EViews计量经济学实验报告-多重共线性的诊断与修正
多重共线性的识别与补救
3.215617
Akaike info criterion
5.417240
Sum squared resid
72.38134
Schwarz criterion
5.508016
Log likelihood
-24.08620
F-statistic
801.6108
Durbin-Watson stat
Log likelihood
-34.22191
F-statistic
234.3827
Durbin-Watson stat
0.468380
Prob(F-statistic)
0.000000
结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。经分析在四个一元线性回归模型中食品需求量Y对可支配收入x1的线性关系强,拟合程度好,即
-24.29012
F-statistic
1758.713
Durbin-Watson stat
2.627059
Prob(F-statistic)
0.000000
Ls y c x2
Dependent Variable: Y
Method: Least Squares
Date: 12/06/10 Time: 09:34
收集到1995——2004年食品需求函数有关统计资料。
针对该问题,检验模型是否存在多重共线性。若存在,给出消除多重共线性的方法并重新对模型进行估计。
实验
步骤
1、启动Eviews3.1
2、建立新工作文档,输入时间范围数据1995——2004
3、单击file→import调入数据
多重共线性的检验与修正
多重共线性的检验与修正【实验目的】掌握多重共线性的检验方法和补救措施。
【实验要求】选择习题4.7,运用EViews 软件进行解答。
【实验内容】一、 利用EViews 软件,输入654321,X X X X X X Y ,,,,, 等数据,采用这些数据对模型进行OLS 回归,结果如下表所示由此可见,该模型2R =0.9810,2R =0.9677可决系数很高,F 检验值73.8081,明显显著,但是当228.2)818()(025.02/=-=-t k n t α,不仅所有解释变量系数t 检验不显著,而且654321X X X X X X ,,,,,系数符号与预期相反,这表明它们之间很可能存在严重多重共线性;二、计算各解释变量的相关系数,的相关系数矩阵如下由相关系数矩阵可以看出,各解释变量相互之间相关系数较高,证实确实存在严重的多重共线性。
三、修正多重共线性采用逐步回归的办法,去检验和解决多重共线性问题。
分别做lny对lnxi(i=1……7)的一元回归,结果如下表:其中,加入lnx1的方程修正拟合度最大,以lnx1为基础,顺次加入其它变量逐步回归,结果如下表:这里说明:对于两个解释变量标准T 分布为:1312318302502.)(t )(n t .α/=-=-,加入各解释变量后,要么2R 下降,要么ln i X (i=1……7)参数的T 检验不显著,这说明765432,X X X X X X ,,,,引起严重多重共线性,应予以剔除。
最后,修正后的回归结果为:1ln 2359.01631.9ˆln X Y t+= T= (73.1914) (19.7895)2R =0.9607 2R =0.9583 F=391.6234 DW=0.5038 这说明,在其他因素不变的情况下,当国民总收入增加e 单位,能源消费标准煤总量增加2359.0e单位。
此案例存在问题是样本容量过小,其可靠性受到影响,如果增大样本容量,效果会好一些; 【练习解答】1) 所建立的对数线性多元回归模型为1ln 2359.01631.9ˆln X Y t+= 2) 会,从表中的解释变量比如“国民总收入”与“GDP ”的本身意义,我们知道这两个变量之间存在很大的联系;3)存在多重共线性,通过逐步回归方法:①简单线性回归分析,找出基本解释变量②逐步进行二次,三次回归分析,直到出现回归系数不显著或者变量系数符号与预期不相符,以及修正拟合度不高的情况,即可认为该解释变量会引起严重多重共线性,应予以剔除,最后得出所需要的回归模型。
计量经济学实验五 多重共线性的检验与修正 完成版
习题1.下表给出了中国商品进口额Y 、国内生产总值GDP 、消费者价格指数CPI 。
年份 商品进口额 (亿元)国内生产总值(亿元)居民消费价格指数(1985=100)1985 1257.8 8964.4 1001986 1498.3 10202.2 106.5 1987 1614.2 11962.5 114.3 1988 2055.1 14928.3 135.8 1989 2199.9 16909.2 160.2 1990 2574.3 18547.9 165.2 1991 3398.7 21617.8 170.8 1992 4443.3 26638.1 181.7 1993 5986.2 34634.4 208.4 1994 9960.1 46759.4 258.6 1995 11048.1 58478.1 302.8 1996 11557.4 67884.6 327.9 1997 11806.5 74462.6 337.1 1998 11626.1 78345.2 334.4 1999 13736.4 82067.5 329.7 2000 18638.8 89468.1 331.0 2001 20159.2 97314.8 333.3 2002 24430.3 105172.3 330.6 200334195.6117251.9334.6资料来源:《中国统计年鉴》,中国统计出版社2000年、2004年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
解:ln 3.6489 1.796ln 1.2075ln t t t Y GDP CPI =--+t= (-11.32) (9.93) (-3.415)20.988770.6.0.1124R F S E ===(2)你认为数据中有多重共线性吗?多重共线性的检验 1)综合统计检验法若 在OLS 法下:R 2与F 值较大,但t 检验值较小,则可能存在多重共线性。
Eviews多重共线性实验报告
实验三 多重共线性【实验目的】掌握多重共线性问题出现的来源、后果、检验及修正的原理,以及相关的Eviews 操作方法. 【实验内容】以《计量经济学学习指南与练习》补充习题4-18为数据,练习检查和克服模型的多重共线性的操作方法。
【4—18】表4-3列出了被解释变量Y 及解释变量1X ,2X ,3X ,4X 的时间序列观察值。
(1) 用OLS 估计线性回归模型,并采用适当的方法检验多重共线性; (2) 用逐步回归法确定一个较好的回归模型.【实验步骤】(1) 建立线性回归模型并检验多重共线性1、 建立模型利用表4-3数据分别建立Y 关于1X 、2X 、3X 、4X 的散点图(SCAT i X Y ).可以看到Y 与1X 、2X 、4X 都呈现正的线性相关,与3X 关系不明显。
首先建立一个多元线性回归模型(LS Y C 1X 2X 3X 4X ).输出结果中,C 、1X 、3X 、4X 的系数都通不过显著性检验。
2、 检验多重共线性进一步选择Covariance Analysis 的Correlation,得到变量之间的偏相关系数矩阵,观察偏相关系数。
可以发现,Y 与1X 、2X 、4X 的相关系数都在0.9以上,但输出结果中,解释变量1X 、4X 的回归系数却无法通过显著性检验。
认为解释变量之间存在多重共线性。
(2) 用逐步回归法克服多重共线性1、 找出最简单的回归形式分别作Y 与1X 、2X 、3X 、4X 间的回归(LS Y C i X )。
即:(1)1122.0942.0X Y +=∧(1。
64) (11。
7)9383.02=RD.W.=1。
6837(2)2205.0497.5X Y +=∧(17。
9) (7。
63)8640.02=RD.W.=0。
6130(3)3095.0090.17X Y -=∧(2。
14) (-1.19)0450.02=RD.W.=0。
6471(4)4055.0018.2X Y +=∧(2.25) (6。
计量经济学实验报告四---多重共线性
计量经济学实验报告四
[实验名称] 多重共线性
[实验目的] 用Eviews 软件检验模型的多重共线性.
