2018届安徽省合肥市高三第一次质量检测理科数学试题及答案
安徽省合肥市2018届高三调研性检测数学理试题 含答案 精品
安徽省合肥市2018届高三调研性检测试题数学理第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则21ii=-( ) A .1i -+ B .1i + C .1i - D .1i --2.已知集合{},x A y y e x R ==∈,{}260B x R x x =∈--≤,则A B ⋂=( ) A .()0,2 B .(]0,3 C .[]2,3- D .[]2,3 3.执行如图的程序框图,则输出的S 的值为( )A .9B .19C .33D .514.双曲线22221x y a b -=的一条渐近线与直线210x y +-=垂直,则双曲线的离心率为( )A .52 B .5 C.312+ D .31+ 5.如图是一个几何体的三视图,则该几何体的体积是( )A .72B .144 C. 216 D .1053145+6. 在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,60,4,13C a b c =︒==,则ABC ∆的面积为( ) A .3 B .132C.23 D .13 7. 已知,x y 满足约束条件252340380x y x y x y +≥⎧⎪-+≥⎨⎪--≥⎩,则2z x y =-的最小值是( )A .0B .4 C. 5 D .68. 已知函数()sin 6f x x πω⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位后,所得的图象关于y 轴对称,则ω的最小正值为( )A .1B .2 C. 3 D .49.用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有( ) A .250个 B .249个 C. 48个 D .24个 10.函数()1x x y e e x x -⎛⎫=-- ⎪⎝⎭的图象大致是( )A .B .C. D .11.已知0a b >>,则41a ab a b+++-的最小值为( ) A 310B .4 C. 23 D .3212.已知抛物线24y x =的焦点为F ,直线l 过点F 交抛物线于,A B 两点,且3AF FB =.直线12l l 、分别过点,A B ,且与x 轴平行,在直线12l l 、上分别取点M N 、(M N 、分别在点,A B 的右侧),分别作ABN ∠和BAM ∠的平行线且相交于P 点,则PAB ∆的面积为( ) A .643 B .323323643第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 命题0:1p x ∃>,使得20021x x -<,则p ⌝是 .14. 已知()()2,51,1,1a t b t =-=+-,若a b a b +=-,则t = . 15.()52x a -展开式中3x 的系数为720,则a = . 16.已知函数()ln x axf x x-=,若有且仅有一个整数k ,使()()20f k f k ->⎡⎤⎣⎦,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数()sin cos f x x x =+.(Ⅰ)当()2f x =时,求sin 23x π⎛⎫+ ⎪⎝⎭;(Ⅱ)若()()2g x f x =,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦的值域.18. 近期“共享单车”在全国多个城市持续升温,某移动互联网机构通过对使用者的调查得出,现在市场上常见的八个品牌的“共享单车”的满意度指数如茎叶图所示:(Ⅰ)求出这组数据的平均数和中位数;(Ⅱ)某用户从满意度指数超过80的品牌中随机选择两个品牌使用,求所选两个品牌的满意度指数均超过85的概率. 19. 数列{}n a 满足1111,021n n n a a a a ++=+=-.(Ⅰ)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)若数列{}n b 满足1122,1n nn n b a b b a +==+,求{}n b 的前n 项和n S . 20. 平行四边形ABCD 中,,2DAB AD AB π∠==,BCD ∆为等边三角形,现将ABD ∆沿BD 翻折得到四面体P BCD -,点,,,E F G H 分别为,,,PB PD CD CB 的中点.(Ⅰ)求证:四边形EFGH 为矩形;(Ⅱ)当平面PBD ⊥平面CBD 时,求直线BG 与平面PBC 所成角的正弦值.21. 已知M 为椭圆22:1259x y C +=上的动点,过点M 作x 轴的垂线段MD ,D 为垂足,点P满足53PD MD =.(Ⅰ)求动点P 的轨迹E 的方程;(Ⅱ)若,A B 两点分别为椭圆C 的左右顶点,F 为椭圆C 的左焦点,直线PB 与椭圆C 交于点Q ,直线,QF PA 的斜率分别为,QF PA k k ,求QF PAk k 的取值范围.22. 已知函数()1x e f x x -=.(Ⅰ)判断函数()f x 的单调性; (Ⅱ)求证:()()2ln 1ln 1x e x x x +≥++.试卷答案一、选择题1-5: ABCBA 6-10: ABBCD 11、12:DC二、填空题13.21x x x ∀>1,-2≥ 14. 1 15.3±16.11ln 21ln3123a -≤<-三、解答题17. 解:(Ⅰ)依题意,()2sin cos sin cos 2sin 21x x x x x +=+=⇒= ∴cos20x =,∴1sin 2cos 332x ππ⎛⎫+== ⎪⎝⎭(Ⅱ)()sin 2cos 224g x x x x π⎛⎫=+=+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦∴52,444x πππ⎡⎤+∈⎢⎥⎣⎦,∴sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦. ∴函数()f x的值域为⎡-⎣.18.解:(Ⅰ)平均数37038029079364203838x ⨯+⨯+⨯++++++++==;8个数按从小到大的顺序排列为:73,77,79,82,84,86,90,93.这组数据最中间的两个数的平均数为8284832+=,故这组数据的中位数为83. (Ⅱ)满意度指数超过80的品牌有5个,从中任选两个有25C 种,其中所选两个品牌的满意度指数均超过85的有23C 种,故所选两个品牌的满意度指数均超过85的概率为2325310C C =.19. 解:(Ⅰ)若10n a +=,则0n a =,这与11a =矛盾, ∴10n a +≠,由已知得1120n n n n a a a a ++-+=, ∴1112n na a +-=, 故数列{}n a 是以111a =为首项,2为公差的等差数列. (Ⅱ)由(Ⅰ)可知,()1112121n n a =+-=-, 由112n n n n b ab a ++=⋅可知112n n n n a b a b ++=.又112a b =∴1222n n n n a b -=⨯= ∴()212n n b n =-⋅, ∴()123123252212n n S n =⋅+⋅+⋅++-⋅, 则()23412123252212n n S n +=⋅+⋅+⋅++-⋅,∴()()231122222222123226n n n n S n n ++-=+⋅+⋅++⋅--⋅=-⋅-,∴()12326n n S n +=-⋅+20. 解:(Ⅰ)∵点,,,E F G H 分别为,,,PB PD CD CB 的中点, ∴12EF BD GH ==且////EF BD GH , ∴四边形EFGH 为平行四边形. 取BD 的中点O ,连结,PO CO .∵PBD ∆为等腰直角三角形,BCD ∆为正三角形, ∴,,PO BD CO BD PO CO O ⊥⊥⋂=, ∴BD ⊥平面POC .又∵PC ⊂平面POC ,∴BD PC ⊥, 由//EH PC 且//EF BD 可得EF EH ⊥, ∴四边形EFGH 为矩形.(Ⅱ)由PBD CBD PBD CBD BDPO PO BD PO PBD ⊥⎧⎪⋂=⎪⇒⊥⎨⊥⎪⎪⊂⎩平面平面平面平面平面平面BCD 分别以,,OB OC OP 的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O xyz -.依题意,设4BD =,则()()()()()()0,0,0,2,0,0,2,0,0,0,23,0,0,0,2,3,0O B D C P G --,∴()()()2,0,2,2,23,0,3,PB BC BG =-=-=-.设(),,n x y z =为平面PBC 的一个法向量,则有22020n PB x z n BC x ⎧⋅=-=⎪⎨⋅=-+=⎪⎩令1y =,则(3,1,n =.∴直线BG 与平面PBC 所成角θ的正弦值3sin cos ,2BG n BG n BG nθ⋅-===21. 解:(Ⅰ)设()(),,,P x y M m n 依题意(),0D m ,且0y ≠,∵53PD MD =,即()()5,0,3m x y n -=-,则有05335m x m x y n n y -==⎧⎧⎪⎪⇒⎨⎨-=-=⎪⎪⎩⎩.又∵(),M m n 为椭圆22:1259x y C +=上的点,可得22351259y x ⎛⎫ ⎪⎝⎭+=,即2225x y +=,即动点P 的轨迹E 的方程为()22250x y y +=≠. (Ⅱ)依题意()()()5,0,5,0,4,0A B F --,设()00,Q x y∵AB 为圆E 的直径,则有AP BP ⊥,故,AP BP 的斜率满足1PA PBk k =-, 0000145QF QFQF PB QF QB PAPBk k y y k k k k k x x k ==-=-=-⋅+--()()()()2020000091254545x y x x x x ⎛⎫- ⎪⎝⎭=-=-+-+- ()()()20000009925(5)9125251454254x x x x x x -+⎛⎫===+ ⎪+-++⎝⎭, ∵点P 不同于,A B 两点且直线QF 的斜率存在,故055x -<<且04x ≠-, 014x +在()5,4--和()4,5-都是单调减函数, 0911254x ⎛⎫+ ⎪+⎝⎭的范围为()2,0,5⎛⎫-∞⋃+∞ ⎪⎝⎭,故QF PAk k ∈()2,0,5⎛⎫-∞⋃+∞ ⎪⎝⎭.22. 解:(Ⅰ)由已知()f x 的定义域为{}0x x ≠,()()()22111x x x e x e x e f x x x ⋅---+'==,设()()11x g x x e =-+,则()0x g x xe '==,得0x =, ∴()g x 在(),0-∞上是减函数,在()0,+∞上是增函数, ∴()()00g x g ≥=∴()f x 在(),0-∞和()0,+∞上都是增函数. (Ⅱ)设()()ln 1h x x x =-+, 则()11011x h x x x '=-==++,得0x =, ∴()h x 在()1,0-上是减函数,在()0,+∞上是增函数, ∴()()00h x h ≥=,即()ln 1x x ≥+. ①当0x >时,()ln 10x x ≥+>, ∵()f x 在()0,+∞上是增函数,∴()()()ln 1f x f x ≥+,即()1ln 1x e xx x -≥+,∴()()21ln 1x e x x -+≥. ②当10x -<<时,()0ln 1x x >≥+,∵()f x 在(),0-∞上是增函数, ∴()()()ln 1f x f x ≥+,即()1ln 1x e xx x -≥+,∴()()21ln 1x e x x -+≥. ③当0x =时,()()21ln 10x e x x -+==由①②③可知,对一切1x >-,有()()21ln 1x e x x -+≥,即()()2ln 1ln 1x e x x x +≥++.。
2018年合肥一模数学试卷(理)(含答案)
2018年合肥一模数学试卷(理)(含答案)合肥市2018年高三第一次教学质量检测数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分。
1.A2.C3.B4.C5.C6.D7.D8.A9.C10.B11.B12.D二、填空题:本大题共4小题,每小题5分,共20分。
21.13.14.3.(4,4)三、解答题:17.Ⅰ)根据正弦定理,由已知得:sinA/sinC=sin(A+C)/sinB 即sinAcosC=sinBcosAcosCsin(A+C)=2sinBcosCcosA,……1分sinCcosA=2sinBcosC。
sin(A+C)/sinB=2cosC。
cosC=(XXX)/2cosA,……5分A+C=180°-B。
sinB=sin(180°-A-C)=sin(A+C),……6分sinB=2cosC。
C(0,a),A(a,0),B(b,0)。
sin(ACB)=sinB。
2cosC=sin(ACB)=b/a。
cosC=b/(2a),∴C(0,b/(2a)),……7分B(b,0),∴XXX√(a²+b²),……8分sinA=2cosCsinB=2b/(a²+b²)。
sinC=2sinBcosC=b/√(a²+b²),……9分Ⅱ)由(Ⅰ)和余弦定理得cosC=[a²+b²-(2ab)/(2ab)]/2ab=1/2。
即a²+b²=2ab,即(a-b)²=0,∴a=b。
sin(ACB)=sinB=b/√(2a²)=1/√2,……11分sin(ACB)的最大值为1/√2,所以cos(ACB)的最小值为1/√2,即cos(ACB)≥1/√2,……12分故选D。
18.Ⅰ)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M,则P(M)=1-C(3,2)/C(6,3)=5/9, (5)分Ⅱ)随机变量X的所有可能取值有0,1,2,3,……6分因为P(X=0)=C(3,0)C(3,3)/C(6,3)=1/20,P(X=1)=C(3,1)C(3,2)/C(6,3)=3/8,P(X=2)=C(3,2)C(3,1)/C(6,3)=3/8,P(X=3)=C(3,3)C(3,0)/C(6,3)=1/20,……10分所以X的分布列为X 0 1 2 3P 1/20 3/8 3/8 1/20故E(X)=0×1/20+1×3/8+2×3/8+3×1/20=33/20,……12分故选C。
2018年安徽省合肥市高考数学一模试卷(理科(带答案)
时等号成立).
