如何做几何证明题(教师版)
用空间向量证(解)立体几何题之——证明线面平行ppt 人教课标版
( 1 , 1 , 1 ) 同理可得平面 CB1D 1的法向量为m
例4.在正方体ABCDA1B1C1D1中,E、F、 G、H分别是A1B1、 B1C1、C1D1、D1A1的 中点. 求证: 平面AEH∥平面BDGF
例3.在正方体ABCDA1B1C1D1中,求证: A 1 平面A1BD∥平面CB1D1
平行四边形A1BCD1 A1B∥D1C 平行四边形DBB1D1 B1D1∥BD
D1
B1
C1
D A B
C
于是平面A1BD∥平面CB1D1
证明:建立如图所示的 空间直角坐标系o-xyz 设正方形边长为1, A1 ( 1 ,0 , 1 ) 则向量 DA 1
C N B
再见
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
2024年中考数学几何模型归纳(全国通用):全等与相似模型-半角模型(教师版)
专题16全等与相似模型-半角模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半。
思想方法:通过旋转(或截长补短)构造全等三角形,实现线段的转化。
解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论。
【模型展示】1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④ AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
2)等腰直角三角形半角模型条件: ABC是等腰直角三角形,∠DAE=45°;结论:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;3)等边三角形半角模型(120°-60°型)条件: ABC 是等边三角形, BDC 是等腰三角形,且BD =CD ,∠BDC =120°,∠EDF =60°;结论:①△BDE ≌△CDG ;②△EDF ≌△GDF ;③EF =BE +FC ;④ AEF 的周长=2AB ;⑤DE 、DF 分别平分∠BEF 和∠EFC 。
4)等边三角形半角模型(60°-30°型)条件: ABC 是等边三角形,∠EAD =30°;结论:①△BDA ≌△CFA ;②△DAE ≌△FAE ;③∠ECF =120°;④DE 2=(12BD +EC)2+2;5)半角模型(2 - 型)条件:∠BAC =2 ,AB =AC ,∠DAE = ;结论:①△BAD ≌△CAF ;②△EAD ≌△EAF ;③∠ECF=180°-2 。
倍长中线与截长补短.提高班.教师版
【例1】 已知ABC △中,AD 平分BAC ∠,且BD CD =,求证:AB AC =.【解析】 延长AD 到E ,使DE AD =,连接CE . 则CDE BDA △≌△,∴CE AB =,CED BAD ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CED CAD ∠=∠,∴CE AC =, ∴AB AC =.【教师备选】教师可借用例1对等腰三角形三线合一性质的逆命题进行简单归纳:已知角平分线+中线证等腰三角形,如例1; 已知角平分线+高证等腰三角形,如拓展1; 已知中线+高证等腰三角形,如拓展2.例题精讲思路导航2倍长中线 与截长补短题型一:倍长中线EAB C DAB CD【拓展1】已知△ABC 中,AD 平分∠BAC ,且AD ⊥BC ,求证:AB =AC . 【解析】∵AD 平分∠BAC ,∴∠BAD =∠CAD∵AD ⊥BC ,∴∠ADB =∠ADC =90° ∴△ABD ≌△ACD (SAS) ∴AB =AC . 【拓展2】已知△ABC 中,AD ⊥BC ,且BD CD =,求证:AB =AC . 【解析】∵AD ⊥BC ,且BD CD =∴AD 所在直线是线段BC 的垂直平分线根据垂直平分线上的点到线段两端点距离相等 故AB =AC .【例2】 ⑴如图,已知ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =.给出下列结论:①AD =2AC ;②CD =2CE ;③∠ACE =∠BCD ;④CB 平分∠DCE ,则以上结论正确的是 .【解析】 ①正确.∵AB AC =,BD AB =,∴AD =2AC .②、④正确.延长CE 到F ,使EF CE =,连接BF . ∵CE 是AB 的中线,∴AE EB =. 在EBF △和EAC △中AE BE AEC BEF CE FE =⎧⎪∠=∠⎨⎪=⎩∴EBF EAC ≌△△∴BF AC AB BD ===,EBF EAC ∠=∠∴FBC FBE EBC A ACB DBC ∠=∠+∠=∠+∠=∠ 在FBC △和DBC △中 FB DB FBC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩∴FBC DBC ≌△△∴2CD CF CE ==,∠FCB =∠DCB 即CD =2CE ,CB 平分∠DCE .③错误.∵∠FCB =∠DCB ,而CE 是AB 边上中线而不是∠ACB 的角平分线故∠ACE 和∠BCD 不一定相等.⑵如图,在△ABC 中,点D 、E 为边BC 的三等分点,给出下列结论:①BD =DE =EC ;②AB +AE >2AD ;③AD +AC >2AE ;④AB +AC >AD +AE ,则以上结论正确的是 .典题精练ABE DC B A FCA EB DNM ED CBAEDCBA【解析】 点D 、E 为边BC 的三等分点,∴BD =DE =CE 延长AD 至点M ,AE 至点N ,使得DM =AD ,EN =AE ,连接EM 、CN ,则可证明△ABD ≌△MED ,进而可得AB +AE >2AD ,再证明△ADE ≌△NCE ,进而可得AD +AC >2AE ,将两式相加可得到AB +AE +AD +AC >2AD +2AE ,即AB +AC >AD +AE . ∴①②③④均正确.【例3】 如图,已知在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.【解析】 延长AD 到G ,使DG AD =,连接BG∵BD CD =,BDG CDA ∠=∠,AD GD =∴ADC GDB △≌△, ∴AC GB =,G EAF ∠=∠ 又∵AF EF =,∴EAF AEF BED ∠=∠=∠ ∴G BED ∠=∠,∴BE BG =,∴AC BE =.【例4】 在正方形ABCD 中,PQ ⊥BD 于P ,M 为QD 的中点,试探究MP 与MC 的关系.GFEDCBA FE D C BANABCDMPQ Q PMDCBA【解析】 延长PM 至点N ,使PM =MN ,连结CP 、CN 、DN .易证△PMQ ≌△NMD ,∴PB =PQ =DN ,∠PQD =∠NDM∴PQ ∥DN ,又∵∠BPQ =∠BDN= 90° ∴∠PBQ =∠BDC=∠NDC =45° 再证△BPC ≌△DNC (SAS)易证△PCN 为等腰直角三角形,又∵PM =MN ,∴PM ⊥MC ,且PM =CM .思路导航例题精讲题型二:截长补短。
