九年级上《3.4.1相似三角形的判定》同步试题含答案第4课时 相似三角形的判定定理3

合集下载

初三相似三角形练习题及答案

初三相似三角形练习题及答案

初三相似三角形练习题及答案相似三角形是初中数学中一个重要的概念,它在几何形状比较相似的情况下,能够帮助我们快速推导出一些性质和结果。

为了帮助同学们更好地掌握相似三角形的相关知识,下面给出一些练习题及其详细答案,希望能够对大家的学习有所帮助。

1. 如图,已知△ABC与△ADE相似,其中∠B=∠D=90°,AB=10cm,BC=15cm,DE=6cm,求AD和AC的长度。

解析:由于∠B=∠D=90°,所以△ABC与△ADE是直角三角形。

根据直角三角形的性质,我们知道在两个直角三角形中,如果一个角相等,那么它们就是相似三角形。

因此,△ABC与△ADE相似。

根据相似三角形的定义,我们知道相似三角形的对应边的比例相等。

所以我们可以列出比例方程:AB/AD = BC/DE代入已知的数值,得到:10/AD = 15/6进一步计算,可以得到:AD = (10 * 6) / 15 = 4cm同理,我们可以使用相似三角形的对应边比例相等的性质,求解出AC的长度。

列出比例方程:AB/AC = BC/AE10/AC = 15/AD代入AD = 4cm,可以得到:10/AC = 15/4进一步计算,得到:AC = (10 * 4) / 15 = 8/3 cm所以,AD的长度为4cm,AC的长度为8/3 cm。

2. 如图,已知△PQR与△XYZ相似,PR = 12cm,YZ = 6cm,PQ = 9cm,求XZ的长度。

解析:根据相似三角形的性质,我们可以列出比例方程:PQ/PX = QR/XZ代入已知数值,得到:9/PX = 12/XZ进一步计算,得到:PX * XZ = 9 * 12PX * XZ = 108根据已知条件,我们可以得到两个三角形的一对边已知,它们分别是PR和YZ,由于两个三角形相似,我们可以列出另一个比例方程:PR/YZ = PQ/XZ12/6 = 9/XZ进一步计算,得到:2 = 9/XZ解方程,可以得到:XZ = 9/2 = 4.5cm所以,XZ的长度为4.5cm。

初三数学相似三角形典型例题(附含答案解析)

初三数学相似三角形典型例题(附含答案解析)

2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。

2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。

3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。

4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。

本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : bc :d )中, a 、 d 叫外项,db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。

把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。

2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。

AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

3.4.1相似三角形的判定-2024-2025学年数学湘教九年级上册课件

3.4.1相似三角形的判定-2024-2025学年数学湘教九年级上册课件

小结与复习
判定两个三角形相似的条件有哪些?
1.根据定义判定 2.平行于三角形一边的判定方法 3.有两个角对应相等的判定方法 4.有两边对应成比例且夹角相等的判定方法
5.有三边对应成比例的判定方法
当我们在应用这些判定方法解题的时候一定要做正确的选择!
中考试题
1.如









A1
B1C1和
A2
B
C B'
C'
一个是三角形相似的定义(显然条件不具备);
二是利用平行线来判定三角形相似的定理.
已知:在△ABC 和△ A'B'C' 中,
求证:ΔABC∽ △ A'B'C'
证明:在ΔABC的边AB、AC上,分别 A
截取AD=A'B',AE=A'C' ,连结DE.
A'
∵ AD=A'B ,∠A=∠A',AE=A'C'
两个等边三角形呢?为什么?
1.所有的等腰三角形不都相似; 2.所有的等边三角形都相似.
练习 判断4×4方格中的两个三角形是否相似.
D 想一想:找角的关系容易,
还是找边的关系容易?
解:根据勾股定理,得:
CA 2 AB 2 2 BC 10 E B
A C
DE 5 EF 2 5 FD 5
CA AB BC 2
即:两边对应成比例且夹角相等的两个三 角形相似.
A B
如果
AB A'B'
AC A'C'
A
∠A=∠A',

湘教版九年级数学 3.4 相似三角形的判定与性质(学习、上课课件)

湘教版九年级数学  3.4 相似三角形的判定与性质(学习、上课课件)