所以,△ABC 周长的最大值为
.
18. 解:(1)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事
件 M,
则
,
所以该位考生选考的三个科目中,至少有一个自然科学科目的概率为 .
(2)随机变量 X 的所有可能取值有 0,1,2,3.
因为
,
,
第 5 页,共 16 页
,
,
所以 X 的分布列为:
X
0
1
2
3
P
.
19. 证明:(1)连结 AC,交 BD 于点 N,
∴N 为 AC 的中点,∴MN∥EC. ∵MN⊄平面 EFC,EC⊂平面 EFC, ∴MN∥平面 EFC. ∵BF,DE 都垂直底面 ABCD,∴BF∥DE. ∵BF=DE,∴BDEF 为平行四边形,∴BD∥EF. ∵BD⊄平面 EFC,EF⊂平面 EFC, ∴BD∥平面 EFC. 又∵MN∩BD=N,∴平面 BDM∥平面 EFC. 解:(2)由已知,DE⊥平面 ABCD,ABCD 是正方形. ∴DA,DC,DE 两两垂直,如图,建立空间直角坐标系 D-xyz. 设 AB=2,则 DE=4,从而 B(2,2,0),M(1,0,2),A(2,0,0),E(0,0,4),
C. 400 千元
D. 440 千元
12. 已知函数 f(x)=2|x|-x2,g(x)= (其中 e 为自然对数的底数),若函数 h(x)
=f[g(x)]-k 有 4 个零点,则 k 的取值范围为( )
A. (-1,0)
B. (0,1)
C. ( - ,1) D. (0, - )
二、填空题(本大题共 4 小题,共 20.0 分)
A. 2
安徽省合肥市2018届高三第一次教学质量检测理数试题
安徽省合肥市2018届高三第一次教学质量检测数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则()()2342i i i +-=-( )A .5B .5iC .71255i --D .71255i -+2.已知等差数{}n a ,若2510,1a a ==,则{}n a 的前7项的和是( )A .112B .51C .28D .18 3.已知集合M 是函数12y x=-的定义域,集合N 是函数24y x =-的值域,则M N ⋂=( )A .12x x ⎧⎫≤⎨⎬⎩⎭B .142x x ⎧⎫-≤<⎨⎬⎩⎭C .()1,2x y x ⎧<⎨⎩且}4y ≥- D .∅4.若双曲线()222210,0x y a b a b -=>>的一条渐近线方程为2y x =-,该双曲线的离心率是( )A .5B .3C .5D .23 5.执行如图程序框图,若输入的n 等于10,则输出的结果是( )A .2B .3-C .12-D .136.已知某公司生产的一种产品的质量X (单位:克)服从正态分布()100,4N .现从该产品的生产线上随机抽取10000件产品,其中质量在[]98,104内的产品估计有( )(附:若X 服从()2,N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=) A .3413件 B .4772件 C .6826件 D .8185件7.将函数cos sin y x x =-的图像先向右平移()0ϕϕ>个单位,再将所得的图像上每个点的横坐标变为原来的a 倍,得到cos2sin 2y x x =+的图像,则,a ϕ的可能取值为( )A .,22a πϕ== B .3,28a πϕ== C .31,82a πϕ== D .1,22a πϕ== 8.已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018a =( )A .201821- B .201836- C .20181722⎛⎫- ⎪⎝⎭D .201811033⎛⎫-⎪⎝⎭9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .518π+B .618π+C .86π+D .106π+10.已知直线210x y -+=与曲线x y ae x =+相切(其中e 为自然对数的底数),则实数a 的值是( )A .12B .1C .2D .e 11.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元12.已知函数()()22,2xe f x x x g x x =-=+(其中e 为自然对数的底数),若函数()()h x f g x k =-⎡⎤⎣⎦有4个零点,则k 的取值范围为( )A .()1,0-B .()0,1C .221,1e e ⎛⎫- ⎪⎝⎭D .2210,e e ⎛⎫- ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若平面向量,a b 满足2,6a b a b +=-=,则a b ⋅= .14.已知m 是常数,()543252054311 a x a x a x a x a x a mx +++++-=,且12345533a a a a a a +++++=,则m = .15.抛物线2:4E y x =的焦点为F ,准线l 与x 轴交于点A ,过抛物线E 上一点P (第一象限内.....)作l 的垂线PQ ,垂足为Q .若四边形AFPQ 的周长为16,则点P 的坐标为 .16.在四面体ABCD 中,2,60,90AB AD BAD BCD ==∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,()2cos cos 0a b C c A -+=. (1)求角C ;(2)若23c =,求ABC ∆的周长的最大值.18.2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目 并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科 学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获A 等的概率都是0.8,所选的自然科学科目考试的成绩获A 等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量X 表示他所选考的三个科目中考试成绩获A 等的科目数,求X 的分布列和数学期望.19.如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF DE =,点M 为棱AE 的中点.(1)求证:平面//BMD 平面EFC ;(2)若2DE AB =,求直线AE 与平面BDM 所成的角的正弦值.20.在平面直角坐标系中,圆O 交x 轴于点12,F F ,交y 轴于点12,B B .以12,B B 为顶点,12,F F 分别为左、右焦点的椭圆E ,恰好经过点⎛ ⎝⎭. (1)求椭圆E 的标准方程;(2)设经过点()2,0-的直线l 与椭圆E 交于,M N 两点,求2F MN ∆面积的最大值. 21.已知()()()ln 21af x x a R x=-+∈. (1)讨论()f x 的单调性; (2)若()f x ax ≤恒成立,求a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线13cos :2sin x C y θθ=⎧⎨=⎩(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:2cos 0C ρθ-=.(1)求曲线2C 的普通方程;(2)若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求MN 的最小值. 23.选修4-5:不等式选讲 已知函数()21f x x =-.(1)解关于x 的不等式()()11f x f x -+≤;(2)若关于x 的不等式()()1f x m f x <-+的解集不是空集,求m 的取值范围.试卷答案一、选择题1-5: A CBCC 6-10: D DACB 11、12:BD二、填空题13. 1- 14. 3 15.()4,4 三、解答题17. 解:(1)根据正弦定理,由已知得:()sin 2sin cos sin cos 0A B C C A -+=, 即sin cos sin cos 2sin cos A C C A B C +=, ∴()sin 2sin cos A C B C +=,∵A C B π+=-,∴()()sin sin sin 0A C B B π+=-=>, ∴sin 2sin cos B B C =,从而1cos 2C =.∵()0,C π∈,∴3C π=.(2)由(1)和余弦定理得2221cos 22a b c C ab +-==,即2212a b ab +-=,∴()2212332a b a b ab +⎛⎫+-=≤ ⎪⎝⎭,即()248a b +≤ (当且仅当23a b ==时等号成立). 所以,ABC ∆周长的最大值为4363c +=.18. (1)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M ,则()3336119112020C P M C =-=-=,所以该位考生选考的三个科目中,至少有一个自然科学科目的概率为1920. (2)随机变量X 的所有可能取值有0, 1,2,3. 因为()211105480P X ⎛⎫==⨯= ⎪⎝⎭,()2124111311545448P X C ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,()212413133325445480P X C ⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭,()243935420P X ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为所以()11033360123 2.380808080E X =⨯+⨯+⨯+⨯=. 19.(1)证明:连结AC ,交BD 于点N , ∴N 为AC 的中点,∴//MN EC .∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴//MN 平面EFC .∵,BF DE 都垂直底面ABCD , ∴//BF DE .∵BF DE =,∴BDEF 为平行四边形,∴//BD EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴//BD 平面EFC .又∵MN BD N ⋂=,∴平面//BDM 平面EFC . (2)由已知,DE ⊥平面ABCD ,ABCD 是正方形.∴,,DA DC DE 两两垂直,如图,建立空间直角坐标系D xyz -. 设2AB =,则4DE =,从而()()()()2,2,0,1,0,2,2,0,0,0,0,4B M A E , ∴()()2,2,0,1,0,2DB DM ==,设平面BDM 的一个法向量为(),,n x y z =, 由00n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩得22020x y x z +=⎧⎨+=⎩.令2x =,则2,1y z =-=-,从而()2,2,1n =--.∵()2,0,4AE =-,设AE 与平面BDM 所成的角为θ,则45sin cos n AE n AE n AEθ⋅=⋅==⋅, 所以,直线AE 与平面BDM 所成角的正弦值为45.20.(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E 的标准方程为()222210x y a b a b +=>>,焦距为2c ,则b c =,∴22222a b c b =+=,∴椭圆E 的标准方程为222212x y b b+=.又∵椭圆E过点⎛ ⎝⎭,∴2211212b b +=,解得21b =. ∴椭圆E 的标准方程为2212x y +=.(2)由于点()2,0-在椭圆E 外,所以直线l 的斜率存在.设直线l 的斜率为k ,则直线():2l y k x =+,设()()1122,,,M x y N x y . 由()22212y k x x y =+⎧⎪⎨+=⎪⎩消去y 得,2222)128820k x k x k +++-=(. 由 0∆>得2102k ≤<,从而22121222882,1212k k x x x x k k --+==++,∴12MN x =-=.∵点()21,0F 到直线l的距离d =,∴2F MN ∆的面积为12S MN d =⋅=令212k t +=,则[)1,2t ∈,∴S===, 当134t =即[)441,233t ⎛⎫=∈ ⎪⎝⎭时,S 有最大值,maxS =,此时k =.所以,当直线l 的斜率为时,可使2F MN ∆ 21.(Ⅰ)()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,,()()2222222121a x ax a f x x x x x -+'=-=--.∵2210,0x x ->>. 令()222g x x ax a =-+,则 (1)若0∆≤,即当02a ≤≤时,对任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x ≥恒成立, 即当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '≥恒成立(仅在孤立点处等号成立).∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.(2)若0∆>,即当2a >或0a <时,()g x 的对称轴为2ax =. ①当0a <时,02a <,且11022g ⎛⎫=> ⎪⎝⎭. 如图,任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x >恒成立, 即任意1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>恒成立,∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.②当2a >时,12a > ,且11022g ⎛⎫=> ⎪⎝⎭.如图,记()0g x =的两根为()()2212112,222x a a a x a a a =--=+-∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0g x >;当(211,222a a a ⎛⎫-- ⎪⎝⎭时,()0g x <. ∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0f x '>,当()12,x x x ∈时,()0f x '<.∴()f x 在11,2x ⎛⎫⎪⎝⎭和()2,x +∞上单调递增,在()12,x x 上单调递减.综上,当2a ≤时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增;当2a >时,()f x 在(11,22a ⎛⎫ ⎪⎝⎭和(1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,在((11,22a a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭上单调递减.(Ⅱ)()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()0f x ax -≤恒成立.令()()()ln 21a h x f x ax x ax x =-=-+-,则()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()()01h x h ≤= ()*.要满足()*式,即()h x 在1x =时取得最大值. ∵()()()32222221ax a x ax ah x x x -++-+'=-.由()10h '=解得1a =.当1a =时,()()()()2212121x x x h x x x --+'=-,∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '>;当()1,x ∈+∞时,()0h x '<.∴当1a =时,()h x 在1,12⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,从而()()10h x h ≤=,符合题意.所以,1a =.22. (1)由2cos 0ρθ-=得:22cos 0ρρθ-=. 因为222,cos x y x ρρθ=+=,所以2220x y x +-=, 即曲线2C 的普通方程为()2211x y -+=.(2)由(1)可知,圆2C 的圆心为()21,0C ,半径为1. 设曲线1C 上的动点()3cos ,2sin M θθ, 由动点N 在圆2C 上可得:2min min1MN MC =-.∵2MC =当3cos 5θ=时,2minMC =∴2min min11MN MC =-=. 23.(1)()()1121211f x f x x x -+≤⇔--+≤,四川奥邦药业集团.11 1221211x x x ⎧≥⎪⇔⎨⎪---≤⎩或112212211x x x ⎧-<<⎪⎨⎪---≤⎩或1212211x x x ⎧≤-⎪⎨⎪-++≤⎩ 12x ⇔≥或1142x -≤<14x ⇔≥-, 所以,原不等式的解集为1,4⎡⎫-+∞⎪⎢⎣⎭. (2)由条件知,不等式22 11x x m -++<有解,则()min 2121 m x x >-++即可. 由于()1222112211221x x x x x x =-++≥-+++-=+, 当且仅当()()12210x x -+≥,即当11,22x ⎡⎤∈-⎢⎥⎣⎦时等号成立,故 2m >. 所以,m 的取值范围是()2,+∞.。
安徽省合肥市2018届高三第一次教学质量检测理数试题
安徽省合肥市2018届高三第一次教学质量检测数学理试题第Ⅰ卷(共60分)一、选择题:本大题共 个小题 每小题 分 共 分 在每小题给出的四个选项中,只有一项是符合题目要求的已知i 为虚数单位,则()()2342i i i+-=-( )✌. .5i .71255i -- .71255i -+已知等差数{}n a ,若2510,1a a ==,则{}n a 的前 项的和是( )✌. . . . 已知集合M 是函数12y x=-的定义域,集合N 是函数24y x =-的值域,则M N ⋂=( )✌.12x x ⎧⎫≤⎨⎬⎩⎭ .142x x ⎧⎫-≤<⎨⎬⎩⎭.()1,2x y x ⎧<⎨⎩且}4y ≥- .∅若双曲线()222210,0x y a b a b -=>>的一条渐近线方程为2y x =-,该双曲线的离心率是( )✌.5.3 .5 .23 执行如图程序框图,若输入的n 等于 ,则输出的结果是( )✌. .3- .12- .13已知某公司生产的一种产品的质量X ☎单位:克✆服从正态分布()100,4N 现从该产品的生产线上随机抽取 件产品,其中质量在[]98,104内的产品估计有( )(附:若X 服从()2,N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=)✌. 件 . 件 . 件 . 件将函数cos sin y x x =-的图像先向右平移()0ϕϕ>个单位,再将所得的图像上每个点的横坐标变为原来的a 倍,得到cos2sin 2y x x =+的图像,则,a ϕ的可能取值为( ) ✌.,22a πϕ== .3,28a πϕ== .31,82a πϕ== .1,22a πϕ==已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018a =( )✌.201821- .201836- .20181722⎛⎫-⎪⎝⎭.201811033⎛⎫-⎪⎝⎭如图,网格纸上小正方形的边长为 ,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )✌.518π+ .618π+ .86π+ .106π+已知直线210x y -+=与曲线x y ae x =+相切☎其中e 为自然对数的底数✆,则实数a 的值是( ) ✌.12. . .e 某企业生产甲、乙两种产品,销售利润分别为 千元 件、 千元 件 甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备 小时,B 设备 小时;生产一件乙产品需用A 设备小时,B 设备 小时 A B 、两种设备每月可使用时间数分别为 小时、 小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )✌. 千元 . 千元 . 千元 . 千元已知函数()()22,2xe f x x x g x x =-=+☎其中e 为自然对数的底数),若函数()()h x f g x k =-⎡⎤⎣⎦有 个零点,则k 的取值范围为( )✌.()1,0- .()0,1 .221,1e e ⎛⎫- ⎪⎝⎭.2210,e e ⎛⎫- ⎪⎝⎭第Ⅱ卷(共 分)二、填空题(每题 分,满分 分,将答案填在答题纸上) 若平面向量,a b 满足2,6a b a b +=-=,则a b ⋅= .已知m 是常数,()543252054311 a x a x a x a x a x a mx +++++-=,且12345533a a a a a a +++++=,则m = .抛物线2:4E y x =的焦点为F ,准线l 与x 轴交于点A ,过抛物线E 上一点P ☎第一象限内.....✆作l 的垂线PQ 垂足为Q 若四边形AFPQ 的周长为 ,则点P 的坐标为 .在四面体ABCD 中,2,60,90AB AD BAD BCD ==∠=︒∠=︒,二面角A BD C --的大小为150︒ 则四面体ABCD 外接球的半径为 .三、解答题 (本大题共 小题,共 分 解答应写出文字说明、证明过程或演算步骤 ) 已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,()2cos cos 0a b C c A -+=( )求角C ;( )若23c =,求ABC ∆的周长的最大值年 月,国务院发布了《关于深化考试招生制度改革的实施意见》 某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科 每个考生,英语、语文、数学三科为必考科目 并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考 物理、化学、生物为自然科 学科目,政治、历史、地理为社会科学科目 假设某位考生选考这六个科目的可能性相等( )求他所选考的三个科目中,至少有一个自然科学科目的概率;( )已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目 若该考生所选的社会科学科目考试的成绩获A 等的概率都是 ,所选的自然科学科目考试的成绩获A 等的概率都是 且所选考的各个科目考试的成绩相互独立 用随机变量X 表示他所选考的三个科目中考试成绩获A 等的科目数,求X 的分布列和数学期望如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF DE =,点M 为棱AE 的中点( )求证:平面//BMD 平面EFC ;( )若2DE AB =,求直线AE 与平面BDM 所成的角的正弦值在平面直角坐标系中,圆O 交x 轴于点12,F F ,交y 轴于点12,B B 以12,B B 为顶点,12,F F 分别为左、右焦点的椭圆E ,恰好经过点21,2⎛ ⎝⎭( )求椭圆E 的标准方程;( )设经过点()2,0-的直线l 与椭圆E 交于,M N 两点,求2F MN ∆面积的最大值 已知()()()ln 21af x x a R x=-+∈ ( )讨论()f x 的单调性;( )若()f x ax ≤恒成立,求a 的值请考生在 、 两题中任选一题作答,如果多做,则按所做的第一题记分选修 :坐标系与参数方程在直角坐标系xOy 中,曲线13cos :2sin x C y θθ=⎧⎨=⎩☎θ为参数✆,在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:2cos 0C ρθ-= ( )求曲线2C 的普通方程;( )若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求MN 的最小值 选修 :不等式选讲 已知函数()21f x x =-( )解关于x 的不等式()()11f x f x -+≤;( )若关于x 的不等式()()1f x m f x <-+的解集不是空集,求m 的取值范围试卷答案一、选择题 ✌ ✌ 、 : 二、填空题 1- ()4,4三、解答题 解:( )根据正弦定理,由已知得:()sin 2sin cos sin cos 0A B C C A -+=, 即sin cos sin cos 2sin cos A C C A B C +=, ∴()sin 2sin cos A C B C +=,∵A C B π+=-,∴()()sin sin sin 0A C B B π+=-=>, ∴sin 2sin cos B B C =,从而1cos 2C =∵()0,C π∈,∴3C π=( )由( )和余弦定理得2221cos 22a b c C ab +-==,即2212a b ab +-=,∴()2212332a b a b ab +⎛⎫+-=≤ ⎪⎝⎭,即()248a b +≤ ☎当且仅当23a b ==时等号成立) 所以,ABC ∆周长的最大值为4363c += ( )记❽某位考生选考的三个科目中至少有一个科目是自然科学科目❾为事件M ,则()3336119112020C P M C =-=-=,所以该位考生选考的三个科目中,至少有一个自然科学科目的概率为1920( )随机变量X 的所有可能取值有 , , 因为()211105480P X ⎛⎫==⨯= ⎪⎝⎭()2124111311545448P X C ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,()212413133325445480P X C ⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭,()243935420P X ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为所以()11033360123 2.380808080E X =⨯+⨯+⨯+⨯= ( )证明:连结AC ,交BD 于点N , ∴N 为AC 的中点,∴//MN EC ∵MN ⊄平面EFC ,EC ⊂平面EFC ,∴//MN 平面EFC∵,BF DE 都垂直底面ABCD , ∴//BF DE ∵BF DE =,∴BDEF 为平行四边形,∴//BD EF ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴//BD 平面EFC又∵MN BD N ⋂=,∴平面//BDM 平面EFC ( )由已知,DE ⊥平面ABCD ,ABCD 是正方形∴,,DA DC DE 两两垂直,如图,建立空间直角坐标系D xyz - 设2AB =,则4DE =,从而()()()()2,2,0,1,0,2,2,0,0,0,0,4B M A E , ∴()()2,2,0,1,0,2DB DM ==,设平面BDM 的一个法向量为(),,n x y z =, 由00n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩得22020x y x z +=⎧⎨+=⎩令2x =,则2,1y z =-=-,从而()2,2,1n =-- ∵()2,0,4AE =-,设AE 与平面BDM 所成的角为θ,则45sin cos n AE n AE n AEθ⋅=⋅==⋅,所以,直线AE 与平面BDM( )由已知可得,椭圆E 的焦点在x 轴上设椭圆E 的标准方程为()222210x y a b a b +=>>,焦距为2c ,则b c =,∴22222a b c b =+=,∴椭圆E 的标准方程为222212x y b b+=又∵椭圆E 过点2⎛ ⎝⎭,∴2211212b b +=,解得21b = ∴椭圆E 的标准方程为2212x y +=( )由于点()2,0-在椭圆E 外,所以直线l 的斜率存在设直线l 的斜率为k ,则直线():2l y k x =+,设()()1122,,,M x y N x y 由()22212y k x x y =+⎧⎪⎨+=⎪⎩消去y 得,2222)128820k x k x k +++-=( 由 0∆>得2102k ≤<,从而22121222882,1212k k x x x x k k --+==++, ∴()22212222412112k MN k x kk -=+-=++∵点()21,0F 到直线l 的距离231k d k=+,∴2F MN ∆的面积为()()22222413212k k S MN d k -=⋅=+令212k t +=,则[)1,2t ∈,∴()()222123233t t t t S t t ---+-==2232131313248t t t ⎛⎫=-+-=--+ ⎪⎝⎭, 当134t =即[)441,233t ⎛⎫=∈ ⎪⎝⎭时,S 有最大值,max 32S =,此时6k =±所以,当直线l 的斜率为6±时,可使2F MN ∆的面积最大,其最大值32(Ⅰ)()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,,()()2222222121a x ax a f x x x x x -+'=-=-- ∵2210,0x x ->> 令()222g x x ax a =-+,则 ( )若0∆≤,即当02a ≤≤时,对任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x ≥恒成立, 即当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '≥恒成立(仅在孤立点处等号成立) ∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增( )若0∆>,即当2a >或0a <时,()g x 的对称轴为2ax = ①当0a <时,02a <,且11022g ⎛⎫=> ⎪⎝⎭ 如图,任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x >恒成立, 即任意1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>恒成立,∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增②当2a >时,12a > ,且11022g ⎛⎫=> ⎪⎝⎭如图,记()0g x =的两根为((2212112,222x a a a x a a a =-=+-∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0g x >; 当(211,222a a a ⎛⎫- ⎪⎝⎭时,()0g x < ∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0f x '>, 当()12,x x x ∈时,()0f x '<∴()f x 在11,2x ⎛⎫ ⎪⎝⎭和()2,x +∞上单调递增,在()12,x x 上单调递减 综上,当2a ≤时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增; 当2a >时,()f x 在(211,222a a a ⎛⎫- ⎪⎝⎭和(212,2a a a ⎛⎫-+∞ ⎪⎝⎭上单调递增, 在((22112,222a a a a a a ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭上单调递减 (Ⅱ)()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()0f x ax -≤恒成立 令()()()ln 21a h x f x ax x ax x =-=-+-,则()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()()01h x h ≤= ()* 要满足()*式,即()h x 在1x =时取得最大值 ∵()()()32222221ax a x ax ah x x x -++-+'=-由()10h '=解得1a =当1a =时,()()()()2212121x x x h x x x --+'=-, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '>;当()1,x ∈+∞时,()0h x '< ∴当1a =时,()h x 在1,12⎛⎫ ⎪⎝⎭上单调递增,在()1,+∞上单调递减,从而()()10h x h ≤=,符合题意所以,1a = ( )由2cos 0ρθ-=得:22cos 0ρρθ-= 因为222,cos x y x ρρθ=+=,所以2220x y x +-=, 即曲线2C 的普通方程为()2211x y -+=( )由( )可知,圆2C 的圆心为()21,0C ,半径为 设曲线1C 上的动点()3cos ,2sin M θθ,由动点N 在圆2C 上可得:2min min 1MN MC =- ∵2MC =当3cos 5θ=时,2min MC =∴2min min 11MN MC =-= ( )()()1121211f x f x x x -+≤⇔--+≤,1221211x x x ⎧≥⎪⇔⎨⎪---≤⎩或112212211x x x ⎧-<<⎪⎨⎪---≤⎩或1212211x x x ⎧≤-⎪⎨⎪-++≤⎩ 12x ⇔≥或1142x -≤<14x ⇔≥-, 所以,原不等式的解集为1,4⎡⎫-+∞⎪⎢⎣⎭ ( )由条件知,不等式22 11x x m -++<有解,则()min 2121 m x x >-++即可 由于()1222112211221x x x x x x =-++≥-+++-=+, 当且仅当()()12210x x -+≥,即当11,22x ⎡⎤∈-⎢⎥⎣⎦时等号成立,故 2m > 所以,m 的取值范围是()2,+∞。
安徽省合肥市第六中学2018届高三上学期第一次月考试数学(理)试题含答案
合肥六中2017—2018学年第一学期高三年级第一次段考数学试卷(理科)(考试时间:120分钟 试卷分值:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第I 卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,每小题只有一个正确答案, 请将答案填写至答题卷的相应位置) 1.集合1{|()1}2xM x =≥,{|lg(2)}N x y x ==+,则MN =( )A 。
[0,)+∞B 。
(2,0]- C.(2,)-+∞ D.(,2)[0,)-∞-+∞2。
“3x ≥"是“22530xx --≥”的( )A.充分不必要条件 B 。
必要不充分 条件 C 。
充要条件 D 。
既不充分也不必要条件3.已知向量a ,b 满足()5a a b ⋅+=,且||2a =,||1b =,则向量a ,b 的夹角为( )A 。
56πB 。
23π C.3πD.6π 4。
设A 、B 、C 是ABC △的三个内角,下列关系恒成立的是( ) A 。
cos()cosC A B += B.sin()sinC A B +=C 。
tan()tanC A B +=D 。
sin()sin 22A B C+=5。
已知函数()f x 是R 上的奇函数,当0x >时为减函数,且(2)0f =,则{|(2)0}x f x -<=( )A 。
{|024}x x x <<>或B 。
{|04}x x x <>或C 。
{|022}x x x <<>或 D.{|024}x x x <<>或 6。
函数()(1)ln ||f x x x =-的图象可能为( )7.已知函数()cos()(0)6f x x ωπωω=->的最小正周期为π,则函数()f x 的图象( )A 。
可由函数()cos2g x x =的图象向左平移3π个单位而得B.可由函数()cos2g x x =的图象向右平移3π个单位而得C.可由函数()cos2g x x =的图象向左平移6π个单位而得D.可由函数()cos2g x x =的图象向右平移6π个单位而得8。
最新-安徽省合肥一中2018届高三上学期第一次月考理科
合肥一中2018届高三上学期第一次月考数学(理)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3}A =,{4,5}B =,{|,,}M x x a b a A b B ==+∈∈,则M 中元素的个数为( )A .3B .4C .5D .6 2.幂函数()y f x =经过点,则()f x 是()A .偶函数,且在(0,)+∞上是增函数B .偶函数,且在(0,)+∞上是减函数C .奇函数,且在(0,)+∞上是减函数D .非奇非偶函数,且在(0,)+∞上是增函数3.已知条件:0p a <,条件2:q a a >,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要4.已知函数1()42x f x a -=+(0a >且1a ≠)的图象恒过定点P ,则点P 的坐标是( )A .(1,6)B .(1,5)C .(0,5)D .(5,0) 5.函数()f x =)A .(,1]-∞B .[1,)+∞C .1(,1]2D .1(,)2+∞6.设命题:p 函数1y x=在定义域上为减函数,命题:,(0,)q a b ∃∈+∞,当1a b +=时,113a b+=,以下说法正确的是()A .p q ∨为真B .p q ∧为真C .p 真q 假D .,p q 均假 7.函数ln ||||x x y x =的图象可能是( )8.已知定义在R 上的奇函数()f x 满足(1)()f x f x +=,当102x <<时,()4x f x =,则5()4f -=()A .B .C .-1 D9.若()x x f x e ae -=+为偶函数,则1(1)f x e e --<+的解集为( ) A .(2,)+∞ B .(,2)-∞ C .(0,2) D .(,0)(2,)-∞+∞10.函数y =R ,则实数a 的取值范围是( )A .[0,)+∞B .[1,0)(0,)-+∞C .(,1)-∞-D .[1,1)-11.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为'()f x ,且有'22()()f x xf x x +>,则不等式2(2016)(2016)4(2)0x f x f ++-->的解集为( )A .(,2016)-∞-B .(,2018)-∞-C .(2018,0)-D .(2016,0)- 12.设函数()24x f x e x =+-,2()ln 25g x x x =+-,若实数,a b 分别是(),()f x g x 的零点,则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.命题:“若0a ≠,则20a >”的否命题是 . 14.函数212log (43)y x x =-+-的单调递增区间是 .15.函数y x =+的值域是 .16.若函数()||x xaf x e e =+在[0,1]上单调递减,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知1:2123x p --≤-≤,22:210(0)q x x m m -+-≤>,若p ⌝是q ⌝的充分而不必要条件,求实数m 的取值范围.18. 已知函数2()21(0)g x ax ax b a =-++>在[2,3]上有最小值1和最大值4,设()()g x f x x=.(1)求,a b 的值;(2)若不等式(2)20x x f k -∙≥在[1,1]-上有解,求实数k 的取值范围. 19. 设函数211()ln 42f x x x x =--.