数学实验试题(2006)A

合集下载

反应工程往年试题

反应工程往年试题

《化学反应工程》2005-2006A一、填空:1、反应器的设计放大方法主要有()()()。

2、按照操作方式,反应器可分为()()()。

3、理想流动模型包括()()。

4、固体催化剂中气体组分的扩散形式主要有()()()()。

5、描述停留时间分布的两个函数是()()。

6、转化率、收率、选择性三者关系为()。

7、固体催化剂的主要制备方法有()()()()。

8、气—液反应器按气—液相接触形态可分为()()()。

9、化学吸收增强因子的物理意义是()。

10、本征动力学与宏观动力学分别是指()()。

二、等温下在 BR 中进行一级不可逆液相分解反应 A→B+C,在 10 分钟内有 50%的 A 分解,要达到分解率为 80%,问需要多少时间?若反应为二级,则需要多少时间?三、英文题(学其它语种的同学做下面的中文题)An aqueous reactant stream passes through a mixed flow reactor followed by a plug flow reactor. The initial concentration of=1mol/liter. TheA is 4mol/liter. Find the concentration at the exit of the plug flow reactor if in the mixed flow reactor cAreaction is firstorder with respect to A, and the volume of the plug flow unit is three times that of the mixed flow unit.某二级液相反应,在 PFR 中达到 99%转化率需反应时间 10 分钟,如在 CSTR 中进行时,需反应时间为多少?四、有一液相反应 A→P+S,其反应速率-r A=kC A2,k=10m3/Kmol.hr, C A0=0.2Kmol/m3,V0=2m3/hr,比较下列方案,何者转化率最大?(1)PFR,体积为 4m3;(2)PFR→CSTR ,体积各为 2m3;(3)CSTR→PFR,体积各为 2m3;(4)CSTR→CSTR,体积各为 2m3。

电子科技大学《数学实验》2008-2009学年期末试题(含答案)

电子科技大学《数学实验》2008-2009学年期末试题(含答案)

电子科技大学二零零八到二零零九学年第二学期期末考试《数学实验》课程考试题A卷(120分钟) 考试形式:闭卷考试日期:2009年7月8日一、单项选择题(20分)1、三阶幻方又称为九宫图,提取三阶幻方矩阵对角元并构造对角阵用( )(A) diag(magic(3)); (B) diag(magic);(C) diag(diag(magic(3))); (D) diag(diag(magic))。

2、MATLAB命令P=pascal(3)将创建三阶帕斯卡矩阵,max(P)的计算结果是( )(A) 1 2 3 (B) 1 2 1 (C) 3 6 10 (D) 1 3 63、命令J=*1;1;1+**1,2,3+;A=j+j’-1将创建矩阵( )(A)123234345⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (B)234345456⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(C)123123123⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D)111222333⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦4、data=rand(1000,2);x=data(:,1);y=data(:,2);II=find(y<sqrt(x)&y>x.^2);的功能是( )(A) 统计2000个随机点中落入特殊区域的点的索引值;(B) 统计1000个随机点落入特殊区域的点的索引值;(C) 模拟2000个随机点落入特殊区域的过程;(D) 模拟1000个随机点落入特殊区域的过程。

5、MATLAB计算二项分布随机变量分布律的方法是( )(A) binocdf(x,n,p); (B) normpdf(x,mu,s); (C)binopdf(x,n,p); (D) binornd(x,n,p)。

6、MATLAB命令syms e2;f=sqrt(1-e2*cos(t)^2);S=int(f,t,0,pi/2)功能是()(A) 计算f(x)在[0,pi/2]上的积分;(B) 计算f(t)不定积分符号结果;(C) 计算f(x)积分的数值结果;(D) 计算f(t)定积分的符号结果。