感悟新知
知识点 3 边角关系判定三角形相似定理
知3-讲
1. 相似三角形的判定定理2:两边成比例且夹角相等的 两个三角形相似. 特别提醒 运用该定理证明相似时,一定要注意边角的关 系,相等的角一定是成比例的两组对应边的夹角. 类似于判定三角形全等的SAS的方法.
感悟新知
2. 数学表达式:如图3.4-7 所示, 在△ABC和△DEF 中, ∵DABE=BEFC,且∠B=∠E, ∴△ABC∽△DEF.
感悟新知
知2-练
解题秘方:紧扣“两角分别相等的两三角形相似” 证明. 由于∠BFA是公共角,因此只 需说明∠B=∠4即可.
感悟新知
证明:∵ EF垂直平分AD,∴ AF=DF. ∴∠FAD=∠3. ∵ AD平分∠BAC,∴∠ 1 =∠ 2. ∵∠B=∠3-∠1,∠4 =∠FAD -∠ 2, ∴∠B =∠ 4. ∵∠BFA=∠AFC,∴△ABF∽△CAF.
感悟新知
知1-练
2-1. [ 模拟·株洲荷塘区 ] 如图,在 ▱ABCD中, 点 E
在 AD 上,且 BE 平分∠ ABC,交AC 于点 O,若
AB=3,BC=4,则
AOOC=
3 ___4___.
感悟新知
知识点 2 角的关系判定三角形相似定理
知2-讲
1. 相似三角形的判定定理1:两角分别相等的两个三角形 相似.
和AC上的点,DE∥BC,若ABDD=21,那么DBCE=( )
A.
4 9

C.
1 3
B.
1 2
D.
2 3
感悟新知
知1-练
解题秘方:掌握平行线截三角形相似的定理和相似三角形 的对应边成比例是解题的关键.
解:∵ ABDD=21,∴AADB=23. ∵ DE∥BC,∴△ADE ∽△ABC,∴ DBCE=AADB=23. 答案:D

最新北师大版九年级数学上册《相似三角形》同步测试题及答案解析

最新北师大版九年级数学上册《相似三角形》同步测试题及答案解析

九年级相似三角形同步测试题(时间90分钟,共120分)学校 班级 姓名 学号一、精心选一选,相信你选得准(10×3′=30′)1、若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( ) A .1∶4B .1∶2C .2∶1D .1∶22、下列说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60 o的两个直角三角形相似,其中正确的说法是 A .②④ B .①③ C .①②④ D .②③④ ( ) 3、如图1所示,给出下列条件: ( ) ①B ACD ∠=∠; ②ADC ACB ∠=∠; ③AC AB CD BC=; ④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为( ) A .1B .2C .3D .44、如图2,在正方形网格上,若使⊿ABC ∽⊿PBD,则点P 应在( ) A.P1处 B.P2处 C.P3处 D.P4处5、三角形三边之比3:5:7,与它相似的三角形最长边是21cm ,另两边之和是( ) A .15cm B .18cmC .21cm D .24cm6、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )A7、如图3所示,已知点E F 、分别是ABC △中AC AB 、边的中点,BE CF 、相交于点G ,2FG =,则CF 的长为( )A .4B .4.5C .5D .6A .8、如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12mB .10mC .8mD .7m9、如图是福娃京京设计用手电来测量某古城墙高度的示意图.点P 处放一水平的平面镜, 光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知 AB ⊥BD ,CD ⊥BD, 且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )A. 6米B. 8米C. 18米D.24米10、在△ABC 中,AB=6,AC=4,点P 是AC 的中点,过点P 的直线交AB 于Q,若以A 、P 、Q 为顶点的三角形与△ABC 相似,则AQ 的长为( ) A .43B . 3C .43或3 D .34或3二、细心填一填,相信你填得对(10×3′=30′)1、在中国地理地图册上,连接上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图6所示,飞机从台湾直飞上海的距离约为1286千米,那么飞机从台湾绕道香港再到上海的飞行距离约为 千米2、已知ΔABC 的三边长之比为3∶4∶5,与其相似的DEF △的周长为36,则DEF △最长边的长为.3、如图7,∠DAB =∠CAE ,请补充一个条件:,使△ABC ∽△ADE .4、如图8,在直角梯形ABCD 中,BC ⊥AB ,BD ⊥AD ,CD ∥AB ,且BD=3,CD=2,则下底AB 的长是.5、如图9,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC =.6、三角尺在灯泡O 的照射下在墙上形成影子(如图10所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是.7、如图11,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )量得零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.8、如图12,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD=. 9、如图13,公园内有一个长5米的跷跷板AB ,当支点O 在距离A 端2米时,A 端的人可以将B 端的人跷高1.5米,那么当支点O 在AB 的中点时,A 端的人下降同样的高度可以将B 端的人跷高米.【答案】1.10、如图14,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是.【答案】144;三、耐心做一做,相信你的能力(共60′)1、(6分)如图,在矩形ABCD 中,点E F 、分别在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.2、(6分)如图,ABC △中,D E 、分别是边BC AB 、的中点,AD CE 、相交于G .求证:13GE GD CE AD ==.3、(8分)如图,在钝角三角形ABC 中,AB=6cm,AC=12cm,动点D 从A 点出发沿AB 运动到B 点,动点E 从C 点出发沿CA 运动到A 点,点D 运动的速度是1cm/s ,点E 运动的速度为2cm/s, 如果两点同时运动,那么当以点A,D,E 为顶点的三角形与△ABC 相似时,求两点运动的时间?4、(8分)如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 21。

