Ansys_Workbench_静力分析讲义详解
AnsysWorkbench静力分析详细实例
9.2 添加等效应变:如下图所示,右键点击“Project”树,“Solution —>Insert—> Strain—>Equivalent(von-mises)”,添加等效应变。
9.3 添加等效应力:如下图所示,右键点击“Project”树中的 “Solution—>Insert—> Stress—>Equivalentห้องสมุดไป่ตู้von-mises)”,添 加等效应力。
从弹出窗口中选择三维模型文件,如果文件格式不符,可以把三维图 转换为“.stp”格式文件,即可导入,如下图所示。
4 选择零件材料:文件导入后界面如下图所示,这时,选择 “Geometry”下的“Part”,在左下角的“Details of ‘Part’”中 可以调整零件材料属性。
5 划分网格:如下图,选择“Project”树中的“Mesh”,右键选择 “Generate Mesh”即可。【此时也可以在左下角的“Details of ‘Mesh’”对话框中调整划分网格的大小(“Element size”项)】。
Ansys 静力分析实例:
1 问题描述: 如图所示支架简图,支架材料为结构钢,厚度 10mm,支架左侧的两 个通孔为固定孔,顶面的开槽处受均布载荷,载荷大小为 500N/mm。
2 启动 Ansys Workbench,在界面中选择 Simulation 启动 DS 模块。
3 导入三维模型,操作步骤按下图进行,单击“Geometry”,选择“From File”。
选择图中的任意一条,或一个面,即可改变载荷的作用方向,如图中 标记 10 位置所示。然后点击“Apply”确认。
9 添加要查看的结果: 9.1 添加变形:如下图所示,右键点击“Project”树中的“Solution”, 选择“—> Insert—>Deformation—>Total”,添加变形分析。
梁模型有限元计算_ANSYS Workbench有限元分析实例详解(静力学)_[共7页]
4.2 梁单元静力学分析当结构长度对横截面的比率超过10:1,沿长度方向的应力为主要分析对象,且横截面始终保持不变时,即应用梁单元。
梁单元可用于分析主要受侧向或横向载荷的结构,如建筑桁架、桥梁、螺栓等。
在WB中默认为铁摩辛柯(Timoshenko)梁单元,即Beam188和Beam189,可计算弯曲、轴向、扭转和横向剪切变形。
其中Beam188采用线性多项式作为形函数,Beam189采用二次多项式作为形函数,当WB的Mesh设置中Mesh-Element Midside Nodes为Dropped 时,即为Beam188;Mesh-Element Midside Nodes为Kept时,即为Beam189。
有限元对单元特性的描述包括单元形状、节点数目、自由度和形函数。
表4-2-1为Beam 单元的对比。
在WB中默认设置为二次单元。
一般来说,线性单元需要更多的网格数才能达到二次单元的精度。
选用二次单元可提高计算精度,这是因为二次单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且二次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。
但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,计算内存消耗也多,因此,在使用时应权衡考虑计算精度和时间。
表4-2-1 Beam单元对比4.2.1 梁模型有限元计算用ProE建立一桁架模型,导入WB进行分析计算。
(1)ProE建模。
在草绘界面绘制一边长为30mm、40mm、50mm的三角形,然后选择投影命令将草绘图形投影到基准面上,另存为x_t文件(其他3D软件操作方法类似)。
(2)导入模型。
如图4-2-1所示,在Import设置中,Operation设为Add Frozen,Line Bodies 设为Yes。
– 65 –– 66 – 图4-2-1 Import ProE模型文件设置(3)梁截面赋值,并定义截面方向,最后用Form New Part将三根梁合并为一个部件,如图4-2-2所示。
AnsysWorkbench静力学分析详细实例
Ansys静力分析实例: 1 问题描述: 如图所示支架简图,支架材料为结构钢,厚度10mm,支架左侧的两个通孔为固定孔,顶面的开槽处受均布载荷,载荷大小为500N/mm。
2 启动Ansys Workbench,在界面中选择Simulation启动DS模块。
3 导入三维模型,操作步骤按下图进行,单击“Geometry”,选择“From File”。
从弹出窗口中选择三维模型文件,如果文件格式不符,可以把三维图转换为“.stp”格式文件,即可导入,如下图所示。