数学实验(第二版)课后习题答案

数学实验(第二版)课后习题答案

贵州师范学院2012级数本一班李刚数学实验课后练习答案习题2.11. syms x y;>> x=-5:0.01:5;>> y=x.^1/2;>> plot(x,y)2. f plot('exp(-x.^2)',[-5,5])3. ezplot('x.^3+y.^3-3*x*y',[-5,5])4 . ezplot('y.^2-x.^3/(1-x)',[-5,5])5.t=0:0.1:2*pi;x=t-sin(t);y=2*(1-cos(t));plot(x,y)6. t=0:0.1:2*pi; x=cos(t).^3; >> y=sin(t).^3;>> plot(t,y)>>7: t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y,z)8: x =0:0.1:2*pi; r=x; polar(x,r)9: x =0:0.1:2*pi; r=exp(x); polar(x,r)10: x=0:0.1:2*pi; r=sqrt(cos(2*x)); polar(x,r)11: x=0:0.1:2*pi; r=sqrt(sin(2*x)); polar(x,r)12: x =0:0.1:2*pi; r=1+cos(x); polar(x,r)练习2.2 1:(1)(2):syms n; limit('sqrt(n+2)-2*(sqrt(n+1))+sqrt(n)',n,inf)Ans= 0 (3):: (4):(5):(6):2:3:fplot('x.^2*sin(x.^2-x-2)',[-2,2])练习2.3 1:(2):2:练习2.4 1:(1)(2):(3)(4):2:(1):syms x;int(x^(-x),x,0,1)ans =int(x^(-x),x = 0 .. 1)vpa(ans,10)ans =1.291285997(2):syms x;int(exp(2*x)*cos(x)^3,x,0,2*pi)ans =-22/65+22/65*exp(4*pi)(3):syms x; int(exp(x^2/2)/sqrt(2*pi),x,0,1)ans =-1125899906842624/5644425081792261*i*erf(1/2*i*2^(1/2))*pi^(1/2)*2^(1/2) >> vpa(ans,10)ans =.4767191345(4):syms x;int(x*log(x^4)*asin(1/x^2),x,1,3)ans =int(x*log(x^4)*asin(1/x^2),x = 1 .. 3)>> vpa(ans,10)ans =2.459772128(5):syms x ;int(exp(x^2/2)/sqrt(2*pi),x,-inf,inf)ans =Inf(6):syms x ;int(sin(x)/x,x,0,inf)ans =1/2*pi(7):syms x ;int(tan(x)/sqrt(x),x,0,1)Warning: Explicit integral could not be found. > In sym.int at 58ans =int(tan(x)/x^(1/2),x = 0 .. 1)>> vpa(ans,10)ans =.7968288892(8):syms x ;int(exp(-x^2/2)/(1+x^4),x,-inf,inf)ans =1/4*pi^(3/2)*2^(1/2)*(AngerJ(1/2,1/2)-2/pi^(1/2)*sin(1/2)+2/pi^(1/2)*cos(1/2)-WeberE(1/2,1/2 ))>> vpa(ans,10)ans =1.696392536(9):syms x ;int(sin(x)/sqrt(1-x^2),x,0,1)ans =1/2*pi*StruveH(0,1)>> vpa(ans,10)ans =.8932437410练习2.5(1):syms n;symsum(1/n^2^n,n,1,inf)ans =sum(1/((n^2)^n),n = 1 .. Inf)(2):s yms n ;symsum(sin(1/n),n,1,inf)ans =sum(sin(1/n),n = 1 .. Inf)(3):syms n ;symsum(log(n)/n^3,n,1,inf) ans =-zeta(1,3)(4):syms n ;symsum(1/(log(n))^n,n,3,inf) ans =sum(1/(log(n)^n),n = 3 .. Inf)(5):syms n;symsum(1/(n*log(n)),n,2,inf) ans =sum(1/n/log(n),n = 2 .. Inf)(6):yms n;symsum((-1)^n*n/(n^2+1),n,1,inf)ans =-1/4*Psi(1-1/2*i)+1/4*Psi(1/2-1/2*i)-1/4*Psi(1+1/2*i)+1/4*Psi(1/2+1/2*i)第三章练习3.11:(1):a=-30:1:30;b=-30:1:30;[x,y]=meshgrid(a,b);z=10*sin(sqrt(x.^2+y.^2))./(sqrt(1+x.^2+y.^2)); meshc(x,y,z)(2):a=-30:1:30;b=-30:1:30;[x,y]=meshgrid(a,b);z=4*x.^2/9+y.^2;meshc(x,y,z)(3):(4):a=-30:1:30;b=-30:1:30;[x,y]=meshgrid(a,b); z=x.^2/3-y.^2/3; meshc(x,y,z)(5):a=-30:1:30;>> b=-30:1:30;>> [x,y]=meshgrid(a,b); >> z=x*y;>> meshc(x,y,z)(6):(7):a=-30:1:30;>> b=-30:1:30;>> [x,y]=meshgrid(a,b); >> z=sqrt(x.^2+y.^2); >> meshc(x,y,z)(8):(9):a=-30:1:30;>> b=-30:1:30;>> [x,y]=meshgrid(a,b);>> z=atan(x./y);>> meshc(x,y,z)练习3.21;a=-1:0.1:1;>> b=0:0.1:2;>> [x,y]=meshgrid(a,b);>> z=x.*exp(-x.^2-y.^2);>> [px,py]=gradient(z,0.1,0.1);>> contour(a,b,z)>> hold on>> quiver(a,b,px,py)2:a=-2:0.1:1;>> b=-7:0.1:1;>> [x,y]=meshgrid(a,b);>> z=y.^3/9+3*x.^2.*y+9*x.^2+y.^2+x.*y+9; >> plot3(x,y,z)>> grid on3:[x,y]=meshgrid(-2*pi:0.2:2*pi); z=x.^2+2*y.^2;plot3(x,y,z)hold onezplot('x^2+y^2-1',[-2*pi,2*pi]) ; grid on4:t=0:0.03:2*pi;>> s=[0:0.03:2*pi]';>> x=(0*s+1)*cos(t);y=(0*s+1)*sin(t);z=s*(0*t+1); >> mesh(x,y,z)>> hold on>> [x,y]=meshgrid(-1:0.1:1);>> z=1-x+y;>> mesh(x,y,z)5:syms x y z dx dyz=75-x^2-y^2+x*y;zx=diff(z,x),zy=diff(z,y)zx =-2*x+yzy =-2*y+x练习3.31:ezplot('x^2+y^2-2*x',[-2,2]);>> grid onsyms x y ;s=int(int(x+y+1,y,-sqrt(1-(x-1)^2),sqrt(1-(x-1)^2)),x,0,2)s =2*pi2:syms r t ;>> s=int(int(sqrt(1+r^2*sin(t)),r,0,1),t,0,2*pi)s =int(1/2*((1+sin(t))^(1/2)*sin(t)^(1/2)+log(sin(t)^(1/2)+(1+sin(t))^(1/2)))/sin(t)^(1/2),t = 0 .. 2*pi) 3:syms x y z ;>> s=int(int(int(1/(1+x+y+z)^3,z,0,1-x-y),y,0,1-x),x,0,1)s =-5/16+1/2*log(2)4:s=vpa(int(int(x*exp(-x^2-y^2),y,0,2),x,-1,10))s =0.16224980455070416645061789474030练习3.41:(1):y=dsolve('Dy=x+y','y(0)=1','x')得:y =-1-x+2*exp(x)(2):y=dsolve('Dy=2*x+y^2','y(0)=0')y =tan(t*x^(1/2)*2^(1/2))*x^(1/2)*2^(1/2)练习4.11:(1):p=[5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 8 0 0 0 -5 0 0]; >> x=roots(p)x =0.97680.9388 + 0.2682i0.9388 - 0.2682i0.8554 + 0.5363i0.8554 - 0.5363i0.6615 + 0.8064i0.6615 - 0.8064i0.3516 + 0.9878i0.3516 - 0.9878i-0.0345 + 1.0150i-0.0345 - 1.0150i-0.4609 + 0.9458i-0.4609 - 0.9458i-0.1150 + 0.8340i-0.1150 - 0.8340i-0.7821 + 0.7376i-0.7821 - 0.7376i-0.9859 + 0.4106i-0.9859 - 0.4106i-1.0416-0.7927(2): p=[8 36 54 23];x=roots(p)x =-1.8969 + 0.6874i-1.8969 - 0.6874i-0.70632:p1=[1 0 -3 -2 -1];p2=[1 -2 5];[q2,r2]=deconv(p1,p2)q2 =1 2 -4r2 =0 0 0 -20 19 3:syms x;f=x^4+3*x^3-x^2-4*x-3;g=3*x^3+10*x^2+2*x-3;p1=factor(f),p2=factor(g)p1 =(x+3)*(x^3-x-1)p2 =(x+3)*(3*x^2+x-1)4:syms x ;f=x^12-1;p=factor(f)p =(-1+x)*(1+x^2+x)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1)5: (1):p=[1 0 1];q=[1 0 0 0 1];[a,b,r]=residue(p,q)a =-0.0000 - 0.3536i-0.0000 + 0.3536i0.0000 - 0.3536i0.0000 + 0.3536ib =0.7071 + 0.7071i0.7071 - 0.7071i-0.7071 + 0.7071i-0.7071 - 0.7071ir =[](2):p=[1];q=[1 0 0 0 1];[a,b,r]=residue(p,q)a =-0.1768 - 0.1768i -0.1768 + 0.1768i0.1768 - 0.1768i0.1768 + 0.1768ib =0.7071 + 0.7071i0.7071 - 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071ir =[](3):p=[1 0 1];q=[1 1 -1 -1];[a,b,r]=residue(p,q)a =0.5000-1.00000.5000b =-1.0000-1.00001.0000r =[] (4): p=[1 1 0 0 0 -8];[a,b,r]=residue(p,q)a =-4-38b =-11r =1 1 1练习 4.21:(1):D=[2 1 3 1;3 -1 2 1;1 2 3 2;5 0 6 2];det(D)ans =6(2):syms a b c dD=[a 1 0 0 ;-1 b 1 0;0 -1 c 1;0 0 -1 d];det(D)ans =a*b*c*d+a*b+a*d+c*d+12:(1):D=[1 1 1 1; a b c d;a^2 b^2 c^2 d^2;a^3 b^3 c^3 d^3];det(D)ans =b*c^2*d^3-b*d^2*c^3-b^2*c*d^3+b^2*d*c^3+b^3*c*d^2-b^3*d*c^2-a*c^2*d^3+a*d^2*c^3+a *b^2*d^3-a*b^2*c^3-a*b^3*d^2+a*b^3*c^2+a^2*c*d^3-a^2*d*c^3-a^2*b*d^3+a^2*b*c^3+a^ 2*b^3*d-a^2*b^3*c-a^3*c*d^2+a^3*d*c^2+a^3*b*d^2-a^3*b*c^2-a^3*b^2*d+a^3*b^2*c(2): s yms a b x y zD=[a*x+b*y a*y+b*z a*z+b*x; a*y+b*z a*z+b*x a*x+b*y;a*z+b*x a*x+b*y a*y+b*z];det(D)ans =3*a^3*x*z*y+3*b^3*y*x*z-a^3*x^3-a^3*y^3-b^3*z^3-a^3*z^3-b^3*x^3-b^3*y^33: (1): D=[1 1 1 1;1 2 -1 4;2 -3 -1 -5;3 1 2 11];D1=[5 1 1 1;-2 2 -1 4;-2 -3 -1 -5;0 1 2 11];D2=[1 5 1 1;1 -2 -1 4;2 -2 -1 -5;3 0 2 11];D3=[1 1 5 1;1 2 -2 4;2 -3 -2 -5;3 1 0 11];D4=[1 1 1 5;1 2 -1 -2;2 -3 -1 -2;3 1 2 0];x1=det(D1)/det(D);x2=det(D2)/det(D);x3=det(D3)/det(D);x4=det(D4)/det(D);x1,x2,x3,x4x1 =1x2 =2x3 =3x4 =-1(2):D=[5 6 0 0 0;1 5 6 0 0;0 1 5 6 0;0 0 1 5 6;0 0 0 1 5]; D1=[1 6 0 0 0;0 5 6 0 0;0 1 5 6 0;0 0 1 5 6;1 0 0 1 5]; D2=[5 1 0 0 0;1 0 6 0 0;0 0 5 6 0;0 0 1 5 6;0 1 0 1 5]; D3=[5 6 1 0 0;1 5 0 0 0;0 1 0 6 0;0 0 0 5 6;0 0 1 1 5]; D4=[5 6 0 1 0;1 5 6 0 0;0 1 5 0 0;0 0 1 0 6;0 0 0 1 5]; D5=[5 6 0 0 1;1 5 6 0 0;0 1 5 6 0;0 0 1 5 0;0 0 0 1 1]; x1=det(D1)/det(D);x2=det(D2)/det(D);x3=det(D3)/det(D);x4=det(D4)/det(D);x5=det(D5)/det(D);x1,x2,x3,x4,x5x1 =2.2662x2 =-1.7218x3 =1.0571x4 =-0.5940x5 =0.3188练习 4.3 1:A=[1 2 0;3 4 -1; 1 1 -1];B=[1 2 3;-1 0 1;-2 4 -3];A',2+A,2*A-B,A*B,A^2,A^(-1)ans =1 3 12 4 10 -1 -1ans =3 4 25 6 13 3 1ans =1 2 -37 8 -34 -2 1ans =-1 2 51 2 162 -2 7ans =7 10 -214 21 -33 5 0ans =-3.0000 2.0000 -2.00002.0000 -1.0000 1.0000-1.0000 1.0000 -2.0000 2:(1):B=[2 4 3];B'ans =243(2):A=[1 2 3];B=[2 4 3];A.*B,B.*Aans =2 8 9ans =2 8 93:(1):A=[0 1 0;1 0 0;0 0 1];B=[1 0 0;0 0 1;0 1 0];C=[1 -4 3;2 0 -1;1 -2 0];A^(-1),B^(-1),X=A^(-1)*C*B^(-1) ans =0 1 01 0 00 0 1ans =1 0 00 0 10 1 0X =2 -1 01 3 -41 0 -2(2):>> A=[1 2 3;2 2 3;3 5 1];B=[1 0 0;2 0 0;3 0 0];A^(-1),x=A^(-1)*Bans =-1.0000 1.0000 0.00000.5385 -0.6154 0.23080.3077 0.0769 -0.1538x =1 0 00 0 00 0 0练习 4.41:(1):A=[4 2 -1;3 -1 2;11 3 0];b=[2;10;8];B=[A,b];rank(A),rank(B)ans =2ans =3(2):A=[2 1 -1 1;3 -2 1 -3;1 4 -3 5];b=[1;4;-2];B=[A,b];rank(A),rank(B)ans =2ans =2(3):A=[ 1 1 1 1; 1 2 -1 4;2 -3 -1 -5;3 1 2 11];b=[5;-2;-2;0];B=[A,b];rank(A),rank(B)ans =4ans =4(4):A=[ 1 1 2 -1; 2 1 1 -1;2 2 1 2];b=[0;0;0];B=[A,b];rank(A),rank(B)ans =3ans =32:syms a;A=[-2 1 1;1 -2 1;1 1 -2];b=[-2;a;a^2];B=[A,b];rank(A),rank(B)ans =2ans =3练习4.51:(1):A=[0 1;-1 0];[a,b]=eig(A)a =0.7071 0.70710 + 0.7071i 0 - 0.7071ib =0 + 1.0000i 000 - 1.0000i(2):A=[0 0 1;0 1 0;1 0 0];[a,b]=eig(A)a =0.7071 0.7071 00 0 -1.0000-0.7071 0.7071 0b =-1 0 00 1 00 0 1(3):A=[4 1 -1;3 2 -6;1 -5 3];[a,b]=eig(A)a =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170b =-3.0527 0 00 3.6760 00 0 8.3766(4):A=[1 1 1 1;1 1 -1 -1;1 -1 1 -1;1 1 -1 1];[a,b]=eig(A)a =0.5615 0.3366 0.2673 -0.7683-0.5615 -0.3366 0.0000 -0.0000-0.5615 -0.3366 -0.5345 -0.6236-0.2326 0.8125 0.8018 -0.1447b =-1.4142 0 0 00 1.4142 0 00 0 2.0000 00 0 0 2.0000(5):A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10];[a,b]=eig(A)a =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209b =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887(6):A=[5 6 0 0 0;1 5 6 0 0 ;0 1 5 6 0 ;0 0 1 5 6; 0 0 0 1 5 ]; [a,b]=eig(A)a =0.7843 -0.7843 -0.9860 -0.9237 -0.92370.5546 0.5546 0.0000 0.3771 -0.37710.2614 -0.2614 0.1643 -0.0000 0.00000.0924 0.0924 0.0000 -0.0628 0.06280.0218 -0.0218 -0.0274 0.0257 0.02579.2426 0 0 0 00 0.7574 0 0 00 0 5.0000 0 00 0 0 2.5505 00 0 0 0 7.4495 2:(1):A=[0 1;-1 0];[a,b]=eig(A)a =0.7071 0.70710 + 0.7071i 0 - 0.7071ib =0 + 1.0000i 00 0 - 1.0000i>> P=orth(a),B=P'*A*P,P*P'P =-0.7071 -0.70710 - 0.7071i 0 + 0.7071iB =0 + 1.0000i 0 - 0.0000i0 - 0.0000i 0 - 1.0000ians =1.0000 0 + 0.0000i0 - 0.0000i 1.0000>> inv(a)*A*a0 + 1.0000i 000 - 1.0000i3:(1):A=[2 0 0;0 3 2;0 2 3]; [a,b]=eig(A)a =0 1.0000 0-0.7071 0 0.70710.7071 0 0.7071b =1.0000 0 00 2.0000 00 0 5.0000>> P=orth(a),B=P'*A*P,P*P'P =-1.0000 0 -0.00000.0000 0.7071 0.7071-0.0000 -0.7071 0.7071B =2.0000 0.0000 0.00000.0000 1.0000 00.0000 0 5.0000ans =1.0000 -0.0000 0.0000-0.0000 1.0000 -0.00000.0000 -0.0000 1.0000(2):A=[1 1 0 -1;1 1 -1 0;0 -1 1 1;-1 0 1 1];[a,b]=eig(A)a =-0.5000 0.7071 0.0000 0.50000.5000 -0.0000 0.7071 0.50000.5000 0.7071 0.0000 -0.5000-0.5000 0 0.7071 -0.5000 b =-1.0000 0 0 00 1.0000 0 00 0 1.0000 00 0 0 3.0000 >> P=orth(a),B=P'*A*P,P*P'P =-0.5000 -0.4998 -0.4783 -0.52100.5000 -0.4822 0.5212 -0.49580.5000 0.4998 -0.4964 -0.5037-0.5000 0.5175 0.5031 -0.4786 B =-1.0000 0.0000 0.0000 0.00000.0000 2.9988 -0.0362 0.03440.0000 -0.0362 1.0007 -0.00060.0000 0.0344 -0.0006 1.0006 ans =1.0000 0.0000 0.0000 -0.00000.0000 1.0000 -0.0000 00.0000 -0.0000 1.0000 0.0000-0.0000 0 0.0000 1.0000练习5.3 1: [m,v]=unifstat(1,11)m =6v =8.33332:[m,v]=normstat(0,16)m =v =256>> s=sqrt(v)s =163:x=randn(200,6);s=std(x)s =0.9094 0.9757 0.9702 0.9393 0.9272 1.09824: x=normrnd(0,16,300,1);hist(x,10)练习 5.61:x=[352 373 411 441 462 490 529 577 641 692 743];y=[166 153 177 201 216 208 227 238 268 268 274];plot(x,y,'*')4:(1):x=[10 10 10 15 15 15 20 20 20 25 25 25 30 30 30];y=[25.2 27.3 28.7 29.8 31.1 27.8 31.2 32.6 29.7 31.7 30.1 32.3 29.4 30.8 32.8]; plot(x,y,'*')。

数学实验考试试题

数学实验考试试题

数学实验考试试题一、选择题(每题 5 分,共 30 分)1、以下哪个软件常用于数学实验?()A ExcelB PhotoshopC WordD PowerPoint2、在数学实验中,要生成一组随机数,可以使用以下哪种方法?()A 手动输入B 使用随机数生成函数C 按照一定规律计算D 以上都不对3、进行数学建模时,以下哪个步骤是首先要做的?()A 收集数据B 提出假设C 建立模型D 模型求解4、用数学实验方法求解线性方程组,常用的方法是()A 消元法B 矩阵变换法C 迭代法D 以上都是5、要绘制一个函数的图像,以下哪个软件比较方便?()A MathematicaB 记事本C 计算器D 画图工具6、在数学实验中,误差分析的目的是()A 找出错误B 提高精度C 证明结果的正确性D 以上都是二、填空题(每题 5 分,共 30 分)1、数学实验的基本步骤包括:提出问题、()、建立模型、()、分析结果。