湘教版九年级数学上册《3.4 相似三角形的判定与性质》练习题-带参考答案

湘教版九年级数学上册《3.4 相似三角形的判定与性质》练习题-带参考答案

湘教版九年级数学上册《3.4 相似三角形的判定与性质》练习题-带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知△ABC∽△A′B′C′且ABA′B′=12,则S△ABC∶S△A′B′C′为( )A.1∶2B.2∶1C.1∶4D.4∶12.如图,△ABC与△DE F相似,相似比为1∶2,BC的对应边是EF,若BC=1,则EF的长是( )A.1B.2C.3D.43.已知△ABC∽△DEF,且AB∶DE=1∶2,则△ABC的面积与△DEF的面积之比为( )A.1∶2B.1∶4C.2∶1D.4∶14.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF :S△ABF=4:25,则DE:EC=()A.2:3 B.2:5 C.3:5 D.3:25.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )A.1对B.2对C.3对D.4对6.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )A.1条B.2条C.3条D.4条7.如图,点P是△ABC的边AB上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似.满足这样条件的直线最多有( )A.2条B.3条C.4条D.5条8.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在格点为( )A.P1 B.P2C.P3D.P49.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有( )A.1种B.2种C.3种D.4种10.如图,在△ABC中,CD⊥AB,且CD2=AD•DB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DF•DC.则下列结论正确的是( )A.①②④B.②③④C.①②③④D.①③二、填空题11.若△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,则△ABC与△DEF的面积比值为.12.若两个相似三角形的周长比为2:3,则它们的面积比是.13.若△ABC∽△A′B′C′,且AB:A′B′=3:4,△ABC的周长为12 cm,则△A′B′C′的周长为____________.14.下图中的每个点(包括△ABC的各个顶点)都在边长为1的小正方形的顶点上,在P、Q、G、H中找一个点,使它与点D、E构成的三角形与△ABC相似,这个点可以是.(写出满足条件的所有的点)15.如图,平行四边形ABCD中,E是BC边延长线上一点,AE交CD于F,则图中相似三角形有对.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则Cn的坐标是.三、解答题17.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°. 求证:△ADC∽△DEB.18.如图,A、B、C、P四点均在边长为1的小正方形网格格点上.(1)判断△PBA与△ABC是否相似,并说明理由;(2)求∠BAC的度数.19.如图所示,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1) ∠EAF=∠B;(2) AF2=FE·FB.20.如图,在△ABC中,AD和BG是△ABC的高,连接GD.(1)求证△ADC∽△BGC;(2)求证CG·AB=CB·DG.21.如图,已知P是正方形ABCD边BC上一点,BP=3PC,Q是CD的中点(1)求证:△ADQ∽△QCP;(2)若AB=10,连接BD交AP于点M,交AQ于点N,求BM,QN的长.22.在等腰三角形ABC中,AB=AC,D是AB延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1nCE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中结论还成立吗?试证明.答案1.C2.B3.B4.A5.C.6.C7.C.8.B9.C.10.C.11.答案为:1:4.12.答案为:4:9.13.答案为:16cm.14.答案为:Q.15.答案为:4.16.答案为(﹣3×4n﹣1,4n).17.证明:∵△ABC是等边三角形∴∠B=∠C=60°∴∠ADB=∠CAD+∠C=∠CAD+60°∵∠ADE=60°∴∠ADB=∠BDE+60°∴∠CAD=∠BDE∴△ADC∽△DEB.18.解:(1)△PBA与△ABC相似,理由如下:∵AB=5,BC=5,BP=1∴∵∠PBA=∠ABC∴△PBA∽△ABC;(2)∵△PBA∽△ABC∴∠BAC=∠BPA∵∠BPA=90°+45°=135°∴∠BAC=135°.19.证明:(1)∵AB∥CD∴∠B=∠C又∠C=∠EAF∴∠EAF=∠B(2)∵∠EAF=∠B,∠AFE=∠BFA ∴△AFE∽△BFA则AFBF=FEFA∴AF2=FE·FB20.解:(1) ∵在△ABC中,AD和BG是△ABC的高∴∠BGC=∠ADC=90°.又∠C=∠C∴△ADC∽△BGC.(2)∵△ADC∽△BGC∴CGDC=BCAC.∴CGBC=DCAC.又∠C=∠C∴△GDC∽△BAC.∴CGBC=DGAB.∴CG·AB=CB·DG.21.证明:(1)∵正方形ABCD中,BP=3PC,Q是CD的中点∴PC=14﹣BC,CQ=DQ=12CD,且BC=CD=AD∴PC :DQ =CQ :AD =1:2 ∵∠PCQ =∠ADQ =90° ∴△PCQ ∽△ADQ (2)∵△BMP ∽△AMD ∴BM :DM =BP :AD =3:4 ∵AB =10 ∴BD =10 2 ∴BM =同理QN =53 5.22.证明:(1)在题图①中作EG ∥AB 交BC 于点G 则∠ABC =∠EGC ,∠D =∠FEG. ∵AB =AC ,∴∠ABC =∠C. ∴∠EGC =∠C.∴EG =EC. ∵BD =CE ,∴BD =EG. ∵∠D =∠FEG ,∠BFD =∠GFE ∴△BFD ≌△GFE. ∴DF =EF. (2)解:DF =1nEF.证明:在题图②中作EG ∥AB 交BC 于点G ,则∠D =∠FEG.由(1)得EG =EC. ∵∠D =∠FEG ,∠BFD =∠EFG ∴△BFD ∽△GFE.∴BD EG =DF EF. ∵BD =1n CE =1n EG∴DF =1n EF.(3)解:成立.证明:在题图③中作EG ∥AB 交CB 的延长线于点G则仍有EG=EC,△BFD∽△GFE.∴BDEG=DFEF.∵BD=1nCE=1nEG,∴DF=1nEF.。

