圆锥曲线中离心率及其范围的求解专题
圆锥曲线 重点 3:圆锥曲线的离心率问题 - 解析
微专题3:圆锥曲线的离心率问题离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
对离心率的考查集中代表了就是对圆锥曲线基本性质的考查,因此它在高考小题中出现的频率很高,需要重点掌握。
主要题型有两类:求离心率;求离心率范围题型一 求离心率知识梳理:1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距)变式有: 椭圆e =c a = 2c 2a = |F 1F 2||PF 1+PF 2| = sinF 1PF 2sinPF 2F 1+sinPF 1F 2 或者e =c a = √1−b 2a 2∈(0,1)双曲线e =c a = 2c 2a = |F 1F 2||PF 1−PF 2| = sinF 1PF 2sinPF 2F 1− sinPF 1F 2或者e =c a =1+b 2a2∈(1,+∞) 2、圆锥曲线中,,a b c 的几何性质及联系3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可) 方法一:利用几何性质求离心率【例1-1】设M 为椭圆22221(0)x y a b a b+=>>上一点,F 1、F 2为椭圆的焦点,若∠MF 1F 2=75°,∠MF 2F 1=15°,求椭圆的离心率 【解析】 在△MF 1F 2中,由正弦定理得12122112||||2sin sin sin MF MF cF MF MF F MF F ==∠∠∠,即12||||2sin 90sin15sin 75MF MF c ==︒︒︒∴2|1||2|2sin 90sin15sin 75sin15sin 75c MF MF a +==︒︒+︒︒+︒,∴1sin15sin 75c e a ===︒+︒【例1-2】设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( )A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 规律方法:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距,从而可求解【变式1】设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A.34 B.35 C.49D.3 思路:条件与焦半径相关,所以联想到122PF PF a -=,进而与,49||||,3||||2121ab PF PF b PF PF =⋅=+找到联系,计算出,a b 的比例,从而求得e 解:122PF PF a -=()()221212124PF PF PFPF PF PF ∴+--=⋅即22229499940b a ab b ab a -=⇒--=29940b b a a ⎛⎫∴-⋅-= ⎪⎝⎭ 解得:13b a =-(舍)或43b a =::3:4:5a b c ∴= 53c e a ∴== 【变式2】椭圆()222102312x y b b +=<<与渐近线为20x y ±=的双曲线有相同的焦点12,F F ,P 为它们的一个公共点,且1290F PF ∠=,则椭圆的离心率为________思路:本题的突破口在于椭圆与双曲线共用一对焦点,设122F F c =,在双曲线中,''''1::2:1:52b a bc a =⇒=,不妨设P 在第一象限,则由椭圆定义可得:1243PF PF +=,由双曲线定义可得:'12425PF PF a c -==,因为1290F PF ∠=,222124PF PF c ∴+=而()()2222121212=2PF PF PF PF PF PF ++-+代入可得:2216488105c c c +=⇒= 306c e a ∴==方法二:利用坐标运算【例2】如图所示,已知双曲线()222210x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于,A B 两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( ) A.324 B. 233 C. 305 D. 52思路:本题没有焦半径的条件,考虑利用点的坐标求解,则将所涉及的点坐标尽力用,,a b c 表示,再寻找一个等量关系解出,,a b c 的关系。
圆锥曲线的离心率问题的求解
圆锥曲线的离心率问题的求解一、由曲线图形的性质求离心率的大小或范围问题例1、(1)已知双曲线22xa-y2=1(a>0)的一条准线为x=1.5,则该双曲线的离心率为(2)设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是.(3)点P(-3,1)在椭圆x2/a2+y2/b2=0(a>b>0)的左准线上.过点P且方向为a=(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为.(4)已知双曲线x2/a2+y2/b2 = 0 (a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(5)已知双曲线22xa-y2=1(a>1)的两条渐近线的夹角为60°,则双曲线的离心率为(6)过标准型双曲线的右焦点作其在第一三象限的渐近线的垂线,垂足为P,若此垂线与双曲线的左右两支个交于一点,则双曲线的离心率的范围为.(7) (浙江) 过标准型双曲线的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(8)设标准型双曲线的右焦点为F,右准线L与两条渐近线交于P、Q两点,如果ΔPQF是直角三角形,则双曲线的离心率e= .(9)过双曲线M:x2-y2/b2=1的左顶点A作斜率为1的直线L,若L与双曲线M的两条渐近线分别相交于B、C,且|AB|=|BC|,则双曲线M的离心率是(10)在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为2,则该椭圆的离心率为.例2、已知A、B是椭圆长轴的两个端点,如果椭圆上存在一点Q,使∠AQB=120°,求椭圆离心率的取值范围。
练习:椭圆中心在原点,焦点在x轴上,若存在过椭圆左焦点的直线L交椭圆于P、Q两点,使得OP⊥OQ,求离心率e 的取值范围。
圆锥曲线专题[求离心率的值、离心率的取值范围]
圆锥曲线专题 求离心率的值师生互动环节讲课内容:历年高考或模拟试题关于离心率的求值问题分类精析与方法归纳点拨。
