第一章-一元二次方程单元测试卷(含答案)

合集下载

人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(包含答案解析)

人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(包含答案解析)

一、选择题1.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 2.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109 3.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 4.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( )A .1-B .1C .17-D .17 5.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长6.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=7.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 8.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >-9.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++= 10.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8 11.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 12.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)2 14.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.16.一元二次方程-+=(5)(2)0x x 的解是______________.17.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 18.一元二次方程()10x x -=的根是________________________.19.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.20.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________. 三、解答题21.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?22.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.23.解方程:2410y y --=.24.如图,为了美化街道,刘大爷准备利用自家墙外的空地种两种不同的花卉,墙外宽度无限,墙的最大可用长度是11.5m ,现有长为21m 的篱笆,计划靠着院墙围成一个中间有一道隔栏的长方形花圃.(1)若要围成总面积为36平方米的花圃,边AB 的长应是多少?(2)花的面积能否达到39平方米?若能,求出边AB 的长;若不能,请说明理由.25.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.2.B解析:B【分析】将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A 、由x 2﹣2x ﹣99=0得x 2﹣2x=99,则x 2﹣2x+1=100,即(x ﹣1)2=100,故本选项正确,不符合题意;B 、由x 2+8x+9=0得x 2+8x=-9,则x 2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C 、由2x 2﹣7x ﹣4=0得2x 2﹣7x=4,则x 2﹣72x =2,∴x 2﹣72x+4916=2+4916,即274x ⎛⎫- ⎪⎝⎭=8116,故本选项正确,不符合题意; D 、由3x 2﹣4x ﹣2=0,得3x 2﹣4x=2,则x 2﹣43x =23,∴故x 2﹣43x+49=23+49,即(x ﹣23)2=109,故本选项正确,不符合题意; 故选:B .【点睛】本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a 2x +bx +c =0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.3.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.4.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.5.B解析:B【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得x a =±=- ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 7.A解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x 1=0,x 2=1,故选:A .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.8.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根 ∴a-3≠0,且2=(4)4(3)(1)440a a ∆--⨯-⨯-=+>解得:1a ≥-且a≠3故选B .【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a 的不等式,是解题的关键.9.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.10.D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.11.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x2﹣4x﹣1=0x2-4x=1x2-4x+4=1+4(x-2)2=5,故选:B.【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.12.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.二、填空题13.49【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49 81492【分析】运用配方法的运算方法填写即可.解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+814=(x-92)2,故答案为:814,92.【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键.14.20【分析】设每年绿化面积的增长率为x根据该小区2019年及2021年的绿化面积即可得出关于x的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x依题意得:3000(1+x)解析:20%【分析】设每年绿化面积的增长率为x,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x,依题意,得:3000(1+x)2=4320,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.2016【分析】将x=-1代入ax2﹣bx﹣2016=0得到a+b﹣2016=0然后将a+b当作一个整体解答即可【详解】解:把x=﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b﹣2016=解析:2016.【分析】将x=-1代入ax2﹣bx﹣2016=0得到a+b﹣2016=0,然后将a+b当作一个整体解答即可.【详解】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2016=0得:a+b﹣2016=0,即a+b=2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键.16.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 17.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a-是解题的关键. 18.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;19.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.20.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键三、解答题21.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.22.(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.23.12y =,22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 24.(1)AB 的长应是4米;(2)花的面积不能达到39平方米.【分析】(1)设AB=x 米,根据题意列一元二次方程,解方程,把不合题意的解舍去即可求解; (2)设AB=x 米,根据题意列一元二次方程,方程无实数根,即可求解.【详解】解:(1)设AB=x 米,由题意得 x (21-3x )=36,整理得 27120x x -+=,解得123,4x x ==,当x=3时,21-3x=12>11.5,不合题意,舍去;当x=4时,21-4x=9<11.5,符合题意.答:若要围成总面积为36平方米的花圃,边AB 的长应是4米.(2)设AB=x 米,由题意得 x (21-3x )=39,整理得 27130x x -+=,()2247411330b ac ∆=-=--⨯⨯=-<∴方程无实数根,∴无法围成总面积为39平方米的花圃.答:无法围成总面积为39平方米的花圃.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题关键,解题时注意根据题意检验根的合理性.25.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米. (3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。

第一章一元二次方程复习测试(含答案)

第一章一元二次方程复习测试(含答案)

4x ﹣ 5x+2=0B . x ﹣ 6x+9=0C . 5x ﹣ 4x ﹣1=0D . 3x一、选择题(共 20 分)一元二次方程 复习测试1. 如果关于 x 的一元二次方程 xpx q 0 的两根分别为 x 1 2 , x 2 1 ,那么 p 、 q 的值分别是()A . -3,2B. 3, -2C. 2,-3D. 2, 32. 在一元二次方程 ax2bx c 0 中,如果 a 和 c 异号,那么这个方程()A .无实数根B. 有两个相等的实数根C .有两个不相等的实数根 D. 不能确定25 23. 若 x 2 是 关 于 x 的 一 元 二 次 方 程 xax a 20 的 一 个 根 , 则 a 的 值 为()A . 1 或 4 B. -1 或-4 C. -1 或 4 D. 1 或 44. 某超市一月份的营业额为 36 万元,三月份的营业额为 48 万元 .设每月的平均增长率为 x ,则可列方程为()A. 48(1 x)236B. 48(1 x)236 B. C. 36(1 x) 248D. 36(1 x)2485. 已 知 关 于 x 的 一 元 二 次 方 程 x () ax b 0 有 一 个 非 零 根 b , 则 a b 的 值 为A . 1B. -1C. 0D. -26. 已知关于 x 的一元二次方程 (k 2 22) x (2 k 1)x 1 0 有两个不相等的实数根, 则 k 的 取值范围是() 4 4 A .k且 k2 33B . k 且 k 2 33 B. C. k且 k 24D. k且 k 247. 下列一元二次方程中,没有实数根的是()A . 22228. 某种品牌运动服经过两次降价,每件件零售价由560 元降为 315 元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为 x ,下面所列的方程中正确的是()A .560( 1+ x )2=315B . 560( 1﹣ x ) 2=315C . 560( 1﹣ 2x ) 2=315D . 560( 1﹣ x 2)=31522 29. 设 x 1, x 2 是方程 x +5x ﹣3=0 的两个根,则x 1 +x 2 的值是()A . 19B . 25C . 31D . 30﹣ 4x+1=02221 2 1 2 12 210.等 腰 三 角 形 三 边 长 分 别 为 a 、b 、2 , 且 a 、b 是 关 于 x 的 一 元 二 次 方 程x26 x n 1 0 的两根,则 n 的值为()A .9B. 10C. 9 或 10D. 8 或 10二、填空题(共 20 分)11 . 方 程 ( 2x1)x( 1) 化1 成 一 般 形 式 是, 其 中 二 次 项 系 数是,一次项系数是.12. 若关于 x 的方程 x22 m x m23m 2 0 有两个实数根 x 、 x 则 x ( x x ) x 的最小值为.13. 若两个连续自然数的积为 72,则这两个数分别是 .14. 若关于 x 的一元二次方程x2(a 1)x a20 的两个根互为倒数,则 a =.15 . 若 一 元 二 次 方 程 x2b.ax b 0 配 方 后 为 (x 4) 23 , 则 a,16. 若三角形的每条边长都是方程x26 x 8 0 的根,则三角形的周长是.17. 若关于 x 的一元二次方程x22 x m 0 有两个实数根, 则 m 的取值范围是.18. 有一个矩形铁片,长是60cm ,宽是 40cm 中间挖去 288 cm 的矩形,剩下的铁框四周一样宽,若设宽度为, x cm ,那么挖去的矩形长是cm ,宽是cm ,根据题意可得方程.19. 一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液 10L ,则每次倒出的液体是 L .20. 已知实数 m , n 满足 3m三、解答题(共 60 分)21. 按要求解下列方程:2 +6m ﹣ 5=0, 3n 2m n +6n ﹣5=0,且 m ≠n ,则 = .n m(1) 2 x21 3x (用配方法) ; ( 2) x23 x 1 0 (用公式法) ;(3) (3 y 1)( y 1)4 ;(4) (2 x 3)22 3(2 x 3)22. 请阅读下列材料 :问题 :已知方程, 求一个一元二次方程 x2x 1 0 ,使它的根分别是已知方程的根的2 倍.解: 设所求方程的根为 y ,则 y2x ,所以 xy .2把 xy 2代入已知方程,得 2y y 1 0 .22化简,得 y22 y 4 0 .故所求方程为 y22 y 4 0 .这种利用方程根的代换求新方程的方法,我们称为“换根法” .请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式 ).(1) 已知方程 x反数 ;x 2 0 ,求一个一元二次方程,使它的根分别是已知方程的根的相(2) 已知关于 x 的一元二次方程 ax2bx c 0 ( a 0 )有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程的根的倒数.23. 已知关于 x 的一元二次方程 (a c)x22bx (a c) 0 ,其中 a 、 b 、 c 分别为△ ABC三边的长。

