初中数学二次函数易错题汇编及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学二次函数易错题汇编及答案

一、选择题

1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )

A .1

B .2

C .3

D .4

【答案】C

【解析】

【分析】

【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;

根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;

根据函数对称轴可得:-

2b a

=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;

根据函数的交点以及函数图像的位置可得④正确.

点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.

2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )

A .原数与对应新数的差不可能等于零

B .原数与对应新数的差,随着原数的增大而增大

C .当原数与对应新数的差等于21时,原数等于30

D .当原数取50时,原数与对应新数的差最大

【答案】D

【解析】

【分析】

设出原数,表示出新数,利用解方程和函数性质即可求解.

【详解】

解:设原数为m ,则新数为21100m ,

设新数与原数的差为y 则2211100100

y m m m m =-

=-+, 易得,当m =0时,y =0,则A 错误 ∵10100

-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭

时,y 有最大值.则B 错误,D 正确. 当y =21时,21100

m m -+=21 解得1m =30,2m =70,则C 错误.

故答案选:D .

【点睛】

本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.

3.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )

A .m 1≥

B .0m ≤

C .01m ≤≤

D .m 1≥或0m ≤

【答案】C

【解析】

【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.

【详解】

解:如图1所示,当t 等于0时,

∵2

(1)4y x =--,

∴顶点坐标为(1,4)-,

当0x =时,3y =-,

∴(0,3)A -,

当4x =时,5y =,

∴(4,5)C ,

∴当0m =时,

(4,5)D -,

∴此时最大值为0,最小值为5-;

如图2所示,当1m =时,

此时最小值为4-,最大值为1.

综上所述:01m ≤≤,

故选:C .

【点睛】

此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.

4.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )

A .﹣4<P <0

B .﹣4<P <﹣2

C .﹣2<P <0

D .﹣1<P <0

【答案】A

【解析】

【分析】

【详解】 解:∵二次函数的图象开口向上,∴a >0.

∵对称轴在y 轴的左边,∴b 2a

-<0.∴b >0.

∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0.

∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.

把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,

∵b >0,∴b=2﹣a >0.∴a <2.

∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.

故选A .

【点睛】

本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.

5.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )

A .1

B .2

C .3

D .4

【答案】C

【解析】

【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a

=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到2

44ac b a

=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.

【详解】

∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,

∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.

∴当x=-1时,y >0,

即a-b+c >0,所以①正确;

∵抛物线的对称轴为直线x=-

2b a

=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;

∵抛物线的顶点坐标为(1,n ),

相关文档
最新文档