2、常见的数学软件有()、()、Maple 等。

3、用数学实验方法研究函数的最值,可以通过()的方法来实现。

4、随机变量的数字特征包括()、()、方差等。

5、进行数据拟合时,常用的方法有()、()等。

6、数学实验中,数据的可视化可以帮助我们()、()。

三、简答题(每题 10 分,共 20 分)1、请简要说明数学实验与传统数学学习方法的区别。

答:传统数学学习方法通常侧重于理论推导和定理证明,通过纸笔计算和逻辑推理来解决数学问题。

而数学实验则是借助计算机软件和工具,通过实际操作和数据模拟来探索数学现象和解决问题。

在传统学习中,学生更多地依赖于抽象思维和逻辑推理,对于一些复杂的数学概念和问题,理解起来可能较为困难。

而数学实验可以将抽象的数学概念直观化,通过图像、数据等形式展现出来,让学生更容易理解和接受。

数学实验还能够让学生亲自参与到数学的探索过程中,培养学生的动手能力和创新思维。

同时,它也可以处理大规模的数据和复杂的计算,提高解决实际问题的效率。

数学实验考题

数学实验考题

第1题:对编写好的程序进行求解的方法不是()(A)点击工具栏的按钮(B)点击LINGO下拉菜单的SOLVE选项(C)使用组合键Ctrl+U(D)在编辑窗口进行回车操作选择正确答案: A B C D第2题:某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、3、1个工时;单位产品所需原材料分别为3、1、5公斤;单位产品利润分别为2元、3元、5元。

工厂每天可利用的工时为12个,可供应的原材料为15公斤。

若产品必须为整数单位,则最大利润可为()(A)17(B)18(C)19(D)20选择正确答案: A B C D第3题: SAS画散点图时,用y*x='*'来表示点用*来表达,如果将其改为y*x,则点用()表达。

A.*B.oC.AD.B选择正确答案: A B C D第4题:为了解某乡粮田土壤肥力的变化情况,2008年和2009年连续两年对9个监测点进行取土样化验有机质含量。

X代表2008年化验结果,Y代表2009年化验结果,分析两年土壤有机质的变化情况时,得到方差相等检验时pr>Fr的值为()。

X:1.64 1.04 1.46 0.88 1.30 0.84 1.39 0.99 1.43Y:1.60 0.62 1.49 0.74 1.24 0.65 1.51 0.84 1.50A.0.1537B.0.2354C.0.3203D.0.4518选择正确答案: A B C D第5题:下列matlab函数不能产生特殊矩阵的是()A. roundB. randC. randnD.vander选择正确答案: A B C D第6题:下列matlab命令的运行结果是()syms x s;f=sin(2*x)+s^2;int(f,s)A. -1/2*cos(2*x)+s^2*xB. sin(2*x)*s+1/3*s^3C. s^2*piD. 4*sin(2*x)+16/3选择正确答案: A B C D第7题:下列matlab程序的运行结果是()syms x; limit((x-2)./(x.^2-4),x,2)A. 1/2B. -2C. 1D. 1/4选择正确答案: A B C D第8题:分析下列程序共绘制_______条曲线。

数学建模与数学实验习题答案

数学建模与数学实验习题答案

数学建模与数学实验习题答案数学建模与数学实验习题答案数学建模和数学实验习题是数学学习中的重要组成部分,通过这些习题,我们可以更好地理解和应用数学知识。

本文将介绍数学建模和数学实验习题的一些答案和解题方法,帮助读者更好地掌握数学学习。

一、数学建模数学建模是将数学方法和技巧应用于实际问题的过程。

在数学建模中,我们需要将实际问题抽象为数学模型,并通过数学方法进行求解和分析。

下面是一个简单的数学建模问题和其解题过程。

问题:某工厂生产产品A和产品B,每天的产量分别为x和y。

产品A的生产成本为10x+20y,产品B的生产成本为15x+10y。

如果工厂每天的总成本不超过5000元,且产品A的产量必须大于产品B的产量,求工厂一天最多能生产多少个产品。

解题过程:首先,我们需要建立数学模型来描述这个问题。

设产品A的产量为x,产品B的产量为y,则问题可以抽象为以下数学模型:10x+20y ≤ 5000x > y接下来,我们需要解决这个数学模型。

首先,我们可以通过图像法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为直线的形式,我们可以得到以下图像:(图像略)从图像中可以看出,不等式10x+20y ≤ 5000和x > y的解集为图像的交集部分。

通过观察图像,我们可以发现交集部分的最大值为x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

除了图像法,我们还可以通过代数法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为等式的形式,我们可以得到以下方程组:10x+20y = 5000x = y通过求解这个方程组,我们可以得到x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

二、数学实验习题数学实验习题是通过实际操作和实验来学习数学知识和技巧的一种方式。

下面是一个关于概率的数学实验习题和其答案。

习题:一枚硬币抛掷10次,求出现正面的次数为偶数的概率。

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。

经比较可得,最后一席位应分给 A 宿舍。

所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。

点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。

04级数学实验A卷评分标准

04级数学实验A卷评分标准

楚 雄 师 范 学 院2006—2007学年 第二 学期期末考试试卷 《数学实验》(A )卷评分标准答题要求:1、写出各实验的MATLAB求解命令或程序2、除绘图题外,写出各实验的实验结果一、完成以下实验(每个实验5分,共20分)。

实验一 曲线绘图1.抛物线232y x x =++解:clear;x=-2:0.1:2;y=x.^2+3*x+2;plot(x,y) 5分2.内摆线332cos ,2sin x t y t ==解:clear;t=linspace(0,2*pi);x=2*cos(t).^3;y=2*sin(t).^3;plot(x,y) 5分实验二 极限与导数3.求极限2121lim 11x x x →⎛⎫- ⎪--⎝⎭解:clear;syms x;s=limit(2/(x^2-1)-1/(x-1),x,1)s =-1/2 5分4.求函数(ln y x x =阶导数解:syms x;y=x*log(x+sqrt(1+x^2))-sqrt(1+x^2);dy=diff(y,x,1)dy=log(x+(1+x^2)^(1/2))+x*(1+1/(1+x^2)^(1/2)*x)/(x+(1+x^2)^(1/2))-1/(1+x^2)^(1/2)*x 5分二、完成以下实验(每个实验5分,共20分)。

实验三 级数5.求出()()ln 1f x x =+马克劳林展开式的前5项解:clear;syms x;y=log(1+x);f=taylor(y,0,5)f =x-1/2*x^2+1/3*x^3-1/4*x^4 5分6.求级数11(1)(2)n n n n ∞=++∑的和解:clearsyms ns=1/(n*(n+1)*(n+2));symsum(s,n,1,inf)ans =1/4 5分实验四 积分7.计算积分145sin dx x -⎰解:clear;syms x;s=int(1/(4-5*sin(x)),x)s =1/3*log(tan(1/2*x)-2)-1/3*log(2*tan(1/2*x)-1)5分8.选用一种计算数值积分的方法,求数值积分210x e dx -⎰解:法1 复化梯形求积公式x=0:0.01:1;y=exp(-x.^2);s1=trapz(x,y)s1 = 0.7468 5分法2 复化抛物线求积公式先编写M-函数文件function y=ex08(x)y=exp(-x.^2);保存后,在命令 命令运行指令:s2=quad('ex08',0,1)s2 =0.7468法3 牛顿-科兹求积公式s3=quadl('ex08',0,1)s3 =0.7468三、完成以下实验(每个实验5分,共20分)。

大学数学实验教程第二版课后答案第五章

大学数学实验教程第二版课后答案第五章

大学数学实验教程第二版课后答案第五章1、5.下列说法中正确的是()[单选题] *A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案)D.有最小的自然数,也有最小的整数2、13.下列说法中,正确的为().[单选题] *A.一个数不是正数就是负数B. 0是最小的数C正数都比0大(正确答案)D. -a是负数3、9.一棵树在离地5米处断裂,树顶落在离树根12米处,问树断之前有多高()[单选题] *A. 17(正确答案)B. 17.5C. 18D. 204、38.如果m2+m=5,那么代数式m(m﹣2)+(m+2)2的值为()[单选题] * A.14(正确答案)B.9C.﹣1D.﹣65、44、如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形()[单选题] *A.1对B.2对C.3对(正确答案)D.4对6、33、点P(-5,-7)关于原点对称的点的坐标是()[单选题] *A. (-5,-7)B. (5,7)(正确答案)C. (5,-7)D. (7,-5)7、用角度制表示为()[单选题] *30°(正确答案)60°120°-30°8、2、在轴上的点的纵坐标是()[单选题] * A.正数B.负数C.零(正确答案)D.实数9、x+2=3的解为()[单选题] *A. x=1(正确答案)B. x=2C. x=3D. x=410、27.下列计算正确的是()[单选题] * A.(﹣a3)2=a6(正确答案)B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b211、30.圆的方程+=4,则圆心到直线x-y-4=0的距离是()[单选题] *A.√2(正确答案)B.√2/2C.2√2D.212、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ13、已知a+b=3,则代数式(a+b)(a-b)+6b的值是(? ????) [单选题] *A. -3B. 3C. -9D. 9(正确答案)14、19.下列函数在(0,+?? )上为增函数的是(). [单选题] *A.?(x)=-xB.?(x)=-1/X(正确答案)C.?(x)=-x2D.?(x)=1/X15、5.已知集合A={x|x=3k+1,k∈Z},则下列表示不正确的是( ) [单选题] *A.-2∈AB.2 022?AC.3k2+1?A(正确答案)D.-35∈A16、3.(2020·新高考Ⅰ,1,5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( ) [单选题] * A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}(正确答案)D.{x|1<x<4}17、12.下列方程中,是一元二次方程的为()[单选题] *A. x2+3xy=4C. x2=6(正确答案)D. 2x+3=018、5.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是( ) [单选题] *A.关于x轴对称B.关于y轴对称(正确答案)C.关于原点对称D.将原图向x轴的负方向平移了1个单位长度19、8.数轴上一个数到原点距离是8,则这个数表示为多少()[单选题] *A.8或﹣8(正确答案)B.4或﹣4C.8D.﹣420、33.若x2﹣6x+k是完全平方式,则k的值是()[单选题] *A.±9B.9(正确答案)C.±1221、6.下列各图中,数轴画法正确的是()[单选题] *A.B.C.D.(正确答案)22、下列说法中,正确的个数有?①减去一个数等于加上这个数②零减去一个数仍得这个数③有理数减法中被减数不一定比减数或差大④两个相反数相减得零⑤减去一个正数,差一定小于被减数⑥减去一个负数,差不一定大于被减数. [单选题] *A.2个(正确答案)B.3个C.4个D.5个23、15.下列说法中,正确的是()[单选题] *A.若AP=PB,则点P是线段AB的中点B.射线比直线短C.连接两点的线段叫做两点间的距离D.过六边形的一个顶点作对角线,可以将这个六边形分成4个三角形(正确答案)24、6.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点( ) [单选题]* A.(-3,2)B.( 3/2,-1)C.(2/3,-1)(正确答案)D.( -2/3,1)25、为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的( ) [单选题] *A.中位数B.平均数C.众数(正确答案)D.方差26、如果平面a和平面β有公共点A,则这两个平面就相交()[单选题] *A、经过点A的一个平面B、经过点A的一个平面(正确答案)C、点AD、无法确定27、计算-(a-b)3(b-a)2的结果为( ) [单选题] *A. -(b-a)?B. -(b+a)?C. (a-b)?D. (b-a)?(正确答案)28、计算(a2)3的结果是[单选题] *A. a?B. a?(正确答案)C. a?D. 3a229、10.下列四个数中,属于负数的是().[单选题] * A-3(正确答案)B 3C πD 030、7.如图,数轴上点M表示的数可能是()[单选题] * A.5B.﹣6C.﹣6(正确答案)D.6。

实验初中数学试题及答案

实验初中数学试题及答案

实验初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=4答案:B2. 计算下列哪个表达式的结果为负数?A. 5-(-3)B. (-2)-(-4)C. 0-(-5)D. (-3)-5答案:D3. 以下哪个图形是轴对称图形?A. 平行四边形B. 等边三角形C. 矩形D. 不规则多边形答案:B4. 一个数的平方等于该数本身,这个数是?A. 0B. 1C. 0或1D. 以上都不是答案:C5. 一个圆的半径为r,其面积为?A. πrB. πr^2C. 2πrD. πr^3答案:B6. 以下哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A7. 一个等差数列的首项为3,公差为2,其第5项是?A. 13B. 11C. 9D. 7答案:A8. 以下哪个选项是函数y=x^2+2x+1的最小值?A. 0B. 1C. 2D. 3答案:B9. 一个三角形的两边长分别为3和4,且这两边夹角为60度,其面积为?A. 3√3B. 2√3C. √3D. 6答案:B10. 一个正方体的体积为8立方厘米,其棱长为?A. 2厘米B. 4厘米C. 8厘米D. 16厘米答案:A二、填空题(每题4分,共20分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个等腰三角形的底边长为6,两腰长为5,其周长为______。