4 选择零件材料:文件导入后界面如下图所示,这时,选择“Geometry”下的“Part”,在左下角的“Details of ‘Part’”中可以调整零件材料属性。
5 划分网格:如下图,选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可。
【此时也可以在左下角的“Details of‘Mesh’”对话框中调整划分网格的大小(“Element size”项)】。
生成网格后的图形如下图所示: 6 添加分析类型:选择上方工具条中的“New Analysis”,添加所需做的分析类型,此例中要做的是静力分析,因此选择“Static Structural”,如下图所示。
7 添加固定约束:如下图所示,选择“Project”树中的“Static Structural”,右键选择“Insert”中的“Fixed Support”。
这时左下角的“Details of ‘Fixed Support’”对话框中“Geometry”被选中,提示输入固定支撑面。
本例中固定支撑类型是面支撑,因此要确定图示6位置为“Face”,【此处也可选择“Edge”来选择“边”】然后按住“CTRL”键,连续选择两个孔面为支撑面,按“Apply”确认,如下图所示。
8 添加载荷:选择“Project”树中的“Static Structural”,右键选择“Insert”中的“Force”,如下图所示。
ANSYS课件5静力分析解析
验证分析
验证分析就是用最简单的模型提取最有效的数据做为参考数 据。在试图解决一个新的分析类型时,需要对比数据(比如解析
解或者经验数据等),这就需要首先分析简化模型。如果简化模
型的分析结果可以认定是可靠,则表明对实际模型的处理方案是 可行的。分析简化模型的过程中确保分析类型、单位、比例等参 数准确。本例用简单悬臂梁模型作为验证,验证模型如图所示。 铝管的外径为25mm,壁厚2mm。
谭秋林
第5章 结构静力分析
结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是
一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如
车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包 括机械零部件,如活塞传动轴等等。
结构分析中计算得出的基本未知量(节点自由度)是位移,其他的
§3 平面应力分析
分析题目:
对一个书架上常用的钢支架进行结构静力分析。假定支架在厚度方向上
无应力(即平面应力问题)
选用8节点的平面应力单元; 支架厚度为3.125mm; 材料普通钢材, 弹性模量取E=200 GPa; 支架左边界固定; 顶面上作用一个2.625KN/m均布荷载
§4 轴对称结构的静力分析
结构的影响(如重力和离心力),以及那些可以近似为 等价静力的随时间变化荷载(如通常在许多建筑规范中 所定义的等价静力风荷载和地震荷载)。
§2 桁架结构静力分析
桁架(Truss)是由细直构件在端点连接而成的一种结构,这些细直构件通 常是木质或者金属制的。 平面桁架:位于一平面,常用于支承屋顶或者桥梁。 三维桁架结构:与二维桁架相差不是很大,只是载荷与桁架不在同一个平 面内,不能简化为二维问题分析。 桁架分析的基本假设: 1.所有载荷均作用于连接点; 2.构件由光滑插销连接。 上述两个假设,使得桁架中的每个构件均为二力构件,即只有构件的 两端受力,且作用力沿构件轴线方向。
Ansys_Workbench_静力分析讲义详解
Training Manual
Surface Body Edge
Solid Body Face (Scope = Target) Solid Body Edge (Scope = Target) Surface Body Face (Scope = Target)
(Scope = Contact) Bonded, No Separation All formulations Asymmetric only 1 Not supported for solving Bonded, No Separation All formulations Asymmetric only Bonded, No Separation Bonded, No Separation All formulations Symmetry respected All formulations Asymmetric only Bonded only MPC formulation Asymmetric only
Training Manual
• Solver Controls(求解控制):
– 两种求解方式(默认是Program Controlled):
• 直接求解 (ANSYS中是稀疏矩阵法) • 迭代求解 ( ANSYS中是PGC(预共轭梯度法)).
