(完整word版)新北师大九年级数学下册知识点总结

合集下载

北师大版九年级下册数学知识点

北师大版九年级下册数学知识点

北师大版九年级下册数学知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!北师大版九年级下册数学知识点北师大版九年级下册数学知识点大全数学演算题的特点就在于:解题方法虽然不同,但最后的答案一定只有一个,只要演算正确,就可殊途同归。

北师大版数学九年级下册知识点总结及例题(不错!)

北师大版数学九年级下册知识点总结及例题(不错!)

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式北师大版数学九年级下册知识点总结及例题第一章 直角三角形的边角关系1.正切:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,常省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。

例 在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化 2. 正弦..: 在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;例 在ABC ∆中,若90C ∠=︒,1sin 2A =,2AB =,则ABC ∆的周长为 3. 余弦:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;例 等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4B .23C .2D .224. 一个锐角的正弦、余弦分别等于它的余角的余弦、正弦。

例 △ABC 中,∠A ,∠B 均为锐角,且有2|tan 3|2sin 30B A -+-=(),则△ABC是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形5.当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. 当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..6.在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

北师大版九年级(下)数学知识点归纳总结

北师大版九年级(下)数学知识点归纳总结

第一章直角三角形的边角关系九年级下册第1节锐角三角函数一、锐角三角函数锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。

如图所示,在Rt△ABC中,∠C=90°【说明】①三角函数表示的是两边的比值,所以它只是一个数值,没有单位。

②当用一个大写字母表示角时,其三角函数中角的符号省略,如sin A,cos B,tan C;当用一个希腊字母表示角时,其三角函数中角的符号省略,如sinα,cosβ,tanθ;当用三个大写字母表示角时,其三角函数中角的符号不能省略,如sin∠ABC,cos∠DEF,tan∠GHI;当用一个阿拉伯数字表示角时,其三角函数中角的符号不能省略,如sin∠1,cos∠2,tan∠3。

③如果要表示三角函数的倍数与乘方,应分别表示为2 sin A,3cos B,4tan C,sin2A,cos3B,tan4C;2 sin30°,3cos30°,4tan30°,sin230°,cos330°,tan430°。

二、坡度1、坡度的概念如图所示,我们把坡面的铅直高度h和水平宽度l的比值叫做坡度(或坡比),通常用字母i表示。

【说明】坡面的坡度实际上就是坡角的正切值,即i=tanα=hl2、三角函数与坡面的陡峭程度(1)tan A的值越大,坡面越陡。

(2)sin A的值越大,坡面越陡。

(3)cos A的值越小,坡面越陡。

三、锐角三角函数的增减性(0°~90°)1、正弦值随着角度的增大(或减小)而增大(或减小);2、余弦值随着角度的增大(或减小)而减小(或增大);3、正切值随着角度的增大(或减小)而增大(或减小)。

四、同角三角函数的关系1、互余关系:sinA =cos(90°-A) cosA =sin(90°-A)2、平方关系:s in 2A +cos 2A =13、弦切关系:tan A =sin cos AA4、倒数关系:tan A ·tan(90°-A)=1第2节 30°,45°,60°角的三角函数值一、探索30°,45°,60°角的三角函数值求30°角的三角函数值,关键根据“直角三角形中30°的锐角所对的直角边等于斜边的一半”,可设30°的锐角的对边为a ,则斜边为2a ,由勾股定理可求得30°3a ,因此可以求出30°的锐角的各个三角函数值:sin30°=2a a =12 cos30°3a3 tan30°3a 33也可以求出60°的锐角的各个三角函数值:sin60°3a =3 cos60°=2a a =12tan60°3a 3求45°角的三角函数值,关键根据“有一个角是45°的直角三角形是等腰直角三角形”,可设一条直角边为a ,则另一条直角边也为a 2a ,因此可以求出45°的锐角的各个三角函数值:sin45°2a 22 cos45°2a 2 tan45°=aa =1二、熟记特殊角的三角函数值第3节三角函数的计算一、用计算器求任意锐角的三角函数值1、求整数度数的锐角的三角函数值首先使计算器的面板上出现DEG,然后再按sin cos tan这三个键之一,再从高位向低位按出表示度数的整数,再按键=,就可以在显示屏上得到答案。