[实验内容] (1)根据表列出的家庭消费支出Y与可支配收入X1和个人财富X2的统计数据,在Eviews软件下,OLS的估计结果为
所以模型为Yˆ=245.52+0.57X1-0.0058X2
(3.53)(0.79)(-0.08)
R2=0.962 F=88.845 D.W.=2.708
由拟合优度知,收入和财富一起解释了消费支出的96%.然而两者的t检验都在5%的显著性水平下是不显著的.不仅如此,财富变量的符号也与经济理论不相符合.但从F的检验值看,对收入与财富的参数同时为零的假设显然是拒绝的.因此,显著的F检验值与不显著t检验值,说明了收入与财富存在较高的相关性,使得无法分辨二者各自对消费的影响.只作消费支出关于收入的一元回归模型.如下
所以模型为Yˆ=244.55+0.509X1
(3.813)(14.24)
R2=0.962 F=202.87 D.W.=2.68
我们将上面模型与之相比,新引入的变量并没有带来拟合优度的显著变化,所以该引入的变量不是一个独立的解释变量.因此应该只作消费支出关于收入或财富的一元回归模型来对二元模型进行修正.。
多重共线性的判断与修正
多重共线性的判断与修正一、多重共线性的判断1. 综合统计检验法LS Y C X1 X2 对模型进行OLS, 得到参数估计表(1) 当2,R F 很大,而回归系数的t 检验值小于临界值时,可判定该模型存在多重共线性。
(2) 当完全共线性存在时,模型的OLS 无法进行,Eviews 会提示:矩阵的逆(1()T X X -)不存在。
2. 简单相关系数检验法LS Y C X1 X2 对模型进行OLS, 得到参数估计表中的2R .点击:Quick/Group Statistics/Correlation在对话框中输入:X1 X2 , 点击OK, 即可得到简单相关系数矩阵检验:若存在 i j x x r 接近于1, 或 22,i j x x r R >,则说明,i j x x 之间存在着严重的相关性。
3. 辅助回归法(方差扩大因子法)设 121112...(1)(1)...j j k Xj X X X j X j Xk V ααααα-+=+++-+++++ (j ) LS Xj X1 X2…Xk 对(j) 进行OLS, 得到参数估计表检验:若表中 (2,1)F F k n k α>--+, 则可确定存在多重共线性。
或者(方差扩大因子法):计算211j jVIF R =-, (2j R 为以上方程的可决系数), 若10j VIF ≥, 则可确定存在多重共线性。
4. 逐步回归法1) 首先计算被解释变量对每个解释变量的回归方程,得到基本回归方程:LS Y C Xi OLS ,得到基本回归方程(i), i = 1,2,…,k2) 从这些基本回归方程中选出最合理的方程, 即,2R 取值最大,且t 检验显著。
比方说,0j Y Xj ββ=+3) 在这个选出的方程中增加新的解释变量, 再进行OLS 分析:LS Y C Xj Xi ( i= 1,2,…,j-1, j+1,…k)判断: 如果新加入的解释变量对2R 改进最大, 且每个系数又是t 统计显著,则保留这个新的解释变量。
计量经济学Eviews多重共线性实验报告记录
计量经济学Eviews多重共线性实验报告记录————————————————————————————————作者:————————————————————————————————日期:实验报告课程名称计量经济学实验项目名称多重共线性班级与班级代码专业任课教师学号:姓名:实验日期:2014 年05 月11日广东商学院教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
计量经济学实验报告一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。
二、实验要求:应用教材第127页案例做多元线性回归模型,并识别和修正多重共线性。
三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。
四、预备知识:最小二乘法估计的原理、t检验、F检验、2R值。
五、实验步骤1、选择数据理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费标准煤总量、国民总收入、国内生产总值GDP、工业增加值、建筑业增加值、交通运输邮电业增加值、人均生活电力消费、能源加工转换效率等1985——2007年的统计数据。
本题旨在通过建立这些经济变量的线性模型来说明影响能源消费需求总量的原因。
主要数据如下:1985~2007年统计数据年份能源消费国民总收入国内生产总值工业增加值建筑业增加值交通运输邮电增加值人均生活电力消费能源加工转换效率y X1 X2 X3 X4 X5 X6 X7 1985766829040.7 9016 3448.7 417.9 406.9 21.3 68.29 198680850 10274.4 10275.2 3967 525.7 475.6 23.2 68.32 198786632 12050.6 12058.6 4585.8 665.8 544.9 26.4 67.48 198892997 15036.8 15042.8 5777.2 810 661 31.2 66.54 198996934 17000.9 16992.3 6484 794 786 35.3 66.51 199098703 18718.3 18667.8 6858 859.4 1147.5 42.4 67.2 1991103783 21826.2 21781.5 8087.1 1015.1 1409.7 46.9 65.9 1992109170 26937.3 26923.5 10284.5 1415 1681.8 54.6 66.00 1993115993 35260 35333.9 14188 2266.5 2205.6 61.2 67.32 1994122737 48108.5 48197.9 19480.7 2964.7 2898.3 72.7 65.2 1995131176 59810.5 60793.7 24950.6 3728.8 3424.1 83.5 71.05 1996138948 70142.5 71176.6 29447.6 4387.4 4068.5 93.1 71.5 1997137798 77653.1 78973 32921.4 4621.6 4593 101.8 69.23 1998132214 83024.3 84402.3 34018.4 4985.8 5178.4 106.6 69.44 1999133831 88189 89677.1 35861.5 5172.1 5821.8 118.2 69.19 2000138553 98000.5 99214.6 40033.6 5522.3 7333.4 132.4 69.04 2001143199 108068.2 109655.2 43580.6 5931.7 8406.1 144.6 69.03 2002151797 119095.7 120332.7 47431.3 6465.5 9393.4 156.3 69.04 2003174990 135174 135822.8 54945.5 7490.8 10098.4 173.7 69.4 2004203227 159586.7 159878.3 65210 8694.3 12147.6 190.2 70.71 2005223319 183956.1 183084.8 76912.9 10133.8 10526.1 216.7 71.08 2006 246270 213131.7 211923.5 91310.9 11851.1 12481.1 249.4 71.242007 265583 251483.2 249529.9 107367.2 14014.1 14604.1 274.9 71.25资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。