(1)求()f x 的极值;(2)若21()(()1)4g x x f x x =++,当1x >时,()g x 在区间(,1)n n +内存在极值,求整数n 的值.20.已知函数21()(2)2x f x a x e x x =-∙-+.(1)若1a =,求函数()f x 在(2,(2))f 处切线方程;(2)讨论函数()f x的单调区间.21. 市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放a(14a≤≤且a R∈)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为()y af x=,其中161,048()15,4102xxf xx x⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.(1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?(2)若先投放2个单位的洗衣液,6分钟后投放a个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求a的最小值(精确到0.1,参考数据:取1.4).22.已知函数()xf x ae x b=-+,()ln(1)g x x x=-+,(,,a b R e∈为自然对数的底数),且曲线()y f x=与()y g x=在坐标原点处的切线相同.(1)求()f x的最小值;(2)若0x≥时,()()f x kg x≥恒成立,试求实数k的取值范围.参考答案一、选择题BDAAC DBACA BA 二、填空题13. 若0a =,则20a = 14.(2,3)15. (8,1]- 16.22(8,][,8)e e --+三、解答题17.(10分)解不等式12123x --≤-≤,得:210x -≤≤;解不等式22210x x m -+-≤,得:11m x m -≤≤+.故(2)1(3)4g g =⎧⎨=⎩,解得1,0a b ==.(2)由(1)知,2()21g x x x =-+,∴1()2f x x x =+-,∴(2)20x x f k -∙≥可化为2111()222x x k +-∙≥,令12xt =,则221k t t ≤-+,∵[1,1]x ∈-,∴1[,2]2t ∈,∴2max (21)1t t -+=,所以k 的取值范围是(,1]-∞. 19.(12分)(1)2'1112(),(0)222x x f x x x x x--+=--=>,令'()0f x =,解得1x =(-2舍去),根据',(),()x f x f x 的变化情况列出表格:由上表可知函数()f x 的单调增区间为(0,1),递减区间为(1,)+∞,在1x =处取得极大值34-,无极小值.(2)2211()(()1)ln 42g x x f x x x x x x =++=-+,'()ln 11ln 2g x x x x x =+-+=-+,令()ln 2h x x x =-+,∴'11()1x h x xx-=-=,∵1x >,∴'()0h x <恒成立,所以()h x 在(1,)+∞为单调递减函数,∵(1)10h =>,(2)ln 20h =>,(3)ln 31h =-,(4)ln 420h =-<.所以()h x 在(3,4)上有零点0x ,且函数()g x 在0(3,)x 和0(,4)x 上单调性相反,因此,当3n =时,()g x 的区间(,1)n n +内存在极值,所以3n =. 20.(1)'()1()x x f x e x e x x R =--+∈,故切线斜率'2(2)1f e =-,(2)0f =, 所以,切线方程22(1)2(1)0e x y e ----=. (2)令'()0f x =,(1)(1)0x x ae --=,当(,0]a ∈-∞时,()f x 在(,1)-∞上为增函数,在(1,)+∞上为减函数, 当1(0,)a e∈时,()f x 在(,1)-∞,1(ln ,)a+∞上为增函数,在1(1,ln )a上为减函数当1a e=时,()f x 在R 上恒为增函数当1(,)a e ∈+∞时,()f x 在1(,ln )a -∞,(1,)+∞上为增函数,在1(ln ,1)a上为减函数21.(1)由题意知有效去污满足4y ≥,则04164(1)48x x≤≤⎧⎪⎨-≥⎪-⎩或41014(5)42x x <≤⎧⎪⎨-≥⎪⎩ 得08x ≤≤,所以有效去污时间可能达8分钟. (2)1112(5)2y x =-,1(610)x ≤≤,2216(1)8y a x =--,2(04)x ≤≤ 令1226,[0,4]x x x =+∈,2122162(2)(1)428x y y a x +=-+-≥-,2(04)x ≤≤ ∴2288x a x x-≥∙+,若令28,[8,12]t x t =+∈,128()24a t t≥-++,又128()2424 1.6t t-++≤-≈,所以a 的最小值为1.6.22.(12分)(1)因为'()1x f x ae =-,'1()1(1)1g x x x =->-+, 依题意,''(0)(0)f g =,且(0)0f =,解得1,1a b ==-, 所以'()1x f x e =-,当0x <时,'()0f x <;当0x >时,'()0f x >. 故()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞. ∴当0x =时,()f x 取得最小值为0.(2)由(1)知,()0f x ≥,即1x e x ≥+,从而ln(1)x x ≥+,即()0g x ≥. 设()()()ln(1)(1)1x F x f x kg x e k x k x =-=++-+-,则'()(1)1(1)11x k k F x e k x k x x =+-+≥++-+++,(1)当1k =时,因为0x ≥,∴'1()1201F x x x ≥++-≥+(当且仅当0x =时等号成立)此时()F x 在[0,)+∞上单调递增,从而()(0)0F x F ≥=,即()()f x kg x ≥. (2)当1k <时,由于()0g x ≥,所以()()g x kg x ≥,又由(1)知,()()0f x g x -≥,所以()()()f x g x kg x ≥≥,故()0F x ≥, 即()()f x kg x ≥.(此步也可以直接证1k ≤) (3)当1k >时,令()(1)1x kh x e k x =+-++,则'2()(1)x k h x e x =-+,显然'()h x 在[0,)+∞上单调递增,又'(0)10h k =-<,'11)10h -=->,所以'()h x 在1)-上存在唯一零点0x ,当0(0,)x x ∈时,'()0h x <,∴()h x 在0[0,)x 上单调递减, 从而()(0)0h x h <=,即'()0F x <,所以()F x 在0[0,)x 上单调递减, 从而当0(0,)x x ∈时,()(0)0F x F <=,即()()f x kg x <,不合题意. 综上,实数k 的取值范围为(,1]-∞.。
安徽省合肥市2018届高三第一次教学质量检测理数试题
安徽省合肥市2018届高三第一次教学质量检测数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则()()2342i i i+-=-( )A .5B .5iC .71255i --D .71255i -+2.已知等差数{}n a ,若2510,1a a ==,则{}n a 的前7项的和是( ) A .112 B .51 C .28 D .183.已知集合M 是函数12y x=-的定义域,集合N 是函数24y x =-的值域,则M N ⋂=( )A .12x x ⎧⎫≤⎨⎬⎩⎭B .142x x ⎧⎫-≤<⎨⎬⎩⎭C .()1,2x y x ⎧<⎨⎩且}4y ≥- D .∅4.若双曲线()222210,0x y a b a b -=>>的一条渐近线方程为2y x =-,该双曲线的离心率是( )A .5B .3C .5D .23 5.执行如图程序框图,若输入的n 等于10,则输出的结果是( )A .2B .3-C .12-D .136.已知某公司生产的一种产品的质量X (单位:克)服从正态分布()100,4N .现从该产品的生产线上随机抽取10000件产品,其中质量在[]98,104内的产品估计有( )(附:若X 服从()2,N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=) A .3413件 B .4772件 C .6826件 D .8185件7.将函数cos sin y x x =-的图像先向右平移()0ϕϕ>个单位,再将所得的图像上每个点的横坐标变为原来的a 倍,得到cos2sin 2y x x =+的图像,则,a ϕ的可能取值为( )A .,22a πϕ== B .3,28a πϕ== C .31,82a πϕ== D .1,22a πϕ== 8.已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018a =( )A .201821- B .201836- C .20181722⎛⎫- ⎪⎝⎭D .201811033⎛⎫-⎪⎝⎭9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .518π+B .618π+C .86π+D .106π+10.已知直线210x y -+=与曲线x y ae x =+相切(其中e 为自然对数的底数),则实数a 的值是( ) A .12B .1C .2D .e 11.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元12.已知函数()()22,2xe f x x x g x x =-=+(其中e 为自然对数的底数),若函数()()h x f g x k =-⎡⎤⎣⎦有4个零点,则k 的取值范围为( )A .()1,0-B .()0,1C .221,1e e ⎛⎫- ⎪⎝⎭D .2210,e e ⎛⎫- ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若平面向量,a b 满足2,6a b a b +=-=,则a b ⋅= .14.已知m 是常数,()543252054311 a x a x a x a x a x a mx +++++-=,且12345533a a a a a a +++++=,则m = .15.抛物线2:4E y x =的焦点为F ,准线l 与x 轴交于点A ,过抛物线E 上一点P (第一象限内.....)作l 的垂线PQ ,垂足为Q .若四边形AFPQ 的周长为16,则点P 的坐标为 .16.在四面体ABCD 中,2,60,90AB AD BAD BCD ==∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,()2cos cos 0a b C c A -+=. (1)求角C ;(2)若c =ABC ∆的周长的最大值.18.2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目 并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科 学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等. (1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获A 等的概率都是0.8,所选的自然科学科目考试的成绩获A 等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量X 表示他所选考的三个科目中考试成绩获A 等的科目数,求X 的分布列和数学期望.19.如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF DE =,点M 为棱AE 的中点.(1)求证:平面//BMD 平面EFC ;(2)若2DE AB =,求直线AE 与平面BDM 所成的角的正弦值.20.在平面直角坐标系中,圆O 交x 轴于点12,F F ,交y 轴于点12,B B .以12,B B 为顶点,12,F F 分别为左、右焦点的椭圆E ,恰好经过点2⎛ ⎝⎭. (1)求椭圆E 的标准方程;(2)设经过点()2,0-的直线l 与椭圆E 交于,M N 两点,求2F MN ∆面积的最大值. 21.已知()()()ln 21af x x a R x=-+∈. (1)讨论()f x 的单调性;(2)若()f x ax ≤恒成立,求a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线13cos :2sin x C y θθ=⎧⎨=⎩(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:2cos 0C ρθ-=. (1)求曲线2C 的普通方程;(2)若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求MN 的最小值. 23.选修4-5:不等式选讲 已知函数()21f x x =-.(1)解关于x的不等式()()11-+≤;f x f x(2)若关于x的不等式()()1f x m f x<-+的解集不是空集,求m的取值范围.试卷答案一、选择题1-5: ACBCC 6-10: DDACB 11、12:BD二、填空题13. 1- 14. 