北师大版-九年级(下)-数学定理知识点汇总

北师大版-九年级(下)-数学定理知识点汇总

图1九年级(下)数学定理知识点汇总第一章 直角三角形边的关系※一. 正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。

※二. 正弦..: 定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;※三. 余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;※余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

(通常我们称正弦、余弦互为余函数。

同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则 ①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=; )90tan(cot A A ∠-︒= ※当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角.. ※当从高处观测低处的目标时,视线与水平线所成 的锐角称为俯角.. ※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。

北师大版九年级数学下册知识点归纳复习提纲

北师大版九年级数学下册知识点归纳复习提纲

北师大版九年级数学下册知识点归纳复习提纲(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版九年级数学下册知识点归纳复习提纲(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版九年级数学下册知识点归纳复习提纲(word版可编辑修改)的全部内容。

图1新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数1。

正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tanA,即;的邻边的对边A A A ∠∠=tan ①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”;②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比;③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2。

正弦:定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3。

余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值30 º45 º60 ºsin α212223cos α232221图2h图3图4三.三角函数的计算1。

(完整版)北师大版九年级数学下册知识点归纳复习提纲

(完整版)北师大版九年级数学下册知识点归纳复习提纲

图1 新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值30 º45 º 60 º sin α21 22 23 h i=h:lBC三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

新北师大版九年级数学下册知识点复习汇总

新北师大版九年级数学下册知识点复习汇总

新北师大版九年级数学下册知识点汇总第一章 直角三角形边的关系一.锐角三角函数1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”;②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比;③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ; 3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值图1 图3 图4三.三角函数的计算 1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lh i tan == 5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

北师大版《数学》(九年级下册)知识点总结

北师大版《数学》(九年级下册)知识点总结

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 北师大版《数学》(九年级下册)知识点总结图 1 北师大版初中数学定理知识点汇总[九年级(下册) 第一章直角三角形边的关系※一. 正切:定义:在RtABC△中,锐角A的对边与邻边的比叫做A的正切..,记作 tanA,即的邻边的对边AAA tan; tanAtanAtanA①②③④初中阶段,我们只学习直角三角形中,tanA⑤的值越大,梯子越陡,※二. 正弦..:是一个完整的符号,它表示没有单位,它表示一个比值,即直角三角形中不表示tan乘以A; A的正切,记号里习惯省去角的符号A ;的对边与邻边的比; A是锐角的正切;越大,梯子越陡, tanA 的值越大。

A越大; A定义:在RtABC△中,锐角A的对边与斜边的比叫做A的正弦,记作sinA ,即斜边的对边AA sin; ※三. 余弦:定义:在RtABC△中,锐角A的邻边与斜边的比叫做A的余弦,记作cosA,即斜边的邻边AA cos; ※余切:定义:在RtABC△中,锐角A的邻边与对边的比叫做A的余切,记作cotA,即的对边的邻边AAA cot; ※一个锐角的正弦、余弦、1/ 16正切、余切分别等于它的余角的余弦、正弦、余切、正切。

(通常我们称正弦、余弦互为余函数。

同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若A为锐角,则①)90cos(sinAA;)90sin(cosAA②)90cot(tanAA; )90tan(cotAA※当从低处观测高处的目标时,视线与水平线..※当从高处观测低处的目标时,视线与水平线所成..※利用特殊角的三角函数值表,可以看出, (1)当角度在 0 ~90 间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。