EViews计量经济学实验报告-多重共线性的诊断与修正
时间 地点 实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 19945218.1 9572.7 19480.7 2964.7 11985029242.2550431995 6242.2 12135.8 24950.6 3728.8 121121 36748.2 45821 1996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
多重共线性问题的检验和处理
山西大学实验报告实验报告题目:多重共线性问题的检验和处理学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:熟悉和掌握Eviews在多重共线性模型中的应用,掌握多重共线性问题的检验和处理。
二、实验原理:1、综合统计检验法;2、相关系数矩阵判断;3、逐步回归法;三、实验步骤:(一)新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date1978和end date 2006并点击确认,点击save键,输入文件名进行保存。
(二)输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,根据理论和经验分析,影响粮食生产(Y)的主要因素有农业化肥施用量(X1)、粮食播种面积(X2)、成灾面积(X3)、农业机械总动力(X4)和农业劳动力(X5),其中成灾面积的符号为负,其余均应为正。
下表给出了1983——2000中国粮食生产的相关数据。
点击name键进行命名,选择默认名称Group01,保存文件。
Y X1 X2 X3 X4 X5 1983 38728 1660 114047 16209 18022 31151 1984 40731 1740 112884 15264 19497 30868 1985 37911 1776 108845 22705 20913 31130 1986 39151 1931 110933 23656 22950 31254 1987 40208 1999 111268 20393 24836 31663 1988 39408 2142 110123 23945 26575 32249 1989 40755 2357 112205 24449 28067 33225 1990 44624 2590 113466 17819 28708 38914 1991 43529 2806 112314 27814 29389 39098 1992 44264 2930 110560 25895 30308 38669 1993 45649 3152 110509 23133 31817 37680 1994 44510 3318 109544 31383 33802 36628 1995 46662 3594 110060 22267 36118 35530 1996 50454 3828 112548 21233 38547 34820 1997 49417 3981 112912 30309 42016 34840 1998 51230 4084 113787 25181 45208 35177 1999 50839 4124 113161 26731 48996 35768 2000 46218 4146 108463 34374 52574 36043 2001 45264 4254 106080 31793 55172 36513 2002 45706 4339 103891 27319 57930 36870 2003 43070 4412 99410 32516 60387 365462004 46947 4637 101606 16297 64028 35269 2005 48402 4766 104278 19966 68398 33970 2006 49804 4928 104958 24632 72522 32561 2007 50160 5108 105638 25064 76590 31444 (三)用普通最小二乘法估计模型参数用最小二乘法估计模型参数。
Eviews多重共线性实验报告(1)
Eviews多重共线性实验报告(1)Eviews多重共线性实验报告1. 实验背景多重共线性是指在回归分析中,自变量之间存在高度相关,导致回归系数的不稳定性和误差方差的增大。
在实践中,多重共线性是经济预测分析的重要问题,如何诊断和处理多重共线性是经济学研究中的重要课题。
2. 实验目的通过Eviews软件进行多重共线性诊断,掌握运用Eviews软件解决多重共线性问题的技巧,提高经济预测和分析的准确度和可靠性。
3. 实验流程(1)收集所需要进行回归分析的数据。
(2)在Eviews中建立回归模型,运行回归分析。
(3)通过Eviews的诊断功能,检验回归模型中自变量之间的线性相关。
(4)运用Eviews的多重共线性处理方法,解决自变量之间的多重共线性问题。
4. 实验结果(1)通过Eviews的诊断功能,我们可以得到多重共线性诊断报告,其中显示了变量之间的相关系数矩阵、方差膨胀因子(VIF)、条件指数(CI)、特征值(eigenvalue)、特征向量(eigenvector)等诊断指标。
通过观察相关系数矩阵和VIF,我们可以发现是否存在高度相关的自变量。
当VIF大于10时,就表明存在多重共线性。
(2)如果诊断报告中存在多重共线性问题,我们可以通过Eviews中的多重共线性处理方法解决。
其中包括删除相关系数较高的变量、采用主成分回归法、采用岭回归等方法,具体方法应根据实际情况来选择。
5. 实验结论通过Eviews的多重共线性诊断和处理,我们可以更加准确地进行回归分析,避免了多重共线性所带来的偏误和不稳定性。
在实际应用中,我们应根据具体情况选择适当的处理方法,以得到更加可靠的预测结果。
多重共线性的检验与诊断