策略一:根据定义式求离心率的值在椭圆或双曲线中,如果能求出c a 、的值,可以直接代公式求离心率;如果不能得到ca 、的值,也可以通过整体法求离心率:椭圆中221ab ac e -==;双曲线中221a b a c e +==.所以只要求出ab值即可求离心率. 例1.(2010年全国卷2)己知斜率为1的直线l 与双曲线C :()2222100x y a b a b-=>,>相交于D B 、两点,且BD 的中点为)3,1(M ,求曲线C 的离心率.解析:如图,设),(),(2211y x D y x B 、,则1221221=-b y a x ① 1222222=-by a x ② ①-②整理得0))(())((2212122121=+--+-b y y y y a x x x x ③又因为)3,1(M 为BD 的中点,则6,22121=+=+y y x x ,且21x x ≠,代入③得13222121==--=a b x x y y k BD,解得322=ab ,所以231122=+=+=a b e .方法点拨:此题通过点差法建立了关于斜率与a b 的关系,解得22ab 的值,从而整体代入求出离心率e .当然此题还可以通过联立直线与曲线的方程,根据韦达定理可得),(21b a x x ϕ=+,2),(=b a ϕ或者),(21b a y y ω=+,6),(=b a ω从而解出22a b 的值,最后求得离心率.【同类题型强化训练】1.(呼市二中模拟)已知中心在原点,焦点在x 轴上的双曲线的渐近线方程为032=±y x ,则双曲线的离心率为( ). 313.A 213.B 315.C 210.D 2.(衡水中学模拟)已知中心在原点,焦点在x 轴上的一椭圆与圆222)1()2(r y x =-+-交于B A 、两点,AB 恰是该圆的直径,且直线AB 的斜率21-=k ,求椭圆的离心率.3.(母题)已知双曲线)0(1:22>=-m y m x C ,双曲线上一动点P 到两条渐近线的距离乘积为21,求曲线C 的离心率. 【强化训练答案】1.答案:由双曲线焦点在x 上,则渐近线方程0=±ay bx ,又题设条件中的渐近线方程为032=±y x ,比较可得32=a b ,则313941122=+=+=a b e .2.答案:设椭圆方程为)0(12222>>=+b a by a x ,),(),,(2211y x B y x A ,则1221221=+b y a x ① 1222222=+by a x ② ①-②整理得0))(())((2212122121=+-++-b y y y y a x x x x ③因为AB 恰是该圆的直径,故AB 的中点为圆心)1,2(,且21x x ≠则2,42121=+=+y y x x ,代入③式整理得2221212ab x x y y k -=--=直线AB 的斜率21-=k ,所以21222-=-=a b k ,解得4122=a b所以离心率23411122=-=-==a b a c e .3.答案:曲线C 的渐近线方程分别为0:1=+y m x l 和0:2=-y m x l ,设),(00y x P ,则 点),(00y x P 到直线1l 的距离m y m x d ++=1001,点),(00y x P 到直线2l 的距离my m x d +-=1002,mmy x my m x y m x d d +-=+-⋅+=⋅11220000021因为),(00y x P 在曲线C 上,所以m my x =-2020,故21121=+=⋅m m d d ,解得1=m 所以2=e .策略二:构造c a ,的关系式求离心率根据题设条件,借助c b a ,,之间的关系,沟通c a 、的关系(特别是齐次式),进而得到关于e 的一元方程,从而解方程得出离心率e .例 2.已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点P 在双曲线上,求双曲线的离心率.解析:如图1,1MF 的中点为P ,则点P 的横坐标为2c-.由c F F PF ==21121, 焦半径公式a ex PF p --=1有a ca c c --⨯-=)2(,即02222=--ac a c 有0222=--e e解得31+=e ,或31-=e (舍去).方法点拨:此题根据条件构造关于c a ,的齐次式,通过齐次式结合离心率的定义ace =整理成关于e 的一元方程,从而解出离心率的值.注意解出的结果要做验证,取符合离心率的范围的结果:),1(),1,0(+∞∈∈双曲线椭圆e e . 【同类题型强化训练】1.(2011新课标)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,||AB 为C 的实轴长的2倍,则C 的离心率为( ).A 2.B 3.C 2 .D 32.(2008浙江)若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ).A 3 .B 5 .C 3 .D 5 【同类题型强化训练答案】1.答案:依据题意a aa c AB 22222=-=,解得2=e .2.答案:依据题意2:3)(:)(22=-+c a c c a c ,整理得223a c =,所以3==ace .策略三:根据圆锥曲线的统一定义求离心率(第二定义)由圆锥曲线的第二定义,知离心率e 是动点到焦点的距离和动点到准线的距离之比,适用于条件含有焦半径的圆锥曲线问题,即e dMF =.例3.(2010年辽宁卷)设椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C相交于B A ,两点,直线l 的倾斜角为︒60,2AF FB =,求椭圆C 的离心率.解法一:作椭圆的左准线B A '',过A 作B A ''的垂线,垂足为A ';过B 作B B '的垂线,垂足为B '.过B 作A A '的垂线,垂足为M .如图2.由图,由椭圆的第二定义,则e A A AF ='e AF A A ='⇒,e B B BF ='e BFB B ='⇒ 12::==''e BF e AF B B A A B B A A '='⇒2 且A A BM '⊥,所以M 是A A '的中点又因为直线l 的倾斜角为︒60,即︒=∠=∠60AFx BAM , 所以在BAM Rt ∆中,A A AM AB '==2,故3232=⋅='=AB AB A A AF e . 解法二:设1122(,),(,)A x y B x y ,由题意知10y <,20y >.直线l 的方程为 3()y x c =-,其中22c a b =-联立22223(),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)2330a b y b cy b ++-=解得221222223(2)3(2),33b c a b c a y y a b a b -+--==++因为2AF FB =,所以122y y -=.即 2222223(2)3(2)233b c a b c a a b a b +--=⋅++得离心率 23c e a ==. 方法点拨:该题对于课标地区选择第二种代数法处理,对于自主命题对圆锥曲线的第二定义要求的地区,两种方法都可以给学生讲讲。
圆锥曲线离心率取值范围问题的求解方法
重点辅导Җ㊀云南㊀武增明㊀㊀圆锥曲线离心率取值范围问题是圆锥曲线中的一类重要问题,这类问题涉及的知识点多,综合性强,解法灵活且多种多样,所以学生在解答这类问题时,常常会不知从何入手.笔者探究发现这类问题主要涉及函数与方程㊁数形结合㊁转化与化归等数学思想,解决这类问题的关键是挖掘寻找问题中的不等关系,构造出关于a ,b ,c 的不等式;挖掘寻找问题中的变量,建立离心率e 关于题设中变量的函数.故本文试图通过实例对如何构造出关于a ,b ,c 的不等式和建立离心率e 关于题设中变量的函数,将问题转化为求解关于离心率e 的不等式,求解以离心率e 为函数的值域问题.通过归纳㊁总结,给出圆锥曲线离心率取值范围问题的求解方法,抛砖引玉,希望对同学们有所启示和帮助.1㊀利用圆锥曲线的范围运用方程思想,用a ,b ,c 表示出圆锥曲线上点的横坐标或纵坐标,然后利用圆锥曲线的范围建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e的不等式,求解此不等式,问题即可获解.例1㊀设椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,若椭圆上存在一点P ,使øO P A =π2(O为坐标原点),则椭圆离心率的取值范围为.设点P (x 0,y 0),则由O P ʅP A ,可得O P ң P A ң=0,从而(x 0,y 0) (-a -x 0,-y 0)=0,即x 20+y 20+a x 0=0.