北师大版九年级数学(下)全书知识总结

北师大版九年级数学(下)全书知识总结
2、(1) 的值越大,梯子越陡。
(2) 的值越大,梯子越陡。
(3) 的值越小,梯子越陡。
3、导出公式
(1) ; 。
(2) 。
(3) .
要点诠释:
(1)公式成立的条件是
(2)锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.
1.230°、45°、60°角的三角函数值
要点一、1.2 30°、45°、60°角的三角函数值
利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:
锐角
30°
45°
1
60°
要点诠释:
(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若 ,则锐角 .
(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.
(4)由锐角三角函数的定义知:
当角度在0°<∠A<90°间变化时, , ,tanA>0.
要点二、梯子的倾斜程度与梯子的关系
1、坡度:坡面的铅直高度 与水平宽度 的比称为坡度(或坡比),用字母 表示。设坡角为 ,则坡度 = = ,如图,坡度通常写成 的形式.
顶点坐标
对称轴
函数变化
最大(小)值
y=ax2
a>0
向上
(0,0)
y轴
x>0时,y随x增大而增大;
x<0时,y随x增大而减小.
当x=0时,
y最小=0
y=ax2
a<0
向下
(0,0)
y轴
x>0时,y随x增大而减小;

北师大版初三(下)数学重点知识点汇总

北师大版初三(下)数学重点知识点汇总

初三(下)重点知识点汇总第1课锐角三角函数1.锐角三角函数的定义在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的______,记作sinA.即sinA=∠A的对边斜边=ac.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的______,记作cosA.即cosA=∠A的邻边斜边=bc.(3)正切:锐角A的对边a与邻边b的比叫做∠A的______,记作tanA.即tanA=∠A的对边∠A的邻边=ab.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2.锐角三角函数的增减性(1)锐角三角函数值都是___值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,0≤cosA≤1.当角度在0°<∠A<90°间变化时,tanA>0.3.互余两角三角函数的关系在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:(1)一个角的正弦值等于这个角的余角的______值,即sinA=(90°﹣∠A);(2)一个角的余弦值等于这个角的余角的______值,即cosA=sin(90°﹣∠A);也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.参考答案:1.(1)正弦;(2)余弦;(3)正切2.(1)正3.(1)余弦正弦第2课特殊角的三角函数值1.特殊角的三角函数值特指___、_____、_____角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;2.特殊角的三角函数值的应用(1)应用中熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐_______,余弦逐渐_______,正切逐渐_______;二是按特殊直角三角形中各边特殊值规律去记.(2)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.参考答案:1. 30°、45°、60°2.(1)增大减小增大第2课解直角三角形(1)1.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°;②三边之间的关系:__________;③边角之间的关系:sinA=∠A的对边:斜边=a:c,cosA=∠A的邻边:斜边=b:c,tanA=∠A的对边:邻边=a:b.(a,b,c分别是∠A、∠B、∠C的对边)2.特殊角的三角函数值特指___、_____、_____角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;参考答案:1.(2)a2+b2=c22. 30°、45°、60°第3课解直角三角形(2)1.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.2.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做_____,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.3.解直角三角形的应用-仰角俯角问题(1)概念:仰角是_____的视线与水平线的夹角;俯角是_____向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.4.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.参考答案:2.(1)坡比3.(1)向上看向下看第4课二次函数1.二次函数的定义(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为_____,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是__________,对实际问题,自变量的取值范围还需使实际问题有意义.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是______________,对称轴直线____________,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.3.根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据_______的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.参考答案:1.(1)整式;(2)全体实数2.(﹣,)x=﹣①上;②下3.自变量第5课二次函数的图像1.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①_______:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②_______:在平面直角坐标系中描出表中的各点.③_______:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.2.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的______和_______.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大,开口就越___.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.3.二次函数图象与几何变换由于抛物线平移后的形状____,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.参考答案:1.(1)①列表;②描点;③连线;2.①开口方向大小小3.不变第6课二次函数解析式的判定1.二次函数解析式的三种常见形式二次函数的解析式有三种常见形式:①_________:y=ax2+bx+c(a,b,c是常数,a≠0);②_________:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③_________:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);2.待定系数法求二次函数解析式用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择________,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为________来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为_______来求解.参考答案:1.①一般式;②顶点式;③交点式2. 一般式 顶点式 交点式第7课 用函数观点看一元二次函数1.二次函数与一元二次方程的关系如果抛物线与x 轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此______就是方程ax bx c 20++=的一个根。