九年级上第一章一元二次方程单元测试含答案

九年级上第一章一元二次方程单元测试含答案

第一章一元二次方程单元测试一、单选题(共10题;共30分)1.已知反比例函数y=abx ,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A、有两个正根B、有两个负根C、有一个正根一个负根D、没有实数根2.若x1 ,x2是一元二次方程x2-7x+5的两根,则x1 +x2的值是()A、7B、-7C、5D、-53.已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A、13 B、11 C、11或13 D、12或154.方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是()A、0 B、1 C、2 D、35.(2015•长春)方程x2﹣2x+3=0的根的情况是()A、有两个相等的实数根B、只有一个实数根C、没有实数根D、有两个不相等的实数根6.已知一次函数y=ax+c的图象如图所示,那么一元二次方程ax2+bx+c=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断7.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤94B.k≥﹣94 且k≠0C.k≥﹣94D.k>﹣94 且k≠08.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=29.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠310.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A、4元B、6元C、4元或6元D、5元二、填空题(共8题;共24分)11.一元二次方程x2=3x的解是:________ .12.已知关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是________13.如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)

一、选择题1.用配方法转化方程2210x x +-=时,结果正确的是( )A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=2.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A .7B .7或10C .10或11D .113.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a2+a-6=0的一个根,则a 的值是( ) A .a ≠2 B .a=2 C .a=-3 D .a=-3或a=2 4.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-5.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031abcd efghi图1图2A .17B .18C .19D .206.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .77.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x += B .()2002001500x ++= C .()22001500+=xD .()20012500+=x8.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >9.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 10.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021 C .2020D .2019 11.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=512.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.14.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.15.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 16.若m 是方程210x x +-=的根,则2222018m m ++的值为__________ 17.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.19.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元? 22.解方程:2410y y --=.23.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.24.用适当的方法解一元二次方程: (1)()229x -=; (2)2230x x +-=. 25.解方程(1)()221250x --=(2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案. 【详解】 解:2210xx +-=2212++=x x∴2x+=,(1)2故选:A.【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.2.C解析:C【分析】把x=4代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x2-7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.3.B解析:B【分析】将x=0代入方程中,可得关于a的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x2- 2+a-6=0中,得: a2+a-6=0,解得:a1=﹣3,a2=2,∵a+2≠0且a﹣2≥0,即a≥2,∴a=2,故选:B.【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.4.D解析:D 【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程. 【详解】解:x (2﹣x )+(2﹣x )=0, (2﹣x )(x +1)=0, 2﹣x =0或x +1=0, 所以x 1=2,x 2=﹣1. 故选:D . 【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.6.B解析:B 【分析】根据球赛问题模型列出方程即可求解. 【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0, 解得x 1=5,x 2=-4(舍去),∴参加此次比赛的球队数是5队. 故选:B . 【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.C解析:C 【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决. 【详解】 解:由题意可得, 200(1+x )2=500, 故选:C . 【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.8.B解析:B 【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得. 【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m , 故选:B . 【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.9.D解析:D 【分析】分别求出每个方程的根的判别式即可得到方程的根的情况. 【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确;故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.10.A解析:A 【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=, ∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=, 故选:A . 【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.D解析:D 【分析】利用直接开平方法求解即可. 【详解】解:∵(x ﹣3)2﹣4=0, ∴(x ﹣3)2=4, 则x ﹣3=2或x ﹣3=﹣2, 解得x 1=5,x 2=1, 故选:D . 【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.12.A解析:A 【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),则BC =205+,然后计算m 的值. 【详解】∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根, ∴x 1+x 2=4,x 1x 2=m , 即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E , ∴∠CBD =∠EBD , ∵AD ∥BC , ∴∠CBD =∠EDB , ∴∠EBD =∠EDB , ∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 或AB (舍去),∴BC =8−2AB ,∴m =12=165. 故选:A . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=ca.也考查了矩形的性质和折叠的性质. 二、填空题13.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3 【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案. 【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=, ∴1h =-,4k = ∴143h k +=-+=故答案是:3. 【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.14.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20% 【分析】设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 【详解】解:设每年绿化面积的增长率为x , 依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去). 故答案为:20%. 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2 【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可. 【详解】解:一元二次方程()23112x -=整理为2230x x --=, ∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根, ∴x 1+x 2=2. 故答案为:2. 【点睛】本题考查了根与系数的关系,牢记两根之和等于ba-是解题的关键. 16.2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020 【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值. 【详解】解:∵m 是方程210x x +-=的根, ∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=. 故答案是:2020. 【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.17.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10% 【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可. 【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍). 故答案为10%. 【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.18.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16 【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案. 【详解】解:∵关于x 的方程2100x x m -+= ∴1a =,10b =-,c m = ∴1210b x x a +=-=,12cx x m a== ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.22.12y =,22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 23.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1,12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.24.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴22x -±=, 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用2b a- 求解. 25.(1)123,2x x ==-;(2)51x y =⎧⎨=⎩ 【分析】(1)方程移项后,运用直接开平方法求解即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()221250x --= ()22125x -=215x -=或215x -=-∴123,2x x ==-;(2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩①② 由①得:4x y =+③,把③代入②可得:1342x y y -+-=, 5x =,∴1y =,∴方程组的解为51x y =⎧⎨=⎩. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.同时还考查了二元一次方程组的解法.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面; (2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米. (3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。

人教版初中数学九年级数学上册第一单元《一元二次方程》检测(含答案解析)

人教版初中数学九年级数学上册第一单元《一元二次方程》检测(含答案解析)