(几何证明Ⅱ:倍长中线法及截长补短法专题C)(教师版)
学科教师辅导讲义 年 级: 科 目:数学 课时数:3课 题 几何证明教学目的 能够灵活运用本节课复习的两种解题方法更好的解决证明题.教学内容【例题讲解】题型一:截长补短法【例1】已知:如图,在△ABC 中,2ABC ACB ∠=∠,AD 是BAC ∠的平分线.求证:AB BD AC +=.(根据图中添加的辅助线用两种方法证明)ABDC【提示】截长补短,2种方法‘方法一:方法二:【例2】已知:如图,在△ABC 中,2AB BC ,∠B =60°.求证:∠ACB =90°.【提示】截长补短(两种方法)方法一:方法二:【方法总结】当已知(或求证)“一条线段的长度是另一条线段长度的n 倍”或“一条线段的长度等于两条线段长度的和”时,通常用截长补短法.题型二:倍长中线法(一)求线段取值范围【例3】已知三角形的两边长分别为7和9,求第三边上中线长的取值范围.【提示】倍长中线(二)证明线段不等【例4】如图,在△ABC 中,AD 为BC 边上的中线.求证:AB +AC >2AD .【提示】延长AD 至点E ,使DE =AD ,连接CE .易证△ABD ≌△ECD .所以AB =EC .在△ACE 中,因为AC +EC >AE =2AD ,所以AB +AC >2AD .(三)证明线段相等.求证:AC=BF. 【例5】已知:如图,AD为△ABC的中线,BE交AC于点E,交AD于点F,且AE EF【提示】倍长中线法,2种方法方法一:方法二:【方法总结】当已知“三角形一边中线”通常运用“倍长中线法“解决问题(注:有时倍长的并不一定是中线).可以倍长过中点的任意一条线段.(如下题)【例6】如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.【分析】可以把FE看作△FBC的一条中线.延长FE至点H,使EH=FE,连接CH.则△CEH≌△BEF.所以CH=BF,∠H=∠1.因为EG//AD,所以∠1=∠2,∠3=∠G.又因为∠2=∠3,所以∠1=∠G.所以∠H=∠G.由此得CH=CG.所以BF=CG.方法二:延长GE到H使得EH=EG(四)证明线段倍分【例7】如图,CB,CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB.求证:CE=2CD.CAD B E【分析】延长CD至点F,使DF=CD,连接BF.则由△ADC≌△BDF可得AC=BF,∠1=∠A.由AC=AB得∠ACB=∠2.因为∠3=∠A+∠ACB,所以∠3=∠CBF.再由AC=AB=BF=BE及BC=BC,可得△CBE≌△CBF,所以CE=CF,即CE=2CD(五)证明两直线垂直【例8】如图,分别以△ABC的边AB,AC为一边在三角形外作正方形ABEF和ACGH,M为FH的中点.求证:MA⊥BC.FEB CDAMHG【分析】设MA的延长线交BC于点D,延长AM至点N,使MN=AM,连接FN.则由△FMN≌△HMA可得FN=AH=AC,FN//AH,所以∠AFN+∠F AH=180°.因为∠BAC+∠F AH=180°,所以∠AFN=∠BAC.又因为AF=AB,所以△AFN ≌△BAC,得∠1=∠2.因为∠1+∠3=90°,所以∠2+∠3=90°,所以∠ADB=90°.从而得出MA⊥BC.【借题发挥】1.已知:如图,DA⊥AC,FC⊥AC,ADB BDF∠=∠,CFB DFB∠=∠.求证:DF AD CF=+.【提示】截长补短,2种方法方法一:方法二:2.已知:如图,在正方形ABCD中,M是BC的中点,点P在DC边上,且AP AB CP=+.求证:2BAP BAM∠=∠.AD CBMP【提示】截长补短,2种方法方法一:方法二:3.已知:如图,C是AB的中点,点E在CD上,且AE BD=.求证:AEC BDC∠=∠.【提示】倍长中线法,2种方法方法一:方法二:+=. 4.已知:如图,△ABC是等边三角形,BD是AC边上的高,作DH⊥BC于点H.求证:DC CH BH【提示】截长补短法,两种方法方法一:方法二:【课堂总结】【课后作业】1.已知D为EC的中点,EF∥AB,且EF=AC,求证:AD平分∠BAC【提示】倍长中线法:延长FD至G,使FD=DG,联结CG2.已知如图,在△ABC中,AD⊥BC于点D,AB BD DC+=.求证:∠2B=∠C.【提示】截长补短法,两种方法方法一:方法二:二、综合提高训练1.如图,已知在△ABC中,∠A=90°,AB=AC, ∠B的平分线与AC交于点D,过点C作CH⊥BD,H为垂足。
人教版数学八年级竞赛教程之如何做几何证明题附答案
人教版数学八年级竞赛教程之如何做几何证明题附答案如何做几何证明题几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
为了解决几何问题,我们需要掌握常用的分析和证明方法。
其中,综合法是一种从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决的方法。
分析法则是从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止。
两头凑法则是将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
掌握构造基本图形的方法也是解决几何问题的关键。
复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
其中,证明线段相等或角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
举个例子,已知如图1所示,$\triangle ABC$中,$\angleC=90^\circ$,$AC=BC$,$AD=DB$,$AE=CF$。
求证:$DE=DF$。
分析:由$\triangle ABC$是等腰直角三角形可知,$\angleA=\angle B=45^\circ$,由$D$是$AB$中点,可考虑连结$CD$,易得$CD=AD$,$\angle DCF=45^\circ$。