– Weak springs:
• 尝试模拟得到无约束的模型
对称接触
非对称接触
4-8
Static Structural Analysis
…组件 – 实体接触
• 可以使用的五种接触类型:
Contact Type Bonded No Separation Frictionless Rough Frictional Iterations 1 1 Multiple Multiple Multiple Normal Behavior (Separation) Tangential Behavior (Sliding) No Gaps No Sliding No Gaps Sliding Allowed Gaps Allowed Sliding Allowed Gaps Allowed No Sliding Gaps Allowed Sliding Allowed
Ansys静力分析详细步骤ppt课件
12
11.点击Loads,选择Force,来添加力。
27 28
图11精品课件
13
12.点击Force,选择需要添加力的面,选择Apply,来完成力的添加,在 Magnitude里输入300N,来添加力的大小。
30 29
31 32
图12精品课件
14
13.点击Solution,选择Deformation,选择Total,来定义总得变形量。
11
12
13
图5 精品课件
7
6.点击Mesh,点击Mesh Control,选择sizing,来插入网格。
15 16 14
图6 精品课件
8
7.点击Body Sizing,选择Definition下的Element Size,输入5mm,来划分网格尺 寸。
17
18
图7 精品课件
9
8.点击Mesh,选择Generate Mesh,系统开始划分网格,结果如下。
图15精品课件
17
16. 点击Equivalent(von-Mises) ,显示等效应力。
41
图16精品课件
18
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
34 35
33
图13精品课件
15
14.点击Solution,选择Stress,选择Equivalent(von-Mises),来定义等效应力。
37 38
36
图14精品课件
16
15.点击Solution,点击Solve,来计算结果,点击Total Deformation ,显示模型 总变形。
Ansys Workbench详解教程PPT课件
约束
有限元模型由一些简单形状的单元组成,单元之间通过 节点连接,并承受一定载荷。
第4页/共71页
有限元法的分类
位移法:以节点位移为基本未知量; 力 法:以节点力为基本未知量; 混合法:一部分以节点位移为基本未知量, 一部分以节点力为基本未知量。
第5页/共71页
有限元法的基本思想
对弹性区域离散化
进行单元集成, 在节点上加外载荷力
三维实体的六面体(Hexahedron) 单元划分
第34页/共71页
4 选择分析类型
静力学分析(Static Analysis) :
计算在固定不变的载荷作用下结构的响应,不考虑惯性和阻 尼的影响,如结构受随时间变化载荷的影响。
载荷——外部施加的作用力与压力; 稳态的惯性力(重力、离心力); 强迫位移;
2021/6/22
36
第36页/共71页
5 设置边界条件
边界条件的设置包括载荷和约束的施加,都作用在几何实 体 上,通过节点和单元进行传递。
载荷和约束是在所选择的分析类型的分支(如模态分析、 热分析 等),以下以静力分析为例进行说明。
2021/6/22
37
第37页/共71页
设置边界条件
1、类型 选中结构树中的Static Structural,
击进行目标的选取。
2、框选
与单选的方法类似,只需选择Box Select,再在图形窗口 中按住
2021/6/22
左键、画矩形框进行选取。
21
第21页/共71页
显示/隐藏目标
1、隐藏目标
在图形窗口的模型上选择一个目标,单击鼠标右键,在弹 出的选
项里选择 选取一
,该目标即被隐藏。用户还可以在结构树中
Ansys-Workbench详解教程ppt课件
ppt课件.
33
网格控制
具体操作:选中结构树的Mesh项,点击鼠标右键,选择Insert,弹出 对网格进行控制的各分项,一般只需设置网格的形式(Method)和单元的 大小(Sizing)。
其余一些网格控制项的意义:
Refinement—细化网格 Mapped Face Meshing—映射网格;
定义
真实系统
ppt课件.
有限元模型
4
节点和单元
载荷
节点: 空间中的坐标位置,具有一定自由度和 存在相互物理作用。
单元: 一组节点自由度间相互作用的数值、矩阵 描述(称为刚度或系数矩阵)。单元有线、面或实 体以及二维或三维的单元等种类。
约束
有限元模型由一些简单形状的单元组成,单元之间通过 节点连接,并承受一定载荷。
与单选的方法类似,只需选择Box Select,再在图形窗口中按住 左键、画矩形框进行选取。 3、在结构树中的Geometry分支中进行选择。
屏幕下方的状态条中将显示被选择的目标的信息。
ppt课件.
22
显示/隐藏目标
1、隐藏目标
在图形窗口的模型上选择一个目标,单击鼠标右键,在弹出的选
项里选择
,该目标即被隐藏。用户还可以在结构树中选取一
操作界面的显示 工具条的显示 选择目标 显示/隐藏 旋转、平移、缩放
ppt课件.