一、选择题1.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0 2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x += D .()()5011266x x ++= 3.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=4.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 5.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-6.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根 7.不解方程,判断方程23620x x --=的根的情况是( ) A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确 8.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或09.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++= 10.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 11.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 12.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020二、填空题13.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.14.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.15.一元二次方程x 2=2x 的解为__________16.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.17.当m =___________时,方程(2150m m x mx --+=是一元二次方程. 18.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 19.函数()2835my m x -=+-是一次函数,则m =______. 20.若()22214x y +-=,则22x y +=________.三、解答题21.解方程:2250x x +-=.22.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.23.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.24.解方程:(1)2x2+1=3x(配方法)(2)(2x-1)2=(3-x)2(因式分解法)25.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:购买件数x513③(件)单价(元)① ② 5026.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a的值即可.【详解】解:∵关于x的一元二次方程x2+(a2-3a)x+a=0的两个实数根互为倒数,∴x1•x2=a=1.故选:C.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.3.D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b的值即可得到a 、b 的关系式 .解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.5.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.6.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.7.C解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.8.A解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键. 9.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.10.B解析:B【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得.【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m, 故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 11.B解析:B【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0,m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B .【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.12.A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题13.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】 原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a)-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】 本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键. 14.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x 1=4,x 2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.15.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.16.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.17.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.18.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m+3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键 20.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.三、解答题21.1211x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键.22.(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.24.(1)11x =,212x =;(2)12x =-,243x = 【分析】(1)首先把方程移项变形为2x 2-3x=-1的形式,二次项系数化为1,再进行配方即可; (2)根据平方差公式可以解答此方程.【详解】(1)解:移项,得2x 2-3x=-1二次项系数化为1,得x 2-32x =12- 配方,得x 2-32x +234⎛⎫ ⎪⎝⎭=12-+234⎛⎫ ⎪⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 解得11x =,212x =. (2)解:原方程化为: ()()222130x x ---=()()2132130x x x x -+---+=()()2340x x +-=20x +=或340x -=解得 12x =-,243x =. 【点睛】 此题考查了解一元二次方程-因式分解法(公式法),配方法,熟练掌握各种解法是解本题的关键.25.(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a件时,单价恰好是50元,80-(a-10)×2=50,解得:a=25,而题目中“单价不得低于50元”,x≥时,单价是50元,∴25x≥;故填:25(2)因为1200>800,所以一定超过了10件,设购买了x件这种服装且多于10件,根据题意得出:[80-2(x-10)]x=1200,解得:x1=20,x2=30,当x=20时,80-2(20-10)=60元>50元,符合题意;当x=30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.26.30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x1=45,x2=30.当x1=45时,2000-40(x-25)=1200<1700,故舍去;当x2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x的值.。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案1. 单项选择题(每题2分,共10题)1) 求方程x^2 + 3x - 4 = 0的根是:A. 2和-2B. 1和-4C. -1和4D. 0和-32) 方程2x^2 + 5x + 3 = 0的根是:A. -3和-1/2B. 1/2和3C. -1/2和-3D. -3和1/23) 若x^2 + ax + 6 = 0的根为-2和3,则a的值是:A. -5B. -1C. 1D. 54) 若x^2 + (k + 1)x + 1 = 0有相等的根,则k的值是:B. 0C. 1D. 25) 若x^2 - (2k + 1)x + 2 = 0的根之和与根之积的乘积为4,则k的值是:A. -1B. 0C. 1D. 26) 方程x^2 + (k + 3)x + 2k = 0的根是互为相反数,则k的值是:A. 2/7B. -2/7C. 3/8D. -3/87) 若方程x^2 - (a + 1)x + a^2 - 2a + 1 = 0的两个根之差为1,则a的值是:A. -1B. 0D. 28) 若方程x^2 - (2k + 1)x + k^2 + 1 = 0的两个根之和为k,则k的值是:A. -2B. -1C. 0D. 19) 若方程3x^2 - (a - 1)x - 2a = 0的两个根之差为2,则a的值是:A. -2B. -1C. 0D. 110) 若方程(k + 1)x^2 - (2k - 1)x + k - 4 = 0的两个根之积为4,则k 的值是:A. -3B. -2C. -1D. 1答案:1) B 2) A 3) B 4) C 5) A 6) B 7) C 8) A 9) C 10) B2. 解答题(每题10分,共2题)题目1:求解方程x^2 - 5x + 6 = 0的根。

解答:首先,我们可以尝试因式分解这个二次方程,看看是否可以将其化简为两个一次方程相乘的形式。

将x^2 - 5x + 6 = 0进行因式分解,得到(x - 2)(x - 3) = 0。

一元二次方程单元检测题(含参考答案)

一元二次方程单元检测题(含参考答案)

九年级数学阶段质量监测题(一)(一元二次方程)测试时间:90分钟第Ⅰ卷 [基础测试卷]一、单项选择题(每小题2分,共20分)1.下列方程是一元二次方程的是 ( )A.y x =-12B.562=xC.xx 12=D.2)2)(1(x x x =++ 2.一元二次方程122=-x x 的常数项为 ( ) A.-1 B.1 C.0 D.1± 3.若方程013)2(=+++mx xm m是关于x 的一元二次方程,则 ( )A.2±=mB.2=mC.2-=mD.2±≠m4.在方程)0(02≠=++a c bx ax 中,若有0=+-c b a ,则方程必有一根为 ( )A.1B.1-C.1±D.05.一元二次方程032=+x x 的根为 ( ) A.-3 B.0,3 C.0,-3 D.36.将方程0462=+-x x 配方,其正确的结果是 ( )A.9)3(2=-xB.5)3(2=-xC.13)3(2=-xD.5)3(2=+x7.已知关于x 的一元二次方程0122=++x mx 有两个不相等的实数根,则m 的取值范围是 ( ) A.1-<m B.1>m C.1<m 且0≠m D.1->m 且0≠m8.若方程0132=--x x 的两根为1x 、2x ,则1211x x +的值为 ( ) A.3 B.-3 C.13D.13-9. 已知一个三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则这个三角形的周长是 ( ) A.11 B.13 C.11或13 D.11和1310.关于x 的方程0)2(222=+++k x k x 的两实数根之和不小于-4,则k 的取值范围是( )A.1->kB.0<kC.01<<-kD.01≤≤-k 二、填空题(每小题2分,共20分) 1.关于x 的方程03)3(12=+---x x m m是一元二次方程,则=m .2.一元二次方程x x 6122=-的一般式是 ,其中一项系数是 . 3.方程032=-x x 的根是 ,方程0)2)(1(=-+x x 的是 . 4. 关于x 的一元二次方程02=+-k x x 的一个根是2,则k = ,另一个根为 . 5.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是 . 6.关于x 的一元二次方程032=--m x x 有两个不相等的实数根,则m 的取值范围是______________.7.小华在解一元二次方程042=-x x 时,只得出一个根是x =4,则被他漏掉的另一个根是x = .8.如果21x x 、是方程0482=-+x x 的两个根,那么21x x += ,2221x x += . 9.直角三角形两条直角边长分别为1+x ,3+x ,斜边长为x 2,那么x = . 10.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=*+x 的解是 .三.按指定的方法解方程(每小题4分,共16分)1.4)1(2=-x (直接开平方法); 2.0542=-+x x (配方法);3.0652=+-x x (因式分解法);4.012222=+-x x (公式法).四.用适当的方法解方程(每小题4分,共8分)1.x x x =-)3(;2.06)32(2=++-x x .五.解答题(每小题6分,共18分)1.已知2+3是方程042=+-c x x 的一个根,求方程的另一个根及c 的值.2.若关于x 的方程0342=+-+a x x 有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最小整数,求此时方程的根.3.设a 、b 、c 是△ABC 的三条边,关于x 的方程021212=-++a c x b x 有两个相等的实数根,方程a b cx 223=+的根为0=x .(1)试判断△ABC 的形状;(2)若a 、b 为方程032=-+m mx x 的两个根,求m 的值.六、应用题(每小题6分,共18分)1.某城2014年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2016年底增加到363公顷,求平均每年的增长率.2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 200元,每件衬衫应降价多少元?3.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P 运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?第Ⅱ卷[实践操作卷]一、猜一猜,算一算(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?二、想一想,试一试(10分)今要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化,设计方案如图所示,已知矩形P,Q为两块绿地,其余为硬化路面,P,Q两块绿地周围的硬化路面宽都相等.若使两块绿地面积的和为矩形ABCD面积的14,求P,Q两块绿地周围的硬化路面的宽.九年级数学阶段质量监测题(一)参考答案第Ⅰ卷一、选择题:二、填空题:1. 3-;2.01622=--x x ,-6;3.0或3,-1或2;4.-2,-1;5.062=-+x x ;6. 41->m ;7.0; 8.8-,72; 9.5;10.-7或3. 三、1.3或-1;2.1或-5;3.2或3;4.2221==x x . 四、1.0,4;2.2,3.五、1.1=c ,另一根为32-;2.(1)1-≥a ,(2)221-==x x ;3.(1)△ABC 是等边三角形,(2)12-=m .六、1.10%;2.每件衬衫应降价20元.3.85s 或245s . 第Ⅱ卷一、m 20==BC AB .二、两块绿地周围的硬化路面的宽都为10m.。

人教版九年级上册数学第一章一元二次方程单元测试卷(附答案)

人教版九年级上册数学第一章一元二次方程单元测试卷(附答案)