从而不难发现XXX。
证明:连结$CD$,可得$AC=BC$,$\angle A=\angle B$,$\angle ACB=90^\circ$,$AD=DB$,$CD=BD=AD$,$\angle DCB=\angle B=\angle A$,$AE=CF$,$\angle A=\angle DCB$,$AD=CD$。
立体几何共线、共点、共面问题(教师版)
立体几何中的共点、共线、共面问题一、共线问题例1. 若ΔABC 所在的平面和ΔA 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证:(1)AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别在同一平面内;(2)如果AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别相交,那么交点在同一直线上(如图).例2. 点P 、Q 、R 分别在三棱锥A-BCD 的三条侧棱上,且PQ ∩BC =X,QR ∩CD =Z,PR ∩BD =Y.求证:X 、Y 、Z 三点共线.例3. 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线。
1.如图1,正方体1111ABCD A BC D -中,1AC 与截面1DBC 交O 点,AC BD ,交M 点,求证:1C O M ,,三点共线. 证明:连结11AC ,1C ∈平面11A ACC ,且1C ∈平面1DBC ,1C ∴是平面11A ACC 与平面1DBC 的公共点.又M AC M ∈∴∈,平面11A ACC . M BD M ∈∴∈,平面1DBC .M ∴也是平面11A ACC 与平面1DBC 的公共点.1C M ∴是平面11A ACC 与平面1DBC 的交线.O 为1AC 与截面1DBC 的交点,O ∴∈平面11A ACC O ∈,平面1DBC ,即O 也是两平面的公共点. 1O C M ∈∴,即1C M O ,,三点共线.2.如图,在四边形ABCD 中,已知AB∥CD,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明 ∵ AB//CD, AB ,CD 确定一个平面β. 又∵AB ∩α=E ,AB β,∴ E ∈α,E ∈β, 即 E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点.∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F ,G ,H 四点必定共线.点 评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.二、共面问题1.如图3,设P Q R S M N ,,,,,分别为正方体1111ABCD A BC D - 的棱111111AB BC CC C D A D A A ,,,,,的中点, 求证:P Q R S M N ,,,,,共面.证明:如图3,连结1A B MQ NR ,,.P N ,分别为1AB A A ,的中点,1A B PN ∴∥.111A D BC A M BQ ∴,∥∥.M Q ,分别为11A D BC ,的中点,1AM BQ ∴=. ∴四边形1A BQM 为平行四边形. 1A B MQ ∴∥.PN MQ ∴∥. 因此,直线PN MQ ,可确定一个平面α.同理,由PQ NR ∥可知,直线PQ NR ,确定一个平面β.过两条相交直线PN PQ ,有且只有一个平面,α∴与β重合,即R α∈.同理可证S α∈. 因此,P Q R S M N ,,,,,共面.例4. 直线m 、n 分别和平行直线a 、b 、c 都相交,交点为A 、B 、C 、D 、E 、F ,如图,求证:直线a 、b 、c 、m 、n 共面.例5. 证明两两相交而不共点的四条直线在同一平面内.已知:如图,直线l 1,l 2,l 3,l 4两两相交,且不共点. 求证:直线l 1,l 2,l 3,l 4在同一平面内例6. 已知:A 1、B 1、C 1和A 2、B 2、C 2分别是两条异面直线l 1和l 2上的任意三点,M 、N 、R 、T 分别是A 1A 2、B 1A 2、B 1B 2、C 1C 2的中点.求证:M 、N 、R 、T 四点共面.例7. 在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足MB AM =NB CN =QDAQ=PD CP =k. (1)求证:M 、N 、P 、Q 共面.(2)当对角线AC =a,BD =b ,且MNPQ 是正方形时,求AC 、BD 所成的角及k 的值(用a,b 表示)三、共点问题例8. 三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行.1.如图2,已知空间四边形ABCD E F ,,分别是 AB AD ,的中点,G H ,分别是BC CD ,上的点, 且2BG DHGC HC==,求证:EG FH AC ,,相交于同一点P . 错解:证明:E 、F 分别是AB,AD 的中点, EF ∴∥BD,EF=21BD,又2==HC DHGC BG ,∴ GH∥BD,GH=31BD,∴四边形EFGH 是梯形,设两腰EG,FH 相交于一点T,2=HCDH ,F 分别是AD.∴AC 与FH 交于一点.∴直线EG,FH,AC 相交于一点正解:证明:E F ,分别是AB AD ,的中点,EF BD ∴∥,且12EF BD =.又2BG DH GC HC ==, GH BD ∴∥,且13GH BD =. EF GH ∴∥,且EF GH >.∴四边形EFHG 是梯形,其两腰必相交,设两腰EG FH ,相交于一点P ,EG ⊂∵平面ABC FH ⊂,平面ACD ,P ∴∈平面ABC P ∈,平面ACD ,又平面ABC 平面ACD AC P AC =∴∈,. 故EG FH AC ,,相交于同一点P .2. 如图,已知平面α,β,且α∩β=l .设梯形ABCD 中,AD∥BC,且AB α,CD β,求证:AB ,CD ,l 共点(相交于一点).分析:AB ,CD 是梯形ABCD 的两条腰,必定相交于一点M ,只要证明M 在l 上,而l 是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可. 证明: ∵ 梯形ABCD 中,AD∥BC, ∴AB,CD 是梯形ABCD 的两条腰. ∴ AB,CD 必定相交于一点,设 AB ∩CD=M .