(完整版)北师大版《数学》(九年级下册)重点知识点总结

(完整版)北师大版《数学》(九年级下册)重点知识点总结

北师大版初中数学定理知识点汇总 [九年级 (下册 )第一章直角三角形边的关系※一 . 正切:A 的对边 定义:在 Rt △ABC 中,锐角∠ A 的对边与邻边的比叫做∠ A 的正.切.,记作 tanA ,即 tan A;的邻边 A①tanA 是一个完整的符号,它表示∠ A 的正切,记号里习惯省去角的符号 “∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠ ③tanA 不表示 “tan 乘”以 “A ”;A 的对边与邻边的比; ④初中阶段,我们只学习直角三角形中,∠ A 是锐角的正切;∠A 越大,梯子越陡, tanA 的值越大。

⑤tanA 的值越大,梯子越陡,∠ ※二. 正.弦.: A 越大; A 的对边 斜边定义:在 Rt △ ABC 中,锐角∠ A 的对边与斜边的比叫做∠ A 的正弦, 记作 sinA ,即 sin A ;※三. 余弦:A 的邻边 斜边 定义:在 Rt △ ABC 中,锐角∠ A 的邻边与斜边的比叫做∠ A 的余弦,记作 cosA ,即 cos A ;※余切:A 的邻边 A 的对定义:在 Rt △ ABC 中,锐角∠ A 的邻边与对边的比叫做∠ A 的余切,记作 cotA ,即 cotA;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

(通常我们称正弦、余弦互为余函数。

同样,也称正切、余切互为余函数,可以概括为:一个锐角的三 角函数等于它的余角的余函数)用等式表达:若∠ A 为锐角,则0o 30 1 2o45 o 2 22 2 60 o3 21 290 o ①sin A cos(90 A) ; cos A sin( 90 A) sin α 0 1 ②tan A cot( 90 A) ; cot A tan(90A)3 2 3 3cos α 1 0 ※当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角..※当从高处观测低处的目标时,视线与水平线所成 的锐角称为俯.角.tan α — 0 1 33 3cot α—31※利用特殊角的三角函数值表,可以看出,(1) 当角度在 0°~ 90°间变化时,正弦值、正切值随着角度的增大 (或减小 ) 而增大 (或减小 );余弦值、余切值随着角度的增大 (或减小 )而减小 (或增大 ) 。

北师大版九年级下册数学知识点

北师大版九年级下册数学知识点

北师大版九年级下册数学知识点北师大版九年级下册数学知识点1 二次函数及其图像二次函数(quadratic function)是指未知数的次数为二次的多项式函数。

二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。

其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;顶点式y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。

a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x 3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。

由此可引导出交点式的系数a=y1/(x1x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。

求根公式x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

北师大版初三数学知识点

北师大版初三数学知识点

北师大版初三数学知识点初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.初三数学学习方法概念课要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。

除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。

(最新整理)北师大版初三下册数学知识点总结

(最新整理)北师大版初三下册数学知识点总结

自变量的取值范围是全体实数.
y ax2 (a 0) 是二次函数的特例,此时常数 b=c=0.
※在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并
确定自变量的取值范围.
※二次函数 y=ax2 的图象是一条顶点在原点关于 y 轴对称的曲线,这条曲线叫做抛物线.
描述抛物线常从开口方向、对称性、y 随 x 的变化情况、抛物线的最高(或最低)点、抛物线
◎在△ABC 中,∠C 为直角,∠A、∠B、∠C 所对的边分别为 a、b、c,则有 (1)三边之间的关系:a2+b2=c2; (2)两锐角的关系:∠A+∠B=90°;
第3页
北师大版初三下册数学知识点总结
(3)边与角之间的关系:
sin A a , cos A b , tan A a , cot A b ;
第1页
北师大版初三下册数学知识点总结
第一章 直角三角形边的关系 ※一。 正切:
定义:在 Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切,记作 tanA, 即 tan A A的对边 ;
A的邻边
①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠"; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A"; ④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大. ※二. 正弦: 定义:在 Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作 sinA,即 sin A A的对边 ;
斜边
※三. 余弦: 定义:在 Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作 cosA,即 cos A A的邻边 ;