人教版九年级上册数学第一章一元二次方程单元测试卷(附答案)人教版九年级上册数学第一章一元二次方程单元测试卷(考试时间:120min 总分:100分)姓名:____________ 成绩:__________一、选择题:(每题3分,共24分)1、一元二次方程022=-+x x 的根的情况是()A.有两个不相等的实数根B. 没有实数根C.只有一个实数根D. 有两个相等的实数根2、下列方程属于一元二次方程的是() A.032=+-x x B.322=-xx C. ()()224x x x =-+ D. ()()22332-=+x x 3、近几年我国物价一直上涨,已知原价为484元的新产品,经过连续两次涨价a ﹪后,现售价为625元,则根据题意列方程,正确的是()A .484(1+ a ﹪)=625. B. 484(1+ a2﹪)=625.C.484(1-a ﹪)=625. D.484(1+ a ﹪)2=625.4、方程2)1(=-x x 的解是()A .1-=xB .2-=xC .2,121-==x xD .2,121=-=x x5、用配方法解方程0522=--x x ,原方程应变为()A .6)1(2=+x B.9)1(2=+x C.6)1(2=-x D.9)1(2=-x6、如果关于x 的方程014)5(2=---x x a 有实数根,则a 满足条件是()A .5≠a B. 1≥a 且5≠a C. 1>a 且5≠a D.1≥a7、方程的根为() A . B . C . D . 8、在方程02=++c bx ax (a ≠0)中,若有0=++c b a ,则方程必有一根为()A.1B.0C.1或-1D.-1二、填空题:(每题3分,共21分)9、若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则实数k 的取值范围是10、方程0232=+-x x 的根是.11、若33+是关于x 的方程062=+-kx x 的一个根,则k =,方程另一根为 .12、若关于x 的一元二次方程0342=++x kx 有实根,则k 的非负整数值是 .13、已知关于x 的一元二次方程012=-++b bx x 有两个相等的实数根,则b 的值是.14、九年级一班某数学小组在元旦来临之际,将自己制作的贺卡赠与所在数学小组中其他每个成员,该2(3)5(3)x x x -=-52x =125,32x x =-=-125,32x x ==3x =小组共互赠了72张,如果这一数学小组有x 名学生,根据题意列方程 .15、已知关于x 的方程01)(92=-++-ab x b a x ,1x ,2x 是此方程的两个实数根,现给出三个结论:①21x x ≠;②ab x x <21;③222221b a x x +<+.则正确结论的序号是 . 16、已知0≠a ,b a ≠,且1=x 是方程0102=-+bx ax 的一个根,则b a b a 2222--的值是 . 三、解答题:17、用适当的方法解方程:(1)(5分))5)(5()5(42+-=-x x x (2)(5分)18、(5分)若关于x 方程07)1(42=---m x 有两个实数根互为相反数,试求:2013)(m -.19、(5分)若关于x 方程0)1(4422=++-m x m x .请你为方程的字母m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.20、(5分)已知关于x 的方程02=++n x x 有两个实数根﹣2,m .求m ,n 的值.21、(10分)先化简,再求值:)1(1222x x x xx x --÷+-,其中x 是0222=--x x 的正数根.22、(10分)已知关于的一元二次方程有两个不相等的实数根(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.23、(10分)已知一个三角形得两边长分别是3和4第三边是方程0562=+-x x 的根.(1)求这个三角形的周长;(2)判断这个三角形的形状.231x x -=答案一、选择题1、A2、A3、D4、C5、C6、D7、C8、A二、填空题9、1k >-且0k ≠ 10、1或2 11、 6 , 33- 12、 113、 2 14 、72)1(21=-x x 15、①② 16、5三.解答题17、 (1) 51=x ,3252=x (2)2133±=x18、–1 19、取21->m 的整数即可,如m =0时方程为0442=-x x 4x2-4x =0解为01=x 12=x20、m ,n 的值分别是1、﹣2.21、化简结果是原式=11-x ,方程0222=--x x 的正根是31+=x ,代入原式=11-x =33。

(完整版)一元二次方程全章测试及答案

(完整版)一元二次方程全章测试及答案

一元二次方程全章测试及答案一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______.二、选择题9.方程x 2-3x +2=0的解是( ).A .1和2B .-1和-2C .1和-2D .-1和210.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-k x x 没有实数根,那么k 的最小整数值是( ).A .0B .1C .2D .313.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2.(2)x 2-6x +8=0.(3).02222=+-x x (4)x (x +4)=21.(5)-2x 2+2x +1=0.(6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ①方程:0492)2(2=+++-k x k x ②(1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c 02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-49 7.2. 8.3.9.A. 10.A. 11.A. 12.D. 13.C.14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=-7,x 2=3; (5);31,3121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略.16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x 解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412。

人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(有答案解析)

人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(有答案解析)

一、选择题1.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5%2.x = ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=3.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根 4.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==- 5.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y += B .21()12y -= C .211()22y += D .213()24y -= 6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9 7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2- 8.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0 10.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 11.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-202012.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1 二、填空题13.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______14.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____15.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.16.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场17.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.18.若方程()22110a x ax -+-=的一个根为1x =,则a =_______.19.当x=______时,−4x 2−4x+1有最大值.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.22.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.24.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.25.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.26.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+, 原方程可化为222()m n m n +=+,0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 2.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为x =D 、22730x x -+=的解为x =故选:C .【点睛】 本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 3.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.4.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.5.A解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 9.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.11.A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.12.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题13.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的 解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.14.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 15.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.16.11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 17.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 18.或【分析】分类讨论方程为一元一次和一元二次把x=1代入方程计算即可求出a 的值【详解】解:若方程为一元一次方程此时此时解得当时方程的解是满足条件当时方程的解是不满足题意;若方程为一元二次方程此时此时此 解析:1或2-【分析】分类讨论方程为一元一次和一元二次,把x =1代入方程计算即可求出a 的值.【详解】解:若方程为一元一次方程,此时210a -=,此时解得±1a =,当1a =时,方程的解是1x =满足条件,当1a =-时,方程的解是1x =-不满足题意;若方程为一元二次方程,此时210a -≠,此时±a ≠1,此时将1x =代入方程可得2110a a -+-=解得122,1()a a =-=舍综上所述,a =1或-2故答案为:1或2-【点睛】本题主要考查方程的相关定义,分类讨论是解题的关键.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.22.(1)11x =21x =-2)11x =+,21x =. 【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴112x =+,212x =-; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.23.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 25.(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.26.x 1=54,x 2=23【分析】 设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,代入后求出mn =0,即可得出(4x -5)(3x -2)=0,求出即可.【详解】解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,∴4x -5=0,3x -2=0,∴x 1=54,x 2=23. 【点睛】 本题考查了解一元二次方程,能把一元二次方程转化成(4x -5)(3x -2)=0是解此题的关键.。

人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(包含答案解析)

人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(包含答案解析)