实验二实验项目:运用EVIEWS 软件多重共线性的检验与诊断实验目的:掌握运用EVIEWS 软件进行多重共线性的检验、补救的基本操作方法与步骤,并能够对软件运行结果进行解释,阐明输出结果的经济含义。
实验内容提要:1.利用多元回归分析的实验结果,运用EVIEWS 软件检验是否出现多重共线性现象。
2.应用多种补救方法,在EVIEWS 软件中进行多重共线性补救。
3.对出现多重共线性现象的原因进行合理的解释。
实验内容及步骤:1.模型假设根据货币数量论可知,在其他条件不变的情况下,一国物价水平的高低和货币价值的大小由其货币供应量所决定,货币供应量增加,物价上涨,而该国货币对内贬值,购买力下降,反之则相反。
而根据需求拉动通货膨胀理论和成本推动通货膨胀理论又可得知,从成因来看,通货膨胀可大致分为两类:第一,需求拉动,即总需求超过总供给所引起的一般价格水平的持续显著的上涨;第二,成本推动,即在没有超额需求的情况下,由于供给方面成本的提高所引起的一般价格水平持续和显著的上涨。
另外,随着国家经济的增长,物价也会随着增长。
因此,本文从《中国统计年鉴》中获取、整理出1994~2010年中国每年的CPI 、“M2增长率”、“GDP 增长率”、“资产形成总额增长率”,另外,对于“需求拉动”这一隐变量,本文选取“农村居民家庭人均纯收入指数”、“城镇居民平均每人可支配收入指数”、“人口增长率”、“社会消费品零售总额增长率”四个变量作为其测量指标,其中需求拉动直接体现为“社会消费品零售总额增长率”的大小,而“农村居民家庭人均纯收入指数”、“城镇居民平均每人可支配收入指数”、“人口增长率”等三个因素主要是通过“社会消费品零售总额增长率”间接作用于“需求拉动”;而对于“成本推动”这一隐变量,本文选取“在岗职工平均工资指数”、“原材料、燃料、动力购进价格指数”、PPI 三个变量作为其测量指标。
据此,本文建立了多元回归模型,如下:1122334455667788991010t t t t t t t t t t t tY X X X X X X X X X X ββββββββββε=++++++++++其中,t Y ——第t 年的CPI1t X ——第t 年的M2增长率2tX ——第t 年的GDP 增长率3t X ——第t 年的在岗职工平均工资指数4tX ——第t 年的原材料、燃料、动力购进价格指数5t X ——第t 年的PPI6tX ——第t 年的农村居民家庭人均纯收入指数7tX ——第t 年的城镇居民平均每人可支配收入指数8t X ——第t 年的人口增长率9t X ——第t 年的资产形成总额增长率 10t X ——第t 年的社会消费品零售总额增长率2.模型估计将数据录入EVIEWS 软件中,采用这些数据对模型进行OLS 回归,结果如表1:表1 回归结果Dependent Variable: Y Method: Least Squares Date: 05/29/12 Time: 20:47 Sample: 1994 2010 Included observations: 17Variable Coefficient Std. Error t-Statistic Prob. X1 0.052707 0.184518 0.285646 0.7834 X2 0.007144 0.333233 0.021439 0.9835 X3 -0.153705 0.242537 -0.633738 0.5464 X4 -0.607091 0.573355 -1.058839 0.3248 X5 1.232041 0.733187 1.680391 0.1368 X6 0.220487 0.437081 0.504452 0.6294 X7 0.257883 0.213998 1.205071 0.2673 X8 0.052103 0.137487 0.378964 0.7159 X9 -0.044806 0.104473 -0.428875 0.6809 X10-0.0232240.129740-0.1790020.8630由表1的回归结果可知,所有指标都通不过t 检验,而且3X 、4X 、9X 、10X 系数的符号与预期相反,这表明很可能存在严重多重共线性。
计量经济学实验四-多重共线性的检验与修正
《计量经济学》实验报告四开课实验室:财经科学实验室年月日班级:学号:姓名:实验项目名称:多重共线性的检验与修正成绩:实验性质:验证性□综合性□设计性指导教师签字:【实验目的】掌握多重共线性的检验与修正方法并能运用Eviews软件进行实现【实验要求】能根据OLS的估计结果判断是否存在多重共线性,熟悉逐步回归法修正模型的基本操作步骤,读懂各项上机榆出结果的含义并能进行分析【实验软件】 Eviews 软件【实验内容】根据给定的案例数据按实验要求进行操作【实验方案与进度】实验:设蔬菜销售量Y与人口(X1)、价格(X2)、粮食(X3)、收入(X4)、副食(X5)Dependent Variable: Y Method: Least Squares Date: 06/03/13 Time: 16:48 Sample: 1978 1996 Included observations: 19Variable Coefficient Std. Error t-Statistic Prob. C -1.530260 6.006901 -0.254750 0.8032 X1 0.014649 0.002923 5.012107 0.0003 X2 -0.702775 0.254521 -2.761169 0.0172 X3 0.060321 0.027575 2.187545 0.0492 X4 0.119825 0.036991 3.239290 0.0071 X5 0.018081 0.026022 0.694816 0.5004 X60.0922660.0542651.7003020.1148 R-squared0.986169 Mean dependent var 9.091579 Adjusted R-squared 0.979254 S.D. dependent var 1.717935 S.E. of regression 0.247442 Akaike info criterion 0.322027 Sum squared resid 0.734730 Schwarz criterion 0.669979 Log likelihood 3.940740 F-statistic 142.6067 Durbin-Watson stat2.292164 Prob(F-statistic)0.000000123456-1.5300.0150.7030.0600.120.0180.092t t t t t t t t Y X X X X X X u =+-+++++(2)方程线性显著性检验由(1)表中的数据可知F 统计量的值为142.6067,查表得0.05(6,12)F =3,显然142.6067>0.05(6,12)F =3,说明方程具有线性显著性。
计量经济学多Eviews软件重共线性实验报告