又b 2x 20+a 2y 20-a 2b 2=0,两式联立,消去y 0,得c 2x 20+a 3x 0+a 2b 2=0,即(x 0+a )(c 2x 0+a b 2)=0,所以x 0=-a (舍去)或x 0=-a b2c 2.因为-a <x 0<0(如图1),所以-a <-a b 2c2<0,故c a >22,即e >22,又0<e <1,故椭圆离心率的取值范围为(22,1).图1此题运用椭圆的参数方程引入点P 的坐标,结合三角函数的有界性也可进行解答.具体是,设P (a c o s θ,b s i n θ),由øO P A =π2,可得c o s θ=b2a 2-b 2,再由三角函数的有界性并结合题设条件,可知-1<c o s θ<1,从而-1<b2a 2-b2<1,由此解得e ɪ(22,1).2㊀利用已知条件中的参数利用已知条件中的参数表示出圆锥曲线的离心率,即将离心率转化为含参数的函数,进而将问题转化为求函数的值域问题.利用参数的范围,求出函数的值域,从而问题获解.例2㊀设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是.根据题设条件,可知e 2=a 2+(a +1)2a 2,即e 2=1a 2+2a+2.因为a >1,所以0<1a<1,从而问题转化为求函数f (a )=1a 2+2a +2(a >1)的值域.易知2<e 2<5,因此,2<e <5,即双曲线的离心率e 的取值范围是(2,5).求解函数值域的方法有很多,将问题转化为求解函数值域,可使问题快速获解.3㊀利用三角函数的范围利用a ,b ,c 表示出变量角α的正弦或余弦,然后利用三角函数的范围(有界性)建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例3㊀如图2所示,已知椭圆C :x 2a 2+y 2b2=17重点辅导(a >b >0),焦距为2c ,离心率为e ,以原点为圆心,c 为半径作圆,圆与椭圆C 交于A ,B ,C ,D 四点,若øA O D ɪ[π3,π2),则e 的取值范围是.图2设øA O x =α(αɪ[π6,π4)),则A (c c o s α,c s i n α),把点A 代入椭圆方程,可得(c c o s α)2a 2+(c s i n α)2b2=1,化简整理,得c o s 2α=2e 2-1e4.因为22<c o s αɤ32,所以22<2e 2-1e4ɤ32,解此不等式,得2-2<e ɤ63,即椭圆的离心率的取值范围为(2-2,63].利用三角函数的有界性可建立关于离心率e的不等式,从而求得离心率的取值范围.4㊀利用已知条件中的不等式或范围充分考虑已知条件中的不等式或范围与a ,b ,c的关系,由此建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例4㊀设椭圆x 2a 2+y 2b2=1(a >b >0)的左㊁右焦点分别为F 1,F 2,P 为椭圆上任意一点,且P F 1ң P F 2ң的最大值的取值范围是[c 2,3c 2],其中c =a 2-b2,则椭圆的离心率的取值范围是.设P (x ,y ),则x 2a 2+y 2b2=1,由此可得y 2=b 2-b2a 2x 2,且知P F 1ң P F 2ң=x 2+y 2-c 2=(1-b 2a2)x 2+b 2-c 2.因为0ɤx 2ɤa 2,所以当x 2=a 2时,P F 1ң P F 2ң取得最大值b 2.从而结合题意,可得c 2ɤb 2ɤ3c2,因此14ɤe2ɤ12,所以12ɤe ɤ22,故椭圆的离心率的取值范围是[12,22].求解这类问题时要善于在题目中寻找可用的条件,并合理构建不等式.5㊀利用判别式若直线与圆锥曲线有两个不同的交点,则将直线与圆锥曲线方程联立后,根据判别式大于零建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例5㊀斜率为2的直线l 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,若l 与双曲线的两个交点分别在左㊁右两支上,则双曲线离心率的取值范围是(㊀㊀).A㊀e >2;㊀㊀㊀㊀B ㊀1<e <3;C ㊀1<e <5;D㊀e >5双曲线右焦点为F (c ,0),直线l 的方程为y =2(x -c ),故由y =2(x -c ),x 2a 2-y 2b2=1,ìîíïïï可得(b 2-4a 2)x 2+8a 2c x -a 2(4c 2+b 2)=0.根据题意得Δ>0,x 1x 2<0,{即16a 4c 2+a 2(b 2-4a 2)(4c 2+b 2)>0,-a 2(4c 2+b2)b 2-4a 2<0,ìîíïïï则b 2-4a 2>0,b 2-5a 2>0,即e >5,故选D .此题还有一种很简捷的解法,即数形结合法,根据题意可得ba>2,由此也可求得e >5.6㊀利用均值不等式利用均值不等式,建立关于a ,b ,c 的不等式,进而得到关于离心率e 的不等式,问题即可获解.例6㊀已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,若椭圆上存在一点P ,使øF 1P F 2=120ʎ,则椭圆离心率e 的取值范围为.设|P F 1|=m ,|P F 2|=n ,如图3所示,则在әP F 1F 2中,由余弦定理得4c 2=m 2+n 2-2m n c o s 120ʎ=(m +n )2-2m n +m n =(m +n )2-m n .8重点辅导图3由椭圆的第一定义,可知m +n =2a ,则4a 2-4c 2=m n ɤ(m +n2)2=a 2,所以3a 2ɤ4c 2,e ȡ32,即椭圆离心率e ɪ[32,1).解答本题的关键是利用均值不等式,寻找到a,b ,c 之间的不等关系.7㊀利用三角形性质利用三角形任意两边之和大于第三边,任意两边之差小于第三边的性质,建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例7㊀已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1(-c ,0),F 2(c ,0),若双曲线上存在点P ,使s i n øP F 1F 2s i n øP F 2F 1=ac,则该双曲线离心率的取值范围是.设|P F 1|=m ,|P F 2|=n ,则由正弦定理得m n =si n øP F 2F 1s i n øP F 1F 2.因为s i n øP F 2F 1s i n øP F 1F 2=e ,所以mn=e ,即m =e n .①㊀㊀因为e >1,所以点P 在双曲线的右支上(如图4),于是根据双曲线的第一定义得m -n =2a .②图4由①②解得m =2a e e -1,n =2ae -1,因为m +n >2c ,所以2a e e -1+2a e -1>2c ,化简得e 2-2e -1<0,又e >1,所以1<e <2+1,于是双曲线离心率的取值范围是e ɪ(1,2+1).根据三角形中 两边之和大于第三边这一简单的性质,建立a ,b ,c 之间的不等关系式是解题的关键,求解时要注意等号是否成立.8㊀利用渐近线的性质利用几何方法㊁渐近线的几何特性,建立关于a ,b ,c 的不等式,进而将问题转化为离心率e 的不等式,求解此不等式,问题即可获解.例8㊀已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60ʎ的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(㊀㊀).A㊀(1,2];㊀㊀㊀㊀B ㊀(1,2);C ㊀[2,+ɕ);D㊀(2,+ɕ)此题可以用代数方法求解,即将直线与双曲线方程联立,根据判别式就可确定离心率的取值范围,但计算比较烦琐,因此考虑用几何方法,利用渐近线的几何特性,去求离心率的取值范围.因为过点F 且倾斜角为60ʎ的直线与双曲线的右支有且仅有一个交点,如图5所示,所以渐近线y =bax 的斜率不小于过点F 且倾斜角为60ʎ的直线的斜率,即b aȡ3,解得e ȡ2,故选C .图5渐近线控制着双曲线的形状,这与离心率控制着双曲线的形状有着相似之处,知道了这一点,许多求双曲线离心率取值范围的问题就可以利用渐近线的性质来轻松地解决了.求解圆锥曲线离心率的取值范围问题,并非仅有上面介绍的8种方法,这8种方法仅是基本的㊁重要的㊁常见的方法,除此之外还有数形结合法㊁参数法等,并且这些方法并非彼此孤立的,在很多时候需要综合运用才能解决问题.限于篇幅,其他方法在此不再赘述,留给读者在学习中探究.(作者单位:云南省玉溪第一中学)9。