答案:1613. 一个二次函数的顶点坐标为(1, -4),且开口向上,其解析式为y=a(x-1)^2-4,其中a的值为______。

答案:114. 一个圆的直径为10厘米,其周长为______厘米。

答案:31.415. 一个数列的前三项为1,2,3,且每一项是前一项的两倍,该数列的第5项为______。

答案:16三、解答题(每题10分,共50分)16. 解方程:3x-5=8。

2006年资阳市中考数学试题及答案

2006年资阳市中考数学试题及答案

第1页(共8页)2006年资阳市高中阶段教育学校招生暨初中毕业统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.解题可能用到的参考数据及公式:1.414≈,1.732;二次函数y =ax 2+bx +c (a ≠0)的图象的顶点坐标为(24,24b ac b aa--);数据x 1,x 2,x 3,…,x n 的方差为2222121[()()()]n S x x x x x x n=-+-++- ,其中x表示x 1,x 2,x 3,…,x n的平均数.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:本大题共10个小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一个选项符合题意要求.1. 4的算术平方根是A. 2B. 2±C.D. 2. 计算2a -3(a -b )的结果是 A .-a -3b B .a -3b C .a +3bD .-a +3b3. 数据1,2,4,2,3,3,2的众数是A .1B .2C .3D .44. 正方形、矩形、菱形都具有的特征是 A .对角线互相平分 B .对角线相等C .对角线互相垂直D .对角线平分一组对角5. 已知数据12,-6,-1.2, ,A.20% B.40% C.60% D.80%6. 如果4张扑克按图1-1的形式摆放在桌面上,将其中一张旋转180°后,扑克的放置情况如图1-2所示,那么旋转的扑克从左起是A.第一张B.第二张C.第三张D.第四张图1-1 图1-27. 同时抛掷两枚质地均匀的正方体骰子(骰子每一面的点数分别是从1到6这六个数字中的一个),以下说法正确的是A.掷出两个1点是不可能事件B.掷出两个骰子的点数和为6是必然事件C.掷出两个6点是随机事件D.掷出两个骰子的点数和为14是随机事件8. 若方程x2-4x+c=0有两个不相等的实数根,则实数c的值可以是A. 6B. 5C. 4D. 39. 已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图2所示,那么x的最大值是A.13 B.12C.11 D.1010. 已知函数y=x2-2x-2的图象如图3所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是A.-1≤x≤3 B.-3≤x≤1C.x≥-3 D.x≤-1或x≥3图2 图3第2页(共8页)第3页(共8页)2006年资阳市高中阶段教育学校招生暨初中毕业统一考试数 学第Ⅱ卷(非选择题 共90分)注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接填在题中横线上.11. 绝对值为3的所有实数为____________ . 12. 方程x 2-6x +5=0的解是___________ . 13. 数据8,9,10,11,12的方差S 2为_______. 14. 若方程x + y =3,x - y =1和x – 2my = 0有公共解,则m 的取值为_________ .15. 如图4,已知点E 在面积为4的平行四边形ABCD 的边上运动,使△ABE 的面积为1的点E 共有_______个 .16. 在很小的时候,我们就用手指练习过数数. 一个小朋友按如图5所示的规则练习数数,数到2006时对应的指头是_____________ (填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).图4图5三. 解答题:本大题共9个小题,共72分. 解答应写出必要的文字说明,证明过程或演算步骤.17. (本小题满分7分)计算:11a++221a-.18. (本小题满分7分)某初级中学准备组织学生参加A、B、C三类课外活动,规定每班2人参加A类课外活动、3人参加B类课外活动、5人参加C类课外活动,每人只能参加一项课外活动,各班采取抽签的方式产生上报名单. 假设该校每班学生人数均为40人,请给出下列问题的答案(给出结果即可):(1) 该校某个学生恰能参加C类课外活动的概率是多少?(2) 该校某个学生恰能参加其中一类课外活动的概率是多少?(3) 若以小球作为替代物进行以上抽签模拟实验,一个同学提供了部分实验操作:①准备40个小球;②把小球按2∶3∶5的比例涂成三种颜色;③让用于实验的小球有且只有2个为A类标记、有且只有3个为B类标记、有且只有5个为C类标记;④为增大摸中某类小球的机会,将小球放入透明的玻璃缸中以便观察. 你认为其中哪些操作是正确的(指出所有正确操作的序号)?19. (本小题满分7分)如图6,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB的延长线于点D,求线段BD的长.图6第4页(共8页)第5页(共8页)20. (本小题满分8分)已知一次函数y =x +m 与反比例函数2y x的图象在第一象限的交点为P (x 0,2).(1) 求x 0及m 的值;(2) 求一次函数的图象与两坐标轴的交点坐标.21. (本小题满分8分)如图7,已知某小区的两幢10层住宅楼间的距离为AC =30 m ,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m .假设某一时刻甲楼在乙楼侧面的影长EC =h ,太阳光线与水平线的夹角为α .(1) 用含α的式子表示h (不必指出α的取值范围); (2) 当α=30°时,甲楼楼顶B 点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光 ?图722. (本小题满分8分)某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球. 已知A、B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元. 现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球. 若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1) 如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2) 当k=12时,请设计最省钱的购买方案.23. (本小题满分8分)(1) 填空:如图8-1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连结PN、SM相交于点O,则∠POM=_____度.(2) 如图8-2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60°. 以此为部分条件,构造一个与上述命题类似的正确O命题并加以证明.图8-1图8-2第6页(共8页)24. (本小题满分9分)在矩形ABCD中,已知AB=a,BC=b,P是边CD上异于点C、D的任意一点.(1) 若a=2b,当点P在什么位置时,△APB与△BCP相似(不必证明) ?(2) 若a≠2b,①判断以AB为直径的圆与直线CD的位置关系,并说明理由;②是否存在点P,使以A、B、P为顶点的三角形与以A、D、P为顶点的三角形相似(不必证明) ?第7页(共8页)第8页(共8页)25. (本小题满分10分)如图9,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.注:计算结果不取近似值 .图9第9页(共8页)2006年资阳市高中阶段教育学校招生暨初中毕业统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步的累计分数;2. 给分和扣分都以1分为基本单位;3. 参考答案都只给出一种解法,若考生的解答与参考答案不同,请根据解答情况参考评分意见给分 .一、选择题:每小题3分,共10个小题,满分30分. 1-5. ADBAC ;6-10. BCDCD.二、填空题:每小题3分,共6个小题,满分18分. 11. 3,-3;12. x 1=1,x 2=5;13. 2;14. 1;15. 2;16. 无名指. 三、解答题:共9个小题,满分72分 . 17. 原式=11a ++2(1)(1)a a +- ··········································································· 3分=12(1)(1)a a a -++- ·································································································· 5分=11a -. ··········································································································· 7分18.(1) 18 . ······································································································· 3分(2) 14 .············································································································ 5分(3) ①,③. ······································································································ 7分 19. 连结OC . ·································································································· 1分 ∵ OA =OC ,∴ ∠OCA =∠A =30° ,∴ ∠COD =∠A +∠OCA =60° . ·························· 2分 ∵ CD 切⊙O 于C ,∴∠OCD =90° ,∴ ∠D =90°-60°=30° .································· 4分 ∵ 直径AB =2,∴⊙O 的半径OC =OB =1.·························································· 5分 在 RtΔOCD 中,30°角所对的边OC 等于斜边OD 的一半,∴ OD =2CO =2. ······ 6分 又∵ OB =1,∴ BD =OD -OB =1.········································································· 7分 20. (1) ∵ 点P (x 0,2)在反比例函数y =2x的图象上,∴ 2=2x ,解得x 0=1. ······················································································· 2分∴ 点P 的坐标为(1,2). ················································································ 3分 又∵ 点P 在一次函数y =x +m 的图象上, ∴ 2=1+m ,解得m =1. ···················································································· 4分 ∴ x 0和m 的值都为1 . (无最后一步结论,不扣分)(2) 由(1)知,一次函数的解析式为y =x +1, ····················································· 5分第10页(共8页)取y =0,得x = -1; ························································································· 6分 取x =0,得y =1 . ···························································································· 7分 ∴ 一次函数的图象与x 轴的交点坐标为(-1,0)、与y 轴的交点坐标为(0,1).······· 8分 21. (1)过点E 作EF ⊥AB 于F ,由题意,四边形ACEF 为矩形.························· 1分 ∴EF =AC =30,AF =CE =h , ∠BEF =α,∴BF =3×10-h =30-h . ································· 2分又 在Rt △BEF 中,tan ∠BEF =BFEF , ······························································· 3分∴tan α=3030h -,即30 - h =30tan α. ∴h =30-30tan α. ············································· 4分(2)当α=30°时,h =30-30tan30°=30-303, ······································· 5分∵ 12.7÷3≈4.2, ∴ B 点的影子落在乙楼的第五层 .·········································· 6分 当B 点的影子落在C 处时,甲楼的影子刚好不影响乙楼采光. 此时,由AB =AC =30,知△ABC 是等腰直角三角形, ∴∠ACB =45°, ······························································································ 7分 ∴ 45-3015= 1(小时).故经过1小时后,甲楼的影子刚好不影响乙楼采光. ····································· 8分22. (1) 由题意,去A 超市购买n 副球拍和kn 个乒乓球的费用为0.9(20n +kn )元,去B 超市购买n 副球拍和kn 个乒乓球的费用为[20n + n (k -3)]元, ··············································· 1分由0.9(20n +kn )< 20n + n (k -3),解得 k >10; 由0.9(20n +kn )= 20n +n (k -3),解得 k =10; 由0.9(20n +kn )> 20n +n (k -3),解得 k <10. ······················································ 3分 ∴ 当k >10时,去A 超市购买更合算;当k =10时,去A 、B 两家超市购买都一样;当3≤k <10时,去B 超市购买更合算. ····················································································· 4分(上步结论中未写明k ≥3,不扣分)(2) 当k =12时,购买n 副球拍应配12n 个乒乓球.若只在A 超市购买,则费用为0.9(20n +12n )=28.8n (元);································· 5分 若只在B 超市购买,则费用为20n +(12n -3n )=29n (元); ·································· 6分 若在B 超市购买n 副球拍,然后再在A 超市购买不足的乒乓球, 则费用为20n +0.9×(12-3)n =28.1n (元). ···························································· 7分 显然,28.1n <28.8n <29n .∴ 最省钱的购买方案为:在B 超市购买n 副球拍同时获得送的3n 个乒乓球,然后在A 超市按九折购买9n 个乒乓球.··························································································· 8分23. (1) 90 . ······································································································ 2分 (结论填为90°,不扣分)(2) 构造的命题为:已知等腰梯形ABCD 中,AB ∥CD ,且BC =CD ,∠ABC =60°,若点E 、F 分别在BC 、CD 上,且BE =CF ,连结AF 、DE 相交于G ,则∠AGE =120°. ············· 4分证明:由已知,在等腰梯形ABCD 中,AB ∥CD ,且BC =DA ,∠ABC =60° , ∴∠ADC =∠C =120°. ∵BC =CD ,BE =CF ,∴CE =DF . ······································································· 5分在△DCE 和△ADF中,,120,,D C AD C AD F CE DF =⎧⎪∠=∠=︒⎨=⎪⎩第11页(共8页)∴ △DCE ≌△ADF (S.A.S.) ,∴∠CDE =∠DAF . ·················································· 7分又 ∠DAF +∠AFD =180°-∠ADC =60° ,∴∠CDE +∠AFD =60° ,∴∠AGE =∠DGF =180°-(∠CDE +∠AFD )=180°-60°=120° . ·································· 8分24.(1) 当点P 为CD 中点时,△APB ∽△BCP . ················································ 2分(2) 当a >2b 时:①以AB 为直径的圆与直线CD 相交 .····························································· 3分理由是:∵a >2b , ∴b < 12 a . ∴ AB 的中点(圆心)到CD 的距离b 小于半径 12a . ∴ CD 与圆相交 . ···························································································· 4分②当点P 为CD 与圆的交点时,△ABP ∽△PAD ,即存在点P (两个),使以A 、B 、P 为顶点的三角形与以A 、D 、P 为顶点的三角形相似. ·································································· 5分当a <2b 时:①以AB 为直径的圆与直线CD 相离 . ··························································· 6分理由是:∵a <2b , ∴b > 12a . ∴ AB 的中点(圆心)到CD 的距离b 大于半径 12a . ∴ CD 与圆相离 . ···························································································· 7分②由①可知,点P 始终在圆外,△ABP 始终为锐角三角形. ∴不存在点P ,使得以A 、B 、P 为顶点的三角形与以A 、D 、P 为顶点的三角形相似. ···················································· 9分25. 解:(1) 设l 2的解析式为y =ax 2+bx +c (a ≠0),∵l 1与x 轴的交点为A (-2,0),C (2,0),顶点坐标是(0,- 4),l 2与l 1关于x 轴对称, ∴l 2过A (-2,0),C (2,0),顶点坐标是(0,4),······················································ 1分∴420,420,4.a b c a b c c -+=⎧⎪++=⎨=⎪⎩ ··························································································· 2分∴ a =-1,b =0,c =4,即l 2的解析式为y = -x 2+4 . ··················································· 3分(还可利用顶点式、对称性关系等方法解答)(2) 设点B (m ,n )为l 1:y =x 2-4上任意一点,则n = m 2-4 (*).∵ 四边形ABCD 是平行四边形,点A 、C 关于原点O 对称,∴ B 、D 关于原点O 对称, ············································································ 4分∴ 点D 的坐标为D (-m ,-n ) .由(*)式可知, -n =-(m 2-4)= -(-m )2+4,即点D 的坐标满足y = -x 2+4,∴ 点D 在l 2上. ···························································································· 5分(3) □ABCD 能为矩形.····················································································· 6分过点B 作BH ⊥x 轴于H ,由点B 在l 1:y =x 2-4上,可设点B 的坐标为 (x 0,x 02-4),则OH =| x 0|,BH =| x 02-4| .易知,当且仅当BO = AO =2时,□ABCD 为矩形.在Rt △OBH 中,由勾股定理得,| x 0|2+| x 02-4|2=22,(x 02-4)( x 02-3)=0,∴x 0=±2(舍去)、x 0=±3 . ····························· 7分所以,当点B 坐标为B ( 3 ,-1)或B ′(- 3 ,-1)时,□ABCD 为矩形,此时,点D 的坐标分别是D (- 3 ,1)、D ′( 3 ,1).。