九年级数学上册3.4相似三角形的判定与性质3.4.1相似三角形的判定第4课时相似三角形的判定定理3测试题新版湘

九年级数学上册3.4相似三角形的判定与性质3.4.1相似三角形的判定第4课时相似三角形的判定定理3测试题新版湘

第4课时 相似三角形的判定定理301 基础题知识点 三边成比例的两个三角形相似1.将一个三角形的各边都缩小12后,得到的三角形与原三角形(A) A .一定相似 B .一定不相似C .不一定相似D .不能判断是否相似2.甲三角形的三边分别为1,2,5,乙三角形的三边分别为5,10,5,则甲乙两个三角形(A)A .一定相似B .一定不相似C .不一定相似D .无法判断是否相似3.已知△ABC 的三边长分别为6 cm 、7.5 cm 、9 cm ,△DEF 的一边长为4 cm ,要使这两个三角形相似,则△DEF 的另两边长可以是(C)A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm4.如图,两个三角形的关系是相似(填“相似”或“不相似”),理由是三边成比例的两个三角形相似.5.若△ABC 各边分别为AB =10 cm ,BC =8 cm ,AC =6 cm ,△DEF 的两边为DE =5 cm ,EF =4 cm ,则当DF =3cm 时,△ABC∽△DEF.6.△ABC 和△A′B′C′符合下列条件,判断△ABC 与△A′B′C′是否相似.BC =2,AC =3,AB =4;B′C′=2,A′C′=3,A′B′=2.解:在△ABC 中,AB>AC>BC ,在△A′B′C′中,A′B′>A′C′>B′C′,BC B′C′=22=2,AC A′C′=33=3,AB A′B′=42=2. ∴BC B′C′≠AB A′B′≠AC A′C′. ∴△ABC 与△A′B′C′不相似.7.如图所示,根据所给条件,判断△ABC 和△DBE 是否相似,并说明理由.解:△ABC∽△DBE.理由如下:∵AC DE =36=12,BC BE =48=12,AB DB =510=12, ∴AC DE =BC BE =AB DB. ∴△ABC∽△DBE.02 中档题8.下列能使△ABC 和△DEF 相似的条件是(C)A .AB =c ,AC =b ,BC =a ,DE =a ,EF =b ,DF = cB .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =1C .AB =3,AC =4,BC =6,DE =12,EF =8,DF =6D .AB =2,AC =3,BC =5,DE =6,EF =3,DF =39.如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC∽△PQR,则点R 应是甲、乙、丙、丁四点中的(C)A .甲B .乙C .丙D .丁10.(东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的三条边长分别是3、4及x ,那么x 的值(B)A .只有1个B .可以有2个C .可以有3个D .有无数个11.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、AC 的中点,求证:△ABC∽△EFD.。