多重共线性实验报告武颖经济统计学一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。
二、实验要求:应用教材第119页案例做多元线性回归模型,并识别和修正多重共线性。
三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。
四、预备知识:最小二乘法估计的原理、t 检验、F 检验、2R 值。
五、实验步骤1.假定模型:设定并估计多元线性回归模型tt t t t t t u X X X X X Y ++++++=66554433221ββββββ2.录入数据:国内旅游收入为Y ,国内旅游人数为X2,城镇居民人均旅游支出为X3,农村居民人均旅游费用为X4,公路里程为X5,铁路里程为X6.3.回归结果:在Eview行输入LS Y C XX3 X4 X5 X6,得到回归结果2模型估计结果为:Yt=-274.3773+0.013088X2+5.438193X3+3.271773X4-563.1077X5+12.98624X6(1316.690) (0.012692) (1.380395) (0.944215) (4.177929) (321.2830)t=(-0.208384)(1.031172)(3.939591)(3.465073)(3.108296)(-1.752685)R2=0.995406 F=173.35254.模型检验:该模型R2=0.995406,R2=0.989664,可决系数很高,F检验值为173.3525,明显显著。
假设显著性水平α=0.05,X2>0.05,X6>0.05,接受原假设,可能存在严重的多重共线性六.多重共线性的识别(1)得到解释变量的相关系数矩阵将解释变量x2、x3、x4、x5、x6选中,双击选择Open Group(或点击右键,选择Open/as Group),然后再点击View/covariance analysis/Correlation/Common Sample,即可得出相关系数再点击表顶部的Freeze,可得一个Table类型独立的object.由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是x2和x3之间高度相关,证实解释变量之间存在多重共线性。
(整理)多重共线性的检验与修正
附件二:实验报告格式(首页)山东轻工业学院实验报告成绩课程名称计量经济学指导教师实验日期 2013-5-25 院(系)商学院专业班级实验地点二机房学生姓名学号同组人无实验项目名称多重共线性的检验与修正一、实验目的和要求掌握Eviews软件的操作和多重共线性的检验与修正二、实验原理Eviews软件的操作和多重共线性的检验修正方法三、主要仪器设备、试剂或材料Eviews软件,计算机四、实验方法与步骤(1)准备工作:建立工作文件,并输入数据:CREATE EX-7-1 A 1974 1981;TATA Y X1 X2 X3 X4 X5 ;(2)OLS估计:LS Y C X1 X2 X3 X4 X5;(3)计算简单相关系数COR X1 X2 X3 X4 X5 ;(4)多重共线性的解决LS Y C X1;LS Y C X2;LS Y C X3;LS Y C X4;LS Y C X5;LS Y C X1 X3;LS Y C X1 X3 X2;LS Y C X1 X3 X4;LS Y C X1 X3 X5;五、实验数据记录、处理及结果分析(1)建立工作组,输入以下数据:98.45 560.20 153.20 6.53 1.23 1.89100.70 603.11 190.00 9.12 1.30 2.03102.80 668.05 240.30 8.10 1.80 2.71133.95 715.47 301.12 10.10 2.09 3.00140.13 724.27 361.00 10.93 2.39 3.29143.11 736.13 420.00 11.85 3.90 5.24146.15 748.91 491.76 12.28 5.13 6.83144.60 760.32 501.00 13.50 5.47 8.36148.94 774.92 529.20 15.29 6.09 10.07158.55 785.30 552.72 18.10 7.97 12.57169.68 795.50 771.16 19.61 10.18 15.12162.14 804.80 811.80 17.22 11.79 18.25170.09 814.94 988.43 18.60 11.54 20.59178.69 828.73 1094.65 23.53 11.68 23.37 (2)OLS估计Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:10Sample: 1974 1987Included observations: 14Variable Coefficient Std. Error t-Statistic Prob.C -3.496563 30.00659 -0.116526 0.9101X1 0.125330 0.059139 2.119245 0.0669X2 0.073667 0.037877 1.944897 0.0877X3 2.677589 1.257293 2.129646 0.0658X4 3.453448 2.450850 1.409082 0.1965X5 -4.491117 2.214862 -2.027719 0.0771R-squared 0.970442 Mean dependent var 142.7129Adjusted R-squared 0.951968 S.D. dependent var 26.09805S.E. of regression 5.719686 Akaike info criterion 6.623232Sum squared resid 261.7185 Schwarz criterion 6.897114Log likelihood -40.36262 F-statistic 52.53086Durbin-Watson stat 1.972755 Prob(F-statistic) 0.000007用Eviews进行最小二乘估计得,Yˆ=-3.497+0.125X1+0.074X2+2.678X3+3.453X4-4.491X5(-0.1) (2.1) (1.9) (2.1) (1.4) (-2.0)R2=0.970, 2R=0.952, DW=1.97, F=52.53其中括号内的数字是t值。
Eviews多重共线性检验及补救
Eviews多重共线性检验及补救Eviews多重共线性检验及补救关键词:eviews多重共线性、eviews多重共线性操作、多重共线性检验、eviews判断多重共线性⽬的:1、正确使⽤EVIEWS2、能根据计算结果进⾏多重共线性检验和出现多重共线性时的补救。