18
创建、打开、保存文档
File菜单或者工具条的 1、创建一个新文档。选择File—New命令。 2、 打开文档。选择File—Open命令。 3、保存文档。选择File—Save或Save As命令,
一般保存为.dsdb格式的文档。
ANSYSWORKBENCH静力结构分析解析分析新
ANSYS WORKBENCH 11.0培训教程(DS)第四章静力结构分析序言•在DS中关于线性静力结构分析的内容包括以下几个方面:–几何模型和单元–接触以及装配类型–环境(包括载荷及其支撑)–求解类型–结果和后处理•本章当中所讲到的功能同样适用与ANSYS DesignSpace Entra及其以上版本.–本章当中的一些选项可能需要高级的licenses,但是这些都没有提到。
–模态,瞬态和非线性静力结构分析在这里没有讨论,但是在相关的章节当中将会有所阐述。
线性静力分析基础•在线性静力结构分析当中,位移矢量{x} 通过下面的矩阵方程得到:在分析当中涉及到以下假设条件:–[K] 必须是连续的•假设为线弹性材料•小变形理论•可以包括部分非线性边界条件–{F} 为静力载荷•不考虑随时间变化的载荷•不考虑惯性(如质量,阻尼等等)影响•在线性静力分析中,记住这些假设是很重要的。
非线性分析和动力学分析将在随后的章节中给予讨论。
[]{}{}F x K =A. 几何结构•在结构分析当中,可以使用所有DS 支持的几何结构类型.•对于壳体,在几何菜单下厚度选项是必须要指定的。
•梁的截面形状和方向在DM已经指定并且可以自动的传到DS模型当中。
–对于线性体,仅仅可以得到位移结果.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional xStructural xMechanical/Multiphysics x…Point Mass•Point Mass 在“Geometry”分支在模拟没有明确建模的重量–只有面实体才能定义point mass–可以用以下方式定义point mass位置:•在任意用户定义坐标系中(x, y, z)坐标•选择点/边/面来定义位置–重量/质量大小在“Magnitude”中输入–在结构静力分析中,point mass只受“加速度”,“标准重力加速度,”和“旋转速度”的作用.–质量和所选面相连通时它们之间没有刚度. 这不是一个刚度区域假设而是一个类似与分布质量的假设–没有旋转惯性项出现.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…Point Mass•point mass 将会以灰色圆球出现–前面提到,只有惯性力才会对point mass 起作用。
Ansys-Workbench详解教程
Messages:Messages信息窗口 Simulation Wizard:向导
Graphics Annotations:注释
Section Planes:截面信息窗口
Reset Layout:重新安排界面
2023/6/13
21
选择目标
在Workbench中,目标是指点 、线 、面 、体 。 1、单选
2023/6/13
20
视图显示
2、结构树 Expand All:展开结构树 Collapse Environments:
折叠结构树
Collapse Models:折叠结构树中的Models项
3、工具条
Named Selections:命名工具条 Unit Conversion:单位转换工具
4、操作界面
2023/6/13
25
分析流程操作
初步确定
前处理 求解 后处理
分析类型:静力分析、模态分析 单元类型:壳单元、实体单元
模型类型:零件、组件 建立、导入几何模型
定义材料属性 划分网格
施加载荷和约束 求解
查看结果 得出结论 检验结果的正确性
分析流程操作
1 导入模型 2 定义材料属性 3 设定网格划分参数并划分网格 4 选择分析类型 (Static Analysis、Modal…) 5 施加载荷与约束(设置边界条件) 6 设定求解参数并求解 7 后处理
2023/6/13
12
工具条
常用工具条 图形工具条
2023/6/13
13
结构树
结构树包含几何模型的信息和整个分析 的相关过程。
一般由Geometry、Connections、Mesh、 分析类型和结果输出项组成,分析类型里包 括载荷和约束的设置。
Ansys-Workbench详解教程
(内部共享)
2024/7/15
1
主要内容
一、有限元基本概念
二、Ansys Workbench 软件介绍
基本操作 有限元分析流程的操作 静力学分析与模态分析 FEA模型的建立
(本次培训不涉及非线性问题 ,所讲内容主要针对三维实体单元。 )
2024/7/15
求解得到节点位移
根据弹性力学公式得到单元应变、应力
有限元法的基本步骤
1. 结构离散; 2. 单元分析
a. 建立位移函数 b. 建立单元刚度方程