完整word版人教版初三数学相似三角形的判定基础练习题含答案

完整word版人教版初三数学相似三角形的判定基础练习题含答案

1.相似三角形的判定(根底〕一、选择题以下判断中正确的选项是()A.C.全等三角形不一定是相似三角形不相似的三角形一定不全等B.不全等的三角形一定不是相似三角形D.相似三角形一定不是全等三角形2.△ABC的三边长分别为、、2,△A′B′C′的两边长分别是1和,如果△ABC与△A′B′C′相似,那么△A′B′C′的第三边长应该是() A.B. C. D.3.如图,在大小为4×4的正方形网格中,是相似三角形的是〔〕.A.①和②①②B.②和③③C.①和③④D.②和④在△ABC和△DEF中,①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件()A.只有①B.只有②C.①和②分别都是D.①和②都不是5.在矩形ABCD中,E、F分别是CD、BC上的点,假设∠AEF=90°,那么一定有〔〕A.ADE∽AEF B.ECF∽ΔAEF C.ADE∽ΔECF D.AEF∽ΔABF6.如下图在平行四边形ABCD 中,EF∥AB,DE:EA=2:3,EF=4,那么CD的长为()A. B.8 C.10 D.167.二、填空题如下图,D、E两点分别在AB、AC上且DE和BC不平行,请你填上一个你认为适宜的条件___使△ADE∽△ACB.8.如下图,∠C=∠E=90°,AD=10,DE=8,AB=5,那么AC=________.如下图,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△ AOB相似(至少找出两个满足条件的点的坐标).如图,AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,那么图中与△OEF相似的三角形为____.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,那么图中相似三角形共有_________对.三.解答题13.如图,在△ABC 中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14.如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,那么△ABC和△EDF相似吗?为什么?【答案与解析】一.选择题1.【答案】C2.【答案】A【解析】根据三边对应成比例,可以确定,所以第三边是3.【答案】C【解析】设方格边长为1,求出每个三角形的各边长,运用三边对应成比例的两个三角形相似的判定方法来确定相似三角形.4.【答案】C5.【答案】C【解析】∵∠AEF=90°,∴∠1+∠2=90°,又∵∠D=∠C=90°,∴∠3+∠2=90°,即∠1=∠3,∴△ADE∽△ECF.6.【答案】C【解析】∵EF∥AB,∴,∵,∴,,CD=10,应选C.二.填空题7.【答案】∠ADE=∠C或∠AED=∠B或.【解析】据判定三角形相似的方法来找条件.8.【答案】3.【解析】∵∠C=∠E,∠CAB=∠EAD,∴△ACB∽△AED,∴,BC=4,在Rt△ABC中,.9.【答案】;10.【答案】4【解析】∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,又∵AC⊥CE,∴∠BCA+∠DCE=90°,∴∠BCA=∠E,∴△ABC∽△CDE.∵C是线段BD的中点,ED=1,BD=4BC=CD=2∴,即AB=4.11.【答案】△OAB,△OCD12.【答案】3.【解析】∵平行四边形ABCD,∴AD∥∥CD∴△EFC∽△EAB;△EFC∽△AFD;△AFD∽△EAB.三综合题13.【解析】DE∥BC,∴△ADE∽△ABC,∵,,∴,∴AC=,∴EC=AC-AE=.14.【解析】AD∥BC,∴∠ADB=∠DBC,又∵,∴△ABD∽△DCB,∴∠A=∠BDC,∵∠A=90°,∴∠BDC=90°,∴BD⊥CD.15.【解析】△ABC和△EDF都是直角三角形,且两边长,所以可利用勾股定理分别求出第三边AC 和DE,再看三边是否对应成比例.在Rt△ABC中,AB=10,BC=6,∠C=90°.由勾股定理得.在Rt△DEF中,DF=3,EF=4,∠F=90°.由勾股定理,得.在△ABC和△EDF中,,,,∴,∴△ABC∽△EDF(三边对应成比例,两三角形相似).。

初三数学相似三角形典型例题(含答案)

初三数学相似三角形典型例题(含答案)

初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。

2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。

3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。

4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。

本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

-(二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= (③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.4.1相似三角形的判定课件++2024-2025学年湘教版数学九年级上册

3.4.1相似三角形的判定课件++2024-2025学年湘教版数学九年级上册
A.8
B.10
C.16
16
D.
3
课堂练习
【知识技能类作业】必做题:
3.如图, ∥