3 15.()4,4三、解答题17. 解:(1)根据正弦定理,由已知得:()sin 2sin cos sin cos 0A B C C A -+=, 即sin cos sin cos 2sin cos A C C A B C +=, ∴()sin 2sin cos A C B C +=,∵A C B π+=-,∴()()sin sin sin 0A C B B π+=-=>, ∴sin 2sin cos B B C =,从而1cos 2C =. ∵()0,C π∈,∴3C π=.(2)由(1)和余弦定理得2221cos 22a b c C ab +-==,即2212a b ab +-=,∴()2212332a b a b ab +⎛⎫+-=≤ ⎪⎝⎭,即()248a b +≤ (当且仅当a b ==时等号成立). 所以,ABC ∆周长的最大值为c =.18. (1)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M ,则()3336119112020C P M C =-=-=,所以该位考生选考的三个科目中,至少有一个自然科学科目的概率为1920. (2)随机变量X 的所有可能取值有0, 1,2,3. 因为()211105480P X ⎛⎫==⨯= ⎪⎝⎭,()2124111311545448P X C ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,()212413133325445480P X C ⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭,()243935420P X ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为所以()11033360123 2.380808080E X =⨯+⨯+⨯+⨯=. 19.(1)证明:连结AC ,交BD 于点N , ∴N 为AC 的中点,∴//MN EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴//MN 平面EFC .∵,BF DE 都垂直底面ABCD , ∴//BF DE . ∵BF DE =,∴BDEF 为平行四边形,∴//BD EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴//BD 平面EFC .又∵MN BD N ⋂=,∴平面//BDM 平面EFC . (2)由已知,DE ⊥平面ABCD ,ABCD 是正方形.∴,,DA DC DE 两两垂直,如图,建立空间直角坐标系D xyz -. 设2AB =,则4DE =,从而()()()()2,2,0,1,0,2,2,0,0,0,0,4B M A E , ∴()()2,2,0,1,0,2DB DM ==,设平面BDM 的一个法向量为(),,n x y z =, 由00n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩得22020x y x z +=⎧⎨+=⎩.令2x =,则2,1y z =-=-,从而()2,2,1n =--.∵()2,0,4AE=-,设AE与平面BDM所成的角为θ,则45sin cosn AEn AEn AEθ⋅=⋅==⋅,所以,直线AE与平面BDM所成角的正弦值为45.20.(1)由已知可得,椭圆E的焦点在x轴上.设椭圆E的标准方程为()222210x ya ba b+=>>,焦距为2c,则b c=,∴22222a b c b=+=,∴椭圆E的标准方程为222212x yb b+=.又∵椭圆E过点2⎛⎝⎭,∴2211212b b+=,解得21b=.∴椭圆E的标准方程为2212xy+=.(2)由于点()2,0-在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线():2l y k x=+,设()()1122,,,M x y N x y. 由()22212y k xxy=+⎧⎪⎨+=⎪⎩消去y得,2222)128820k x k x k+++-=(.由 0∆>得212k≤<,从而22121222882,1212k kx x x xk k--+==++,∴()22212222412112kMN k x kk-=+-=++.∵点()21,0F 到直线l 的距离231k d k=+,∴2F MN ∆的面积为()()22222413212k k S MN d k -=⋅=+. 令212k t +=,则[)1,2t ∈,∴()()222123233t t t t S t t ---+-==2232131313248t t t ⎛⎫=-+-=--+ ⎪⎝⎭, 当134t =即[)441,233t ⎛⎫=∈ ⎪⎝⎭时,S 有最大值,max 32S =,此时6k =±.所以,当直线l 的斜率为6±时,可使2F MN ∆的面积最大,其最大值32. 21.(Ⅰ)()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,,()()2222222121a x ax a f x x x x x -+'=-=--. ∵2210,0x x ->>. 令()222g x x ax a =-+,则 (1)若0∆≤,即当02a ≤≤时,对任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x ≥恒成立, 即当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '≥恒成立(仅在孤立点处等号成立). ∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.(2)若0∆>,即当2a >或0a <时,()g x 的对称轴为2ax =. ①当0a <时,02a <,且11022g ⎛⎫=> ⎪⎝⎭. 如图,任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x >恒成立, 即任意1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>恒成立,∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.②当2a >时,12a > ,且11022g ⎛⎫=> ⎪⎝⎭. 如图,记()0g x =的两根为()()2212112,222x a a a x a a a =--=+-∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0g x >;当(211,222a a a ⎛⎫- ⎪⎝⎭时,()0g x <. ∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0f x '>,当()12,x x x ∈时,()0f x '<.∴()f x 在11,2x ⎛⎫⎪⎝⎭和()2,x +∞上单调递增,在()12,x x 上单调递减.综上,当2a ≤时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增;当2a >时,()f x 在(211,222a a a ⎛⎫- ⎪⎝⎭和(212,2a a a ⎛⎫+-+∞ ⎪⎝⎭上单调递增,在((22112,222a a a a a a ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭上单调递减. (Ⅱ)()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()0f x ax -≤恒成立.令()()()ln 21a h x f x ax x ax x =-=-+-,则()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()()01h x h ≤= ()*.要满足()*式,即()h x 在1x =时取得最大值. ∵()()()32222221ax a x ax ah x x x -++-+'=-.由()10h '=解得1a =.当1a =时,()()()()2212121x x x h x x x --+'=-,∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '>;当()1,x ∈+∞时,()0h x '<. ∴当1a =时,()h x 在1,12⎛⎫ ⎪⎝⎭上单调递增,在()1,+∞上单调递减,从而()()10h x h ≤=,符合题意. 所以,1a =.22. (1)由2cos 0ρθ-=得:22cos 0ρρθ-=. 因为222,cos x y x ρρθ=+=,所以2220x y x +-=, 即曲线2C 的普通方程为()2211x y -+=.(2)由(1)可知,圆2C 的圆心为()21,0C ,半径为1. 设曲线1C 上的动点()3cos ,2sin M θθ,由动点N 在圆2C 上可得:2min min 1MN MC =-. ∵2MC =当3cos 5θ=时,2min MC =∴2min min 11MN MC =-=. 23.(1)()()1121211f x f x x x -+≤⇔--+≤,1221211x x x ⎧≥⎪⇔⎨⎪---≤⎩或112212211x x x ⎧-<<⎪⎨⎪---≤⎩或1212211x x x ⎧≤-⎪⎨⎪-++≤⎩ 12x ⇔≥或1142x -≤<14x ⇔≥-, 所以,原不等式的解集为1,4⎡⎫-+∞⎪⎢⎣⎭. (2)由条件知,不等式22 11x x m -++<有解,则()min 2121 m x x >-++即可. 由于()1222112211221x x x x x x =-++≥-+++-=+, 当且仅当()()12210x x -+≥,即当11,22x ⎡⎤∈-⎢⎥⎣⎦时等号成立,故 2m >. 所以,m 的取值范围是()2,+∞.。
安徽六校2018届高三数学上学期第一次联考试题理科含答案
安徽六校2018届高三数学上学期第一次联考试题(理科含答案)安徽省合肥一中、马鞍山二中等六校教育研究会2018届高三上学期第一次联考数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,其中为虚数单位,则的虚部是()A.B.C.D.2.集合,则()A.B.C.D.3.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间内的频率为()A.0.2B.0.4C.0.5D.0.64.已知等比数列满足,则的值为()A.1B.2C.D.5.已知变量满足约束条件,则目标函数的最小值为()A.1B.C.3D.76.下列函数中,既是偶函数,又在上单调递增的是()A.B.C.D.7.的展开式中,的系数为()A.154B.42C.D.1268.如图,给出的是计算的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是()A.B.C.D.9.关于函数,下列叙述有误的是()A.其图象关于对称直线对称B.其图象可由图象上所有点的横坐标变为原来的得到C.其值域是D.其图象关于点对称10.某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每位教师可任意选择其中一个项目进行培训,则恰有两个培训项目没有被这5位教师中的任何一位教师选择的情况数为()A.5400种B.3000种C.150种D.1500种11.如图,等边的边长为2,顶点分别在轴的非负半轴,轴的非负半轴上滑动,为中点,则的最大值为()A.B.C.D.12.已知函数,则函数(为自然对数的底数)的零点个数是()A.3B.4C.6D.8第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知命题,都有,则为.14.如图所示,在平面直角坐标系内,四边形为正方形且点坐标为.抛物线的顶点在原点,关于轴对称,且过点.在正方形内随机取一点,则点在阴影区域内的概率为.15.已知三棱锥,为边三角形,为直角三角形,,平面平面.若,则三棱锥外接球的表面积为.16.已知为双曲线的左、右焦点,过的直线与双曲线的一条渐近线垂直,与双曲线的左右两支分别交两点,且,双曲线的渐近线方程为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.的内角的对边分别为.(1)若,求面积的最大值;(2)若,求的值.18.已知正项数列的前项和为,满足.(1)求数列的通项公式;(2)设数列,求数列前项和的值.19.如图,在四棱锥中,四边形为梯形,,,为等边三角形,.(1)求证:平面平面;(2)求二面角大小的余弦值.20.为了解今年某校高三毕业班准备报考飞行员学生的身体素质,学校对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选2人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.21.已知点是圆心为的圆上的动点,点,线段的垂直平分线交于点.(1)求动点的轨迹的方程;(2)矩形的边所在直线与曲线均相切,设矩形的面积为,求的取值范围.22.已知函数.(1)研究函数的单调性;(2)若不等式在上恒成立,求实数的取值范围. 试卷答案一、选择题1-5:BACAA6-10:DBCDD11、12:BC二、填空题13.,使得14.15.16.三、解答题17.解:(1)由余弦定理得,即,所以,因为,所以,即(当且仅当时,等号成立),所以,故面积的最大值为.(2)由正弦定理得,,所以,所以,又因为,所以,所以,故为锐角,所以,所以.18.解:(1)当时,即,解得,①②①-②:,所以,即,因为是正项数列,所以,即,其中,所以是以为首相,1为公差的等差数列,所以.(2)因为,所以,所以,所以.19.解:(1)如图取的中点,连接,依题,所以四边形是平行四边形,所以.因为是中点,所以,故,所以为等边三角形,所以,因为,所以所以平行四边形为菱形,所以,所以,即,又已知,所以平面,平面,所以平面平面.(2)由(1)知,平面,平面平面,所以如图,以为轴,为轴,过点与平面垂直的直线为轴建立空间直角坐标.设,则,,所以,所以.设平面的法向量,则,令,则,所以.同理可得平面的法向量,所以,所以二面角大小的余弦值为.20.解:(1)设报考飞行员的人数为,前3个小组的频率分别为,则由条件可得:解得,又因为,所以.(2)由(1)可得,一个报考学生体重超过60公斤的概率为,由题意知服从二项分布,,所以随机变量的分布列为.21.解:(1)依题,所以(为定值),所以点的轨迹是以为焦点的椭圆,其中,所以点轨迹的方程是(2)①当矩形的边与坐标轴垂直或平行时,易得;②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,设的方程为,的方程为,则的方程为,的方程为,其中,直线与间的距离为,同理直线与间的距离为,所以,因为直线与椭圆相切,所以,所以,同理,所以,(当且仅当时,不等式取等号),所以,即,由①②可知,.22.解:(1)易知函数的定义域为,,设,则,当时,,当时,,所以,故,所以在上单调递增(2)依题在上恒成立,设,则在上恒成立,,欲使在上恒成立,则,得,反之,当时,,设,则设,则,所以在上单调递增,所以,所以,所以在上单调递增,所以,故,所以在上单调递增,又,所以在上恒成立,综上所述,在上恒成立,所以的取值范围是.。