一、选择题1.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++= 2.用配方法解方程2x 4x 70+-=,方程应变形为( )A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -=D .2()211x -= 3.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x =D .10x =,2x =4.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++= 5.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%6.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 7.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >-8.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 9.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x += 10.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 12.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2 二、填空题13.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.14.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________. 15.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 16.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.17.一元二次方程-+=(5)(2)0x x 的解是______________.18.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______. 19.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 20.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.三、解答题21.解方程:(1)x 2+10x +9=0;(2)x 2=14. 22.已知关于x 的方程()22120x k x k ---=,求证:不论k 取何值,这个方程都有两个实数根.23.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 24.请回答下列各题:(1)先化简,再求值:2319369x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.25.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?26.解方程:(1)2(1)80x --=;(2)25210x x +-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.2.B解析:B【分析】根据配方法解一元二次方程的方法解答即可.【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=. 故选:B .本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键.3.C解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键. 4.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.5.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 6.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根 ∴a-3≠0,且2=(4)4(3)(1)440a a ∆--⨯-⨯-=+>解得:1a ≥-且a≠3故选B .【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a 的不等式,是解题的关键.8.B解析:B【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0,m1 -4≥,关于x的一元二次方程(m-2)x2+3x-1=0有实数根,m的取值范围是m1-4≥且m≠2.故选:B.【点睛】本题考查关于x的一元二次方程(m-2)x2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.9.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B、该方程化简整理后是一元一次方程,故本选项不符合题意.C、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D、该方程符合一元二次方程的定义,故本选项符合题意.故选:D.【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.10.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.11.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.D解析:D【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0,提公因式,得(x ﹣2)(x ﹣1)=0,∴x ﹣2=0或x ﹣1=0,解得x =2或x =1.故选:D .【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题13.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 14.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 15.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题.【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0,依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.16.20【分析】设每年绿化面积的增长率为x根据该小区2019年及2021年的绿化面积即可得出关于x的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x依题意得:3000(1+x)解析:20%【分析】设每年绿化面积的增长率为x,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x,依题意,得:3000(1+x)2=4320,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x1=5,x2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x1=5,x2=-2,故答案为:x1=5,x2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键.18.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.19.-3【分析】设方程的另一个根为x2根据两根之积列出关于x2的方程解之可得答案【详解】解:设方程的另一个根为x2则2x2=﹣6解得x2=﹣3故答案为:﹣3【点睛】本题考查了一元二次方程ax2+bx+c解析:-3.【分析】设方程的另一个根为x 2,根据两根之积列出关于x 2的方程,解之可得答案.【详解】解:设方程的另一个根为x 2,则2x 2=﹣6,解得x 2=﹣3,故答案为:﹣3.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 20.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算.三、解答题21.(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x ,即x 1,x 2 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 22.见解析.【分析】根据方程的系数结合根的判别式,可得出△=4k 2+4k+1≥0,进而即可证出:不论k 取何值方程都有两个不相等的实数根.【详解】证明:()()()2224124412211k k k k k -⨯⨯-∆=--⎡⎤⎣=+=+⎦+.∵()2210k +≥,即0∆≥, ∴不论k 取何值,这个方程都有两个实数根.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.23.11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义, 则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键.24.(1)12)13m <-. 【分析】 (1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】 (1)由题意得:原式23193(3)x x x xx x +--⎛⎫=-÷ ⎪--⎝⎭ 2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式1===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.25.30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值.26.(1)1x =±;(2)1x =,2x = 【分析】(1)根据直接开方法即可求出答案;(2)利用公式法求解一元二次方程,即可得到答案.【详解】(1)∵2(1)80x --=, ∴2(1)8x -=, ∴1x -=±∴1x =±;(2)∵5a =,2b =,1c =-∴2245(1)240∆=-⨯⨯-=>,∴x ==,即1x =2x =. 【点睛】此题考查了解一元二次方程的知识;解题的关键是熟练掌握一元二次方程的解法和二次根式的性质,从而完成求解.。

人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(含答案解析)

人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(含答案解析)

一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.52.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ). A .()40012900x += B .()40021900x ⨯+=C .()24001900x += D .()()240040014001900x x ++++= 3.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=124.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( ) A .10B .17C .20D .17或205.下列方程属于一元二次方程的是( ) A .222-=x x x B .215x x+= C .220++=ax bx cD .223x x +=6.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( ) A .5000(1+x )=6050 B .5000(1+2x )=6050 C .5000(1﹣x )2=6050D .5000(1+x )2=60507.方程()55x x x +=+的根为( ) A .15=x ,25x =- B .11x =,25x =- C .0x =D .125x x ==- 8.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=9.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=10.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay yy y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2 B .3C .4D .511.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12 B .15C .12或15D .1812.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人B .7人C .8人D .9人二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.15.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____. 16.一元二次方程-+=(5)(2)0x x 的解是______________.17.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______18.一元二次方程()422x x x +=+的解为__.19.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.三、解答题21.(1)x 2﹣8x+1=0; (2)2(x ﹣2)2=x 2﹣4. 22.解方程: (1)x 2+10x+9=0; (2)x 2=14.23.用适当的方法解一元二次方程: (1)()229x -=; (2)2230x x +-=. 24.解方程:(1)2x 2+1=3x (配方法) (2)(2x-1)2=(3-x)2(因式分解法)25.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变. (1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表: 销售单价(元) 34 35 36 37 38 39 40 月平均销售量(件)43042542041541040540026.解方程:212270x x -+=【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设AD 长为x 米,四边形ABCD 是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x (30−4x )=54,解此方程即可求得x 的值. 【详解】解:设与墙头垂直的边AD 长为x 米,四边形ABCD 是矩形, ∴BC =MN =PQ =x 米,∴AB =30−AD−MN−PQ−BC =30−4x (米), 根据题意得:x (30−4x )=54,解得:x =3或x =4.5,∴AD 的长为3或4.5米.故选:D . 【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.C解析:C 【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解. 【详解】解:设月平均增长率为x , 根据题意得:400(1+x )2=900. 故选:C . 【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.3.D解析:D 【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案. 【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12, 配方得;(x ﹣3)2=12. 故选:D . 【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.4.B解析:B 【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可. 【详解】解:∵217700x x -+=,∴(10)(7)0x x --=, ∴110x =,27x =,∵4610+=,无法构成三角形, ∴此三角形的周长是:46717++=. 故选B . 【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.5.D解析:D 【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可. 【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误; C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误; D 223x x +=符合一元二次方程的定义,故D 正确; 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.6.D解析:D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论. 【详解】解:设每天的增长率为x , 依题意,得:5000(1+x )2=6050. 故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.B解析:B 【分析】根据因式分解法解方程即可;【详解】()55x x x +=+, ()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B . 【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.8.D解析:D 【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得. 【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D . 【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.9.A解析:A 【分析】根据配方法解一元二次方程的步骤计算可得. 【详解】 解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A . 【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤: ①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方; ④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.10.B解析:B 【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数. 【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5; 去分母得3-ay+3-y=-2y , 解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解, ∴符合条件的所有a 的个数是3. 故选:B . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11.B解析:B 【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意. 【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6, 当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15. 故选:B . 【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.B解析:B 【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得. 【详解】设参加活动的同学有x 人, 由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去), 即参加活动的同学有7人, 故选:B . 【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键 解析:12x 0x -3==,【分析】用因式分解法解方程即可. 【详解】 解:x ( x +3)=0, x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,. 【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠. 【分析】根据根的判别式及一元二次方程的定义解题即可. 【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠. 【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.15.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算. 【详解】根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72.故答案为:﹣72.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 16.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2 【分析】直接利用因式分解法得出方程的根. 【详解】解:∵(x-5)(x+2)=0, ∴x-5=0或x+2=0, ∴x 1=5,x 2=-2, 故答案为:x 1=5,x 2=-2. 【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键.17.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1 【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得. 【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--,3p a ∴-=-,36a -=-,解得2a =, 则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解, 则将3x =代入得:23360p --=, 解得1p =, 故答案为:1. 【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.18.【分析】利用因式分解法解一元二次方程提取公因式【详解】解:故答案是:【点睛】本题考查解一元二次方程解题的关键是掌握一元二次方程的解法解析:114x =,22x =- 【分析】利用因式分解法解一元二次方程,提取公因式()2x +.【详解】解:()422x x x +=+()()4220x x x +-+=()()4120x x -+=114x =,22x =-. 故答案是:114x =,22x =-. 【点睛】 本题考查解一元二次方程,解题的关键是掌握一元二次方程的解法.19.22【分析】先利用因式分解法求出方程的两个根从而可得等腰三角形的两边长再根据等腰三角形的定义三角形的三边关系定理可得这个等腰三角形的三边长然后利用三角形的周长公式即可得【详解】因式分解得解得等腰三角 解析:22【分析】先利用因式分解法求出方程的两个根,从而可得等腰三角形的两边长,再根据等腰三角形的定义、三角形的三边关系定理可得这个等腰三角形的三边长,然后利用三角形的周长公式即可得.【详解】213360x x -+=,因式分解,得(4)(9)0x x --=,解得124,9x x ==,等腰三角形的边长是方程213360x x -+=的两个根,∴这个等腰三角形的两边长为4,9,(1)当边长为4的边为腰时,这个等腰三角形的三边长为4,4,9,此时449+<,不满足三角形的三边关系定理,舍去;(2)当边长为9的边为腰时,这个等腰三角形的三边长为4,9,9,此时499+>,满足三角形的三边关系定理,则这个等腰三角形的周长为49922++=;综上,这个等腰三角形的周长为22,故答案为:22.【点睛】本题考查了解一元二次方程、等腰三角形的定义、三角形的三边关系定理等知识点,熟练掌握一元二次方程的解法是解题关键.20.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a a αβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021;∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.(1)x 1=x 2=42)x 1=2,x 2=6.【分析】(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.22.(1)121,9x x =-=-;(2)12x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =2b a-±,即x 1,x 2 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用2b a- 求解. 24.(1)11x =,212x =;(2)12x =-,243x = 【分析】(1)首先把方程移项变形为2x 2-3x=-1的形式,二次项系数化为1,再进行配方即可; (2)根据平方差公式可以解答此方程.【详解】(1)解:移项,得2x 2-3x=-1二次项系数化为1,得x 2-32x =12- 配方,得x 2-32x +234⎛⎫ ⎪⎝⎭=12-+234⎛⎫ ⎪⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 解得11x =,212x =. (2)解:原方程化为: ()()222130x x ---=()()2132130x x x x -+---+=()()2340x x +-=20x +=或340x -=解得 12x =-,243x =. 【点睛】此题考查了解一元二次方程-因式分解法(公式法),配方法,熟练掌握各种解法是解本题的关键.25.(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得:256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去). 答:二、三这两个月的月平均增长率为25%; (2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m 元时,商品获利4250元,根据题意可得:(40-25-m )(400+5m )=4250,解得:m 1=5,m 2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.26.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。

