SPSS进行主成分分析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七、利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4将变量移到变量栏以后

⒈设置Descriptives描述选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Stat is tic s 统计 栏中选中U niva riate d escript ives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial soluti on 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在C orrel ation M atri x栏中,选中Coe fficien ts 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Deter minant 复选项,则会给出相关系数矩阵的行列式,如果希望在E xc el中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

设置完成以后,单击Cont inue 按钮完成设置(图5)。

⒉ 设置Extra ction 选项。

打开Ext raction 对话框(图6)。因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(Pr in ci pa l Compon en ts),因此对此栏不作变动,就是认可了主成分分析方法。

在Ana lyze 栏中,选中Correlatio n ma trix 复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covar iance matri x复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。

在D isplay 栏中,选中U nrotated factor s olu ti on(非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。

选中Scree P lo t(“山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。

在Extract 栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(Eig envalues )的数值,系统默认的是1=c λ。我们知道,在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认1=c λ,则所有方差大于等于1的主成分将被保留,其余舍弃。如果觉得最后选取的主成分数量不足,可以将c λ值降低,例如取

9.0=c λ;如果认为最后的提取的主成分数量偏多,则可以提高c λ值,例如取1.1=c λ。

主成分数目是否合适,要在进行一轮分析以后才能肯定。因此,特征根数值的设定,要在反复试验以后才能决定。一般而言,在初次分析时,最好降低特征根的临界值(如取

λ),这样提取的主成分将会偏多,根据初次分析的结果,在第二轮分析过程中=

8.0

c

可以调整特征根的大小。

第二种方法是直接指定主成分的数目即因子数目,这要选中Number offactors复选项。主成分的数目选多少合适?开始我们并不十分清楚。因此,首次不妨将数值设大一些,但不能超过变量数目。本例有8个变量,因此,最大的主成分提取数目为8,不得超过此数。在我们第一轮分析中,采用系统默认的方法提取主成分。

图6提取对话框

需要注意的是:主成分计算是利用迭代(Iterations)方法,系统默认的迭代次数是25次。但是,当数据量较大时,25次迭代是不够的,需要改为50次、100次乃至更多。对于本例而言,变量较少,25次迭代足够,故无需改动。

设置完成以后,单击Continue按钮完成设置(图6)。

⒊设置Scores设置。

选中Saveas variables栏,则分析结果中给出标准化的主成分得分(在数据表的后面)。至于方法复选项,对主成分分析而言,三种方法没有分别,采用系统默认的“回归”(Regression)法即可。

图7 因子得分对话框

选中Di sp lay fac tor s core coeffici ent ma tri x,则在分析结果中给出因子得分系数矩阵及其相关矩阵。

设置完成以后,单击Continue 按钮完成设置(图7)。

⒋ 其它。

对于主成分分析而言,旋转项

(Rota tio n)可以不必设置;对于数据没有缺失的情况下,Optio n项可以不必理会。

全部设置完成以后,点击OK 确定,S PS S很快给出计算结果(图8)。

图8 主成分分析的结果

第四步,结果解读。

在因子分析结果(Outp ut )中,首先给出的Descri ptive Sta tisti cs,第一列Mean 对应的变量的算术平均值,计算公式为

∑==n

i ij j x n x 1

1

第二列Std . Deviation 对应的是样本标准差,计算公式为

2/11

2])(11[∑=--=n

i j ij j x x n σ 第三列A nal ys is N 对应是样本数目。这一组数据在分析过程中可作参考。

相关文档
最新文档