n
y ii
i
k e e F e
c. 计算等效节点力
3. 进行单元集成; 4. 得到节点位移;
K F
5. 根据弹性力学公式计算单元应变、应力。
ANSYS Workbench 软件介绍
2024/7/15
12
工具条
常用工具条 图形工具条
2024/7/15
13
结构树
结构树包含几何模型的信息和整个分析 的相关过程。
一般由Geometry、Connections、Mesh、 分析类型和结果输出项组成,分析类型里包 括载荷和约束的设置。
说明分支全部被定义 说明输入的数据不完整 说明需要求解 说明被抑制,不能被求解 说明体或零件被隐藏
2024/7/15
30
定义材料属性
4、在线性静力结构分析当中,材料属性只需要定义杨氏模量以及泊松比。
– 假如有任何惯性载荷,密度是必须要定义的;模态分析中同样需要定义材 料密度。
2024/7/15
31
3 网格控制
目的:实现几何模型
原则:整体网格控制
ANSYS Workbench 结构线性静力学分析与优化设计解析
工程仿真结算方案: ANSYS Workbench 培训
张胜伦
博士
西安交通大学
西安嘉业航空科技有限公司
结构线性静力分析
西安嘉业航空科技有限公司
线性静力学分析的基本假设 连续 结构材料 均匀 各向同性 线性 非线性 静态 动态
对于纤维结构材料、粒子强化材料等各向异性非均匀材料 要特别注意、特别处理。 1、材料的变形范围在弹性范围,且材料的变形量较小, 方便建立静力学方程; 2、对于塑性变形或大变形,必须考虑材料非线性和几 何非线性。
西安嘉业航空科技有限公司 作业6 问题描述:如右图模型(螺旋桨),其 材料为聚乙烯,模型如图所示方向的 1000rad/s的角加速度惯性载荷;模型内圈 用圆柱面约束且轴向为0,径向和周向为 free;螺旋桨面施加压力载荷0.5MPa。 要求:运用适当的网格划分方法,网格 大小均匀一致不得少于60万个节点(或者 运用膨胀层网格划分方法);求解结果显 示模型的整体变形和等效应力。 截图:材料添加,网格划分效果,结果 的整体变形、等效应力以及径向变形和应 力的网格显示图、矢量线时图、等值线图。 共8张截图。
4、弹性假设: 应力—应变存在一一对应关系; 应力不超过屈服应力点; 载荷卸载后结构可恢复到原来的状态,不产生残余 应力和参与应变。 5、小变形假设: 在载荷作用下的变形,远小于其自身的几何尺寸; 结构变形的挠度远小于结构的截面尺寸。
西安嘉业航空科技有限公司
6、缓慢加载过程: 载荷的施加和卸载过程足够慢; 不引起结构的动响应; 满足内外力平衡方程。
西安嘉业航空科技有限公司 作业5 问题描述:如右图模型(支撑座-4-切 向),其材料为铜合金,模型受如图所示 方向的314rad/s的角加速度惯性载荷;模 型内圈用圆柱面约束且轴向为0,径向和周 向为free;模型外圈施加径向轴承载荷 1000N。 要求:运用适当的网格划分方法,网格 大小均匀一致在筋板厚度方向至少划分11 个节点(或者运用refineing网格划分方 法);求解结果显示模型的整体变形和等 效应力。 截图:材料添加,网格划分效果,结果 的整体变形、等效应力以及径向变形和应 力的网格显示图、矢量线时图、等值线图。 共8张截图。来自西安嘉业航空科技有限公司
(完整版)ANSYSWorkbench结构线性静力学分析与优化设计解析
要求:运用适当的网格划分方法,阶梯 和圆角处网格细化;求解结果显示模型的 整体变形和等效应力。
截图:材料添加,网格划分效果,受拉 伸载荷的变形、应力,受弯曲载荷的变形、 应力,受扭转载荷的变形、应力。共15张 截图。
要求:运用适当的网格划分方法,网格 大小均匀一致不得少于60万个节点(或者 运用膨胀层网格划分方法);求解结果显 示模型的整体变形和等效应力。
截图:材料添加,网格划分效果,结果 的整体变形、等效应力以及径向变形和应 力的网格显示图、矢量线时图、等值线图。 共8张截图。
西安嘉业航空科技有限公司
作业7
截图:材料添加,网格划分效果,结果 的整体变形、等效应力以及径向变形和应 力的网格显示图、矢量线时图、等值线图。 共8张截图。
西安嘉业航空科技有限公司
作业6 问题描述:如右图模型(螺旋桨),其
材料为聚乙烯,模型如图所示方向的 1000rad/s的角加速度惯性载荷;模型内圈 用圆柱面约束且轴向为0,径向和周向为 free;螺旋桨面施加压力载荷0.5MPa。
西安嘉业航空科技有限公司
作业3 问题描述:如右图模型(连接件),其
材料为不锈钢,模型两个小孔固定,一个 大孔上施加轴承载荷500N,另一个大孔上 施加力载荷800N,且耳内侧受静水压力 5MPa。
要求:运用适当的网格划分方法,两个 小孔和两个大孔处网格细化(或者运用多 区域网格划分方法);求解结果显示模型 的整体变形和等效应力。
1、材料的变形范围在弹性范围,且材料的变形量较小, 方便建立静力学方程; 2、对于塑性变形或大变形,必须考虑材料非线性和几 何非线性。