又∵ AB α,CD β,∴ M∈α,且M∈β. ∴ M∈α∩β.又∵ α∩β=l ,∴ M∈l , 即 AB ,CD ,l 共点.点 评:证明多条直线共点时,与证明多点共线是一样的. 1、(1)证明:∵AA 1∩BB 1=O, ∴AA 1、BB 1确定平面BAO ,∵A 、A 1、B 、B 1都在平面ABO 内, ∴AB ⊂平面ABO ;A 1B 1⊂平面ABO.同理可证,BC 和B 1C 1、AC 和A 1C 1分别在同一平面内.(2)分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上.2证明:如图,设AB ∩A 1B 1=P ; AC ∩A 1C 1=R ;∴ 面ABC ∩面A 1B 1C 1=PR.∵ BC ⊂面ABC ;B 1C 1⊂面A 1B 1C 1, 且 BC ∩B 1C 1=Q ∴ Q ∈PR, 即 P 、R 、Q 在同一直线上.3解析:∵A 、B 、C 是不在同一直线上的三点 ∴过A 、B 、C 有一个平面β 又βα⊂=⋂AB P AB 且,.,,l p l P ∈=⋂∴则设内内又在既在点βααβ.,,,:三点共线同理可证R Q P l R l Q ∴∈∈4解析: 证明若干条直线共面的方法有两类:一是先确定一个平面,证明其余的直线在这个平面里;二是分别确定几个平面,然后证明这些平面重合.证明∵a ∥b,∴过a 、b 可以确定一个平面α.∵A ∈a,a ⊂α,∴A ∈α,同理B ∈a.又∵A ∈m ,B ∈m,∴m ⊂α.同理可证n ⊂α.∵b ∥c,∴过b,c 可以确定平面β,同理可证m ⊂β. ∵平面α、β都经过相交直线b 、m,∴平面α和平面β重合,即直线a 、b 、c 、m 、n 共面.5、解析:证明几条直线共面的依据是公理3及推论和公理1.先证某两线确定平面α,然后证其它直线也在α内. 证明:图①中,l 1∩l 2=P , ∴ l 1,l 2确定平面α.又 l 1∩l 3=A,l 2∩l 3=C,∴ C,A ∈α. 故 l 3⊂α. 同理 l 4⊂α.∴ l 1,l 2,l 3,l 4共面.图②中,l 1,l 2,l 3,l 4的位置关系,同理可证l 1,l 2,l 3,l 4共面. 所以结论成立.6、证明 如图,连结MN 、NR ,则MN ∥l 1,NR ∥l 2,且M 、N 、R 不在同一直线上(否则,根据三线平行公理,知l 1∥l 2与条件矛盾).∴ MN 、NR 可确定平面β,连结B 1C 2,取其中点S.连RS 、ST ,则RS ∥l 2,又RN ∥l 2,∴ N 、R 、S 三点共线.即有S ∈β,又ST ∥l 1,MN ∥l 1,∴MN ∥ST ,又S ∈β,∴ ST ⊂β. ∴ M 、N 、R 、T 四点共面. 7解析:(1)∵MB AM =QD AQ=k ∴ MQ ∥BD ,且MB AM AM +=1+k k∴BD MQ =AB AM =1+k k∴ MQ =1+k kBD又NB CN =PDCP=k ∴ PN ∥BD ,且NB CN CN +=1+k k∴BD NP =CB CN =1+k k 从而NP =1+k kBD∴ MQ ∥NP ,MQ ,NP 共面,从而M 、N 、P 、Q 四点共面. (2)∵MA BM =k 1,NC BN =k1∴MA BM =NC BN =k 1,MABM BM +=11+k∴ MN ∥AC ,又NP ∥BD.∴ MN 与NP 所成的角等于AC 与BD 所成的角. ∵ MNPQ 是正方形,∴∠MNP =90° ∴ AC 与BD 所成的角为90°, 又AC =a ,BD =b ,AC MN =BA BM =11+k ∴ MN =11+k a 又 MQ =11+k b,且MQ =MN , 1+k k b =11+k a ,即k =ba.说明:公理4是证明空间两直线平行的基本出发点.已知:平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c.求证:a、b、c相交于同一点,或a∥b∥c.证明:∵α∩β=a,β∩γ=b∴a、b⊂β∴a、b相交或a∥b.(1)a、b相交时,不妨设a∩b=P,即P∈a,P∈b而a、b⊂β,a⊂α∴P∈β,P∈α,故P为α和β的公共点又∵α∩γ=c由公理2知P∈c∴a、b、c都经过点P,即a、b、c三线共点.(2)当a∥b时∵α∩γ=c且a⊂α,a⊄γ∴a∥c且a∥b∴a∥b∥c故a、b、c两两平行.由此可知a、b、c相交于一点或两两平行.A 1题2.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中BN =a 25 NQ =21SM =42a BQ =a 414∴COS∠QNB=5102222=⋅-+NQ BN BQ NQ BN题3.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角.答案:45°题4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点, 若BC =CA =CC 1,求NM 与AN 所成的角.解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =B 1M =6,cos∠GNA=1030562556=⨯⨯-+。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
如何做证明题(一)
如何做证明题1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系(如线段的长度或相等,角的度数或相等);二是有关平面图形的位置关系(如线的平行或垂直)。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例 1. 已知:如图1,△ABC中,∠例2. 已知:如图2所示,AB=CD,AD=2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
例3. 已知:如图4所示,AB =AC ,∠,A AE BF =︒=90 求证:FD ⊥ED变式训练1:如图,在△ABC 中, AB=AC, ∠BAC=40直角三角形ABD 和ACE ,使∠BAD=∠CAE=90°. (1)求∠DBC 的度数;(2)求证:BD=CE .(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;例子4.如图,ABCD 是正方形,点G 是BC 上的任意一点, DE ⊥AG 于E , BF ∥DE ,交AG 于F .求证: AF=BF+EF .DCBA EFG变式训练1:如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60º.(1)求证:AB⊥AC;(2)若DC=6,求梯形ABCD的面积 .(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