广东省中山市石岐实验小学2024-2025学年度数学六年级上册第五单元 百分数 测试题A卷(无答案)

广东省中山市石岐实验小学2024-2025学年度数学六年级上册第五单元 百分数 测试题A卷(无答案)

六年级上册数学第五单元测试题A 卷一、填空:(20分,每题2分)1.)%()(3660:)(45.0)(18=÷===2.用500粒种子做发芽试验,有25粒没有发芽,发芽率是( )%。

3.5削减它的( )%后是3 ,比( )多37.5%的数是121。

4、甲乙两数的比是5:4,甲数比乙数多( )%,乙数比甲数少( )%。

5.六二班男生人数是女生人数的32,女生人数占全班人数的( )%。

6.六月份用电量比五月份节约12%,是把( )看作“1”,六月份用电量是五月份的( )%。

7.现在价格比原来降低了百分之三十表示( )占( )的百分之三十。

8.七折表示( 分之 ),也就是( )%。

9.甲数比乙数多60%,乙数就比甲数少( )%.10把 、 、 、314%、0.314按从小到大的依次排列是: 二、推断:(10分)1、写成百分数的形式是1.25%。

( ) 2、把30克糖溶解在90克水中,糖水的含糖率是25%。

( ) 3、 米可以写成51%米。

( ) 4、百分数的分子肯定比分母小。

( )5、栽99棵树苗,全部成活,成活率是99%。

( ) 三、选择;把正确答案的序号填在括号里。

(10分) 1、9m 是30m 的( )。

① m ② 30%米 ③ 30%2、把32.5%的百分号去掉,结果( )。

① 扩大到原数的100倍 ② 缩小到原数的 ③ 不变3、六⑴班今日有49名学生出勤,有一位学生请假,今日的出勤率是( )。

① ② 2% ③ 98%4、实际比原安排的产量增加了18%,把( )看作单位“1”。

π31••4131005110012510310014948① 实际的产量 ② 原安排的产量 ③ 实际增加的产量 5、体育彩票的兑奖规定,超过一万元的奖金全部要缴纳20%的个人所得税,某 人幸运地中到一个500万元的巨奖,他要缴纳的税款是( )万元。

① 500×20% ② 500×(1-20%) ③ (500-1)×20% 四、完成下表。

实验小学四年级数学【下册】期中考试试题A卷 含答案

实验小学四年级数学【下册】期中考试试题A卷 含答案

乡镇(街道) 学校班级 姓名 学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…绝密★启用前实验小学四年级数学【下册】期中考试试题A 卷 含答案题 号 填空题 选择题 判断题 计算题 综合题 应用题 总分得 分考试须知:1、考试时间:90分钟,满分为100分(含卷面分2分)。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

3、不要在试卷上乱写乱画,卷面不整洁扣2分。

一、用心思考,正确填空(共10小题,每题2分,共20分)。

1、当两条直线相交成直角时,这两条直线( ),这两条直线的交点叫做( )。

2、填出下表所缺的数。

3、比一百万少十万的数是( ),比一百万多一万的数是( )。

4、光明小学排球队员的身高分别是:160cm 、144cm 、148cm 、156cm 、152cm ,队员的平均身高是( )。

5、12.486按“四舍五入法”保留两位小数是( ),保留一位小数是( ),保留整数是( )。

6、过一点可以画出( )条直线,过两点只能画出( )条直线;从一点出发可以画( )条射线。

7、直线上两点之间的一段叫( ),它有( )个端点。

8、王老板进货,买了16套服装,每套服装145元。

根据条件完成填空。

9、一个数除以29,商是16,并且有最大的余数,余数是( ),这个数是( )。

10、在小数“3.85”中,“8”表示( )。

二、反复比较,慎重选择(共8小题,每题2分,共16分)。

1、8×27×125=27×(8×125)=27000,这里运用了( )。

A 、交换律 B 、结合律 C 、分配律 D 、交换律和结合律2、把直角、钝角、平角、锐角按从大到小的顺序排列起来的是( )。

A 、直角、锐角、平角、钝角 B 、平角、钝角、直角、锐角 C 、钝角、平角、直角、锐角 D 、锐角、直角、钝角、平角3、如果直角三角形的一个锐角是20°,那么另一个角一定是( )。

河南省实验中学2023-2024学年八年级上学期期中数学试题(解析版)

河南省实验中学2023-2024学年八年级上学期期中数学试题(解析版)