西安嘉业航空科技有限公司
ANSYS WORKBENCH 静力结构分析
ANSYS WORKBENCH 11.0培训教程(DS)第四章静力结构分析序言•在DS中关于线性静力结构分析的内容包括以下几个方面:–几何模型和单元–接触以及装配类型–环境(包括载荷及其支撑)–求解类型–结果和后处理•本章当中所讲到的功能同样适用与ANSYS DesignSpace Entra及其以上版本.–本章当中的一些选项可能需要高级的licenses,但是这些都没有提到。
–模态,瞬态和非线性静力结构分析在这里没有讨论,但是在相关的章节当中将会有所阐述。
线性静力分析基础•在线性静力结构分析当中,位移矢量{x} 通过下面的矩阵方程得到:在分析当中涉及到以下假设条件:–[K] 必须是连续的•假设为线弹性材料•小变形理论•可以包括部分非线性边界条件–{F} 为静力载荷•不考虑随时间变化的载荷•不考虑惯性(如质量,阻尼等等)影响•在线性静力分析中,记住这些假设是很重要的。
非线性分析和动力学分析将在随后的章节中给予讨论。
[]{}{}F x K =A. 几何结构•在结构分析当中,可以使用所有DS 支持的几何结构类型.•对于壳体,在几何菜单下厚度选项是必须要指定的。
•梁的截面形状和方向在DM已经指定并且可以自动的传到DS模型当中。
–对于线性体,仅仅可以得到位移结果.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional xStructural xMechanical/Multiphysics x…Point Mass•Point Mass 在“Geometry”分支在模拟没有明确建模的重量–只有面实体才能定义point mass–可以用以下方式定义point mass位置:•在任意用户定义坐标系中(x, y, z)坐标•选择点/边/面来定义位置–重量/质量大小在“Magnitude”中输入–在结构静力分析中,point mass只受“加速度”,“标准重力加速度,”和“旋转速度”的作用.–质量和所选面相连通时它们之间没有刚度. 这不是一个刚度区域假设而是一个类似与分布质量的假设–没有旋转惯性项出现.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…Point Mass•point mass 将会以灰色圆球出现–前面提到,只有惯性力才会对point mass 起作用。
ANSYSWORKBENCH静力结构分析
ANSYSWORKBENCH静力结构分析ANSYS WORKBENCH 11.0培训教程(DS)第四章静力结构分析序言在DS中关于线性静力结构分析的内容包括以下几个方面:–几何模型和单元–接触以及装配类型–环境(包括载荷及其支撑)–求解类型–结果和后处理本章当中所讲到的功能同样适用与ANSYS DesignSpace Entra及其以上版本.–本章当中的一些选项可能需要高级的licenses,但是这些都没有提到。
–模态,瞬态和非线性静力结构分析在这里没有讨论,但是在相关的章节当中将会有所阐述。
线性静力分析基础在线性静力结构分析当中,位移矢量{x} 通过下面的矩阵方程得到: 在分析当中涉及到以下假设条件:–[K] 必须是连续的假设为线弹性材料?小变形理论可以包括部分非线性边界条件–{F} 为静力载荷不考虑随时间变化的载荷不考虑惯性(如质量,阻尼等等)影响在线性静力分析中,记住这些假设是很重要的。
非线性分析和动力学分析将在随后的章节中给予讨论。
[]{}{}F x K =A. 几何结构在结构分析当中,可以使用所有DS 支持的几何结构类型.对于壳体,在几何菜单下厚度选项是必须要指定的。
梁的截面形状和方向在DM已经指定并且可以自动的传到DS模型当中。
–对于线性体,仅仅可以得到位移结果.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional xStructural xMechanical/Multiphysics x…Point MassPoint Mass 在“Geometry”分支在模拟没有明确建模的重量–只有面实体才能定义point mass–可以用以下方式定义point mass位置:在任意用户定义坐标系中(x, y, z)坐标选择点/边/面来定义位置–重量/质量大小在“Magnitude”中输入–在结构静力分析中,point mass只受“加速度”,“标准重力加速度,”和“旋转速度”的作用.–质量和所选面相连通时它们之间没有刚度. 这不是一个刚度区域假设而是一个类似与分布质量的假设–没有旋转惯性项出现.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…Point Masspoint mass 将会以灰色圆球出现–前面提到,只有惯性力才会对point mass 起作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-9