人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(含答案解析)

人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(含答案解析)

一、选择题1.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( ) A .10B .17C .20D .17或202.下列方程属于一元二次方程的是( ) A .222-=x x x B .215x x+= C .220++=ax bx c D .223x x +=3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+4.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=5.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根 B .有两个相等的实数根 C .没有实数根 D .有两个不相等的实数根6.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人B .7人C .8人D .9人7.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( ) A .1B .﹣1C .12D .12-8.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m >-且1m ≠- D .2m ≥-且1m ≠- 9.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4 B .1 C .﹣1 D .﹣4 10.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .201911.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( )A .5-B .5C .10319-D .1031912.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2二、填空题13.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______.14.若二次式236x -的值与2x -的值相等,则x 的值为_______.15.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______. 16.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 17.方程2350x x -=的一次项系数是______.18.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.19.当x=______时,−4x 2−4x+1有最大值.20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.解方程: (1)x 2+10x +9=0;(2)x 2=14. 22.已知:关于x 的一元二次方程()2223320x m x m m -++++=. (1)已知2x =是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为ABC 中AB 、AC (AB <AC )的边长,当BC =时,ABC 是等腰三角形,求此时m 的值. 23.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值. 24.用配方法解方程:22450x x +-=. 25.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案26.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可. 【详解】解:∵217700x x -+=, ∴(10)(7)0x x --=, ∴110x =,27x =,∵4610+=,无法构成三角形, ∴此三角形的周长是:46717++=. 故选B . 【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.2.D解析:D 【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可. 【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误; C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误; D 223x x +=符合一元二次方程的定义,故D 正确; 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.C解析:C 【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可. 【详解】解:方程24121x x +=变形为2(2)621x x +⨯=,2(2)62+91+9x x +⨯=∴2412919x x ++=+ 故选:C 【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.A解析:A 【分析】根据配方法解一元二次方程的步骤计算可得. 【详解】 解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A . 【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤: ①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方; ④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根. 【详解】解:∵△=22-4×1×3=-8<0, ∴方程23210x x ++=没有实数根. 故选:C . 【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.6.B解析:B 【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得. 【详解】设参加活动的同学有x 人, 由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去), 即参加活动的同学有7人, 故选:B . 【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.7.D解析:D 【分析】直接利用根与系数的关系解答. 【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12.故选:D . 【点睛】此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 8.D解析:D 【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可. 【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥,解得1m ≠-且2m ≥-. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.C解析:C 【分析】据一元二次方程的根与系数的关系得到两根之和即可. 【详解】解:∵方程x 2-4x-1=0的两个根是x 1,x 2, ∴x 1∙x 2=-1. 故选:C . 【点睛】本题考查了一元二次方程ax 2+bx+c=0的根与系数关系,两根之和是-b a ,两根之积是c a. 10.A解析:A 【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=, ∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=, 故选:A . 【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.A解析:A 【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解. 【详解】解:由219990n n ++=可得211199910n n⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A . 【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.12.D解析:D 【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决. 【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0, 提公因式,得(x ﹣2)(x ﹣1)=0, ∴x ﹣2=0或x ﹣1=0, 解得x =2或x =1. 故选:D . 【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题13.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0 【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题. 【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0,依题意有a+1≠0, △=(a+1)2-(a+1)=0, 解得,a=0,或a=-1(舍去). 故答案为:0. 【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.14.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可. 【详解】解:根据题意,得:3x 2-6=x-2, 整理,得:3x 2-x-4=0, ∴(x+1)(3x-4)=0, ∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解题【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵关于x 的一元二次方程240x x k -+=有两个相等的实数根, ∴()224440b ac k ∆=-=--=,解得:4k =; 故答案为4. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.16.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根, ∴2a b +=-,2019ab =-,∴112220192019a b a b ab +-+===-. 故答案为:22019.【点睛】本题考查根与系数关系.熟记根与系数关系的公式是解题关键.17.-5【分析】根据一元二次方程的一般形式解答【详解】解:方程的一次项是其系数是故答案是:【点睛】本题考查一元二次方程的一般式解题的关键是掌握一次项系数的定义解析:-5 【分析】根据一元二次方程的一般形式解答. 【详解】解:方程2350x x -=的一次项是5x -,其系数是5-. 故答案是:5-.本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义.18.22【分析】先利用因式分解法求出方程的两个根从而可得等腰三角形的两边长再根据等腰三角形的定义三角形的三边关系定理可得这个等腰三角形的三边长然后利用三角形的周长公式即可得【详解】因式分解得解得等腰三角解析:22 【分析】先利用因式分解法求出方程的两个根,从而可得等腰三角形的两边长,再根据等腰三角形的定义、三角形的三边关系定理可得这个等腰三角形的三边长,然后利用三角形的周长公式即可得. 【详解】213360x x -+=,因式分解,得(4)(9)0x x --=, 解得124,9x x ==,等腰三角形的边长是方程213360x x -+=的两个根,∴这个等腰三角形的两边长为4,9,(1)当边长为4的边为腰时,这个等腰三角形的三边长为4,4,9, 此时449+<,不满足三角形的三边关系定理,舍去;(2)当边长为9的边为腰时,这个等腰三角形的三边长为4,9,9, 此时499+>,满足三角形的三边关系定理, 则这个等腰三角形的周长为49922++=; 综上,这个等腰三角形的周长为22, 故答案为:22. 【点睛】本题考查了解一元二次方程、等腰三角形的定义、三角形的三边关系定理等知识点,熟练掌握一元二次方程的解法是解题关键.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值解析:12-【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可. 【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2, -(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.(1)121,9x x =-=-;(2)12x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =2b a-±=22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键.22.(1)m=0或m=1;(2)或.【分析】(1)把x=2代入方程x 2-(2m+3)x+m 2+3m+2=0得到关于m 的一元二次方程,然后解关于m 的方程即可;(2)先计算出判别式,再利用求根公式得到x 1=m+2,x 2=m+1,则AC=m+2,AB=m+1.然后讨论:当AB=BC 时,有AC=BC 时,有m 的一次方程即可.【详解】解:(1)∵x=2是方程的一个根,∴4-2(2m+3)+m 2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2-4(m 2+3m+2)=1,∴x=2312m +± ∴x 1=m+2,x 2=m+1,∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵△ABC 是等腰三角形,∴当AB=BC 时,有∴;当AC=BC 时,有∴,综上所述,当-1或时,△ABC 是等腰三角形.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,公式法解一元二次方程,也考查了等腰三角形的判定.23.(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.1211x x =-+=- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,12x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.(1)14x =24x =2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=4x -=14x =,24x =(2)2(2)6(2)80x x ---+=[]2(2)31x --=51x =±,16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键.26.x 1=54,x 2=23【分析】 设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,代入后求出mn =0,即可得出(4x -5)(3x -2)=0,求出即可.【详解】解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,∴4x -5=0,3x -2=0,∴x 1=54,x 2=23. 【点睛】 本题考查了解一元二次方程,能把一元二次方程转化成(4x -5)(3x -2)=0是解此题的关键.。

人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(答案解析)

人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(答案解析)