求解圆锥曲线离心率问题的两种途径
思路探寻离心率是圆锥曲线的基本性质之一.圆锥曲线的离心率问题常以填空或选择题的形式出现,题目的难度适中.这类问题的常见命题形式有:(1)求椭圆、双曲线的离心率;(2)求圆锥曲线离心率的取值范围、最值.本文主要探讨一下求解圆锥曲线离心率问题的两种途径:构造齐次方程和利用离心率公式.一、构造齐次方程在求解圆锥曲线的离心率问题时,我们通常可根据已知的条件和圆锥曲线的方程,得到关于a 2、b 2、c 2或a 、b 、c 的等量关系.那么我们就可以结合椭圆、双曲线的方程中参数a 、b 、c 之间的关系a 2+b 2=c 2或a 2-b 2=c 2,将关于a 2、b 2、c 2或a 、b 、c 的等量关系进行变形,构造出关于a 、b 、c 齐次方程,将问题转化为求c 2a 2,进而求得圆锥曲线的离心率e .例1.已知点A 、B 是椭圆C :x 2a 2+y2b2=1()a >b >0长轴上的两个顶点,点P 在椭圆上(异于A 、B 两点).若直线PA 、PB 斜率之积为a -4c3a,则椭圆的离心率为().A.13B.14C.23D.34解:设点P 的坐标为()m ,n ,则m 2a 2+n 2b 2=1,m 2-a 2=-a 2n 2b 2,设A ()-a ,0,B ()a ,0,则k PA ∙k PB =n m +a ∙n m -a =n 2m 2-a 2=n 2-a 2n 2b 2=-a 2b2=-a -4c 3a ,整理得3c 2+4ac -4a 2=0,即3e 2+4e -4=0,解得e =23或e =-2(舍去),故答案为选项C .解答本题,需先根据椭圆的方程和直线的斜率公式建立关于a 、b 、c 的方程;然后根据椭圆的a 、b 、c 之间的关系a 2+b 2=c 2,将所得的关系式变形为关于a 、c 的齐次方程3c 2+4ac -4a 2=0,通过解方程求得e 的值.例2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与过原点的直线l 交于P 、Q 两点(P 在第一象限),过点P 作l 的垂线,与双曲线交于另一个点A ,直线QA 与x 轴交于点B ,若点B 的横坐标为点Q 横坐标的两倍,则双曲线的离心率为______.解:由题意可知,直线PQ 的斜率存在且不为零,设直线PQ :y =kx ()k ≠0,设点P ()t ,kt ,得点Q ()-t ,-kt ,点B ()-2t ,0,∵AP ⊥PQ ,∴k AP =-1k,∴直线AP :y -kt =-1k()x -t ,又∵k AQ =k BQ =kt -2t +t=-k,∴直线AQ :x =-1ky -2t ,由ìíîïïy -kt =-1k()x -t ,x =-1k y -2t ,可得ìíîïïïïx =-3k 2t +tk 2-1,y =kt ()3+k 2k 2-1,即A æèççöø÷÷-t ()3k 2+1k 2-1,kt ()k 2+3k 2-1,∵点A 在双曲线上,∴t 2()3k 2+12a 2()k 2-12-k 2t 2()k 2+32b 2()k 2-12=1,又∵P 在双曲线上,∴t 2a 2-k 2t 2b 2=1,∴t 2=a 2b 2b 2-a 2k 2,可得b 2()3k 2+12()k2-12()b 2-a 2k2-k 2a 2()k 2+32()b 2-a 2k 2()k2-12=1,化简得b 2()8k 4+8k 2=a 2k 2()8k 2+8,50思路探寻∵k≠0,∴b2=a2,∴a2=c2-a2,可得c2a2=2,即双曲线的离心率e=2.本题较为复杂,我们需首先结合直线AP、PQ的方程和双曲线的方程建立关于k、t、b、a的关系式;然后结合双曲线中a、b、c之间的关系a2+b2=c2,通过消元、代换,得到关于a、c的齐次方程,进而求得离心率e的值.二、利用公式法公式法是求解圆锥曲线离心率问题的重要方法,主要是利用离心率公式e=c a来求圆锥曲线的离心率.在解题时,可先灵活运用圆锥曲线的定义、几何性质列出关于a、b、c的关系式;然后通过移项、化简等方式,将关系式转化为关于a、c的关系式;最后根据公式e=c a求出离心率的值.例3.如图1,已知F1、F2分别是曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点,过点F2的直线与双曲线C的右支交于点P、Q两点,若PQ⊥PF1,||PQ=||PF1,则双曲线C的离心率为().图1A.6-3B.5-22C.5+22D.1+22解:因为PQ⊥PF1,||PQ=||PF1,由双曲线的定义可得||PF1-||PF2=||PQ-||PF2=||QF2=2a,||QF1-||QF2=2a,所以||QF1=4a,由∠F1QF2=π4,得||F1F2=2c,在△QF1F2中,由余弦定理可得16a2+4a2-2×4a×2a=4c2,化简得e==5-22.故答案为选项C.我们根据已知条件,利用双曲线的定义、余弦定理得到a、c等量关系式,即可根据离心率公式直接求得双曲线的离心率.例4.如图2,已知F1、F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点,过点F1的直线与双曲线交左支于A、B两点,且||AF1=2||BF1,以点O为圆心,OF2为半径的圆经过点B,则椭圆C的离心率为_____.图2解:由题意可得∠F1BF2=90°,设||BF1=m,||BF2=m+2a,||AF1=2m,则||AF2=2m+2a,||AB=3m,在Rt△ABF2中,由勾股定理可得()2a+m2+()3m2=()2m+2a2,解得m=23a,则||BF1=2a3,||BF2=8a3,在Rt△F1BF2中,由勾股定理可得æèöø2a32+æèöø8a32=()2c2,化简得c=,所以椭圆的离心率为e=ca=.在解答本题时,要先仔细研究图形,结合圆的几何性质以及椭圆的定义找出a、b、c之间的关系;然后利用勾股定理得到关于a、c的关系式;最后将其代入圆锥曲线的离心率公式中,就能得到椭圆的离心率.相比较而言,公式法比较直接、简单,但需灵活运用圆锥曲线的性质和定义;而齐次化法较为复杂,运用该方法解题运算量较大.同学们需反复练习,领悟其中的要义,从而高效地解答问题.(作者单位:云南省曲靖市第二中学)51。
圆锥曲线中求离心率的值与范围的问题(共28张PPT)
分析:在椭圆内的所有焦点三角形,当顶点 P 与短轴重合时,此时面积最大 Smax b
解析:注意,凡是经过原点的直线与椭圆或双曲线相交于两点时,这两点的位置是对
的,本题目中 ABF2 和 AF1F2 是全等的,因此 SABF2 SAF1F2 故当点 A 位于短轴的交点处时,面积最大 Smax bc
这两个区域内直线斜率的取值范围。
求离心率范围问题
②过焦点的直线与双曲线交点个数问题
例
12:已知双曲线 x2 a2
y2 b2
1的右焦点为
F,若过点
F
且倾斜角为 60
的直线与双曲线
的右支有且只有一个交点,则此双曲线离心率的取值范围为_________.