3、数据为demo data2实例:我国钢材供应量分析(多重共线性检验及补救)通过分析我国改⾰开放以来(1978-1997)钢材供应量的历史资料,可以建⽴⼀个单⼀⽅程模型。
根据理论及对现实情况的认识,影响我国钢材供应量Y(万吨)的主要因素有:原油产量X1(万吨),⽣铁产量X2(万吨),原煤产量X3(万吨),电⼒产量X4(亿千⽡⼩时),固定资产投资X5(亿元),国内⽣产总值X6(亿元),铁路运输量X7(万吨)。
设模型的函数形式为:⼀、运⽤OLS估计法对上式中参数进⾏估计,EVIEWS操作步骤为:1、在FILE菜单中选择NEW-WORKFILE,输⼊起⽌时间。
2、在主窗⼝菜单选QUICK-EMPTY GROUP,在编辑数据区输⼊Y X1 X2 X3 X4 X5 X6 X7所对应的数据。
3、在主窗⼝菜单选在QUICK-ESTIMATE EQUATION,对参数做OSL估计,输出结果见下表:Variable Coefficient Std. Error t-Statistic Prob.C139.2362718.24930.1938550.8495X1-0.0519540.090753-0.5724830.5776X20.1275320.1324660.9627510.3547X3-24.2942797.48792-0.2492030.8074X40.8632830.186798 4.6214750.0006X50.3309140.105592 3.1338890.0086X6-0.0700150.025490-2.7467550.0177X70.0023050.0190870.1207800.9059R-squared0.999222 Mean dependent var5153.350Adjusted R-0.998768 S.D. dependent var2511.950squaredS.E. of regression88.17626 Akaike info criterion12.08573Sum squared resid93300.63 Schwarz criterion12.48402Log likelihood-112.8573 F-statistic2201.081Durbin-Watson1.703427 Prob(F-statistic)0.000000statY = 139.2361608 – 0.0519********X1 + 0.1275320853*X2 – 24.294272*X3 +0.8632825292*X4 + 0.330913843*X5 – 0.07001518918*X6 + 0.002305379405*X7⼆、分析由F=2201.081>F0.05(7,12)=2.91(显著性⽔平a=0.05),表明模型从整体上看钢材供应量与解释变量之间线性关系显著。
多重共线性的判定与修正
图7.3
整理回归结果为
Foodt=334.1926-0.1013 Int+0.4651 Ext(7.1)
(1.92)(-1.25)(4.38)R2=0.88,F=102,T=31
估计式(7.1)中FOOD与IN的回归系数是负的,且不能通 过显著性检验。由散点图7.2知,food与IN是正相关的,显然 回归结果与事实不符、与经济理论不符。原因是EX和IN之间 的多重共线性(高度相关)所致。从表7.3偏相关系数矩阵可 以看出变量之间的偏相关系数都大于可决系数0.88。按克莱茵 判别准则可以判断出模型存在严重的多重共线性。
X1
X2
X3
X4
1985 28.49 739.1 2.51 43.72 94.24
1986 34.71 899.6 2.64 36.98 96.28
1987 42.29 1002.2 2.77 47.18 98.22
1988 60.42 1181.4 2.87 64.47 99.96
1989 73.12 1375.7 2.95 58.35 101.43
表7.3
Байду номын сангаас
FOOD
EX
IN
FOOD 1.000000 0.934576 0.893226
EX 0.934576 1.000000 0.975103 IN 0.893226 0.975103 1.000000
另外,如果用food只对IN回归,回归系数是正的,见图 7.4。与上述二元回归结果中的IN的回归系数相比,符号都是 反的。这也说明上述二元回归结果中存在多重共线性。
“城镇居民家庭人均可支配收入”、“城镇总人口数”和“轿车 产量”可以直接从统计年鉴上获得。“公路交通完善程度”用全 国公路里程度量,也可以从统计年鉴上获得。由于国产轿车价 格与进口轿车价格差距较大,而且轿车种类很多,做分种类的 轿车销售价格与销售量统计非常困难,所以因素“轿车价格”暂 且略去不用。定义变量名如下:
计量经济学多重共线性的诊断及处理Eviews
数学与统计学院实验报告院(系):数学与统计学学院 学号: 姓名: 实验课程: 计量经济学 指导教师:实验类型(验证性、演示性、综合性、设计性): 综合性 实验时间:2017年 4 月 5 日 一、实验课题多重共线性的诊断及处理 二、实验目的和意义第8周练习 多重共线性右表是某城市财政收入rev 、第一、第二、第三产业gdp1、gdp2、gdp3的有关数据。
1).建立rev 对gdp1,gdp2,gdp3的多元线性回归,并从经济和数理统计上简要说明模型存在着哪些不足。
2).写出rev ,gdp1,gdp2,gdp3的相关系数矩阵。
3).利用判别系数法判断模型是否存在着多重共线性。
4).用逐步回归的方法排除引起共线性的变量,重新建立多元回归。
5).如果不想排除变量,通过经验,假设:gdp1对财政收入的贡献是 gdp3的三倍,而且gdp2与财政收入是对数线性关系。
那么请建立ln (rev )对(3gdp1+gdp3)及ln (gdp2)的半对数线性回归模型,看看模型在经济和数学上是否合理,并从中你得到了什么启示(自己随意发挥)。
三、解题思路(eviews6)1、建立多元线性回归:quick —estimate equation —(rev c gdp1 gdp2 gdp3)年份 rev gdp1 gdp2 gdp3 1983 6604 27235 26781 7106 1984 6634 26680 28567 10240 1985 6710 26762 31766 11912 1986 6823 33595 40062 14160 1987 8103 38510 52935 16960 1988 8578 41529 61337 18777 1989 8469 47994 67848 30498 1990 11118 65138 98946 39700 1991 16053 86983 112531 66960 1992 20221 105825 143545 92231 1993 27076 129136 223697 117031 1994 31888 138619 216161 151334 1995 35139 146637 305940 193573 1996 42436 149788 371066 