,、相交于点E,

=
2

,则
3

=
2
3

课堂练习
【知识技能类作业】必做题:
4.如图,在中,//, = 9, = 3, = 2,则的长
为( C )
A.6
B.7
C.8
3.4.1相似三角形的判定(1)
按定义判定:
利用平行线:
习题讲解书写部分
作业布置
【知识技能类作业】必做题:
1.如图, ∥ , ∥
2
A.
3
B.5
C.6
D.15

,

=
2
,
3
= 9,则 的长为( C )
作业布置
【知识技能类作业】必做题:
2.如图,点O是矩形 的对角线AC的中点, ∥ 交 于点M,
结论还成立吗?
解:∵ ∠A = ∠A,∠ADE=∠B,∠AED=∠C,
AD AE DE
= =
AB AC BC
. A
∴△ADE∽△ABC.
D
E
只要 DE∥ BC, 那么△ADE与△ABC是相似
的.
B
F
C
新知讲解
平行于三角形一边的直线与其他两边相交, 截得的三角形
与原三角形相似.
A
几何语言:
D
∵DE∥ BC
形.
按定义判定:
A
∵∠A=∠A′,∠B=∠B′,∠C=∠C′,
A'
AB BC CA

湘教版数学九年级上册第三章3.4《相似三角形的判定》解答题专项练习+解析

湘教版数学九年级上册第三章3.4《相似三角形的判定》解答题专项练习+解析

湘教版九年级数学上册第三章3.4《相似三角形的判定》解答题专项练习+解析一.解答题(共12小题)1.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.2.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.3.如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.4.如图,△ABC中,AB=AC,BE⊥AC于E,D是BC中点,连接AD与BE交于点F,求证:△AFE∽△BCE.5.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C 点重合),∠ADE=45°.求证:△ABD∽△DCE.6.如图,在8×8的正方形网格中,△CAB和△DEF的顶点都在边长为1的小正方形的顶点上,AC与网格上的直线相交于点M.(1)填空:AC= ,AB= .(2)求∠ACB的值和tan∠1的值;(3)判断△CAB和△DEF是否相似?并说明理由.7.如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.(1)若BC=8,求FD的长;(2)若AB=AC,求证:△ADE∽△DFE.8.如图:方格纸中的每个小正方形边长均为1,△ABC和△DEF的顶点都在方格纸的格点上.①判断△ABC和△DEF是否相似,并说明理由;②点P1,P2,P3,D,F都是△DEF边上的5个格点,请在这5个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似.(写出一个即可,并在图中连接相应线段,不必说明理由)9.如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,求证:△AEF∽△ACB.10.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.11.如图,在等边△ABC中,点D、E分别是边BC、AC上的点,且BD=CE,连接BE、AD,相交于点F.(1)求证:△ABD≌△BCE;(2)图中共有对相似三角形(全等除外).并请你任选其中一对加以证明.你选择的是.12.如图,△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)写出图中两对相似三角形(不得添加字母和线).(2)请选择其中的一对三角形,说明其相似的理由.湖南省澧县张公庙镇中学2015-2016学年湘教版九年级数学上册第三章3.4《相似三角形的判定》解答题专项练习+解析参考答案与解析一.解答题(共12小题)1.解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.2.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.3.解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.4.证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∴∠FAE+∠AFE=90°,∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠BFD=90°,∵∠AFE=∠BFD,∴∠FAD=∠CBE,∴△AFE∽△BCE.5.证明:∵∠BAC=90°,AB=AC=1,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°﹣∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.6.解:(1)如图,由勾股定理,得AC==2.AB==2故答案是:2,2;(2)如图所示,BC==2.又由(1)知,AC=2,AB=2,∴AC2+BC2=AB2=40,∴∠ACB=90°.tan∠1==.综上所述,∠ACB的值是90°和tan∠1的值是;(3)△CAB和△DEF相似.理由如下:如图,DE=DF==,EF==.则===2,所以△CAB∽△DEF.7.解:(1)∵D、E分别是边AB、AC的中点,∴,DE∥BC.∴∠AED=∠C.∵∠F=∠C,∴∠AED=∠F,∴FD==4;(2)∵AB=AC,DE∥BC.∴∠B=∠C=∠AED=∠ADE,∵∠AED=∠F,∴∠ADE=∠F,又∵∠AED=∠AED,∴△ADE∽△DFE.8.解:①△ABC和△DEF相似.理由如下:∵根据图示知:AB=2,AC=,BC=5,ED=4,DF=2,EF=2,∴===,∴△ABC∽△DEF;②△ACB∽△DP3P2.理由如下:∵由①知,△ABC∽△DEF,∴∠D=∠A.连接DP2P3,DP3=,DP2=,P2P3=.∵==,∴△ACB∽△DP3P2.9.证明:∵CE⊥AB,BF⊥AC,∴∠AEC=∠AFB=90°.∵∠A是公共角,∴△ABF∽△ACE.∴,∴,又∠A是公共角,∴△AEF∽△ACB.10.(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.11.(1)证明:∵△ABC是等边三角形,∴AC=BA,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS);(2)4对,分别是△BDF∽△BEC,△DBF∽△DAB,△AFE∽△ACD,△AFE∽△BAE,选择证明△AEF∽△BEA,∵△ABC是等边三角形,∴AC=BA,∠C=∠BAE=60°,AC=BC,∵BD=CE,∴AE=CD,∴△ACD≌△BAE(SAS),∴∠DAC=∠ABE,又∵∠AEF=∠BEA,∴△AEF∽△BEA.12.(1)解:△ABC∽△ADE,△ABD∽△ACE;(2)△ABD∽△ACE.证明:由(1)知△ABC∽△ADE,∴=,∴AB×AE=AC×AD,∴=,∵∠BAD=∠CAE,∴△ABD∽△ACE.初中数学试卷。