安徽省合肥市高考数学一模试卷(理科)
安徽省合肥市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·中山模拟) 已知复数满足,则()A .B .C . 1D . 52. (2分)有关命题的说法错误的是()A . 命题“若,则x=1”的逆否命题为:“若则”B . “x=1”是“”的充分不必要条件C . 若为假命题,则p、q均为假命题D . 对于命题使得,则均有3. (2分) (2016高一下·韶关期末) 执行如图所示的程序框图,输出的S值为()A . 26B . 11C . 4D . 14. (2分) (2016高三上·珠海模拟) 函数y=x5﹣xex在区间(﹣3,3)上的图象大致是()A .B .C .D .5. (2分)cos105°cos45°+sin45°sin105°的值()A .B .C .D .6. (2分)(2017·襄阳模拟) 榫卯(sǔn mǎo)是古代中国建筑、家具及其它器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式,凸出部分叫做“榫头”.某“榫头”的三视图及其部分尺寸如图所示,则该“榫头”体积等于()A . 12B . 13C . 14D . 157. (2分) (2018高三上·山西期末) 已知双曲线的焦点到渐进线的距离等于实半轴长,则该双曲线的离心率为()A .B . 2C .D .8. (2分) (2017高一下·新乡期中) 已知函数,x∈[﹣π,0],则f(x)的最大值为()A .B .C . 1D . 29. (2分)(2017·贵港模拟) 用半径为R的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为()A .B .C .D .10. (2分) (2017高一下·汽开区期末) 已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2 ,BC=CC1=1 ,则异面直线AB1与BC1所成角的余弦值为()A .B .C .D .11. (2分)抛物线的准线方程为,则抛物线的标准方程为()A .B .C .D .12. (2分)函数f(x)=excosx的图像在点(0,f(0))处的切线的倾斜角为()A .B .C . 1D .二、填空题 (共4题;共4分)13. (1分) (2018高二下·泰州月考) 若的方差为3,则的方差为________.14. (1分)办公室刚装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工只能任意选择1种,则员工甲和乙选择不同的概率为________.15. (1分) (2017高二下·高淳期末) 在△ABC中,已知,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且,则xy的最大值为________.16. (1分) (2017高二上·南通开学考) 设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是________.三、解答题 (共5题;共58分)17. (10分) (2017高二下·河南期中) 已知正项数列{an}的前n项和为Sn ,若{an}和都是等差数列,且公差相等.(1)求数列{an}的通项公式;(2)令bn= ,cn=bn•bn+1,求数列{cn}的前n项和Tn.18. (10分) (2020高二上·青铜峡期末) 如图,是圆的直径,垂直圆所在的平面,是圆上的一点.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值.19. (18分)(2017·临汾模拟) 某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:印刷册数(千册)23458单册成本(元) 3.2 2.42 1.9 1.7根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: = ,方程乙: = .(1)为了评价两种模型的拟合效果,完成以下任务.完成下表(计算结果精确到0.1);印刷册数x(千册)23458单册成本y(元) 3.2 2.42 1.9 1.7________ 2.4 2.1________ 1.6模型甲估计值________ 0﹣0.1________ 0.1残差模型乙________ 2.32 1.9________估计值________ 0.100________残差(2)分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.(3)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)20. (10分)(2020·金堂模拟) 已知直线的参数方程是(是参数),以坐标原点为原点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为 .(1)判断直线与曲线的位置关系;(2)过直线上的点作曲线的切线,求切线长的最小值.21. (10分) (2018高二下·河南月考) 已知函数在上是增函数.(1)求实数的取值范围;(2)在(1)的结论下,设,求函数的最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共58分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、。
2018届安徽省合肥市高三第一次教学质量检测理科数学试题及答案
安徽省合肥市2018届高三第一次教学质量检测数学(理)试题一、选择题(本大题10小题,每小题5分,共50分) 1、复数2(i z i i+=为虚数单位)的虚部为A 、2B 、2-C 、1D 、1- 2、已知集合2{|12},{|10}A x x B x x =≤≤=-≤,则A B = A 、{|11}x x -<< B 、{|12}x x -<< C 、{1} D 、∅3、函数()sin()(0,0)f x A x A ωϕω=+>>的解析式可以为A 、()3sin(2)4f x x π=-B 、()3sin(2)4f x x π=+ C 、13()3sin()24f x x π=- D 、13()3sin()24f x x π=+4、圆2222x y x y +=+上到直线10x y ++=A 、1B 、2C 、3D 、45、已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,则该几何体的侧视图可能是正视图俯视图6、641)1)的展开式中x 的系数是A 、3-B 、3C 、4-D 、4 7、实数,x y 满足0||1xy x y ≥⎧⎨+≤⎩,使z ax y =+取得最大值的最优解有两个,则1z ax y =++的最小值为A 、0B 、2-C 、1D 、1-8、已知椭圆221,43x y F +=为右焦点,A为长轴的左端点,P 点为该椭圆上的动点,则能够使0PA PF ∙=的P 点的个数为A 、4B 、3C 、2D 、19、“1a ≤-”是“函数1()ln f x x ax x=++在[1,)+∞上是单调函数”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件10、已知平行四边形ABCD ,点123,,M M M ,…,1n M -和123,,N N N ,…, 1n N -分别将线段BC 和DC n 等分((,2)n Nn *∈≥,如图,12AM AM ++ …112n AM AN AN -++++ …145n AN AC -+= ,则n =A 、29B 、30C 、31D 、32二、填空题(本大题共5小题,每小题511按分层抽样从中抽取2000.2,则该校高三年级的总人数为_________A 2N 1N BCD 1M2M …n i M -n i N - …12、已知函数1()(0)()2(4)0)xx f x f x x ⎧≤⎪=⎨⎪->⎩(,则(2015)f =______13、右边的程序框图,输出的结果为__________ 14、在ABC ∆中,角A 、B 、C 所对的边分别为,,a b c , 若,23B A b a π=+=,则B =_____15、已知8个非零实数123,,a a a ,…,8a ,向量112(,)OA a a =,234356478(,),(,),(,)OA a a OA a a OA a a ===,对于下列命题:①123,,a a a ,…,8a 为等差数列,则存在,(1,8,,,)i j i j i j i j N *≤≤≠∈,使41k k OA =∑与向量(,)i j n a a =共线;②若123,,a a a ,…,8a 为公差不为0的等差数列,(,)i j n a a = (,,,1,8)i j i j N i j *≠∈≤≤,(1,1),{|}q M y y n q ===∙ ,则集合M 中元素有13个;③若123,,a a a ,…,8a 为等比数列,则对任意,(14,,)i j i j i j N *≤<≤∈,都有//i j OA OA;④若123,,a a a ,…,8a 为等比数列,则存在,(14,,)i j i j i j N *≤<≤∈,使i j OA OA ∙< ;⑤若i j m OA OA =∙ ,(14,,)i j i j i j N *≤<≤∈,则m 的值中至少有一个不小于0,上述命题正确的是______(填上所有正确命题的序号) 三、解答题(本大题共6小题,共75分)16、已知函数1()sin()cos()(01)362f x x x ππωωω=+--<<的图像关于直线3x π=对称(1)求ω的值;(2)若12(),(,)633f ππαα=∈-,求cos α的值17、一家医药研究所,从中草药中提取并合成了甲、乙两种抗“H 病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为11,23,现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”,(1)求一个试用组为“甲类组”的概率;(2)观察3个试用组,用η表示这3个试用组中“甲类组”的个数,求η的分布列和数学期望。
合肥一模理数试题和答案
设 JAJBJG 2 ,则 DE 4J,JJ从JG而 B(2,2,0) ,M (1,0,2) ,A(2,0,0) ,E(0,0,4) ,
∴ DB
设平面
B(D2,M 2的,一0)个,法D向M量为(1nG,0(,x,2)y,,z)
,
由 令
°®°¯nGnGJDJDJJJMJBJGG JxJJG 2 ,则
当
a
!
2
时,f
(
x)
在
§ ¨©
1,1 22
(a
a2
2a
)
· ¸¹
和
§ ¨©
1 2
(a
a2
2a
) ,
f
· ¸¹
上单a
a2 2a ),1 (a 2
a2
2a
)
· ¸¹
上单调递减.
……6 分
(Ⅱ)
f
(x)
d
ax
恒成立等价于
x
§ ¨©
1 , 2
f
· ¸¹
∵ BF DE ,
∴ BDEF 为平行四边形,∴ BD // EF . ∵ BD 平面EFC,EF 平面EFC ,
∴ BD // 平面EFC .
又∵ MN BD N ,∴平面 BDM ∥平面 EFC . ……6 分
(Ⅱ)由已知, DE A 平面 ABCD , ABCD 是正方形 ∴ DA,DC,DE 两两垂直,如图,建立空间直角坐标系 D xyz .
0 0 y
2x 2y 0
得
® ¯
x 2z
.