227561 1997 56204 161800 426925 256684 1998 93828 162960 614341 372177 1999 130532 199519 821302 524562 200017906324664811210586885672、建立相关系数矩阵:quick--group statistic--correlation--rev gdp1 gdp2 gdp3)3、判定系数法:利用一解释变量由其他解释变量变出模型一::quick—estimate equation—(gdp1 c gdp2 gdp3)模型二::quick—estimate equation—(gdp2 c gdp1 gdp3)模型三::quick—estimate equation—(gdp3 c gdp1gdp2)4、逐步回归:quick—estimate equation—method:stepwise—rev c- gdp1 gdp2 gdp35、建立对数线性关系:quick—estimate equation—LOG(REV) C3*GDP1+GDP3 LOG(GDP2)四、实验过程记录与结果1、建立多元回归方程:模型:REV = 7726.69598122 - 0.180508326923*GDP1 + 0.0759120320555*GDP2 + 0.185205459439*GDP3通过多元回归模型可见,该模型通过假设检验,但是两个解释变量的效果并不好(p>0.05);第二点是GDP1表示第一产业,不存在负值,所以不满足经济条件2、相关系数矩阵:(3、判定系数法:(利用一解释变量由其他解释变量变出,检验拟合优度)由系数判定法,可以看出三个模型都显著性成立,即任意一个解释变量都能由其他解释变量线性变出,所以可以得出该模型存在多重共线性。
多重共线性试验报告
由上表可以看出,解释变量之间相关系数至少为0.824076大于0.8经比较可知,新加入X5的回归模型Y=f(x2,x5),X5回归系数为负,不符合实际的经济意义且检验不通过;新加入X3的回归模型Y=f(x2,x3)及新加入X4的回归模型Y=f(x2,x4)但X3和X4回归系数的T检验不通过;新加入X2的回归模型Y=f(x2,x1)回归系数T检验通过,而且2R比一元回归模型Y=f(x2) 的2R提高,因此,为最优的二元回归模型,以此为基础,建立三元回归模型:Ls y c x2 x1 x3在X2、X1基础上,加入X3后的回归模型y=f( x2, x1, x3),2R有所下降,且检验不显著;加入X4或X5后回归模型y =f(x2, x1 ,x4)或y =f( x2, x1, x5)回归系数T检验不显著,甚至X4的回归系数也不符合经济理论分析和经验判断;加入y =f( x2, x1, x5)与加入X4后的回归模型相同,X5回归系数经济意义不合理且相较而言加入X3后的回归模型y=f( x2, x1, x3)其回归系数经济合理,果,以此为基础,建立四元回归模型:经检验X4和X5的回归系数符号为负值,且X1与X5的T检验不显著。
逐步回归估计结果表:X2 X1 X3 X4 X5 2RY=f(x2) 0.8841(62.4859)0.9952Y=f(x2,x1) 0.4872(4.3234) 0.4159(3.5394)0.997047Y=f(x2,x3) 0.8066 0.053765 0.995251White Heteroskedasticity Test:F-statistic 0.900543 Probability 0.489763 Obs*R-squared 3.888230 Probability 0.421344例5.服装需求函数。
根据理论和经验分析,影响居民服装需求Y的主要因素有:可支配收入X、流动资产拥有量K、服装类价格指数P1和总物价指数P0 ,统计资料如下。
计量经济学多重线性检验修正
计量经济学实验报告姓名:学号:班级:一、 实验目的本实验研究的是国内旅游收入Y (亿元)与国内旅游人数X1(万人次)、城镇居民人均旅游支出X2(元)、农村居民人均旅游支出X3(元)、公路里程 X4(万公里)和铁路里程X5(万公里)之间的关系,以便更好地了解和预测我国国内旅游收入。
表1是本体所用数据,数据来源:《中国统计年鉴2004》 。
表1Y X1 X2 X3 X4 X5 1023.5 52400 414.7 54.9 111.78 5.9 1375.7 62900 464 61.5 115.7 5.97 1638.4 63900 534.1 70.5 118.58 6.49 2112.7 64400 599.8 145.7 122.64 6.6 2391.2 69450 607 197 127.85 6.64 2831.9 71900 614.8 249.5 135.17 6.74 3175.5 74400 678.6 226.6 140.27 6.87 3522.4 78400 708.3 212.7 169.8 7.01 3878.4 87800 739.7 209.1 176.52 7.19 3442.3 87000 684.9 200 180.98 7.3二、模型假定先假定该模型是多远线性回归模型:01122334455i Y X X X X X u ββββββ=++++++三、 实验步骤1. 将数据导入数据,得到表2。
表22、在EViews 命令框中直接键入“ls y c x1 x2 x3 x4 x5”,按回车,即出现回归结果表3。
表3Dependent Variable: Y Method: Least Squares Date: 11/18/13 Time: 14:36 Sample: 1 10Included observations: 10Coefficient Std. Error t-Statistic Prob.C -274.3773 1316.690 -0.208384 0.8451 X1 0.013088 0.012692 1.031172 0.3607 X2 5.438193 1.380395 3.939591 0.0170 X3 3.271773 0.944215 3.465073 0.0257 X4 12.98624 4.177929 3.108296 0.0359 X5-563.1077321.2830 -1.7526850.1545R-squared0.995406 Mean dependent var 2539.200 Adjusted R-squared 0.989664 S.D. dependent var 985.0327 S.E. of regression 100.1433 Akaike info criterion 12.33479 Sum squared resid 40114.74 Schwarz criterion 12.51634 Log likelihood -55.67396 Hannan-Quinn criter. 12.13563 F-statistic 173.3525 Durbin-Watson stat 2.311565Prob(F-statistic)0.000092该模型的0.995406,0.989664R R ==可绝系数高, F 检验值是173.3525,拟合优度好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间 地点 实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 19945218.1 9572.7 19480.7 2964.7 11985029242.2550431995 6242.2 12135.8 24950.6 3728.8 121121 36748.2 45821 1996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