解析:过双曲线的右焦点可能与右支的交点个数为 1 个或 2 个,取决于这条直线和右渐
2a PF2 PF2
注意 PF2 为焦半径,因此 a c PF2 a c
所以不等关系就能找出来了,解不等式可得 2 1 e 1
离心率范围问题
(2)焦点三角形顶角的取值范围:当 P 点处于 B 位置时,顶角最大,例:
例
10:设
P
是椭圆
x2 a2
y2 b2
1上一点,且 F1PF2
求离心率范围问题
和求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等 关系,且不等关系中含有 a,b, c 或数字的形式,至于如何建立不等关系,可总结为四
种思考方向:
1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(1)焦半径的取值范围为 a c PF1 a c .
求离心率范围问题
例
7:椭圆
x2 a2
圆锥曲线离心率及范围问题
因为 MH
OF2 ,所以, OF2
MH
OM
MF2 , MH
ab c
,即 M
点纵坐标为
ab c
,
将M
点纵坐标带入圆的方程中可得
x2
a2b2 c2
b2
,解得 x
b2 c
,M
b2
c
,
ab c
,
将M
b4
点坐标带入双曲线中可得
a2c2
a2 c2
1,
化简得 b4 a4 a2c2 , c2 a2 2 a4 a2c2 , c2 3a2 , e c 3 ,选 D. a
PF2 F1 60 ,则 C 的离心率为(
A.1 3 2
B. 2 3
) C. 3 1 2
D. 3 1
【答案】 3 1
【解析】设椭圆焦点在 x 轴上,则椭圆方程为
x2 a2
y2 b2
1a
0, b
0.
因为 F2PF1 90 , PF2F1 60 , F1F2 2c ,所以 PF2 c , PF1 3c
因为 MF1 3 MF2 , M 在双曲线上,所以根据双曲线性质可知 MF1 MF2 2a , 即 3 MF2 MF2 2a , MF2 a 因为圆 x2 y2 b2 的半径为 b , OM 是圆 x2 y2 b2 的半径,所以 OM b , 因为 OM b, MF2 a,OF2 c, a2 b2 c2 , 所以 OMF2 90 ,三角形 OMF2 是直角三角形,
设 F1 为椭圆右焦点, F2 为椭圆左焦点,则 PF1 PF2 2a ,所以 3 1 c 2a ,
所以 e c 2 2 3 1 3 1.故选 D. a 3 1 3 1 3 1
(完整版)圆锥曲线离心率范围的四种题型.docx
圆锥曲线离心率范围四种题型椭圆的离心率的范围是高考的重点,其主要是列出 a, b,c 的不等式, 进而求出离心率的范围。
其中列不等式是这种题目的重点,下面我们说下列不等式的几种方法。
一、根据圆锥曲线中所隐含的不等关系列式例 1:已知椭圆x 2y 2 1( ab 0) 的左右焦点分别是F 1 ( ,0), F 2 ( ,0)a 2b 2c c ,若椭圆上存在点 P (异于长轴的端点) ,使得 csin PF 1 F 2 a sin PF 2 F 1 ,则该椭圆的离心率的范围是 _________.c sin PF 2 F 1 PF 1 sin PF 2 F 1解: 由已知得 esin PF 1F 2 , 由正弦定理得sinPF 1F 2aPF 2 PF 12a PF 2PF 22a 2所以 ePF 2,进而 a。
PF 2c又因为 a cPF 2 a c 且 0 e 1 ,解得离心率范围是 ( 21,1) 。
变式训练 1:设椭圆x 2y 2 1(ab 0) 的两焦点为 F 1 , F 2 ,若在其右准线上存在一a 2b 2点 P ,使得线段 PF 1 的中垂线过点 F 2 ,求椭圆离心率的范围。
变式训练 2:双曲线x 2y 2 1(a 0, b 0) 的两个焦点为 F 1 , F 2 ,若 P 为其上一点, a 2b 2且 PF 1 2 PF 2 ,则双曲线离心率的取值范围。
变式训练 3:双曲线x 2y 2 1(a 0, b 0) 的两个焦点为 F 1, F 2 ,若 P 为右支上一点,a 2b 2且PF 1 4 PF 2 ,则双曲线离心率的取值范围。
二、有关存在性问题求离心率例 2:设 P 是椭圆 x2y 2 1( a b 0) 上的一点, F 1, F 2 是椭圆的左右焦点,已知a 2b 2F 1 PF 2 60o ,求椭圆离心率的范围。
分析:要想使得存在椭圆上的一点P ,满足F 1 PF 2 60o ,也就是要求当点 P 在椭圆上运动时, ( F 1PF 2 ) min 60o ,( F 1PF 2 )max 60o 即可。
专题49 离心率及其范围问题(学生版)
专题49 离心率及其范围问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线 离心率问题是热点之一.从命题的类型看,有小题,也有大题.一般说来,小题的难度基本处于中低档,而大题中则往往较为简单.小题中单纯考查椭圆、双曲线的离心率的确定较为简单,而将三种曲线结合考查,难度则大些.本文在分析研究近几年高考题及各地模拟题的基础上,重点说明离心率及其范围问题的解法与技巧.1、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与有关,另一条边为焦距.从而可求解(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求.如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:,双曲线:【经典例题】例1.【2020年高考全国Ⅰ卷理数15】已知F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .例2.【2020年高考全国Ⅲ卷文数14】设双曲线()2222:10,0x y C a b a b-=>>的一条渐近线为y =,则C 的离心率为 .例3.【2020年高考江苏卷6】在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程,,a b c a ,,a b c ,,a b c ,,a b c ()0,1e ∈()1,+e ∈∞为y x =,则该双曲线的离心率是 . 例4.(2020·山西大同·高三三模)椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,以12F F 为直径的圆与椭圆交于ABCD 四个点,且12AF DCF B 为正六边形,则椭圆的离心率为( )A .12B C .2D 1例5.(2020·陕西西安·高新一中高三三模)已知双曲线2222:1x y C a b-=(0,0)a b >>的左焦点为(,0)F c -,过点F 且斜率为1的直线与双曲线C 交于A ,B 两点,若线段AB 的垂直平分线与x 轴交于点(2,0)P c ,则双曲线C 的离心率为( )AB C D .2例6.(2020·广西柳州·高三三模)已知点12,F F 分别是双曲线C :2221(0)y x b b-=>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足122F F OP =,21tan 3PF F ∠≥,则双曲线C 的离心率的取值范围为( )A .(1B .)+∞C .(1D .2] 例7.(2020·安徽合肥·高三三模)设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,P 是椭圆C 上一点,且1PF 与x 轴垂直,直线2PF 与椭圆C 的另一个交点为Q .