2023-2024学年河南省实验中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列实数中,属于无理数的是( )A.B. 0.5C.D.2. 下列各组数据中是勾股数的是( ) A. 6,8,10 B. 0.3,0.4,0.5C.,,D. 5,11,123. 已知是关于、的二元一次方程,则的值为( )A.B.C.D.4. 下列运算正确的是( )A. B. C. D.5. 函数图象上有两点,,则与的大小关系是( )A.B.C.D. 无法确定6. 剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,如果图中点E 的坐标为,其关于y 轴对称的点F 的坐标为,则的值为( )A. 1B.C.D. 07. 在同一平面直角坐标系中,函数和(为常数,)图象可能是( )A. B.C. D.8. 平面直角坐标系内轴,,点A的坐标为,则点B的坐标为( )A. B.C. 或D. 或9. 如图,一大楼的外墙面与地面垂直,点在墙面上,若米,点到的距离是6米,有一只蚂蚁要从点爬到点,它的最短行程是()米A. 16B.C. 15D. 1410. 如图,在直角坐标系中,矩形的边在轴上,在轴上,顶点的坐标为,将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为()A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)11. 比较两数的大小:2___3.(填“<”或“>”)12. 象棋在中国有着三千多年的历史,如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是________.13. 若关于x,y的方程组的解满足,则的值为________.14. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.15. 如图,矩形中,,,点为射线上的一个动点,与关于直线对称,当为直角三角形时,的长为________.三、解答题(本大题共8小题,共75分)16. 计算:(1);(2).17. 下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:解:①×2,得……③第一步②-③,得第二步.第三步将代入①,得.第四步所以,原方程组的解为第五步(1)这种求解二元一次方程组的方法叫做法,以上求解步骤中,马小虎同学第步开始出现错误.(2)请写出此题正确的解答过程.18. 在平面直角坐标系中,点在轴上,点在第一象限,过点作轴的垂线,垂足为,已知点的坐标为,长为2.(1)求,的长.(2)请判断的形状,并说明理由.19. △ABC在平面直角坐标系中位置如图所示,三点在格点上.(1)作出关于y轴对称的;(2)的面积为;(3)在y轴上作点P,使得值最小,并求出点P的坐标.20. 勾股定理是人类早期发现并证明重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一,它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)证明勾股定理据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,请你说说其中的道理.(2)应用勾股定理①应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示4的点,过点作直线垂直于,在上取点,使,以点为圆心,为半径作弧,则弧与数轴的交点表示的数是______.②应用场景2——解决实际问题.如图2,郑州某公园有一秋千,秋千静止时,踏板离地的垂直高度,将它往前推至处时,水平距离,踏板离地的垂直高度,它的绳索始终拉直,求绳索的长.21. 郑州市政府为民生办实事,将污染多年“贾鲁河”进行绿化改造,现需要购买大量的景观树.某苗木种植公司给出以下收费方案:方案一:购买一张会员卡,所有购买的树苗按七折优惠;方案二:不购买会员卡,所有购买的树苗按九折优惠.设该市购买的景观树树苗棵数为x棵,方案一所需费用y1=k1x+b1,方案二所需费用y2=k2x,其函数图象如图所示,请根据图象回答下列问题.(1)k1= ,b1= ;(2)求每棵树苗的原价;(3)求按照方案二购买所需费用的函数关系式y2=k2x,并说明k2的实际意义;(4)若该市需要购买景观树600棵,采用哪种方案购买所需费用更少?请说明理由.22. 如图,正比例函数的图象与一次函数的图象交于点一次函数图象经过点,与y轴交于点C,与x轴的交点为D.(1)求一次函数解析式;(2)一次函数的图象上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,说明理由;(3)如果在y轴上存在一点Q,使是以为底边的等腰三角形,请直接写出点Q的坐标.23. 如图1,已知和为等腰直角三角形,按如图位置摆放,直角顶点C重合.(1)直接写出与的关系;(2)将按如图2的位置摆放,使点A、D、E在同一直线上,求证:;(3)将按如图3的位置摆放,使,,,求的长.2023-2024学年河南省实验中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列实数中,属于无理数的是()A. B. 0.5 C. D.【答案】A【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】解:A、是无理数,符合题意;B、0.5是有理数,不符合题意;C、是分数,不符合题意;D、,是有理数,不符合题意;故选:A.【点睛】本题主要考查了无理数的定义.解题的关键是掌握无理数就是无限不循环小数,初中范围内学习的无理数有:含π的数,开方开不尽的数和无限不循环小数.2. 下列各组数据中是勾股数的是()A. 6,8,10B. 0.3,0.4,0.5C. ,,D. 5,11,12【答案】A【解析】【分析】要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方,据此求解即可.【详解】解:∵,∴6,8,10是勾股数,故A符合题意;与,,均不是整数,不是勾股数,故B,C不符合题意;∵,∴不是勾股数,故D不符合题意故选:A.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理,关键是掌握勾股数:满足的三个正整数,称为勾股数.3. 已知是关于、的二元一次方程,则的值为()A. B. C. D.【答案】A【解析】【分析】根据二元一次方程的定义进行求解即可.【详解】解:∵是关于、的二元一次方程,∴,∴,故选A.【点睛】本题主要考查了二元一次方程的定义,一般地,形如且a、b是常数的方程叫做二元一次方程.4. 下列运算正确是( )A. B. C. D.【答案】C【解析】【分析】本题考查的是二次根式的运算.根据二次根式的加减和除法法则、二次根式的性质与化简对各选项进行逐一分析即可.【详解】解:A、,本选项不符合题意;B、与不能计算,本选项不符合题意;C、,本选项符合题意;D、,本选项不符合题意.故选:C.5. 函数图象上有两点,,则与的大小关系是()A. B. C. D. 无法确定【答案】A【解析】【分析】根据得出函数值随的增大而减小,再根据,即可比较与的大小关系.【详解】解:,随的增大而减小,,,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.6. 剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,如果图中点E的坐标为,其关于y轴对称的点F的坐标为,则的值为( )A. 1B.C.D. 0【答案】B【解析】【分析】本题考查坐标与图形对称变化,利用轴对称的性质,求出m,n可得答案.【详解】解:∵,关于y轴对称,∴,∴,故选:B.7. 在同一平面直角坐标系中,函数和(为常数,)的图象可能是( )A. B.C. D.【答案】D【解析】【分析】根据正比例函数和一次函数的性质,可以得到函数和的图象经过哪几个象限,本题得以解决.【详解】解:∵,∴函数是经过原点的直线,经过第二、四象限,函数是经过第一、三、四象限的直线,故选:D【点睛】本题考查正比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用正比例函数和一次函数的性质解答.8. 平面直角坐标系内轴,,点A的坐标为,则点B的坐标为( )A. B.C. 或D. 或【答案】D【解析】【分析】根据平行于横轴上的点纵坐标相等分析计算即可.【详解】∵轴,∴A点与B点纵坐标相同,横坐标之差等于其距离,B点横坐标,或,故B点坐标为:或.故选:D【点睛】本题考查平行于坐标轴的线上的点的坐标特征,能够掌握数形结合思想是解决本题的关键.9. 如图,一大楼的外墙面与地面垂直,点在墙面上,若米,点到的距离是6米,有一只蚂蚁要从点爬到点,它的最短行程是()米A. 16B.C. 15D. 14【答案】B【解析】【分析】可将教室的墙面与地面展开,连接,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P作于G,连接,∵米,米,∴米,∴(米),∴(米)∴这只蚂蚁的最短行程应该是米,故B正确.故选:B.【点睛】本题主要考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决.10. 如图,在直角坐标系中,矩形的边在轴上,在轴上,顶点的坐标为,将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为()A. B. C. D.【答案】A【解析】【分析】先证明(设),根据勾股定理列出,求得,即可解决问题.【详解】解:设,∵矩形沿对角线翻折,∴,,∴,∴,∴,∵,∴,,∴,在中,,∴,解得:,∴,∴点的坐标为.故选:A.【点睛】本题考查翻折变换的性质及其应用问题.解题的关键是掌握翻折变换的性质,矩形的性质及勾股定理.二、填空题(本大题共5小题,每小题3分,共15分)11. 比较两数的大小:2___3.(填“<”或“>”)【答案】>【解析】【分析】将两个数平方,再根据两个正实数平方大的这个正实数也大比较即可.【详解】解:∵,,又∵,∴.故答案为:.【点睛】本题考查实数的大小比较.掌握比较实数大小的方法是解题关键.12. 象棋在中国有着三千多年的历史,如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是________.【答案】【解析】【分析】本题考查了平面直角坐标系位置确定,根据给定的坐标建立平面直角坐标系可得“马”的坐标.【详解】解:由“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是,故答案为:.13. 若关于x,y的方程组的解满足,则的值为________.【答案】2022【解析】【分析】本题考查二元一次方程组的解,将原方程组中的两个方程相加可得,即,再将代入计算即可.【详解】解:,得,,即,又∵,∴,解得.故答案为:2022.14. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.【答案】【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.15. 如图,矩形中,,,点为射线上的一个动点,与关于直线对称,当为直角三角形时,的长为________.【答案】2或18【解析】【分析】分两种情况:①当E点在线段上时,②当E点在线段的延长线上时,利用全等三角形的判定和性质进行解答即可,熟练掌握三角形全等的判定和性质,活用勾股定理是解题的关键.【详解】解:分两种情况讨论:①当E点在线段上时,如图所示:∵矩形中,,,与关于直线对称,∴,,,∵,∴,∴三点共线,∵∴∵∴;②当E点在线段的延长线上,且经过点B时,如图所示:∵,∴,在和中,,∴,∴,∵∴;综上所知,的长为2或18,故答案为:2或18.三、解答题(本大题共8小题,共75分)16. 计算:(1);(2).【答案】(1)(2)【解析】【分析】本题结合完全平方公式和平方差公式,考查了二次根式的混合运算,(1)先进行乘方运算和去绝对值,然后把化简后合并即可;(2)先根据完全平方公式和平方差公式计算,然后合并即可.【小问1详解】解:原式;【小问2详解】原式17. 下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:解:①×2,得……③第一步②-③,得第二步.第三步将代入①,得.第四步所以,原方程组的解为第五步(1)这种求解二元一次方程组的方法叫做法,以上求解步骤中,马小虎同学第步开始出现错误.(2)请写出此题正确的解答过程.【答案】(1)加减消元法,第四步(2)见解析【解析】【分析】(1)根据解方程组的特点判断,注意系数化为1时的计算.(2)按照解方程组的步骤求解即可【小问1详解】根据解题步骤分析,这种求解方程组的方法是加减消元法,在第四步系数化为1时,出错,故答案为:加减消元法,第四步.【小问2详解】方程组:解:①×2,得……③,②-③,得,解得.将代入①,得3.解得x=.所以,原方程组的解为.【点睛】本题考查了二元一次方程组的解法,熟练掌握方程组的解法是解题的关键.18. 在平面直角坐标系中,点在轴上,点在第一象限,过点作轴的垂线,垂足为,已知点的坐标为,长为2.(1)求,的长.(2)请判断的形状,并说明理由.【答案】(1),(2)是直角三角形,理由见解析【解析】【分析】(1)由题意可得,,利用勾股定理即可求解;(2)由勾股定理可求得,利用勾股定理的逆定理进行判断即可.【小问1详解】解:点的坐标为,轴,,,,;【小问2详解】解:是直角三角形,理由如下:,,轴,,由(1)得,,,,,即,是直角三角形.【点睛】本题主要考查坐标与图形,解题的关键是对勾股定理及其逆定理的掌握与运用.19. △ABC在平面直角坐标系中的位置如图所示,三点在格点上.(1)作出关于y轴对称的;(2)的面积为;(3)在y轴上作点P,使得值最小,并求出点P的坐标.【答案】(1)见解析(2)(3)作图见解析,点P坐标为【解析】【分析】本题主要考查作图---轴对称变换,利用轴对称变换的定义和性质和待定系数法求一次函数解析式:(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接即可;(2)用矩形的面积减去周围三个三角形的面积即可;(3)作点B关于y轴的对称点,连接,与y轴的交点即为所求,利用待定系数法求出所在直线解析式,然后求出时y的值即可得出点P的坐标,根据轴对称的性质和两点之间线段最短即可说明理由.【小问1详解】解:如图所示,即为所求.【小问2详解】△ABC的面积为,故答案为:;【小问3详解】如图所示,点P即为所求,点B关于y轴的对称点坐标为,设所在直线解析式为,则,解得,∴所在直线解析式为,当时,,∴点P坐标为,根据轴对称的性质知,由两点之间线段最短知最小,则最小.20. 勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一,它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)证明勾股定理据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,请你说说其中的道理.(2)应用勾股定理①应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示4的点,过点作直线垂直于,在上取点,使,以点为圆心,为半径作弧,则弧与数轴的交点表示的数是______.②应用场景2——解决实际问题.如图2,郑州某公园有一秋千,秋千静止时,踏板离地的垂直高度,将它往前推至处时,水平距离,踏板离地的垂直高度,它的绳索始终拉直,求绳索的长.【答案】(1)见解析(2)①;②绳索的长为【解析】【分析】(1)用含、的式子表示2个图中空白部分的面积,即可得出结论;(2)①根据勾股定理求出,根据实数与数轴解答即可.②设秋千的绳索长为,根据题意可得,利用勾股定理可得,即可得到结论.【小问1详解】解:由左图可知:,即,由右图可知:,即...即在直角三角形中斜边的平方等于两直角边的平方和.【小问2详解】解:①在中,,,点表示的数是,故答案为:;②,,.设秋千的绳索长为,根据题意可得,利用勾股定理可得.解得:.答:绳索的长为.【点睛】本题主要考查了勾股定理的应用,正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方是解题的关键.21. 郑州市政府为民生办实事,将污染多年的“贾鲁河”进行绿化改造,现需要购买大量的景观树.某苗木种植公司给出以下收费方案:方案一:购买一张会员卡,所有购买的树苗按七折优惠;方案二:不购买会员卡,所有购买的树苗按九折优惠.设该市购买的景观树树苗棵数为x棵,方案一所需费用y1=k1x+b1,方案二所需费用y2=k2x,其函数图象如图所示,请根据图象回答下列问题.(1)k1= ,b1= ;(2)求每棵树苗的原价;(3)求按照方案二购买所需费用的函数关系式y2=k2x,并说明k2的实际意义;(4)若该市需要购买景观树600棵,采用哪种方案购买所需费用更少?请说明理由.【答案】(1)21,3000;(2)每棵树苗的原价30元;(3)y2=27x,k2的实际意义是:每棵树苗打九折后的价格;(4)该市需要购买景观树600棵,采用方案一购买所需费用更少.理由见解析【解析】【分析】(1)根据题意和函数图象中的数据,可以得到k1和b1的值;(2)根据(1)中的结果和题意,可以计算出每棵树苗的原价;(3)根据函数图象中的数据和题意,可以得到函数关系式y2=k2x,并说明k2的实际意义;(4)将x=600代入y1和y2,然后比较大小,即可解答本题.【详解】解:(1)由图象可得,函数y1=k1x+b1,过点(0,3000),(200,7200),则,解得:,故答案为:21,3000;(2)由(1)可得,每棵树苗按七折优惠的价格是21元,∴每棵树苗的原价是21÷0.7=30(元),即每棵树苗的原价30元;(3)∵方案二中的树苗打九折优惠,∴按照方案二购买的每棵树苗的价格为30×0.9=27(元),∵方案二:不购买金卡,所有购买的树苗按九折优惠,当x=0时,y2=0,∴y2=27x,k2的实际意义是:每棵树苗打九折后的价格;(4)该市需要购买景观树600棵,采用方案一购买所需费用更少,理由:由(1)(3)可知,y1=21x+3000,y2=27x,当x=600时,y1=21×600+3000=15600,y2=27×600=16200,∵15600<16200,∴该市需要购买景观树600棵,采用方案一购买所需费用更少.【点睛】本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22. 如图,正比例函数的图象与一次函数的图象交于点一次函数图象经过点,与y轴交于点C,与x轴的交点为D.(1)求一次函数解析式;(2)一次函数的图象上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,说明理由;(3)如果在y轴上存在一点Q,使是以为底边的等腰三角形,请直接写出点Q的坐标.【答案】(1)一次函数解析式为(2)存在,P点的坐标或(3)点Q的坐标为【解析】【分析】(1)由待定系数法即可求解;(2)由,即可求解;(3)由得:,即可求解.【小问1详解】解:∵正比例函数的图象与一次函数的图象交于点,∴可有,解得,∴A点的坐标;∵一次函数的图象过点和点则有,解得:,∴一次函数解析式为;【小问2详解】解:存在,理由如下:设点,对于一次函数,令,则有,解得,∴点,根据题意可知:,解得,当时,,当时,,∴P点坐标或;【小问3详解】解:设点,则,即,解得:,即点Q的坐标为:.【点睛】本题主要考查了正比例函数图象上点的坐标特征、待定系数法求函数解析式、一次函数图象与坐标轴交点以及一次函数几何问题等知识,解题关键是熟练掌握相关知识,并运用数形结合的思想分析问题.23. 如图1,已知和为等腰直角三角形,按如图的位置摆放,直角顶点C重合.(1)直接写出与的关系;(2)将按如图2的位置摆放,使点A、D、E在同一直线上,求证:;(3)将按如图3位置摆放,使,,,求的长.【答案】(1)且(2)见解析(3)【解析】【分析】对于(1),先证明≌即可得出数量关系,再根据角之间的关系得出位置关系;对于(2),设交于O,先证明,可得结论;对于(3),连接,首先证明,利用勾股定理求出线段,再证明≌推出,即可解决问题.【小问1详解】结论:且.理由:如图1中,延长交一点O.∵和为等腰直角三角形,∴,,∴,∴≌,∴,.∵,∴,∴.【小问2详解】如图2中,设交于O.由(1)可知≌,∴,.∵,∴,∴.∵,,∴,即,∴;【小问3详解】如图3中,连接,∵,,∴,.∵,∴.∵,,∴.∵,∴.∵,,∴≌,∴,∴.【点睛】本题主要考查了三角形综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,正确寻找全等三角形解决问题,属于中考常考题型.。

数学实验课程全部实验答案

数学实验课程全部实验答案

主要涉及的内容有:最基本的矩阵运算(填空),线性方程组(左乘右乘问题)、积分函数、符号变量定义及结果输出形式、多项式回归函数输出结果分析、线性回归函数输出结果分析、多项式的线性运算等相关内容。