(二)诊断多重共线性1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —多重共线性的数据.xls ;2、在EV 主页界面的窗口,输入“ls y c x2 x3 x4 x5 x6 x7”,按“Enter ”.出现OLS 回归结果,图2: 图2: OLS 回归结果Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:07 Sample: 1978 2007 Included observations: 30Variable Coefficient Std. Error t-Statistic Prob. C -6646.694 6454.156 -1.029832 0.3138 X2 -0.970688 0.330409 -2.937841 0.0074 X3 1.084654 0.228521 4.746397 0.0001 X4 -2.763928 2.076994 -1.330735 0.1963 X5 0.077613 0.067974 1.141808 0.2653 X6 -0.047119 0.081509 -0.578084 0.5688 X70.0075800.0350390.2163290.8306R-squared 0.994565 Mean dependent var 10049.04 Adjusted R-squared 0.993147 S.D. dependent var 12585.51 S.E. of regression 1041.849 Akaike info criterion 16.93634 Sum squared resid 24965329 Schwarz criterion 17.26329 Log likelihood -247.0452 F-statistic 701.4747 Durbin-Watson stat 2.167410 Prob(F-statistic)0.000000由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F 统计量为701.47,模型拟和很好,回归方程整体上显著。
但是当α=0.05时,)(2/k n t -α=)23(025.0t =2.069,不仅X4、X5、X6、X7的系数t 检验不显著,而且X2、X4、X6系数的符号与预期相反,这表明很可能存在严重的多重共线性。
(即除了农业增加值2X 、工业增加值3X 外,其他因素对财政收入的影响都不显著,且农业增加值2X 、建筑业增加值4X 、最终消费6X 的回归系数还是负数,这说明很可能存在严重的多重共线性。
)3、计算各解释变量的相关系数:在Workfile 窗口,选择X2、X3、X4、X5、X6、X7数据,点击“Quick ”—Group Statistics —Correlations —OK,出现相关系数矩阵,如图3:图3: 相关系数矩阵X2 X3 X4 X5 X6 X7 X2 1 0.972980614561470.982660623499789 0.927978429406745 0.988962619724667 0.226199965872465 X3 0.97298061456147 1 0.9985218083931880.843900206568758 0.992641236711784 0.129443710336215 X4 0.982660623499789 0.998521808393188 1 0.8641521359280510.996056843441596 0.154645718404353 X5 0.927978429406745 0.843900206568758 0.864152135928051 1 0.8888480555469790.387767264808787 X6 0.988962619724667 0.992641236711784 0.996056843441596 0.888848055546979 1 0.185172880851582X70.2261999658724650.1294437103362150.1546457184043530.3877672648087870.1851728808515821由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是农业增加值2X 、工业增加值3X 、建筑业增加值4X 、最终消费之间6X ,相关系数都在0.8以上。
这表明模型存在着多重共线性。
(三)修正多重共线性1、采用逐步回归法,去检验和解决多重共线性问题。
分别作Y 对X2、X3、X4、X5、X6、X7的一元回归,结果如下图4:在EV 主页界面的窗口,输入“ls y c x2”,“回车键”。
Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:49 Sample: 1978 2007 Included observations: 30Variable Coefficient Std. Error t-Statistic Prob. C -4086.544 1463.091 -2.793090 0.0093 X21.4541860.11723512.403980.0000R-squared 0.846034 Mean dependent var 10049.04 Adjusted R-squared 0.840536 S.D. dependent var 12585.51 S.E. of regression 5025.770 Akaike info criterion 19.94689 Sum squared resid 7.07E+08 Schwarz criterion 20.04030 Log likelihood -297.2033 F-statistic 153.8588 Durbin-Watson stat0.166951 Prob(F-statistic)0.000000依次如上推出X3、X4、X5、X6、X7的一元回归。