若直线PQ 的斜率为34-,则椭圆C 的离心率为( )A .4B .12C .2D 例8.(2020·江苏鼓楼·金陵中学高三三模)已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,短轴的一个端点为P ,直线l :430x y -=与椭圆C 相交于A ,B 两点.若6AF BF +=,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( )A .50,9⎛⎤ ⎥⎝⎦B .⎛ ⎝⎦C .⎛ ⎝⎦D .13⎛⎤⎥⎝⎦【精选精练】1.(2020·江西昌江·景德镇一中高三三模)已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左右焦点,B为该椭圆的右顶点,过2F 作垂直于x 轴的直线与椭圆交于,P Q 两点(P 在x 轴上方),若1//BP FQ ,则椭圆的离心率为( )A B .12C .13D .232.(2020·四川省泸县第二中学高三三模)设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C D 3.(2020·哈尔滨市呼兰区第一中学校高三三模)椭圆中心为原点,且焦点在x 轴上,A 为椭圆的右顶点,P 为椭圆上一点,90OPA ︒∠=,则该椭圆离心率的取值范围是( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .1,12⎡⎫⎪⎢⎣⎭D .12⎡⎢⎣⎭4.(2020·北京高三三模)若双曲线22221x y a b-=(0,0)a b >>的一条渐近线经过点,则该双曲线的离心率为( )AB C .2D 5.(2020·河南洛阳·高三三模)已知双曲线T :()222210,0x y a b a b -=>>的左、右焦点分别为1F ,2F ,以12F F 为直径的圆与T 在第一、三象限内分别交于点M ,N ,四边形12F MF N 的面积为60,周长为34,则双曲线T 的离心率为( )A .135B .137C .125D .756.(2020·广西南宁三中高三三模)圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)7.(2020·广西南宁三中高三三模)设1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,若双曲线右支上存在一点P ,使 1||OP OF =(O 为坐标原点),且12PF =,则双曲线的离心率为( )A .12B 1C D 18.(2020·安徽高三三模)已知P (不在x 轴上)是双曲线()2222:10,0x yC a b a b-=>>上一点,()1,0F c -,()2,0F c 分别是C 的左、右焦点,记12PF F α∠=,21PF F β∠=,若sin sin a c βα=,则C 的离心率的取值范围是( ).A .()1,2B .()1+∞C .(21+, D .(1,19.(2020·河南高三三模)已知1F 、2F 分别为双曲线()222210,0x y a b a b -=>>的左、右焦点,过()1,0F c -作x 轴的垂线交双曲线于A 、B 两点,若12F AF ∠的平分线过点1,03M c ⎛⎫- ⎪⎝⎭,则双曲线的离心率为( )A .2B C .3D10.(2020·皇姑·辽宁实验中学高三三模)设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过2F 的直线与双曲线的右支交于两点,A B ,若1:3:4AF AB =,且2F 是AB 的一个四等分点,则双曲线C 的离心率是( )A B .2C .52D .511.(2020·江苏如皋·高三三模)在平面直角坐标系xOy 中,点F 是椭圆()2222:10x y C a b a b+=>>的左焦点,A 为椭圆的上顶点,过点A 作垂直于AF 的直线分别与x 轴正半轴和椭圆交于点M ,N ,若3AM MN =,则椭圆C 的离心率e 的值为( )A .2B .12C .12D .1312.(2020·邵东县第十中学高三三模)设椭圆()222210x y a b a b+=>>的焦点为1F ,2F ,P 是椭圆上一点,且123F PF π∠=,若12F PF ∆的外接圆和内切圆的半径分别为R ,r ,当4R r =时,椭圆的离心率为( )。
求解圆锥曲线离心率范围问题的三种思路
求解圆锥曲线离心率范围问题的三种思路
圆锥曲线的离心率是一个非负实数,表示椭圆或双曲线在长轴与短轴之间的偏离程度。
下面是三种思路来求解圆锥曲线离心率范围的问题:
1. 几何定义法:
根据圆锥曲线的定义,可以通过几何性质来求解其离心率范围。
对于椭圆,其离心率范围是0到1,即0≤e<1;对于双曲线,其离心率范围大于1,即e>1。
这种方法是直观和简单的,适用于初步了解圆锥曲线的性质。
2. 参数方程法:
圆锥曲线可以用参数方程表示,形式为x=f(t),y=g(t),其中
t是参数。
通过参数方程可以计算圆锥曲线上的点与焦点的距离,并据此确定离心率的范围。
具体步骤是:首先计算离焦点的距离d1,再计算离顶点的距离d2,最后求取d1/d2的范围。
如果d1/d2 < 1,则表示点离焦点的距离小于离顶点的距离,
即离心率小于1;如果d1/d2 > 1,则表示点离焦点的距离大于
离顶点的距离,即离心率大于1。
3. 方程法:
对于标准的圆锥曲线方程,可以通过方程进行计算来求解离
心率的范围。
以椭圆为例,标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
根据离心率的定义,可以推导出离心率e与半长轴a和半短轴b之间的关系,即e
= √(a^2 - b^2)/a。
根据这个公式,可以计算出离心率e的范围。
综上所述,这是三种常见的思路用来求解圆锥曲线离心率范围的问题。
具体使用哪种方法取决于具体的问题和所给的条件。
求圆锥曲线的离心率的值或取值范围问题第一中学【高考】数学
b tan 60 3,e 1 ( b )2 2
a
a
圆锥曲线中求离心率的值或取值范围
小结:从以上例题的求解过程,我们可以体会到求圆锥曲 线的离心率或取值范围,解题的关键是将问题中的几何条件 用坐标表示或转化为代数条件,然后构造方程或不等式求解 ,这是平面解析几何的基本思想。在求解圆锥曲线离心率的 值或取值范围时,一定要认真分析题设条件,合理建立等量 关系或不等关系,记住一些常见结论、不等关系。当然,这 类问题的题型不止今天讲的这几种,还有其他的,我今天讲 这几道例题只是起一个抛砖引玉的作用,希望同学们在今后 做题时不断总结归纳,选择简便的方法解题,尤其注意数形 结合的数学思想在解题中的应用。
∵ 的值,再求2出离心率;
∴
圆锥曲线中求离心率的值或取值范围
a a a 圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
2 e 5 ∴ ,故选 B. 圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
圆锥曲线中求离心率的值或取值范围
2 2
y2 b2
1(a
0,b
0)右支上
任意一点,F1,F2分别是双曲线的左、右焦点,e是双曲线
的离心率,则PF1 ex0 a c a, PF2 ex0 a c a.