人教版七年级数学下册5.3.2命题、定理、证明教学设计
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
初中数学:常用几何题的原理及解题思路(基础教资)
初中数学:常用几何题的原理及解题思路几何证明题入门难,证明题难做,已经成为许多同学的共识…今天小瑞老师和同学们分享的是几何证明题思路及常用的原理,希望对大家有帮助!证明题的思路很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。
对于证明题,有三种思考方式:1.正向思维。
对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
2.逆向思维。
顾名思义,就是从相反的方向思考问题。
在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。
同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。
例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
3.正逆结合。
对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。
初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。
给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。
正逆结合,战无不胜。
证明题要用到哪些原理要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键…下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题…证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
第19章 专题01几何证明重难点专练(教师版
专题01几何证明重难点专练(教师版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题的逆命题是假命题的是()A.全等三角形的面积相等;B.等腰三角形两个底角相等;C.直角三角形斜边上的中线等于斜边的一半;D.在角的平分线上任意一点到这个角的两边的距离相等.【答案】A【分析】先确定每个命题的逆命题,再对每个选项依次判定即可解答.【详解】A.逆命题为:面积相等的三角形是全等三角形,是假命题,符合题意;B.逆命题为:两个角相等的三角形是等腰三角形,是真命题,不符合题意;C.逆命题为:一条边上的中线等于这条边的一半的三角形是直角三角形,是真命题,不符合题意;D.在角的内部到角的两边距离相等的点在这个角的平分线上,是真命题,不符合题意.故选:A.【点睛】此题考查命题,正确的命题是真命题,错误的命题是假命题,正确确定每个命题的逆命题是解此题的关键.2.设D为等腰ABC底边BC上一点,DE∥AB,DF∥AC,则四边形AFDE的周长是()A.2AB B.2AB+BC C.2BC D.AB+BC【答案】A【分析】先证明四边形AFDE是平行四边形,得到DE=AF,AE=DF,再证明BF=DF=AE,问题得解.【详解】解:∵DE∵AB,DF∵AC,∵四边形AFDE是平行四边形,∵DE=AF,AE=DF,∵DF∵AC,∵∵C=∵FDB,∵AB=AC,∵∵B=∵C∵∵FDB=∵B,∵BF=DF,∵BF=DF=AE,∵四边形AFDE的周长等于AE+DE+DF+AF=BF+AF+BF+AF=2AB.故选:A【点睛】本题考查了等腰三角形的判定与性质,平行四边形的性质,熟知相关定理是解题关键.3.下列给出的三条线段中,不能构成直角三角形的是()A.4、8、B.4、8、C.7、24、25D.7、14、15【答案】D【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】解:A、∵42+(2=64=82,∵能够成直角三角形,故本选项可构成直角三形;B、∵42+82=80=(2,∵能够成直角三角形,故本选项错误;C、∵72+242=625=252,∵能够成直角三角形,故本选项错误;D、∵72+142=245≠152,∵不能够成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,ADC 的周长为9cm,则ABC的周长是()A.12cm B.15cm C.21cm D.18cm【答案】B【分析】由DE是∵ABC中边AB的垂直平分线,根据线段垂直平分线的性质,即可得BD=AD,AB=2AE,又由∵ADC的周长为9cm,即可得AC+BC=9cm,继而求得∵ABC的周长.【详解】解:由DE是边AB的垂直平分线,∵AD=BD,AE=BE,由∵ADC的周长为9cm,∵AC+BC=9,∵AE=3,∵AB=6,∵∵ABC的周长是15cm,故选:B.【点睛】此题考查了线段垂直平分线的性质.此题难度适中,解题的关键是注意等量代换与整体思想的应用.5.下列命题中,假命题是()A.对顶角相等B.同角的余角相等C.面积相等的两个三角形全等D.平行于同一条直线的两直线平行【答案】C【分析】根据对顶角的性质对A进行判断;根据余角的性质对B进行判断;根据三角形全等的判断对C进行判断;根据平行线的传递性对D进行判断.【详解】解:A、对顶角相等,所以A选项为真命题;B、同角的余角相等,所以B选项为真命题;C、面积相等的两个三角形不一定全等,所以C选项为假命题;D、平行于同一条直线的两条直线平行,所以D选项为真命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.下列命题中,是真命题的是()A.对顶角相等B.两直线被第三条直线所截,截得的内错角相等C.等腰直角三角形都全等D.如果a b>,那么22>a b【答案】A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a>b,那么a2<b2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.7.下列命题是真命题的是()A.相等的两个角是对顶角B.