一、选择题1.方程2240x x --=经过配方后,其结果正确的是( )A .()215x -=B .()217x -=C .()214x -=D .()215x += 2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x += D .()()5011266x x ++= 3.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -= 4.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60505.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 6.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 7.方程(2)2x x x -=-的解是( ) A .2 B .2-,1 C .1-D .2,1- 8.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++= 9.不解方程,判断方程23620x x --=的根的情况是( )A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确10.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 11.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1 12.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( )A .2,8B .3,4C .4,3D .4,8 二、填空题13.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 14.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.16.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.17.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 19.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x ,根据题意,可得方程_______20.当x=______时,−4x 2−4x+1有最大值.三、解答题21.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.22.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?23.解方程:(1)26160x x +-=.(2)22430x x --=.24.解方程:2x²-4x-3=0.25.解方程:212270x x -+=26.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴x 2﹣2x +1=4+1,∴(x ﹣1)2=5.故选:A .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.注意先求得2月份的营业额.3.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x2+6x-1=0,∴x2+6x=1,∴x2+6x+9=10,∴(x+3)²=10,故选:A.【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x,依题意,得:5000(1+x)2=6050.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.B解析:B【分析】将x=0代入方程中,可得关于a的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x2- 2+a-6=0中,得: a2+a-6=0,解得:a1=﹣3,a2=2,∵a+2≠0且a﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.6.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b 的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.7.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.9.C解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.10.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12.故选:D.【点睛】此题主要考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-ba,x1•x2=ca.11.C解析:C【分析】先把已知条件变形得到a2+(m+n) a+mn﹣2=0,b2+( m+n) b+mn﹣2=0,则可把a、b看作方程x2+( m+n) x+mn﹣2=0的两实数根,利用根与系数的关系得到ab=mn﹣2,从而得到ab﹣mn的值.【详解】解:∵(a+m)( a+n)=2,(b+m)( b+n)=2,∴a2+( m+n)a+mn﹣2=0,b2+( m+n)b+mn﹣2=0,而a、b、m、n为互不相等的实数,∴可以把a、b看作方程x2+(m+n)x+mn﹣2=0的两个实数根,∴ab=mn﹣2,∴ab﹣mn=﹣2.故选:C.【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a、b看作方程x2+(m+n)x+mn﹣2=0的两实数根”是解题关键.12.D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.二、填空题13.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式. 14.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项 解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.15.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传 解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.17.-3【分析】设方程的另一个根为x2根据两根之积列出关于x2的方程解之可得答案【详解】解:设方程的另一个根为x2则2x2=﹣6解得x2=﹣3故答案为:﹣3【点睛】本题考查了一元二次方程ax2+bx+c解析:-3.【分析】设方程的另一个根为x 2,根据两根之积列出关于x 2的方程,解之可得答案.【详解】解:设方程的另一个根为x 2,则2x 2=﹣6,解得x 2=﹣3,故答案为:﹣3.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 18.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.54(1-x )2=42【分析】根据题意经过两次的钢量减少最后的结果应该是原来的(1-x )2倍列出方程即可【详解】解:根据题意有:54(1-x )2=42故答案为:54(1-x )2=42【点睛】本题考查解析:5.4(1-x )2=4.2【分析】根据题意,经过两次的钢量减少,最后的结果应该是原来的(1-x )2倍,列出方程即可.【详解】解:根据题意有:5.4(1-x )2=4.2故答案为:5.4(1-x )2=4.2【点睛】本题考查一元二次方程的实际应用问题,属于基础题.20.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2.故答案为:-12. 【点睛】 此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=,∴x 1=1x 2=1 (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.23.(1)18x =-,22x =;(2)122x +=,222x -=. 【分析】(1)运用因式分解法求解即可;(2)运用公式法求解即可.【详解】解:(1)26160x x +-= ()()820x x +-=解得18x =-,22x =.(2)22430x x --=,∵2a =,4b =-,3c =-,∴224(4)42(3)162440b ac -=--⨯⨯-=+=,x ===∴1x =,2x =. 【点睛】本题考查了解一元二次方程,在解答中注意计算的正确性.24.1222,22x x +-== 【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴x ===∴12x x ==.【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键. 25.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.26.(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=,【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=,∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。

九年级上第一章一元二次方程单元测试试卷含答案

九年级上第一章一元二次方程单元测试试卷含答案

第1章 一元二次方程单元测试一、选择题(每题3分,共24分)1.下列方程中,关于x 的一元二次方程是( )A.()()12132+=+x xB.02112=-+x x C 。

02=++c bx axD.1222-=+x x x2.方程2560x x --=的两根为( )A . 6和-1B .-6和1C .—2和-3D .2和33.下列方程中,有两个不等实数根的是( )A .238x x =-B .2510x x +=-C .271470x x -+=D .2753x x x -=-+ 4.一元二次方程x 2+kx —3=0的一个根是x=1,则另一个根是( )A.3 B 。

-1 C 。

—3 D.-25.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 ( )A .1B .2C .1或2D .0 6.已知代数式2346x x -+的值为9,则6342+-x x 的值为( ) A .18 B .12 C .9 D .77.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x 满足的方程是 ( )A 、50(1+x )2=182B .50+50(1+x )+50(1+x)2=182C 、50(1+2x )=182D .50+50(1+x )+50(1+2x)=1828.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )(A )-3,2 (B )3,—2 (C)2,-3 (D )2,3二、填空题(每题3分,共24分)9.方程2310x x -+=的解是 .10.已知x = 1是关于x 的一元二次方程2x 2 + kx – 1 = 0的一个根,则实数k 的值是 .11.关于x 的一元二次方程220x x m -+=有两个实数根,则m 的取值范围是 .12.若一元二次方程x 2-(a+2)x+2a=0的两个实数根分别是3、b,则a+b= .13.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .14.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 .15.若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一个符合条件的值即可)16。