北师大版数学九年级下册:章节知识点总结

北师大版数学九年级下册:章节知识点总结

北师大版初中数学九年级(上册)各章标题第一章 证明(二) 第二章 一元二次方程 第三章 证明(三) 第四章 视图与投影 第五章 反比例函数 第六章 频率与概率北师大版初中数学九年级(下册)各章标题第一章 直角三角形边的关系 第二章 二次函数 第三章 圆第四章 统计与概率北师大版初中数学九年级(上册)各章知识点第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。

(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。

(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。

(4)全等三角形的对应边相等、对应角相等。

推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。

二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。

(2)三线合一判定:(1)三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。

四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。

北师大九年级数学下册知识点汇总

北师大九年级数学下册知识点汇总

北师大版初中数学定理知识点汇总[九年级(下册)第一章 直角三角形边的关系※一. 正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。

※二. 正弦..: 定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;※三. 余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;※余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

(通常我们称正弦、余弦互为余函数。

同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则 ①)90cos(sin A A ∠-︒=; )90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=; )90tan(cot A A ∠-︒= ※当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角..※当从高处观测低处的目标时,视线与水平线所成 的锐角称为俯角..※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1九年级数学下册知识点归纳第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

6.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。

如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

图2h图 3图47.同角的三角函数间的关系:①互余关系sinA=cos(90°-A)、cosA=sin(90°-A )②平方关系:③商数关系:8.解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形(须知一条边)。

9.直角三角形变焦关系:在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有 (1)三边之间的关系:a 2+b 2=c 2; (2)两锐角的关系:∠A +∠B=90°; (3)边与角之间的关系:;cot ,tan ,cos ,sin a bA b aA c bA c aA ====;cot ,tan ,cos ,sin baB a bB c aB c bB ====(4)面积公式:c ch ab 2121S ==∆(h c 为C 边上的高); (5)直角三角形的内切圆半径2cb a r -+=(6)直角三角形的外接圆半径c R 21=10.三角函数的应用 11.利用三角函数测高第二章 二次函数1.概念:一般地,若两个变量x ,y 之间对应关系可以表示成c bx ax y ++=2(a 、b 、c 是常数,a ≠0)的形式,则称y 是x 的二次函数....。

自变量x 的取值范围是全体实数。

在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围........。

2. 图像性质:(1)二次函数y =ax 2的图象:是一条顶点在原点且关于y 轴对称的抛物线...。

)0(2≠=a ax y 是二次函数c bx ax y ++=2的特例,此时常数b=c=0.(2)抛物线的描述:开口方向、对称性、y 随x 的变化情况、抛物线的最高(或最低)点、抛物线与x 轴的交点。

①函数的取值范围是全体实数;②抛物线的顶点在(0,0),对称轴是y 轴(或称直线x =0)。

③当a >0时,抛物线开口向上,并且向上方无限伸展。

当a <0时,抛物线开口向下,并且向下方无限伸展。

④函数的增减性:A 、当a >0时⎩⎨⎧≥≤.,0;,0增大而增大随时增大而减小随时x y x x y x B 、当a <0时⎩⎨⎧≥≤.,0;,0增大而减小随时增大而增大随时x y x x y x ⑤当|a |越大,抛物线开口越小;当|a |越小,抛物线的开口越大。

⑥最大值或最小值:当a >0,且x =0时函数有最小值,最小值是0;当a <0,且x =0时函数有最大值,最大值是0。

(3)二次函数c ax y +=2的图象:是一条顶点在y 轴上且与y 轴对称的抛物线,二次函数c ax y +=2的图象中,a 的符号决定抛物线的开口方向,|a|决定抛物线的开口程度大小,c 决定抛物线的顶点位置,即抛物线位置的高低。