好好学习,天天向上C.周长和面积相等的两个三角形全等D.两点之间线段最短【答案】D【分析】根据命题的定义以及几何知识逐一判断即可.【详解】解:A、相等的两个角不一定是对顶角,原命题是假命题;B、好好学习,天天向上,不是命题;C、周长和面积相等的两个三角形不一定全等,原命题是假命题;D、两点之间线段最短,是真命题;故选:D.【点睛】本题考查命题,掌握命题的定义以及对顶角的性质、全等三角形的判定、两点之间线段最短的基本事实是解题的关键.8.下列各命题中,假命题是()A.有两边及其中一边上的中线对应相等的两个三角形全等B.有两边及第三边上高对应相等的两个三角形全等C.有两角及其中一角的平分线对应相等的两三角形全等D.有两边及第三边上的中线对应相等的两三角形全等【答案】B【分析】根据全等三角形的判定定理进行证明并依次判断.【详解】解:A、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;B、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;C、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;D、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:B.【点睛】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,灵活判定命题真假,熟记定理并灵活应用解决问题是解题的关键.9.如图,已知正方形ABCD的边长为8,点E,F分别在边BC、CD上,EF=时,AEF的面积是().∠=︒.当845EAFA.8B.16C.24D.32【答案】D【分析】如图:∵ADF绕点A顺时针旋转90°,得到∵ABH,可得AH=AF,∵BAH=∵DAF,进一步求出∵EAH=∵EAF=45°,再利用"边角边"证明∵AEF和∵AEH全等,再根据全等三角形的面积相等,即可解答.【详解】解:如图,将∵ADF绕点A顺时针旋转90°,得到∵ABH,根据旋转的性质可得:AH=AF,∵BAH=∵DAF,∵∵EAF=45°,∵BAD=90°∵∵EAH=∵EAF=45°在∵AEF和∵AEH中AF=Aн∵EAH=∵EAF=45°,AE=AE∵∵AEF∵∵AEH(SAS),∵EH=EF=8,∵SAFE=S∵AEH=-12×8×8=32.故选:D.【点睛】本题考查了正方形和全等三角形的判定与性质,熟记并灵活应用它们的性质并利用旋转作辅助线、构造出全等三角形是解题的关键.二、填空题10.将命题关于某直线对称的两个三角形全等”,改写成“如果…,那么…”的形式:如果___________________________,那么________________________.【答案】两个三角形关于某直线对称;这两个三角形全等.【分析】任何一个命题都可以写成“如果…那么…”的形式,如果是条件,那么是结论.【详解】解:关于某直线对称的两个三角形全等,改写成“如果…,那么…”的形式:如果两个三角形关于某直线对称,那么这两个三角形全等故答案为:两个三角形关于某直线对称;这两个三角形全等【点睛】本题考查了命题与定理,命题是有题设和结论构成.命题都能写成“如果…,那么…”的形式,“如果”后面是题设,“那么”后面是结论.11.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.【答案】如果两个角互为对顶角,那么这两个角相等【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.12.在Rt ABC中,若∥C=90°,D是BC边上一点,且AD=2CD,则∥ADB=_____°【答案】120【分析】如图,延长DC到E,使EC=CD,连接AE,先证明AC为线段DE的垂直平分线,进而证明∵ADE是等边三角形,得到∵ADE=60°,问题得解.【详解】解:如图,延长DC到E,使EC=CD,连接AE,∵∵ACD=90°,∵AC∵DE,∵AC为线段DE的垂直平分线,∵AD=AE,又∵AD=2CD,CD=CE,∵AD=DE,∵AD=DE=AE,∵∵ADE是等边三角形,∵∵ADE=60°,∵∵ADB=180°-∵ADC=120°.故答案为:120°【点睛】本题考查了线段垂直平分线,等边三角形的判定与性质,根据题意添加辅助线,构造等边三角形是解题关键.13.在Rt ABC中,∥C=90°,∥A的平分线交BC于点D,且BC=8,BD=5,那么点D到AB 的距离是_____【答案】3【分析】作DE∵AB于E点,根据角平分线的性质,即可证得DE=CD,即可求解.【详解】解:如图,作DE∵AB于E点.∵∵A的平分线交BC于点D, ∵C=90°, DE∵AB,∵DE=CD=3.即点D 到AB 的距离等于3.故答案为:3.【点睛】本题考查了角平分线的性质定理,正确证得DE=CD 以及找到点D 到AB 的距离是关键.14.等腰直角ABC 中,90ACB ∠=︒,AH HG ⊥,BG HG ⊥,12HG =,4AH =,则BG =________.【答案】8【分析】先根据等腰直角三角形的定义可得BC CA =,再根据直角三角形的性质可得CBG ACH ∠=∠,然后根据三角形全等的判定定理与性质可得4,CG AH BG CH ===,最后根据线段的和差即可得.【详解】 ABC 是等腰直角三角形,且90ACB ∠=︒,BC CA ∴=,90BCG ACH ∠+∠=︒,,A BG HG H HG ⊥⊥,90G H ∴∠=∠=︒,90BCG CBG ∠∴∠+=︒,CBG ACH ∴∠=∠,在BCG 和CAH 中,G H CBG ACH BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCG CAH AAS ∴≅,,CG AH BG CH ∴==,12,4H HG A ==,1248BG CH HG CG HG AH ∴==-=-=-=,故答案为:8.【点睛】本题考查了等腰三角形的定义、直角三角形的性质、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.15.把命题“直角三角形的两个锐角互为余角”改写成“如果…那么…”的形式是________,这个命题是__________(填“真”或“假”)命题【答案】如果一个三角形是直角三角形,那么它的两个锐角互为余角真【分析】找出命题中的题设与结论即可得,根据直角三角形的性质即可得判断真假.