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

第二十一章一元二次方程章末复习测试题(二)一.选择题1.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 2.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1 3.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m <B.m≤C.m≥D.m ≤且m≠04.已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣25.方程(m﹣1)x2+2mx﹣3=0是关于x的一元二次方程,则()A.m≠±1B.m=1C.m≠﹣1D.m≠16.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长等于()A.10cm B.12cm C.16cm D.12cm或16cm7.已知一元二次方程x2+2x﹣1=0的两实数根为x1、x2,则x1•x2的值为()A.2B.﹣2C.1D.﹣1 8.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1B.10(x+1)=12.1C.10(1+x)2=12.1D.10+10(1+x)=12.19.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.1810.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=112024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)11.若a,b,c满足,则关于x的方程ax2+bx+c=0(a≠0)的解是()A.1,0B.﹣1,0C.1,﹣1D.无实数根12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题13.一元二次方程x(x﹣2)=x﹣2的一个根为x=2,另一个根为.14.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为.17.某企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为.18.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒,若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长,设剪去的小正方形边长是xcm,根据题意可列方程,化为一般式为.三.解答题19.解下列方程.(1)(4x﹣1)2=225.(2)(x﹣5)(x﹣6)=x﹣5.20.已知:关于x的一元二次方程x2+(2m+1)x+m2+m=0.(1)求证:此方程总有两个不相等的实数根;(2)请选择一个合适的m值,写出这个方程并求出此时方程的根.21.a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.方程x2+ax+b=0与x2+bx+a=0有一个公共根,设它们另两个根为x1,x2;方程x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,设它们另两个根为x3,x4.求x1x2x3x4的取值范围(a、b<0,a≠b,c、d<0,c≠d)24.2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.参考答案一.选择题1.解:(x﹣2)2=0,则x1=x2=2,故选:B.2.解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.3.解:由已知得:,解得:m≤且m≠0.故选:D.4.解:∵关于x的一元二次方程x2﹣2ax+4=0的一个根是2,∴22﹣2a×2+4=0,即﹣4a=﹣8解得,a=2.故选:C.5.解:根据题意得:m﹣1≠0,解得:m≠1,故选:D.6.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD=DC=3cm,AC=6cm时,3+3=6,不符合三角形三边关系定理,此时不行;当AD=DC=4cm,AC=6cm时,符合三角形三边关系定理,即此时菱形ABCD的周长是4×4=16,故选:C.7.解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,所以x1•x2==﹣1.故选:D.8.解:设每月增长率为x,根据题意得:10(1+x)2=12.1.故选:C.9.解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.10.解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.11.解:当x=1时,a+b+c=0,当x=﹣1时,a﹣b+c=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为1或﹣1.故选:C.12.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.二.填空题(共6小题)13.解:方程整理为x2﹣3x+2=0,设方程的另一个解为t,则2t=2,解得t=1,即方程的另一个解为1.故答案为1.14.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.15.解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.16.解:∵a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,∴a、b可看作方程x2﹣4x+1=0的两个实数解,∴a+b=4,ab=1,而a2+1=4a,b2+1=4b,∴=+=×=×=1.故答案为1.17.解:如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故答案为:1500(1+x)2=2160.18.解:设剪去的小正方形边长是xcm,则长方形纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32,即x2﹣8x+7=0.故答案为:x2﹣8x+7=0.三.解答题(共7小题)19.解:(1)∵(4x﹣1)2=225,∴4x﹣1=15或4x﹣1=﹣15,解得x=4或x=﹣;(2)∵(x﹣5)(x﹣6)﹣(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x=5或x=7.20.(1)证明:∵△=(2m+1)2﹣4m2﹣4m=1>0,∴方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2+x=0,解得x1=0,x2=﹣1.21.解:(1)(x﹣a)2+2(x+1)=a,变形为x2﹣2(a﹣1)x+a2﹣a+2=0.根据题意得△=4(a﹣1)2﹣4(a2﹣a+2)=4a2﹣8a+4﹣4a2+4a﹣8=﹣4a﹣4≥0,解得a≤﹣1.即a的取值范围是a≤﹣1;(2)由根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a+2,∵(x1﹣x2)2+x1x2=12,∴(x1+x2)2﹣3x1x2=12,∴[2(a﹣1)]2﹣3(a2﹣a+2)=12,即a2﹣5a﹣14=0,解得a1=﹣2,a2=7,∵a≤﹣1,∴a的值为﹣2.22.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.23.解:∵x2+ax+b=0与x2+bx+a=0有一个公共根,∴x2+ax+b=x2+bx+a,∴(a﹣b)x=a﹣b,∵a≠b,∴x=1,∴x1=b,x2=a,∴a+b=﹣1,∴x1+x2=﹣1,∵x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,∴x2﹣cx+d=x2﹣dx+c,∴﹣(d﹣c)x=d﹣c,∵c≠d,∴x=﹣1,∴x3=﹣d,x4=﹣c,∴d+c=﹣1,∴x3+x4=1,∵a、b<0,c、d<0,∴(﹣x1)+(﹣x2)≥2,x3+x4≥2,∴0<x1x2≤,0<x3x4≤,∴0<x1x2x3x4≤.24.解:(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.25.解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.11。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

\
2016年九年级质量检测
数 学 试 题
(时间 100分钟 满分150分)
温馨提示:
1.本试卷共6页,全卷满分150分,考试时间100分钟。

考生答题全部答在答题纸上,在草稿纸、试卷上答题无效。

2.请按题号顺序在各题目的答题区域内作答,超出答题区域的答案无效。

3.答题卡上作答内容不得使用胶带纸和涂改液,答错的用黑笔涂掉并在上(下)方空白处添上。

4.保持答题纸清洁,不要折叠、不要弄破。


一、选择题(每小题4分,共32分)
1.一元二次方程32x =5x 的二次项系数和一次项系数分别是( ). A 3,5 B 3,-5 C 3,0 D 5,0 2.下列方程中,是关于x 的一元二次方程的是( ). A ()()2
3121x x +=+ B
211
x x
+-2=0 C 20ax bx c ++= D 2221x x x -=+
3. 关于x 一元二次方程2
2
5250x x p p -+-+=的一个根为1,p =( )
A .4
B .0或2
C .1
D .1-
,
4.方程()()1132=-+x x 的解的情况是( )
A .有两个不相等的实数根
B .没有实数根
C .有两个相等的实数根
D .有一个实数根
5.若关于x 的一元二次方程的两个根为11x =,22x =,则这个方程是( ) A 2320x x +-= B.2320x x -+= C.2230x x -+= D.2320x x ++= 6.根据下列表格对应值:
x

2ax bx c ++
-
判断关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是( ) A.x < x 3.25 C x x 以3、4为两边长的三角形的第三边长是方程
040132=+-x x 的根,则这个三角形的周长为( )
{
或12
B.12
D.以上都不对
8.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少元,要使每盆的盈利达到15元,每盆应多植多少株设每盆多植x 株,可列出的方程是( )
A.340.515x x +-=)(


B.340.515x x ++=()()
C.430.515x x +-=()()
D.140.515x x +-=()()
二.填空题(每小题4分,共32分)
9. 方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 .
10.x 的一元二次方程1
(1)(2)30n n x n x n +++-+=中,一次项系数
是 .
11.一元二次方程2
230x x --=的根是 .
*
12.若关于x 的一元二次方程()()22111x m x x x -++=+化成一般形式后二次项的系数为1,一次项的系数为-1,则m 的值为 。

13.若2
10x x +-=,那么代数式3
2
27x x +-的值是 。

14.某地2005年外贸收入为亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 . 15.请你写出一个有一根为1,另一个根介于2-和1之间的的一元二次方程:
16.如果21,x x 是方程0122
=--x x 的两个根,那么21x x += ;
12x x = 。

三、解答题(共86分)
17.选择适当方法解下列方程:(每小题6分,共36分)
(1) 26x x = (2)2
3410x x --=
"
(3)213
122
x x -+= (4)210x -+=
(
(5)()()()52797x x x --=- (6)()()22
393x x -=+
18.(本题8分)当m 为何值时,关于x 的一元二次方程0
2142=-+-m x x 有两个相等的实数根此时这两个实数根是多少
)
19.(本题10分)已知x =1是一元二次方程2
400ax bx +-=的一个解,
且a b ≠,求2222a b a b
--的值.
|
{
20.(本题8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台
·
21.(本题10分)某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨1元,月销售
量就减少10kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少
|
22.(本题14分)将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)•所占的面积为原来荒地面积的三分之二.(精确到0.1m)
(1)设计方案1(如图1)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图2)花园中每个角的扇形都相同.<
以上两种方案是否都能符合条件若能,请计算出图1中的小路的宽和图2中扇形的半径;若不能符合条件,请说明理由.()
图1 图2。

}
参考答案
一、选择题(每小题4分,共32分)
二、填空题(每小题4分,共32分)
9._______3______ ______3_______ _______0______ - 1____________ 11. 1321-==x x ,

12. ______- 1_____________ _- 6_________ 14. ()415.22=+x 15.(答案不唯一)如:
()()011=+-x x
16. ______2_______ _______- 1________ 三、解答题(共86分)
17.选择适当方法解下列方程:(每小题6分,共36分) (1) 6121==x x , (2) 2721+=x 2
722-=x
(3)12,1221--=-=
x x (4)12,1221-=+=x x
(5) (6)
23
621-
=-=x x ,
18、M=29
(3分)221==x x (5分)
19.(本题8分)a +b=40(3分) 22
22a b a b
--= 20(5分)
20.(本题10分)解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得:1+x+(1+x )x=81,
(舍去)(3分), ∴()31x ++x )=()381+=729>700.(3分) 答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.(2分)
21.(本题10分)解:销售单价定为每千克x 元时,月销售量为:[500–(x –50)×10]千克而每千克的销售利润是:(x –40)元
(x –40)[500–(x –50)×10]=8000,(2分) 即:2x –140x+4800=0, 解
得:806021==x x ,.(4分) 当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售单价成本为: 40×400=16000(元); 由于16000>10000,而月销售成本不能超过10000元,所以销售单价无法定为每千克60元(2分) 当销售单价定为每千克
80
元时,月销售量为:
500–(80–50)×10=200(千克),月销售单价成本为: 40×200=8000(元);由于8000<10000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元(2分) 22.
答:小路宽为6.6米(1分)
(2)设扇形半径为r ,则=×18×15,(2分)即r 2
≈,(2分)所以r ≈.
(1分)答:扇形半径为7.6米. (1分)。

相关文档
最新文档