(4)二次函数c bx ax y ++=2的图象:是以直线a b x 2-=为对称轴,顶点坐标为(ab 2-,a b ac 442-)的抛物线。

(开口方向和大小由a 来决定)|a|的越大,抛物线的开口程度越小,越靠近对称轴y 轴,y 随x 增长(或下降)速度越快; |a|的越小,抛物线的开口程度越大,越远离对称轴y 轴,y 随x 增长(或下降)速度越慢。

(5)二次函数c bx ax y ++=2的图象与y =ax 2的图象的关系:c bx ax y ++=2的图象可以由y =ax 2的图象平移得到:(利用顶点坐标)(6)二次函数k h x a y +-=2)(的图象:是以直线x=h 为对称轴,顶点坐标为(h ,k )的抛物线。

(开口方向和大小由a 来决定)(7)二次函数c bx ax y ++=2的性质:二次函数c bx ax y ++=2配方成ab ac a b x a y 44)2(22-++=则抛物线的 ①对称轴:x=ab2-②顶点坐标:(ab 2-,a b ac 442-)③增减性:若a>0,当x<a b 2-时,y 随x 的增大而减小.....;当x>a b2-时,y 随x 的增大而增大。

...... 若a<0,则当x<a b 2-时,y 随x 的增大而增大.....;当x>ab2-时,y 随x 的增大而减小。

...... ④最值:若a>0,则当x=a b 2-时,a b ac y 442-=最小;若a<0,则当x=ab2-时,a b ac y 442-=最大3.确定二次函数的表达式:(待定系数法) (1)一般式:c bx ax y ++=2(2)顶点式:k h x a y +-=2)( (2)交点式:y=a(x-x 1)(x-x 2) 4.二次函数的应用: 几何方面应用题5.二次函数与一元二次方程(1)二次函数c bx ax y ++=2的图象(抛物线)与x 轴的两个交点的横坐标x 1,x 2是对应一 二次方程02=++c bx ax 的两个实数根(2)抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ac b 42->0 <===> 抛物线与x 轴有2个交点; ac b 42-=0 <===> 抛物线与x 轴有1个交点;ac b 42-<0 <===> 抛物线与x 轴有0个交点(无交点);(3)当ac b 42->0时,设抛物线与x 轴的两个交点为A 、B ,则这两个点之间的距离:化简后即为:)04(||4||22>--=ac b a ac b AB 这就是抛物线与x 轴的两交点之间的距离公式。

第三章圆1.圆的定义:描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的圆形叫做圆.;固定的端点O叫做圆心..;以点O为圆心的圆,记作⊙O,读作..;线段OA叫做半径“圆O”集合性定义:圆是平面内到定点距离等于定长的点的集合。

其中定点叫做圆心....,..,定长叫做圆的半径圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。

对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。

2.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上 <===> d=r;②点在圆内 <===> d<r;③点在圆外 <===> d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。

3. 圆的对称性:(1) 与圆相关的概念:①弦和直径:弦:连接圆上任意两点的线段叫做弦.。

直径:经过圆心的弦叫做直径..。

②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。

半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。

(为了区别优弧和..。

优弧:大于半圆的弧叫做优弧..。

劣弧:小于半圆的弧叫做劣弧劣弧,优弧用三个字母表示。

)③弓形:弦及所对的弧组成的图形叫做弓形..。

④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。

⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....(2)圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

圆是中心对称图形,对称中心为圆心。

定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.4.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分一般弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

5.圆周角和圆心角的关系:(1)圆周角::顶点在圆上,并且两边都与圆相交的角,叫做圆周角.(2)圆周角定理:圆周角的度数等于它所对弧上的的圆心角度数的一半.推论1: 同弧或等弧所对的圆周角相等。

相关文档
最新文档