圆锥曲线中求离心率的值或取值范围
B
圆锥曲线中求离心率的值或取值范围
B
16.每一个人要有做一代豪杰的雄心斗志!应当做个开创一代的人。 ④20世纪90年代以来,“新经济”、互联网经济不断发展; 18、人少言寡语不一定大智大勇,谈笑风生不一定是不严肃。 导读:本文是关于名人名言励志语录的文章,如果觉得很不错,欢迎点评和分享! 31、痛过之后就不会觉得痛了,有的只会是一颗冷漠的心。
高中数学最全圆锥曲线中离心率及其范围的求解专题
慧学上进
的直线交双曲线右支于 M 点,若 MF2 垂直于 x 轴,则双曲线的离心率为( B )
A. 6
B. 3
C. 2
3
D.
3
x2
6.(08 浙江理)若双曲线
a2
y2 b2
1 的两个焦点到一条准线的距离之比为 3:2,则双曲线的离心率是(D)
(A)3
(B)5
(C) 3
(D) 5
7.(08 全国一理)在 △ABC 中, AB BC , cos B 7 .若以 A,B 为焦点的椭圆经过点 C ,则 18
该椭圆的离心率 e
3
.
8
8.(10 辽宁文)设双曲线的一个焦点为 F ,虚轴的一个端点为 B ,如果直线 FB 与该双曲线的一条渐近线垂
直,那么此双曲线的离心率为( )
(A) 2
(B) 3
3 1
(C)
2
5 1
(D)
2
解析:选 D.不妨设双曲线的焦点在 x 轴上,设其方程为:
x2 a2
y2 b2
1(a 0,b 0) ,
a2
2
15.
x2 (08 湖南)若双曲线 a2
y2 b2
1(a>0,b>0)上横坐标为 3a 的点到右焦点的距离大于它到左准线的 2
距离,则双曲线离心率的取值范围是
A.(1,2)
B.(2,+ )
C.(1,5)
D. (5,+ )
解析 由题意可知 ( 3 a a2 )e ( 3 a a2 ) 即 3 e 1 3 1 解得 e 2 故选 B.
),
AB
ab ab
,
ab ab
,
因此 2 AB BC, 4a2 b2 ,e 5 .答案:C
新高考数学二轮复习圆锥曲线中的离心率的范围问题
2.已知椭圆ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2,椭圆上存在点 A,
使得∠F1AF2=π3,则椭圆离心率的范围为
A.0,12
B.12,1
C.0,12
√D.12,1
1 2 3 4 5 6 7 8 9 10
由题意,设椭圆上顶点为 B,若椭圆上存在点 A,使得∠F1AF2=π3, 则只需∠F1BF2≥π3即可. 当∠F1BF2=π3时,△F1BF2 为正三角形,此时 a=2c, 故当∠F1BF2≥π3时,a≤2c,即12≤ac. 故离心率 e∈12,1.
所以|OP|2≥a2, 因为 d1d2≤12|OP|2 恒成立, 所以aa2+2b2b2≤12a2,
整理得 b2≤a2,即ba22≤1, 所以离心率 e=ac= ac22=
1+ba22≤ 2,
则 C 的离心率的最大值为 2.
规 律
利用几何图形中几何量的大小,例如线段的长度、角的大小等,
方 法
构造几何度量之间的关系.
所以2ca=cos∠PF1F2> 22, 即 e=ac> 2, 综上, 2<e<2.
考点二 利用圆锥曲线的性质求离心率的范围
例2 (1)(2023·张掖模拟)若椭圆E:x2+1-y2m2=1(0<m<1)上存在点P,满足 |OP|=m(O为坐标原点),则E的离心率的取值范围为
A.0,12
C.0,
3
=sinπ3+θ2-sin
= θ
31 2 ·cosπ6+θ.