0
2,z 1,从而
G n
(2, 2, 1) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥市第一次教学质量检测数学(理)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数i z 43+=,z 表示复数z 的共轭复数,则iz =( A .5 B .5 C .6 D .62.设集合{0,},S a =T=2{|2},x x ∈Z <则“1a =”是“ST ⊆ A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.执行如图所示的程序框图(算法流程图),输出的结果是( )A .5 B .6 C .7 D .8 4.过坐标原点O 作单位圆221x y +=的两条互相垂直的半径O A 、在该圆上存在一点C ,使得O C a O A b O B =+(a b R ∈、)确的是( )A .点(),P a b 一定在单位圆内B .点(),P a b 一定在单位圆上C .点(),Pa b 一定在单位圆外 D .当且仅当0a b =时,点(),P a b 在单位圆上5.过双曲线22221(0,0)x y a b ab-=>>的一个焦点作实轴的垂线,交双曲线于A ,B 两点,若线段AB的长度恰等于焦距,则双曲线的离心率为( )A .12B .2C .14D .46. 一个几何体的三视图如图所示,则该几何体的表面积是( )221 12正视图侧视图俯视图A .18+ B .24+C .24+.36+7、已知函数()s in s in 44f x x x ππ=--+,则一定在函数()y f x =图像上的点是( )A .(),()x f x -B .(),()x f x -C .,()44x f x ππ⎛⎫---⎪⎝⎭ D .,()44x f x ππ⎛⎫+-- ⎪⎝⎭8.在ABC ∆中,已知c B a =cos 2, 212sin)cos 2(sin sin 2+=-C C B A ,则ABC ∆为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D . 钝角三角形9.已知y x ,满足⎪⎩⎪⎨⎧≤+≥≥511y x y x 时,)0(>≥+=b a b y a x z 的最大值为1,则b a +的最小值为( )A .7B .8C .9D .1010.对于函数()f x ,若∀,,a b c R ∈, ()()(),,f a f b f c 为某一三角形的三边长,则称()f x 为“可构造三角形函数”.已知函数()1x xe tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是( )A . [)0,+∞B .[]0,1C .[]1,2D .1,22⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.若随机变量ξ~)1,2(N ,且)3(>ξP =0.1587,则=>)1(ξP __________. 12.已知数列{}n a 满足12()n n a a n N ++=∈且21a =,则=20142log a .13.若nxx )3(-展开式的各项系数绝对值之和为1024,则展开式中x 项的系数为_____________.14.某办公室共有6人,组织出门旅行,旅行车上的6个座位如图所示,其中甲、乙两人的关系较为亲密,要求在同一排且相邻,则不同的安排方法有 种 15.已知直线:1cos sin =+y bx aθθ(b a ,为给定的正常数,θ为参数,ACDEF)2,0[πθ∈)构成的集合为S,给出下列命题:①当4πθ=时,S 中直线的斜率为ab ;②S 中所有直线均经过一个定点;③当a b =时,存在某个定点,该定点到S 中的所有直线的距离均相等; ④当a >b 时,S 中的两条平行直线间的距离的最小值为b 2; ⑤S 中的所有直线可覆盖整个平面.其中正确的是 (写出所有正确命题的编号).三、解答题:本大题共六个小题,共75分.解答应写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知1c o s ()c o s (),(,63432ππππααα+⋅-=-∈求:(Ⅰ)α2sin ; (Ⅱ)1ta n ta n αα-.17.(本小题满分12分)如图,在多面体ABCDEF 中,底面ABCD 是梯形,且AD=DC=CB=12AB .直角梯形ACEF 中,1//2E F A C ,F A C ∠是锐角,且平面ACEF ⊥平面ABCD .(Ⅰ)求证:B C ⊥A F ;(Ⅱ)若直线DE 与平面ACEF 所成的角的正切值是13,试求F A C ∠的余弦值.18.(本小题满分12分)已知函数)(,4)(23R x bx ax x x f ∈+++=在2x =处取得极小值.x(Ⅰ)若函数)(x f 的极小值是4-,求)(x f ;(Ⅱ)若函数)(x f 的极小值不小于6-,问:是否存在实数k ,使得函数)(x f 在[],3k k +上单调递减.若存在,求出k 的范围;若不存在,说明理由. 19.(本小题满分13分)已知椭圆)0(1:2222>>=+b a by ax C 的右焦点为F (1,0),设左顶点为A ,上顶点为B ,且BF AB FB OF ⋅=⋅,如图.(Ⅰ)求椭圆C 的方程;(Ⅱ)若)0,1(F ,过F 的直线l 交椭圆于N M ,两点, 试确定FN FM ⋅的取值范围.20.(本小题满分13分)某市质监部门对市场上奶粉进行质量抽检,现将9个进口品牌奶粉的样品编号为1,2,3,4,…,9;6个国产品牌奶粉的样品编号为10,11,12,…,15,按进口品牌及国产品牌分层进行分层抽样,从其中抽取5个样品进行首轮检验,用),(j i P 表示编号为j i ,)151(≤<≤j i 的样品首轮同时被抽到的概率.(Ⅰ)求)15,1(P 的值;(Ⅱ)求所有的),(j i P )151(≤<≤j i 的和.21.(本小题满分13分) 已知函数xn x x f n +=)(,(x >0,),1Z n n ∈≥,以点))(,(n f n n 为切点作函数)(x f y n =图像的切线n l ,记函数)(x f y n =图像与三条直线n l n x n x ,1,+==所围成的区域面积为n a 。
(Ⅰ)求n a ; (Ⅱ)求证:n a <231n;(Ⅲ)设n S 为数列{}n a 的前n 项和,求证:n S <95.合肥市第一次教学质量检测数学(理)参考答案一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 2 3 4 5 6 7 8 9 10 BACBACCBDD二、填空题:本大题共5小题,每小题5分,共25分.11.0.8413 12. 2012 13.-15 14.144 15.③④三、解答题:本大题共六个小题,共75分.解答应写出文字说明、证明过程和演算步骤. 16.(12分)【答案解析】 (Ⅰ)c o s()c o s()63ππαα+⋅-=11c o s ()s in ()s in (2),66234πππααα+⋅+=+=-……2分即1sin (2)32πα+=-,注意到(,)32ππα∈,故23πα+4(,)3ππ∈,从而23)32cos(-=+πα, ……5分ACDE FM213sin32cos(3cos)32sin(2sin =+-+=∴ππαππαα ……7分(Ⅱ)221s in c o s s in c o s 2c o s 22ta n 21ta n c o s s in s in c o s s in 22αααααααααααα----=-===-⋅= ……12分(或者6732ππα=+∴ ∴ 125πα=∴α2sin =2165sin=π, 2365cos2cos -==πα∴1ta n ta n αα-=αααααααααα2sin 212cos cos sin cossin sin cos cos sin 22-=-=-=32)17.(12分)【答案解析】(Ⅰ)证明:在等腰梯形ABCD 中,∵AD=DC=CB=12AB ,∴AD 、BC 为腰,取AB 得中点H ,连CH ,易知,四边形ADCH 为菱形,则CH=AH=BH,故△ACB 为直角三角形,AC BC ⊥∴,…3分平面⊥ACEF平面ABCD ,且平面 ACEF 平面ABCD AC =,⊥∴BC 平面ACEF ,而A F ⊂平面ACEF ,故B C ⊥A F . ……6分 (Ⅱ)连结DH 交AC 于M D,再连结EM 、FM .易知四边形ADCH 为菱形,∴DM ⊥AC ,注意到平面⊥ACEF平面ABCD ,故DM ⊥平面ACEF.于是,D E M ∠即为直线DE 与平面ACEF 所成的角. ……9分设AD =DC =BC =a ,则MD =a 21,a MC 23=依题意,31tan ==∠EMDM DEM∴a ME 23=在ECM Rt ∆中,332323cos ===∠aa MEMC EMC∵1//2E F A C =AM ,∴四边形AMEF 为平行四边形 ∴AF ME // ∴EMC FAC ∠=∠∴33cos cos =∠=∠EMC FAC………12分18.(12分)【答案解析】(Ⅰ)()232f x x a x b '=++,由⎩⎨⎧-==4)2(0)2(/f f知⎩⎨⎧-=+++=++442480412b a b a ,解得2,4a b =-⎧⎨=-⎩, ……4分检验可知,满足题意.)(,442)(23R x x x x x f ∈+--=. ……6分 (Ⅱ)假设存在实数k ,使得函数)(x f 在[],3k k +上单调递减. 设()232f x x a x b '=++=0两根为)(,2121x x x x <,则22=x 由'()0f x <得),(21x x x ∈ ∴)(x f 的递减区间为],[21x x 由3221a x -=+ 解得2321--=a x ∴)(x f 的递减区间为]2,232[--a由条件有⎪⎩⎪⎨⎧≥--≥=36)2(0)2(12/x x f f ,解得3,26a b ⎧=-⎪⎨⎪=-⎩, ……10分∴函数)(x f 在[]2,1-上单调递减由⎩⎨⎧≤+-≥231k k ⎩⎨⎧-≤-≥⇒11k k ⇒1-=k所以,存在实数1-=k ,满足题意。
……12分 19.(13分)【答案解析】(Ⅰ)由已知,)0,(a A -,),0(b B ,)0,1(F ,则由BF AB FB OF ⋅=⋅得:012=--a b ∵122-=a b ∴022=--a a ,解得2=a ,∴3,422==b a 所以椭圆134:22=+yxC ……4分(Ⅱ)①若直线l 斜率不存在,则1:=x l ,此时)23,1(M ,)23,1(-N ,FN FM ⋅=49-;②若直线l 斜率存在,设)1(:-=x k y l ,),(),,(2211y x N y x M ,则由⎪⎩⎪⎨⎧=+-=134)1(22yx x k y 消去y 得:01248)34(2222=-+-+kx k x k∴3482221+=+kk x x ,341242221+-=⋅kk x x∴FN FM ⋅),1(),1(2211y x y x -⋅-=]1)()[1(21212++-+=x x x x k =21149k+--∵02≥k∴11102≤+<k∴411432<+-≤k∴493-<⋅≤-FN FM综上,FN FM ⋅的取值范围为]49,3[--. ……13分20.(13分)【答案解析】(Ⅰ)由分层抽样可知:首轮检验从编号为1,2,3,…,9的洋品牌奶粉的样品中抽取3个,从编号为10,11,…,15的国产品牌奶粉的样品中抽取2个,故)15,1(P =26153928C C C C ⋅=91. ……4分(Ⅱ)①当91≤<≤j i 时,),(j i P =3917C C =121,而这样的),(j i P 有29C =36个;②当1510≤<≤j i 时,),(j i P =151126=C ,而这样的),(j i P 有26C =15个;③当1591≤<≤≤j i 时,),(j i P =26153928C C C C ⋅=91,而这样的),(j i P 有1619C C ⋅=54个.所以,所有的),(j i P )251(≤<≤j i 的和为121×36+151×15+91×54=10. ……13分21.(13分)解:(Ⅰ)易知2/1)(xn x f n-=,切点为)1,(+n n ,则n l 方程为))(1()1(2n x nn n y --=+-即2)11(:+-=x ny l n ∴dx xn nx dx x nx n x a n nn nn )2(]2)11([11-+=---+=⎰⎰++=121)11ln(-++nnn(Ⅱ)构造函数=)(x h )1ln(x +323121x x x -+-,(x ≥0)则=)(/x h 0111132≤+-=-+-+xxxx x即函数=)(x h )1ln(x +323121x x x -+-,(x ≥0)单调递减,而0)0(=h ∴0)(≤x h ,等号在0=x 时取得, ∴当x >0时,)1ln(x +<323121x x x +-成立∴知)11ln(n +<32)1(31)1(211n nn+-∴n a =121)11ln(-++n n n <231n(Ⅲ)n a <231n<)121121(32411312+--⋅=-⋅n n n∴当1=n 时,1a S n ==31<95;当2≥n 时,∑∑==+==nk k nk k n a a a S 211<)12112171515131(3231+--++-+-+n n 1213295+⋅-=n <95方法二:(Ⅰ)(Ⅱ)同方法一; (Ⅲ)由(Ⅱ)知n a <231n,∴123n n S a a a a =++++L 222211113132333n<++++⨯⨯⨯L222211111()3123n=++++L 221511()343n =+++L 22111111()1(1)(1)211nn n n n n <==---+-+Q (*∈≥N n n ,3)15111111111111[()()()()]34224235246211n S n n ∴<+-+-+-++--+L )]1113121(2145[31+--++=n n )111(6195++-=n n 95< 又953111<==a S , 21221155332129S a a =+≤+=<⨯,∴综上所述:对一切*N n ∈,都有n S <95。