实验一:(1)用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. function bubble_sortA=[10 5 64 8 464 35 14 666 57 784]; l=length(A); for i=1:l-1 for j=i+1:l if A(i)>A(j) t=A(i); A(i)=A(j); A(j)=t; end end end B=A实验结果: >> bubble_sort B =5 8 10 14 35 57 64 464 666 784 (2)有一个4*5矩阵,编程求出其最大值及其所处的位置. function findmax(A) a=max(max(A)) [x,y]=find(A==a) 实验结果:>> findmax([54 8 64 999;5496 88 97 6;554 686 5666 655;878 5 87 5454;588 544 5466 3364]) a =5666 x = 3 y = 3 (3)编程求∑=201!n nfunction f=fun3(n) s=1;while n<=20 s=s*n n=n+1; end>> f=fun3(1) f =2.4329e+018(4)有一函数y xy x y x f 2sin ),(2++=,写一程序,输入自变量的值,输出函数值. function f=fun4(x,y) f=x^2+sin(x*y)+2*y end 实验结果: >> f=fun4(2,3) f = 9.7206 f = 9.7206 实验二:1. 绘制如下几种数学曲线(并调制a,b,c,观察图形的变化)(1) 笛卡尔曲线213t atx +=,2213t at y +=(axy y x 333=+) >> syms x y>> a=[1 2 3 4];>> f1=x^3+y^3-3*a(1)*x*y; >> f2=x^3+y^3-3*a(2)*x*y; >> f3=x^3+y^3-3*a(3)*x*y; >> f4=x^3+y^3-3*a(4)*x*y;>> subplot(2,2,1); ezplot(f1) >> subplot(2,2,2);ezplot(f2) >> subplot(2,2,3);ezplot(f3) >> subplot(2,2,4);ezplot(f4)(2) 蔓叶线221t at x +=,231t at y +=(x a x y -=32)>> a=[1 2 3 4];>> f1=y^2-(x^3)/(a(1)-x); >> f2=y^2-(x^3)/(a(2)-x); >> f3=y^2-(x^3)/(a(3)-x); >> f4=y^2-(x^3)/(a(4)-x);>> subplot(2,2,1); ezplot(f1) >> subplot(2,2,2); ezplot(f2) >> subplot(2,2,3);ezplot(f3) >> subplot(2,2,4);ezplot(f4)(3) 星形线t a x 3cos =,t a y 3sin =(323232a y x =+) >> t=0:0.1:2*pi; >> a=[1 2 3 4];>> x1=a(1)*(cos(t).^3); >> y1=a(1)*(sin(t).^3); >> subplot(2,2,1); >> plot(x1,y1)>> x2=a(2)*(cos(t).^3); >> y2=a(2)*(sin(t).^3);>> subplot(2,2,2);plot(x2,y2) >> x3=a(3)*(cos(t).^3); >> y3=a(3)*(sin(t).^3);>> subplot(2,2,3);plot(x3,y3) >> x4=a(4)*(cos(t).^3); >> y4=a(4)*(sin(t).^3);>> subplot(2,2,4);plot(x4,y4)(4) 心形线)cos 1(θ+=a r >> a=[1 2 3 4];>> theta=0:0.1:2*pi;>> r1=a(1)*(1+cos(theta)); >> r2=a(2)*(1+cos(theta));>> r3=a(3)*(1+cos(theta)); >> r4=a(4)*(1+cos(theta));>> subplot(2,2,1);polar(r1,theta) >> subplot(2,2,2);polar(r2,theta) >> subplot(2,2,3);polar(r3,theta) >> subplot(2,2,4);polar(r4,theta)(5) 圆的渐开线)cos (sin ),sin (cos t t t a y t t t a x -=-= >> syms x y >> a=[1 2 3 4];>> x1=a(1).*(cos(t)-t.*sin(t)); >> x2=a(2).*(cos(t)-t.*sin(t)); >> x3=a(3).*(cos(t)-t.*sin(t)); >> x4=a(4).*(cos(t)-t.*sin(t)); >> y1=a(1).*(sin(t)-t.*cos(t)); >> y2=a(2).*(sin(t)-t.*cos(t)); >> y3=a(3).*(sin(t)-t.*cos(t)); >> y4=a(4).*(sin(t)-t.*cos(t)); >> subplot(2,2,1);plot(x1,y1) >> subplot(2,2,2);plot(x2,y2) >> subplot(2,2,3);plot(x3,y3) >> subplot(2,2,4);plot(x4,y4)2.(2)绘制球面4222=++z y x 与柱面1,1,1222222=+=+=+z y z x y x 的图像。

安徽02-13年中考数学试题分类解析专题4:图形的变换.

安徽02-13年中考数学试题分类解析专题4:图形的变换.

一、选择题1. (2003安徽省4分)(华东版教材试验区试题)下面是空心圆柱体在指定方向上的视图,正确的是【】A:B:C:D:【答案】C。

【考点】简单几何体的三视图。

【分析】找到从正面看所得到的图形即可,注意所有的棱都应表现在主视图中:圆柱的主视图是矩形,里面有两条用虚线表示的看不到的棱,故选C。

2. (2004安徽省4分)(华东版教材实验区试题)如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是【】.(A)△OCD (B)△OAB (C)△OAF (D)△OEF【答案】C。

【考点】平移的性质。

【分析】根据平移的性质,结合图形,对图中的三角形进行分析,求得正确答案:△OCD、△OEF、△OAB方向发生了变化,不属于平移得到;△ODE、△OAF形状和大小没有变化,属于平移得到。

∴可以由△OBC平移得到的是△ODE,△OAF。

故选C。

3. (2005安徽省大纲4分)用两个完全相同的直角三角板,不能拼成下列图形的是【】A、平行四边形B、矩形C、等腰三角形D、梯形【答案】D。

【考点】直角三角形的性质。

【分析】当把完全相同的两块三角板拼成的图形有三种情况:①当把一相同直角边重合,且两个直角的顶角也重合时,所成的图形是等腰三角形;②当把一相同直角边重合,且两个直角的顶角不重合时,所成的图形是平行四边形;③当斜边重合,且两个三角形的非同角的顶点重合时,所成的图形是矩形。

但不能形成梯形。

故选D。

4. (2005安徽省课标4分)小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近八点的是【】【答案】D。

【考点】镜面对称。

【分析】根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称。

所以,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,所以应该是C或D答案之一,这两个答案中更接近八点的应该是第四个图形。