因为
e∈
26,
3,
所以 cosπ6+θ∈12, 22,
所以π6+θ∈π4,π3, 所以 θ 的取值范围为1π2,π6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中离心率及其范围的求解专题【高考要求】1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。
2.掌握解析几何中有关离心率及其范围等问题的求解策略;3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。
【热点透析】与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决:(1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化范围;(3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。
直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。
因此,它们的应用价值在于:① 通过参数θ简明地表示曲线上点的坐标;② 利用三角函数的有界性及其变形公式来帮助求解范围等问题; (6)构造一个二次方程,利用判别式∆≥0。
2.解题时所使用的数学思想方法。
(1)数形结合的思想方法。
一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。
(2)转化的思想方汉。
如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。
(3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。
(4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。
【题型分析】1. 已知双曲线22122:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为( )A .BCD .解:由已知可得抛物线的准线为直线2a x c =-,∴ 方程为224a y x c=;由双曲线可知2(,)b P c a ,∴ 2224()b a c a c =⨯,∴ 222222b b a a =⇒=,∴ 212e -=,3e =.2.椭圆22221x y a b+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( B )A .312+ B .31- C .4(23)- D .324+ 解析:设点P 为椭圆上且平分正三角形一边的点,如图, 由平面几何知识可得2112||:||:||1:3:2PF PF F F =,所以由椭圆的定义及cea=得: 1212||22312||||31F F c e a PF PF ====-++,故选B . 变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率31e =+.3. (09浙江理)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A .2 B .3 C .5 D .10【解析】对于(),0A a ,则直线方程为x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭, 因此222,4,5ABBC a b e =∴=∴=.答案:C4. (09江西理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) A .22B .33 C .12 D .13【解析】因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a =从而可得33c e a ==,故选B 5.(08陕西理)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为301F 2F xOyP的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )A.BCD6.(08浙江理)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(D )(A )3 (B )5 (C )3 (D )57.(08全国一理)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .388.(10辽宁文)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A(B(C(D解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为:b a ,直线FB 的斜率为:b c -,()1b ba c∴⋅-=-,2b ac ∴= 220c a ac --=,解得c e a ==9.(10全国卷1理)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.解析:答案:33如图,设椭圆的标准方程为22x a +22y b=1(a >b >0)不妨设B 为上顶点,F 为右焦点,设D (x ,y ).由BF =2FD ,得(c ,-b )=2(x -c ,y ),即2()2c x c b y =-⎧⎨-=⎩,解得322c x by ⎧=⎪⎪⎨⎪=-⎪⎩,D (32c ,-2b).由D 在椭圆上得:22223()()22b c a b -+=1, ∴22c a=13,∴e =ca.【解析1如图,||BF a ==, 作1DD y ⊥轴于点D 1,则由BF 2FD =,得 1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232,c a a a =-e ⇒=【解析2】设椭圆方程为第一标准形式22221x y a b +=,设()22,D x y ,F 分 BD 所成的比为2,222230223330;122212222c c c c y b x b y b bx x x c y y -++⋅-=⇒===⇒===-++,代入222291144c b a b +=,e ⇒=10. (07全国2理)设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( B ) ABCD.解122222122210()()(2)10AF AF AF a aeAF AF c 11. 椭圆22221(0,0)x y a b a b+=>>的左焦点为F ,若过点F 且倾斜角为45o的直线与椭圆交于A 、B 两点且F 分向量BA 的比为2/3,椭圆的离心率e 为: 。
本题通法是设直线方程,将其与椭圆方程联立,借助韦达定理将向量比转化为横坐标的比。
思路简单,运算繁琐。
下面介绍两种简单解法。
解法(一):设点A(),A A x y ,B (),B B x y ,由焦半径公式可得32A B a ex a ex +=+,则2()3()A B a ex a ex +=+,变形2()A B B a ex a ex a ex +--=+,所以2()A B Be x x a ex -=+因为直线倾斜角为45o,所以有225e AB ,所以e =提示:本解法主要运用了圆锥曲线焦半径公式,借助焦半径公式将向量比转化为横坐标的关系。
焦半径是圆锥曲线中的重要线段,巧妙地运用它解题,可以化繁为简,提高解题效率。
一般来说,如果题目中涉及的弦如果为焦点弦,应优先考虑焦半径公式。
解法(二):1125BE BF AB e e ==• 1135AD AF AB e e ==•AC ==AD BE AC-==131255AB AB e e •-•=e =12. (10辽宁理)(20)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l的倾斜角为60o,2AF FB =.椭圆C 的离心率 ;解:设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0.(Ⅰ)直线l 的方程为)y x c =-,其中c =.联立2222),1y x c x yab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AF FB =,所以122y y -=.即2= 得离心率23c e a ==. ……6分 13. A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA =2π,则椭圆离心率的范围是_________. 解析:设椭圆方程为2222b y a x +=1(a >b >0),以OA 为直径的圆:x 2-ax +y 2=0,两式联立消y得222a b a -x 2-ax +b 2=0.即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2e a -a ,0<x 2<a ,即0<2ea -a <a 22⇒<e <1. 答案:22<e <1 14. 在椭圆22221(0)x y a b a b+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212MF MF b ⋅=,椭圆的离心率的取值范围是;解析: 由椭圆的定义,可得 212MF MF a +=又2212MF MF b ⋅=,所以21,MF MF 是方程22220xax b -+=的两根,由22(2)420a b ∆=--⨯≥, 可得222a b ≥,即2222()a c a ≥-所以c e a =≥,所以椭圆离心率的取值范围是 15. (08湖南)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)解析 由题意可知2233()()22a a a e a c c ->+即331122e e->+解得2e >故选B. 16.(07北京)椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F ≤2,则该椭圆离心率的取值范围是( )A.1(0]2,B.2(0,C.1[1)2,D.21) 解析 由题意得2222a c c ≤⨯∴2e ≥故选D.17.(07湖南)设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )A .2(0],B .3(0,C .21)D.3[1)分析 通过题设条件可得22PF c =,求离心率的取值范围需建立不等关系,如何建立?解析:∵线段1PF 的中垂线过点2F , ∴22PF c =,又点P 在右准线上,∴22a PF c c ≥-即22a c c c ≥-∴3c a ≥31e ≤<,故选D.点评 建立不等关系是解决问题的难点,而借助平面几何知识相对来说比较简便.18. (08福建理)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为(B )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?利用第二定义及焦半径判断0x a解析:∵|PF 1|=2|PF 2|,∴|PF 1|-|PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥所以双曲线离心率的取值范围为13e <≤,故选B.解2 如图2所示,设2PF m =,12(0)F PF θθπ∠=<≤,222(2)4cos 254cos 2m m m ce a θθ+-===-.当点P 在右顶点处有θπ=.∵1cos 1θ-<≤,∴(]1,3e ∈.选B.小结 本题通过设角和利用余弦定理,将双曲线的离心率用三角函数的形式表示出来,通过求角的余弦值的范围,从而求得离心率的范围.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.19.(08江西理)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M总在椭圆内部,则椭圆离心率的取值范围是(C )A .(0,1)B .1(0,]2C. D. 解 据题意可知,∠1F M2F 是直角,则垂足M 的轨迹是以焦距为直径的圆.所以2222212c b c b a c e <⇒<=-⇒<.又(0,1)e ∈,所以)22,0(∈e .选C.小结 本题是最常见的求离心率范围的问题,其方法就是根据已知条件,直接列出关于 a ,b ,c 间的不等量关系,然后利用a ,b ,c 间的平方关系化为关于a ,c 的齐次不等式,除以2a 即为关于离心率e 的一元二次不等式,解不等式,再结合椭圆或双曲线的离心率的范围,就得到了离心率的取值范围.20. (04重庆)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A43 B 53 C 2 D 73∵|PF 1|=4PF 2|,∴|PF 1|-|PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥所以双曲线离心率的取值范围为513e <≤,故选B.21. 已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( ) A (1,2] B (1,3] C [2,3] D [3,)+∞解析222122222(2)4448PF a PF a PF a a a PF PF PF +==++≥=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤.22. 已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,椭圆的离心率e 的取值范围是; 。