【详解】命题“直角三角形的两个锐角互为余角”中的题设是三角形是直角三角形,结论是它的两个锐角互为余角,则改写成:如果一个三角形是直角三角形,那么它的两个锐角互为余角,由直角三角形的性质得:这个命题是真命题,故答案为:如果一个三角形是直角三角形,那么它的两个锐角互为余角;真.【点睛】本题考查了命题、直角三角形的性质,掌握理解命题的概念是解题关键.16.已知“若a>b,则ac>bc”是假命题,请写出一个满足条件的c 的值是_______________.【答案】0(答案不唯一)【分析】举出一个能使得ac=bc或ac<bc的一个c的值即可.【详解】若a>b,当c=0时ac=bc=0,故答案为:0(答案不唯一).【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.【答案】如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.三、解答题18.已知:如图,AB=DE,BC=DF,AF=CE.求证:BC∥DF.【答案】见解析【分析】由AF=CE,得到AC=EF,然后得到∵ABC∵∵DEF,则∵ACB=∵EFD,然后即可证明结论成立.【详解】证明:∵AF=CE,∵AC=EF,在∵ABC和∵DEF中AC=EF,AB=DE,BC=DF,∵∵ABC∵∵DEF∵∵ACB=∵EFD,∵∵BCF=∵DFC,∵BC∵DF;【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.19.已知:如图,在ABC中,AB=AC,AE是外角 CAD的平分线.求证:AE∥BC.【答案】见解析【分析】首先根据角平分线的性质可得∵DAC=2∵DAE,再由AB=AC可得∵B=∵ACB,然后根据内角与外角的关系可得∵DAC=∵B+∵ACB=2∵B,进而可证明∵DAE=∵B,再根据同位角相等,两直线平行可得AE∵BC.【详解】证明:∵AE是∵CAD的平分线,∵∵DAC=2∵DAE,∵AB=AC,∵∵B=∵ACB,又∵∵DAC=∵B+∵ACB=2∵B,∵∵DAE=∵B,∵AE∵BC.【点睛】此题主要考查了等腰三角形的性质,平行线的判定,关键是掌握同位角相等,两直线平行.20.已知:如图,AC=BD,∠1=∠2.求证:AD∥BC.【答案】见解析【分析】根据等角对等边求出OB=OC,再利用已知条件求得AO=OD,进一步利用等腰三角形性质得:∵OAD=∵ODA,再利用内角和定理可得:∠1=∵ODA,即可得到平行.【详解】证明:因为∠1=∠2.所以OB=OC.因为AC=BD.所以OA=OD.所以∵OAD=∵ODA.因为∠1+∠2+∵BOC=180°.∵OAD+∵ODA+∵AOD=180°.∵BOC=∵AOD.所以∠1+∠2=∵OAD+∵ODA.所以2∠1=2∵ODA.即∠1=∵ODA.所以AD∵BC.【点睛】本题利用等腰三角形的性质与判定得到边与角的关系,本题关键找到角与角的关系.21.已知:如图,在∥ABC中,∥A∥∥ABC∥∥ACB=3∥4∥5,BD,CE分别是边AC,AB上的高,BD,CE相交于H,求∥BHC的度数.【答案】135°【分析】先设∵A=3x,∵ABC=4x,∵ACB=5x,再结合三角形内角和等于180°,可得关于x的一元一次方程,求出x,从而可分别求出∵A,∵ABC,∵ACB,在∵ABD中,利用三角形内角和定理,可求∵ABD,再利用三角形外角性质,可求出∵BHC.【详解】解:∵在∵ABC中,∵A:∵ABC:∵ACB=3:4:5,故设∵A=3x,∵ABC=4x,∵ACB=5x.∵在∵ABC中,∵A+∵ABC+∵ACB=180°,∵3x+4x+5x=180°,解得x=15°,∵∵A=3x=45°.∵BD,CE分别是边AC,AB上的高,∵∵ADB=90°,∵BEC=90°,∵在∵ABD中,∵ABD=180°-∵ADB-∵A=180°-90°-45°=45°,∵∵BHC=∵ABD+∵BEC=45°+90°=135°.【点睛】本题利用了三角形内角和定理、三角形外角的性质.解题关键是熟练掌握:三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.22.已知:如图所示ABC,BE,CD相交于O,AB=AC,AD=AE(1)求证:OD=OE(2)联结DE,求证:DE//BC.【答案】(1)见解析;(2)见解析【分析】≅,再由全等三角形对应边、对应角相等解题即可;(1)根据SAS证明ADC AEB≅,(2)先根据AB=AC,整理出BD、EC的数量关系,再由AAS证明BDO CEO最后根据全等三角形对应边相等的性质解题即可.【详解】(1)证明:在ADC和AEB△中AB=AC;∵A=∵A;AD=AE,所以ADC AEB ≅所以∵ABE=∵ACD ,又因为AD=AE ,所以BD=CE ,在BDO △和CEO 中BD=EC∵ABE=∵ACD∵DOB=∵EOC所以BDO CEO ≅所以OD=OE(2)证明:AD AE AB AC ==,AD AE AB AC∴= A A ∠=∠ADE ABC ∴ADE ABC ∴∠=∠//DE BC ∴【点睛】本题考查全等三角形的判定与性质、相似三角形的判定与性质,是重要考点,难度一般,掌握相关知识是解题关键.23.已知:如图,AB=DE ,∠A=∠D ,AC=DF .求证:AC∥DF .【答案】见解析【分析】由边角边证得∵ABC∵∵DEF ,得到∵ACB=∵DFE ,由同位角相等两直线平行即可得证.【详解】证明:在∵ABC 和∵DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,所以∵ABC∵∵DEF (SAS ),所以∵ACB=∵DFE ,所以AC∵DF.【点睛】本题主要考查三角形全等的判定和性质,要牢固掌握并灵活运用这些知识.24.如图:已知 ∠BAC=30°,AT 平分∠BAC ,TE∥AC .(1)求证:AET △是等腰三角形;(2)若TD AC ⊥,垂足为点D ,AE=4cm ,求TD 的长.【答案】(1)见解析;(2)2cm【分析】(1)根据角平分线可得∵EAT=∵TAD,利用平行可得∵TAD=∵ETA,再利用等量代换即可得到∵EAT=∵ETA,进而证得AET △是等腰三角形.(2)AT 平分∠BAC,依据角平分线定理可得DT=TF 在RT∵TFE 中,ET=4cm,∵FET=30°,则TF=2cm,则TD=2cm .【详解】解:(1)∵AT 平分∠BAC .∵∵EAT=∵TAD.∵TE∵AC.∵∵TAD=∵ETA.∵∵EAT=∵ETA.∵AET△是等腰三角形.(2)过点T作TF⊥AB,垂足点F,⊥.∵AT平分∠BAC,TF⊥AB,TD AC∵据角平分线定理可得DT=TF.∵在RT∵TFE中,ET=4cm,∵FET=30°,则TF=2cm,∵TD=2cm.