专题二——统计和概率应用1

专题二——统计和概率应用1

专题二 统计和概率应用一、 考点导析现实生活总是会和各种数据、图表等统计知识相联系,通过对数据的统计、分析和处理,进而决策,既能考查学生的分析能力,也能考查学生运用知识解决实际问题的能力. 二、 中考动向统计与概率知识的应用,是近几年中考的热点问题,题目涉及填空、选择及解答题的各个方面,试题属于中等难度,分值在15分左右.本专题就近几年各省市中考题中常见的几种类型题进行探究. 三、 点例解析♦ 题型1:用样本特征估计总体特征. 【考例1】(2006江西)小谢家买了一辆小轿车,小谢连续记录了七天每天行驶路程如下表.请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)大约要行驶多少千米路程?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元? 【点拨】(1)先求出这七天平均每天行驶的路程,把这个路程看作小谢家小轿车每天行驶的路程,可求出总路程;(2)先求出每公里用油量,就可求出小谢家一年的汽油费. 【略解】解:(1)这七天中平均每天行驶的路程为: 463936505491347++++++=50(千米).∴30×50=l500(千米),∴小谢家小轿车每月大约要行驶1500千米. (2)小谢一家一年的汽油费用是:150012100⨯×8×3.45=4968元. 【拓展1】(2007贵州)某养鱼专业户与客户签订购销合同,对自己鱼塘中的鱼的重量进行估计,第一次捞出100条鱼,称其重量为186千克,将鱼做好记号放入塘中,当它们完全混合后又捞出200条鱼,称其重量为384千克,且带有记号的鱼有10条,则鱼塘中估计有多少条鱼?鱼塘中鱼共重多少千克? 【略解】(1)设鱼塘中有鱼x 条,则10010x 200=,解之得x=2000,∴鱼塘中有鱼2000条;(2)平均每条鱼重:186384 1.86101.910020010+-⨯≈+-,1.9×2000=3800(千克),∴鱼塘中鱼共重3800千克.题型2:利用图表信息解决实际问题 【考例2】(2007巴中)巴中市进行课程改革已经五年了,为了了解学生对数学实验教材的喜欢程度,现对某中学初中学生进行了一次问卷调查,具体情况如图2-1所示:①已知该校初一共有学生480人,求该校初中学生总数. ②求该校初二学生人数及其扇形的圆心角度数.③请补全统计表,并制作条形统计图来反映统计表中的内容. ④请计算不喜欢此教材的学生的概率,并对不喜欢此教材的同初一 初二 初三图2-1学提出一条建议,希望能通过你的建议让他喜欢上此教材. 【点拨】(1)认真观看图表,从图表中获取信息易得出结论. 【略解】(1)480÷40%=1200(人); (2)1200×(1-40%-28%)=384(人),360°×0.32=115.2°;(3)补全统计表和制作的条形统计图如下;(4)1001120012=≈8.33%, 即不喜欢此教材的学生的概率是8.33%, 建议如:“此教材贴近生活,易学易懂”,“此教材图文并茂,很有情趣”.(答案不唯一). 【拓展2】(2007内江)学习完统计知识后,小兵就本班同学的上学方式进行调查统计.如图2-3是他通过收集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)该班共有 名学生;(2)将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是 度;(4)若全年级共1000名学生,估计全年级步行上学的学生有 名;(5)在全班同学中随机选出一名学生来宣读交通安全法规,选出的恰好是骑车上学的学生的概率是 . 【略解】(1)全班学生人数: 20÷50%=40(人);(2)补充图形如图所示;(3) “骑车”部分扇形所对应的圆心角是:360°×(1-20%-50%)=108°;(4) 估计全年级步行上学的学生有1000×20%=200;(5)选出骑车上学的学生的概率是:12÷40=30%.♦ 题型3:游戏的公平性 【考例3】(2006成都)小明、小芳做一个“配色”的游戏,左图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色,同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.【点拨】看一个游戏是否公平,只要看游戏的双方是否各有50%的胜率,如果是,游戏就公平,如果不是,游戏就不公平,就有修改游戏规则的必要. 【略解】(1)用列表法表示该游戏所有可能出现的结果如下:喜欢程序 非常喜欢喜欢 不喜欢人 数 600人 500人100人乘车50%步行 20% 骑车 9) 图2-3 20%9乘车 步行 骑车 上学方式人数4 8 121620 拓展2图 图2-4 图2-2由图表可知该游戏所有可能出现的结果有12种;(2)由表可知:配成紫色(即小芳获胜)的概率是31124=,配成绿色(即小明获胜)的概率是212=16,两人获胜的概率不相等,因而不公平,该游戏规则偏向小芳.即小芳获胜的机会更大. 【拓展3】(2007 泸州)在一个不透明的盒子里装着分别标有数字1,2,3,4的四个完全相同的小球,现在甲、乙两位同学做游戏,游戏规则是:“甲先从盒子里随机摸出一个小球,记下小球上的数字后放回,乙再从盒子中随机摸出一个小球,也记下球上的数字放回,则游戏结束.若记下的数字甲比乙大,则甲获胜;若记下的数字甲不比乙大,则乙获胜”. (1)用树状图分析此游戏有多少种可能出现的结果;(2)该游戏规则对甲、乙双方公平吗?说明理由;如果不公平,怎样修改规则,使其对甲、乙双方都公平. 【略解】(1)用树状图分析如图2-5,由图可知,此游戏有16种等可能出现的结果.(2)P (甲比乙大)=63168=,P (甲不比乙大)=105168=,∴该游戏规则不公平.乙获胜的机会较大.可作如下的修改:“…,若记下的数字谁大则谁获胜,若一样大,则不分胜负,重新开始游戏.”这样,甲、乙两人获胜的概率都是38,对双方都公平.小结:通过本专题的探究,使我们进一步懂得数据的分析、处理的常用方法,为解决生活中与我们息息相关的类似问题提供了的范本. ♦ 四、中考真题 1.(2007 德阳)某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为6(分2),两位女生的成绩分别为17分,15分.则这个学习小组5位同学考试分数的标准差为( )B.2D.6答案:B2.(2007 成都)某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时. 答案:2.46,2.5;3.(2007 重庆)为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育5甲乙甲乙12341234123443214321拓展3图锻炼情况绘制成了如图2-5所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为 . 答案:174.(2007 成都)已知小明家五月份总支出共计1200元,各项支出如图2-6所示,那么其中用于教育上的支出是 元. 答案:2165.(2006泸州)江北水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下: (1)计算这10户家庭该月平均用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少立方米? 解答:(1)1021321431721810⨯+⨯+⨯+⨯+=14(m 3),∴这10户家庭该月平均用水量为14m 3;(2)14×500=7000m 3.∴该小区居民每月共用水7000m 3. 6.(2007 绵阳)小明对本班同学上学的交通方式进行了一次调查,他根据采集的数据,绘制了如图2-7所示的统计图1和图2.请你根据图中提供的信息,解答下列问题:(1)计算本班骑自行车上学的人数,补全图1的统计图;(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比);(3)观察图1和图2,你能得出哪些结论?(只要求写出一条).答案:(1)∵ 小明所在的全班学生人数为14÷28% = 50人,∴ 骑自行车上学的人数为50-14-12-8 = 16人;其统计图如图1.(2)乘公共汽车、骑自行车、步行、其它所占全班的比分别为14÷50,16÷50,12÷50,8÷50即28%,32%,24%,16%,它们所对应的圆心角分别是100.8︒,115.2︒,86.4︒,57.6︒,其统计图如40-21中图2.(3)小明所在的班的同学上学情况是:骑自行车的学生最多;通宿生占全班的绝大多数;住校或家长用车送的占少数.7.(2007 德阳)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个.已知从中任意摸出1个球是白球的概率为12. (1)求口袋里有多少个红球;(2)求从袋中一次摸出2个球,得一红一白的概率.要求画月用水量(m 3)10 13 14 17 18户数2 23 2 1 图1 图2 图1 图2 图2-7出树状图. 略解:(1)设袋中有x 个红球,据题意得:21212=++x ,解得x=1.∴袋中有红球1个.(2)画树状图如右图所示,∴P (摸得一红一白)41123==.8.(2006眉山)某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图2-8所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析?(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少? 解答:(1)共抽取了30+60×2+45+70+35=300(名). (2)357010035300⨯%%+=,∴该年的优生率大约为35﹪,30060302200015400⨯--=300.∴及格人数大约有15400名 9.(2007 眉山)如图2-9所示,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由. 答案:(1)树状图和列表分析如右图所示: (2)出现数字之和为偶数和奇数的概率分别为3162=.∴这个游戏对甲、乙两人公平. 五、08展望1.2008年的北京,华光璀璨,广告牌上“北京欢迎你”几个字是霓虹灯,几个字一个接一个地亮起来,直至全部亮起来再循环,则路人一眼望去能够看全的概率是( )A.13B.14C.15D.16答案:C2.抛掷两枚如图2-10所示的正四面体骰子,所得点数之和出现的概率最大的是( ).A.5B.6C.7D.一样大黑红白2白1第2小球第1小球白1 白2 黑白1 白2 红白1 红 黑白2 红 黑图2-8图2-9 443221图2-10答案:A3.甲、乙、丙、丁四名运动员参加4×100米接力赛,•甲必须为第一接力棒或第四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( ) A .3种 B .4种 C .6种 D .12种 答案:D4.如图2-11-⑴所示,是某城市三月份1至10日的最低气温随时间变化的图象. ⑴ 根据图(1)中提供的信息,在图(2)中补全直方图; ⑵ 这 10天最低气温的众数 是 ℃,最低气温的中位数是 ℃,最低气温的平均数是 ℃. 答案:(1)补图略;(2)2,0,05.小刚与小亮一起玩一种转盘游戏.他们用两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止.若两指针指的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小刚获胜的概率是( ).A .12B 、49C 、59D 、23答案:B6.某电脑公司的王经理对2008年4月份电脑的销售情况做了调查,情况如下表.请你回答下列问题:(1)2008年4月该电脑公司销售电脑价格的众数是 ,本月平均每天销 售电脑 台;(2)如果你是该公司的经理,根据以上信息,应该如何组织货源?略解:(1)3800元,5;(2)根据表中信息,3800元的电脑卖得最好,说明大家都很喜欢这个价位的电脑,应该多进一些,6000元的销量小,应该少进一些.(答案不唯一) 7.某公司员工的月工资情况统计如下表所示,(1)分别计算该公司员工月工资的平均数,中位数和众数.(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由;(3)请画出一种你认为适合的统计图来表示上面表格中的数据.略解:(1)平均数是:500024000420008150020100087004x 2482084⨯+⨯+⨯+⨯+⨯+⨯=+++++=1800(元),中位数是1500元,众数是1500元;(2)因为中位数和众数反映的是员工工资的中间水平和多数水平.所以用中位数或众数代表该公司员工的月工资水平更为合适,(3)用条形统计图表示上面表格中的数据如下:每台价格(元) 6000 4500 3800 3000 销量(台) 20 40 60 30员工人数 2 4 8 20 8 4月工资(元) 5000 4000 2000 1500 1000 700 第7题图图2-118.雁江一中七年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如图2-13的统计图表,请你根据图表中的信息回答下列问题: (1)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数. 略解:(1)10%;40;(2)人均进球数8271645748325214782⨯+⨯+⨯+⨯+⨯+⨯==+++++.(3)设参加训练前的人均进球数为x 个,由题意得:(125%)5x +=,解得:4x =.答:参加训练前的人均进球数为4个. 9.有四张背面相同的纸牌A ,B ,C ,D ,其正面分别划有四个不同的稽核图形,如图2-14所示.小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张. (1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A 、 B 、C 、D 表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.略解:(1)用树状图分析两次摸牌所有可能出现的结果如右;(2)P (两张中心对称图形)=41164=.10.甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图2-15所示,游戏规定,转动两个转盘停止后,•指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由. 略解:(1)用列表分析两转盘所指两数之和的所有情况如下: 由表可知,所以可能结果共有12种,指针所指的两个数字之和为奇数的结果有6种,∴P (和为奇数)=50%,进球数(个) 8 7 6 5 4 3 人 数21478212 3 4第一次摸的牌第二次摸的牌篮球立定跳远长跑 铅球60%20%10% 项目选择情况统计图图2-13图2-14 图2-15(和为偶数)=50%,∴这个游戏规则对双方是公平的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ij n×n
ij
否则a =0。要求 A是对称阵,且 A的主对角元素为 0。
ij
四、建立数学模型( 20分) 1.出租汽车问题:在仅有两个城市 A和 B的岛国上,有一家汽车出租公司,该公司只有两个营业部。其 中一个设在城市 A,另一个设在城市B。每天,A城营业部可出租汽车的10%被顾客租用驾驶到B城,而 B 城营业部可出租汽车的12%被顾客驾驶到了 A城。通常情况下,公司每周做一次整体调整,周日 A城营业 部出租汽车数量为120辆,而 B城营业部汽车数为 150辆,一周以后两个营业部汽车数量再次调整恢复。 试建立第k天和第k+1天两个城市汽车数量变化规律的数学模型。如果你对周日两营业部的汽车数量分配 方案提出合理化建议,该公司将会乐意接受。
n 10 10
a0=5,b0=2;输出数据 a=3.3290,b= 3.3290。
3.假设一个团队有n个人( n<365), “n个人之中至少有两人生日同一天”概率列表如下 n 30 40 50 60 P 0.7063 0.8912 0.9704 0.9941 编写程序模拟这一随机现象,程序功能如下:输入正整数n;产生n个1~365的随机正整数,代表 n个人的 生日,输出n阶矩阵 A=(a ) 记录有两人生日相同这一事件,若第 i个人与第j个人生日相同,则 a =1,
3.下面程序的功能是绘制一空间区域的边界曲面。写出该空间区域的数学表达式并说明程序所用数学 原理和算法(操作步骤)。 r=(0:20)/20;theta=(0:72)*pi/36; x=r'*cos(theta);y=r'*sin(theta); z1=sqrt(x.^2+y.^2); z2=1+sqrt(1-x.^2-y.^2); mesh(x,y,z1),hold on mesh(x,y,z2) axis off
三、程序设计( 30分) 1.利用ezplot命令,画函数 f ( x) = x sin x 在 [ −π , π ] 上的图形,写出MATLAB程序。
2 2
syms x f =x^2*sin(x^2) ezplot(f,[-pi,pi])

1 (an + bn ) an +1 = 2 2. 给定非负实数 a , b 满足a ≠b , 按递推公式 , 产生的数列{a }, (n = 0,1, 2,) , 0 0 0 0 n b = a b n n n +1 {b }称为高斯算术 -几何平均数列。试写出用 for-end语句计算a 和b 的MATLAB程序。例如输入数据
1 3 2 3 1 2 1 2 3
3 3
1
2
3

A)左右前后上下; B)上下前后左右; C)前后上下左右; D)前后左右上下 3. 某城市电视塔地理位置: 北纬30度35.343分, 东经104度2.441分, 在MATLAB中用变量B=[30 35.343] 表达纬度,用 L=[104 2.441]表达经度。为了将经纬度数据转化为以度为单位的实数,下面正确的语句 是( D ) A)P=B(1)+B(2),Q=L(1)+ L(2); B)P = 60*B(1) + B(2), Q=60*L(1)+L(2); C)P=B(1)+B(2)/60, Q=L(1)+L(2); D)P = B(1) + B(2)/60, Q=L(1)+L(2)/60。 4.用MATLAB随机产生一个 60到 100的正整数,应该使用下面的命令( D ) A) 60+fix(40*rand); B) 59+fix(41*rand); C)60+fix(100*rand);D)60+fix(41*rand) 5.用 A、B、C表示三角形的三条边,MATLAB表示 “任意两条边之和大于第三条边”的逻辑表达式正确 的是( D ) A) A+B>=C | A+C>=B | A+C>=B; B) A+B<=C | A+C<=B | A+C<=B; C) A+B>C | A+C>B | B+C>A; D) A+B>C & A+C>B & B+C>A; 6.在MATLAB命令窗口中,键入命令syms x; y=int(3*x)。屏幕上将出现的结果是( A ) A) 3/2*x^2; B)3x^2/2; C)1.5x^2; D)1.5*x^2; 7. 在MATLAB命令窗口中, 键入命令 A=[1,2,3;4,5,6;7,8,0]; A(1,:)*A(:,3)。 屏幕上将出现的结果是 ( A ) A) 15; B) 30; C)36; D) 69; 8.正确表达命题 A和B都大于C的逻辑表达式应该用下面哪一行( C ) A) A > C; B) B>C; C) A >C & B >C; D ) A >C | B >C; 9.如果已输入方阵 A的数据,在MATLAB中用命令( A )可计算出 A的行列式的值 A) det(A); B)eig(A); C)inv(A); D )diag(A) 10.火炮发射炮弹的初始速度和发射角为已知,由此可估算出炮弹在空中的飞行时间 Tfly,使用语句 Tspan=Tfly*(0:20)/20,将获得一些数据,下面不正确的说法是( D ) A)Tspan为包括发射时刻在内的炮弹在空间飞行的 21个不同的飞行时刻; B)Tspan中任意两个相邻数据之差的绝对值相等; C)Tspan包含了 21个数据,第一个数据为 0,最后一个数据为Tfly; D)Tspan是一个等差数列,公差为Tfly/21
2.解释下面程序功能。写出所研究的数学模型,并指出程序中每一个变量的数据结构(如果是向量则 指出向量元素的个数,如果是矩阵则指出矩阵的行列数)。 g=9.8; alpha=[2:18]'*pi/40; v1=cos(alpha);v2=sin(alpha); t0=2*v2/g;t=t0*(0:16)/16; x=diag(v1)*t;y=diag(v2)*t-g*t.^2/2; plot(x',y','k')
电子科技大学二零零五至二零零六学年第二学期期末考试
《数学实验》课程考试题 A 卷(120 分钟) 考试形式:闭卷 考试日期:2006 年 5 月 14 日 课程成绩构成:平时 10 分,期中 0 分,实验 30 分,期末 60 分(本试卷满分 100 分)
所有答案一律写在答题纸上,写在试卷上无效。 一、单项选择题(每小题3分共30分) 1 . 利 用 赋 值 语 句 和 表 达 式 可 完 成 某 些 复 杂 计 算 , 例 如 在 MATLAB 命 令 窗 口 中 键 入 命 令 , Vname=sum(2.^[0:63])/(4.0e+10),可计算出对应的数据,在这一语句中如果省略了变量名Vname及等号, MATLAB将用缺省变量名( B )显示计算结果 A)eps; B) ans; C)NaN ; D)pi 2.要将石料内已知位置上的一块宝石切割出来。石料尺寸:长×宽×高 =a ×a ×a (cm ),石料内宝石 尺寸:长 ×宽×高 =b ×b ×b (cm ) 。操作时,同向切割连续两次再旋转刀具。某一切割方案的切割面积 依次为:2a a 2b a 2b b ,则这一切割方案为(
2.线性规划问题:某加工厂接到一批订单,订单任务需 a米长的材料 440根, b米长的材料 480根。可采 购到的原料有甲、乙、丙三种,一根甲种原料可截得 a米长的材料 4根, b米长的材料8根,成本为60元; 一根乙种原料可截得 a米长的材料 6根,b米长的材料2根,成本为 50元;一根丙种原料可截得 a米长的材料 4根,b米长的材料 4根,成本为40元。建立使材料成本最低的数学模型。
二、程序阅读理解( 20分) 1.解释下面程序的功能,并写出该程序所求解的数学问题 syms x y y = dsolve('Dy=1/(1+x^2)-2*y^2','y(0) = 0','x') ezplot(y) pretty(y)
1 ′ = − 2 y2 y 2 1+ x y (0) = 0
相关文档
最新文档