【完整版】浙教版九年级上册数学第4章 相似三角形含答案

【完整版】浙教版九年级上册数学第4章 相似三角形含答案

浙教版九年级上册数学第4章相似三角形含答案一、单选题(共15题,共计45分)1、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCAB.△PAB∽△PDAC.△ABC∽△DBAD.△ABC∽△DCA2、如图,点O是边长为4 的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1, B1C1交BC于点D,B1C1交AC于点E,则DE=()A.2B.4C.2D.6﹣23、如图,已知BC∥DE,则下列说法中不正确的是()A.两个三角形是位似图形B.点A是两个三角形的位似中心C.AE︰AD是位似比D. 点B与点E、点C与点D是对应位似点4、将一副直角三角板按图叠放,则△AOB与△DOC的面积之比等于().A. B. C. D.5、如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为()A.1:2B.1:4C.2:1D.4:16、浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于().A.一根火柴的长度B.一支钢笔的长度C.一支铅笔的长度D.一根筷子的长度7、如图,在□ABCD中,BE平分∠ABC,CF平分∠BCD,E,F在AD上,BE与CF 相交于点G,若AB=7,BC=10,则△EFG与△BCG的面积之比为()A.4:25B.49:100C.7:10D.2:58、如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=yB.3x=2yC.x=1,y=2D.x=3,y=29、如图,在△ABC中,DE∥BC,若AD:AB=1:3,则△ADE与△ABC的面积之比是( )A.1:3B.1:4C.1:9D.1:1610、如图,△ABC中,DE∥AB,则下列式子中错误的是()A. B. C. D.11、若3x=2y(xy≠0),则下列比例式成立的是()A. B. C. D.12、△ABC与△DEF相似,且相似比是,则△DEF与△ABC的相似比是()A. B. C. D.13、如果两个相似三角形的相似比为2:3,那么这两个三角形的面积比为()A.2:3B. :C.4:9D.9:414、如图,△ABC中,∠A=70°,AB=4,AC= 6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A. B. C.D.15、如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B 向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米 , CA=1米, 则树的高度为()A.4.5米B.6米C.3米D.4米二、填空题(共10题,共计30分)16、如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有________.(填写所有正确结论的序号)17、已知正方形ABCD的面积为9cm2,正方形EFGH的面积为16cm2,则两个正方形边长的相似比为________18、如图,在△ABC中,点D为AC上一点,且线段CD与AD之比为1:2,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE,交AB于点F,那么线段EF与EB之比等于________。

新洲区三中九年级数学上册第3章图形的相似3.4相似三角形的判定与性质3.4.1相似三角形的判定第4课

新洲区三中九年级数学上册第3章图形的相似3.4相似三角形的判定与性质3.4.1相似三角形的判定第4课

O , ∠BAD=60° , BD =6 , 求菱形的边长AB和対角线AC的
长.
解 : ∵四边形ABCD是菱形 ,
∴AC⊥BD(菱形的対角线互相垂直)
OB=OD= 1
2
平分)
BD1 =
2
×6=3(菱形的対角线互相 B
在等腰三角形ABC中 ,
O
针对训练
1. 已知 : 如右图,在□ABCD中,対角线AC与BD相交于点O,
解 : ∵四边形ABCD是矩形.
A
D
∴AC = BD(矩形的対角线相等).
O
OA= OC= 1 AC,OB = OD = 1 BD , B
C
2
2
∵∠AOD=120°,
∴∠ODA=∠OAD= 1
A (180°- 120°)=30°.
D
2
又∵∠DAB=90° ,
O
B
C
〔矩形的四个角都是直角〕
∴BD = 2AB = 2 ×2.5 = 5.
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
证明: ∵ BF∥CE,CF∥BE ,
∴四边形BECF是平行四边形.
∵四边形ABCD是矩形,
∴ ∠ABC = 90°, ∠DCB = 90°,
∵BE平分∠ABC, CE平分∠ DCB,
A
∴∠EBC = 45°, ∠ECB = 45°,
∴ ∠ EBC =∠ ECB .
针对训练
4.如下图,在□ABCD中,対角线AC与BD相交于点O , △ABO是
等边三角形, AB=4,求□ABCD的面积.
解 : ∵四边形ABCD是平行四边形,
∴OA= OC,OB = OD.
A
D