Static Structural Analysis
…组件 – 实体接触
• 界面调整选项:
C T C T
Training Manual
Offset: 接触面在正向或相反方向上 偏移一个指定的距离(可以程序设置 偏移量)
Adjusted to touch:不考虑实际的间距 ,把接触面移向目标面,给出一个初始 接触
Training Manual
• Solver Controls(求解控制):
– 两种求解方式(默认是Program Controlled):
• 直接求解 (ANSYS中是稀疏矩阵法) • 迭代求解 ( ANSYS中是PGC(预共轭梯度法)).
– Weak springs:
• 尝试模拟得到无约束的模型
4-4
Static Structural Analysis
… 质量点
• 在模型中添加一个质量点来模拟结构中没有明确建模的重量体:
– 质量点只能和面一起使用。 – 它的位置可以通过下面任一种方法指定:
• 用户自定义的坐标系中指定(x, y, z) 坐标值 • 通过选择顶点/边/面指定位置
Training Manual
1 – 对于面边接触,面通常被设计为目标面而边被指定为接触面
4-13
Static Structural Analysis
C. 分析设置
• details of Analysis Settings中提供了一般的求解过 程控制: • Step Controls(求解步控制):
– 人工时间步控制和自动时间步控制 – 指定分析中的分析步数目和每个步的终止时间 – 在静态分析里的时间是一种跟踪机制(后面讨论)
Training Manual
• 对ANSYS Professional 或更高版本而言 ,支持壳体和实体的混合组件与更多的接 触选项
本例中,两部件间的间距比pinball 区域大,故不会自动闭合它们键的 间隔。
4-11
Static Structural Analysis
…组件 – 点焊
• Spot weld 提供了在分离点上连接壳体组件的方法:
4-3
Static Structural Analysis
A. 几何模型
• 在结构分析中,可能模拟各种类型的实体。
• 对于面实体,在Details of surface body中一定要指定厚度值。
Training Manual
• 线实体的截面和方向,在DesignModeler里进行定义,并自动导入到 Simulation(模拟)中。
Training Manual
•
本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使 用。
– 尽管本章中讨论的一些选项可能需要更高级的许可, 但都给了提示。
4-2
Static Structural Analysis
线性静态结构分析基础
Training Manual
• 对于一个线性静态结构分析( Linear Static Analysis ),位移{x}由下面的矩 阵方程解出:
Training Manual
– Bonded 和 No Separation 是线性接触并只需要一次迭代 – Frictionless,Rough 和Frictional 是非线性接触并需要多次 迭代
• 非线性接触类存在一个Interface Treatment(界面处理) 选项:
• Offset:给初始调整指定一个0或非0的值 • Adjusted to Touch: ANSYS把间隔缩小到恰好接触的位置 ( ANSYS Professional 或更高版本)
– 质量点只受包括加速度、重力加速度和角加速度的影响。 – 质量是与选择的面联系在一起的,并假设它们之间没有刚度。 – 不存在转动惯性
4-5
Static Structural Analysis
… 材料特性
• 在线性静态结构分析中需要给出杨氏模量和泊松比:
– – – – – – 在Engineering Data中输入材料参数 存在惯性时,需要给出材料密度 当施加了一个均匀的温度载荷时,需要给出热膨胀系数 在均匀温度载荷条件下,不需要指定导热系数 想得到应力结果,需要给出应力极限 进行疲劳分析时需要定义疲劳属性
Training Manual
– Spotweld在CAD软件中进行定义。目前,只有 DesignModeler和 Unigraphics 支持点 焊定义(Spotweld) 。
4-12
Static Structural Analysis
…组件 – 接触总结
• 在模拟中可以使用的接触类和选项的总结:
4-10
Static Structural Analysis
…组件 – 实体接触
• Advanced 选项 (更多细节参见第三 章的pinball区域的细节设置):
