙的应用.希望对大家的学习有所帮助.一、巧用被开方数的非负性求值.大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数.例1、若,622=----y x x 求y x的立方根. 分析 认真观察此题可以发现被开方数为非负数,即2-x ≥0,得x ≤2;x -2≥0,得x ≥2;进一步可得x=2.从而可求出y=-6.解 ∵⎩⎨⎧≥-≥-0202x x , ∴⎩⎨⎧≥≤22x x x=2; 当x=2时,y=-6.y x =(-6)2=36. 所以y x 的立方根为336.二、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例2、已知:一个正数的平方根是2a -1与2-a ,求a 的平方的相反数的立方根. 分析 由正数的两平方根互为相反得:(2a -1)+(2-a)=0,从而可求出a=-1,问题就解决了.解 ∵2a -1与2-a 是一正数的平方根,∴(2a -1)+(2-a)=0, a=-1.a 的平方的相反数的立方根是.113-=-三、巧用算术平方根的最小值求值. 我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例3、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.(即负的平方根)分析 y=)1(32++-b a ,要y 最小,就是要2-a 和)1(3+b 最小, 而2-a ≥0,)1(3+b ≥0,显然是2-a =0和)1(3+b =0,可得a=2,b=-1. 解 ∵2-a ≥0,)1(3+b ≥0,y=)1(32++-b a ,∴2-a =0和)1(3+b =0时,y 最小.由2-a =0和)1(3+b =0,可得a=2,b=-1.所以b a的非算术平方根是.11-=-四、巧用平方根定义解方程.我们已经定义:如果x 2=a (a ≥0)那么x 就叫a 的平方根.若从方程的角度观察,这里的x 实际是方程x 2=a (a ≥0)的根.例4、解方程(x+1)2=36.分析把x+1看着是36的平方根即可.解∵(x+1)2=36 ∴x+1看着是36的平方根. x+1=±6.∴x1=5 , x2=-7.例4实际上用平方根的定义解了一元二次方程(后来要学的方程).你能否解27(x+1)3=64这个方程呢?不妨试一试.利用平方根的定义及性质解题如果一个数的平方等于a(a≥0),那么这个数是a的平方根.根据这个概念,我们可以解决一些和平方根有关的问题.(例1与例2区别)例1 已知一个数的平方根是2a-1和a-11,求这个数.分析:根据平方根的性质知:一个正数的平方根有两个,它们互为相反数.互为相反数的两个数的和为零.解:由2a-1+a-11=0,得a=4,所以2a-1=2×4-1=7.所以这个数为72=49.例2 已知2a-1和a-11是一个数的平方根,求这个数.分析:根据平方根的定义,可知2a-1和a-11相等或互为相反数.当2a-1=a-11时,a=-10,所以2a-1=-21,这时所求得数为(-21)2=441;当2a-1+a-11=0时,a=4,所以2a-1=7,这时所求得数为72=49.综上可知所求的数为49或441.(区别:类似3是9的平方根,但9的平方根不是3,是+3、-3.)例3 已知2x-1的平方根是±6,2x+y-1的平方根是±5,求2x-3y+11的平方根.分析:因为2x-1的平方根是±6,所以2x-1=36,所以2x=37;因为2x+y-1的平方根是±5,所以2x+y-1=25,所以y=26-2x=-11,所以2x-3y+11=37-3×(-11)+11=81,因为81的平方根为±9,所以2x-3y+11的平方根为±9.例4 若2m-4与3m-1是同一个数的平方根,则m为()(A)-3 (B)1 (C)-3或1 (D)-1分析:本题分为两种情况:(1)可能这个平方相等,即2m-4=3m-1,此时,m=-3;(2)一个数的平方根有两个,它们互为相反数,所以(2m-4)+(3m-1)=0,解得m=1.所以选(C).练一练:1.已知x的平方根是2a-13和3a-2,求x的值.2.已知2a-13和3a-2是x的平方根,求x的值3.已知x+2y=10,4x+3y=15, 求x+y的平方根..答案:1.49;2. 49或1225; 3.5从被开方数入手二次根式中被开方数的非负性,时常是求解二次根式问题的重要隐含条件。