3.4.1相似三角形的判定(4)(同步课件)-九年级数学上册同步精品课堂(湘教版)

3.4.1相似三角形的判定(4)(同步课件)-九年级数学上册同步精品课堂(湘教版)

A A'
分析 已知两边成比例,只要得到三边成比例,即可完成证明。 C
证明: 设 AB AC k,则AB=kA’B’,AC=kA’C’
A' B' A' C'
由勾股定理,得 BC k 2 • A' B' 2 k 2 • A' C' 2 k B' C'
AB AC BC A' B' A' C' B' C'
2
2
2
∴ DE DF = EF = 1 . AC BC AB 2
∴ △EDF∽△ACB.
一展身手 2.判断图中的两个三角形是否相似,并说明理由.
由勾股定理分别计算出:
AC=4,B'C' =6 ∴ AA'BB'=AA'CC'=BB'CC'
一展身手
3、如图,在 △ABC 和 △ADE 中, AB BC AC . ∠BAD = 20°,求
课堂小结
叙述相似三角形的判定定理3 ,并用符号语言表示这个定理. 相似三角形的判定定理3
三边成比例的两个三角形相似. 符号语言:
感谢聆听
湘教版九年级上册
主讲:
AB AC BC = = =k
B
A'B' A'C' B'C'
求证:△ABC ∽△A'B'C'
A CD
B'
A' E C'
证明:在△A'B'C'的边A'B'上截取点D,使A'D= AB.
过点D作DE∥B'C',交A'C'于点E.

相似三角形的判定(含答案)

相似三角形的判定(含答案)

学生做题前请先回答以下问题问题1:相似三角形的判定定理.问题2:测量旗杆的高度有几种方法?分别是什么?问题3:测量旗杆的高度所用到的方法,用到的相似三角形判定定理是什么?问题4:位似图形的定义;位似比;问题5:证明全等和证明相似的条件有什么区别和联系?问题6:结合你的做题体验,对于相似三角形的四个判定,做题时你会按照什么样的顺序来考虑?相似三角形的判定一、单选题(共11道,每道8分)1.已知△ABC如图所示,则下列四个三角形中与△ABC相似的是( )A. B.C. D.答案:C解题思路:由判定,两边对应成比例且夹角相等的两个三角形相似,选项C与△ABC相似.试题难度:三颗星知识点:相似三角形的判定2.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③;④,能满足△APC与△ACB相似的条件是( )A.①②③B.①③④C.②③④D.①②④答案:A解题思路:试题难度:三颗星知识点:相似三角形的判定3.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若,CD=3,则AF的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定与性质4.如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连接EF交CD于M.已知BC=5,CF=3,则DM∶MC的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果,那么( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定6.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于E,则下列结论正确的是( )A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定7.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是( )A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定8.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到.若点A的坐标是(1,2),则点的坐标是( )A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定9.如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A、P、Q为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ的长为( )A.3B.3或C.3或D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定10.如图,在Rt△ABO中,∠AOB=90°,∠ABO=60°,,D为BO的中点,若点E是线段AB上的一动点,且沿着A→B→A的方向运动,连接DE,当△BDE与△AOB相似时,点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的性质和判定11.如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设,下列结论:①△ABE∽△ECF;②△BAE∽△EAF,③AE平分∠BAF;④当k=1时,△ABE∽△ADF,其中结论正确的是( )A.①②④B.①②③C.②③④D.①②③④答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定学生做题后建议通过以下问题总结反思问题1:相似三角形的判定定理.问题2:测量旗杆的高度有几种方法?分别是什么?问题3:测量旗杆的高度所用到的方法,用到的相似三角形判定定理是什么?问题4:位似图形的定义;位似比;问题5:证明全等和证明相似的条件有什么区别和联系?问题6:结合你的做题体验,对于相似三角形的四个判定,做题时你会按照什么样的顺序来考虑?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档