– Pin Ball Region:
• Inside pinball = near-field contact • Outside pinball = far-field contact • 使求解器更有效的进行接触计算
Training Manual
4-15
Static Structural Analysis
. . . 分析设置-分析步控制
• Step Controls(分析步控制):
– 在静态分析中允许设置多个分析步,并一步一步的求解。 – 对于静态分析,终止时间被用作确定载荷步和载荷子步的 追踪器。 – 可以一个分析步一个分析步的查看结果。 – 在给出的Tabular Data里可以指定每个分析步的载荷值。
• 在许可协议中需要添加疲劳分析模块
Training Manual
4-6
Static Structural Analysis
B. 组件 – 实体接触
• 在导入实体装配体时,在实体之间会自动创建接触对。
Training Manual
– 面对面接触允许在两个实体边界划分的单元不匹配 – Contact 下的Tolerance controls(容差控制),可以让用户使用滚动条指定自动接触检 查的容差
4-7
Static Structural Analysis
…组件 – 实体接触
• 在模拟中,每个接触对都要定义接触面和目标面:
– 接触区域的一个表面视作接触面,另一表面即为目标面 – 接触面不能穿透目标面
• • • •
Training Manual
当一面被设计为接触面为另一面被设为目标面,这就是非对称接触 如果两边互为接触面(C)和目标面(T),那就叫对称接触 默认的实体组件间的接触是对称接触 用户可以根据需要将接触类型改为非对称接触( ANSYS Professional 或更高版本)
Training Manual
Surface Body Edge
Solid Body Face (Scope = Target) Solid Body Edge (Scope = Target) Surface Body Face (Scope = Target)
(Scope = Contact) Bonded, No Separation All formulations Asymmetric only 1 Not supported for solving Bonded, No Separation All formulations Asymmetric only Bonded, No Separation Bonded, No Separation All formulations Symmetry respected All formulations Asymmetric only Bonded only MPC formulation Asymmetric only
对称接触
非对称接触
4-8
Static Structural Analysis
…组件 – 实体接触
• 可以使用的五种接触类型:
Contact Type Bonded No Separation Frictionless Rough Frictional Iterations 1 1 Multiple Multiple Multiple Normal Behavior (Separation) Tangential Behavior (Sliding) No Gaps No Sliding No Gaps Sliding Allowed Gaps Allowed Sliding Allowed Gaps Allowed No Sliding Gaps Allowed Sliding Allowed
Training Manual
在图形窗口中给出了时间 和载荷值的关系图
4-16
Static Structural Analysis
Surface Body Edge (Scope = Target)
Not supported for solving
1
(Scope = Contact) Bonded only MPC formulation Asymmetric only 1 Not supported for solving Bonded only MPC formulation Asymmetric only Bonded, No Separation Bonded only Augmented Lagrange, All formulations Pure Penalty, and MPC formulation Symmetry respected Asymmetric only 1 Not supported for solving Bonded only Augmented Lagrange, Pure Penalty, and MPC formulation Asymmetric only