【点睛】本题考查了等腰三角形的判定,如何利用角平分线性质作出辅助线是解决此问题的关键.25.如图所示,已知点C、P、D在一直线上,∥BAP与∥APD互补,∥1=∥2,试说明∥E=∥F的理由.【答案】∵E与∵F相等,理由见解析.【分析】根据已知可得出AB∵CD,进而由∵1=∵2可证得∵P AE=∵APF,故能得出AE∵FP,即能推出要证的结论成立.【详解】∵E与∵F相等.理由如下:因为∵BAP和∵APD互补,所以AB∵CD(同旁内角互补,两直线平行),所以∵BAP=∵CPA(两直线平行,内错角相等).因为∵1=∵2,所以∵PAE=∵APF,所以AE∵PF(内错角相等,两直线平行),所以∵E=∵F(两直线平行,内错角相等).【点睛】考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.26.已知:如图,AC∥BC ,垂足为C ,∥BCD 是∥B 的余角求证:∥ACD=∥B证明:∥AC∥BC (已知)∥∥ACB=90°( )∥∥BCD 是∥DCA 的余角∥∥BCD 是∥B 的余角(已知)∥∥ACD=∥B ( )【答案】垂直的意义;同角的余角相等.【分析】先根据垂直的意义可得90ACB ∠=︒,从而可得BCD ∠是DCA ∠的余角,再根据同角的余角相等即可得证.【详解】证明:∵AC BC ⊥(已知),∵90ACB ∠=︒(垂直的意义),∵BCD ∠是DCA ∠的余角,∵BCD ∠是B 的余角(已知),∵ACD B ∠=∠(同角的余角相等),故答案为:垂直的意义;同角的余角相等.【点睛】本题考查了垂直的意义、同角的余角相等,掌握理解同角的余角相等是解题关键. 27.如图, AB=AC , E 是AD 上的一点,∥BAE=∥CAE .求证:∥EBD=∥ECD .【答案】见解析【分析】先证明∵ABD∵∵ACD ,得到∵ADB=∵ADC ,BD=CD ,再证明∵BDE∵∵CDE ,问题得证.【详解】证明:在∵ABD 和∵ACD 中AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∵∵ABD∵∵ACD ,∵∵ADB=∵ADC ,BD=CD ,在∵BDE 和∵CDE 中DE DE EDB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩∵∵BDE∵∵CDE ,∵∵EBD=∵ECD .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理并根据题意灵活选择方法是解题关键.28.如图,在ABC △中,AB AC =,点E ,F 、G 分别在边AB 、BC 、AC 上,CG BF =,BE CF =,O 是EG 的中点,求证:FO GE ⊥.【答案】证明见解析【分析】连结EF 、FG ,根据等腰三角形得到B C ∠=∠,利用SAS 证明∵BEF 与∵CFG 全等,最后利用等腰三角形”三线合一”的性质证明即可.【详解】证明:连接EF 、FG∵AB AC =∵B C ∠=∠.在BEF 与CFG △中,BE CF B C BF CG =⎧⎪∠=∠⎨⎪=⎩,∵BEF ∵CFG △(SAS ).∵EF FG =.∵O 是EG 的中点,∵FO GE ⊥.【点睛】本题考查的是全等三角形和等腰三角形的判定与性质,熟知全等三角形的判定方法是解答本题的关键.29.如图,在已知ABC △中,AB AC =,点D 在BC 上,过D 点的直线分别交AB 于点E ,交AC 的延长线于点F ,且BE CF =.求证:DE DF =.【答案】证明见解析【分析】过点E 作EG AC ∥交BC 于G ,根据平行的性质可得ACB BGE ∠=∠,F DEG ∠=∠,再根据等边对等角可得B ACB ∠=∠,进而得到B BGE ∠=∠,再根据等角对等边可得BE=GE ,从而得到GE=CF ,利用AAS 证得CDF ∵GDE △,根据全等三角形的性质可得DE=DF.【详解】证明:过点E 作EG AC ∥交BC 于G∵ACB BGE ∠=∠,F DEG ∠=∠∵AB AC =∵B ACB ∠=∠∵B BGE ∠=∠∵BE GE =.又∵BE CF =∵GE CF =.∵在CDF 和GDE △中F DEG CDF GDE GE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵CDF ∵GDE △(AAS ).∵DE DF =.【点睛】本题考查了等腰三角形、全等三角形的判定与性质,构造出全等三角形是解答本题的关键.30.如图,在ABC △中,BAC ∠的角平分线交BC 于D ,且AB AC CD =+.求证:2C B ∠=∠.【答案】证明见解析【分析】在AB 上截取AE AC =,易证∵ACD∵∵AED ,则CD=DE ,∵C=∵AED ,可得DE=BE ,由等边对等角可得:∵EDB=∵EBD ,由三角形外角定理即可得到结论.【详解】证明:在AB 上截取AE AC =,∵AB AC CD =+.∵BE CD =.在ACD 和AED 中AC AE CAD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∵ACD ∵AED .∵CD DE =,C AED ∠=∠.∵DE BE =D .∵EDB EBD ∠=∠.∵2EBD B ∠=∠.∵2C B ∠=∠.【点睛】本题考查了全等三角形的判定与性质、三角形外角定理,构造全等三角形、运用等腰三角形的知识是解答本题的关键.31.如图,在ABC △中,已知CA CB =,AD 平分CAB ∠,且AB AC CD =+,求证:AC BC ⊥.【答案】证明见解析【分析】在AB 上截取AE AC =,连结DE ,可得BE=CD ,由角平分线的定义可得∵CAD=∵EAD ,推出∵ACD∵∵ADE ,易得DE=CD 、∵C=∵AED ,即DE=BE ,由等腰三角形的性质可得∵B=∵BDE ,∵CAB=∵B ,进而得到∵C=∵DEB=∵DEA ,即可得到结论.【详解】证明:在AB 上截取AE AC =,连接DE ,∵AB AC CD =+,∵BE CD =.∵AD 平分CAB ∠,∵CAD EAD ∠=∠.在ACD 与ADE 中,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∵ACD ∵ADE .∵DE CD =,C AED ∠=∠.∵DE BE =.∵B BDE ∠=∠.∵AC BC =,∵CAB B ∠=∠.∵C DEB DEA ∠=∠=∠.∵18090DEA ∠=︒=︒.∵90C ∠=︒.∵AC BC ⊥.【点睛】本题考查全等三角形、等腰三角形的判定和性质,作出辅助线构造全等三角形是解题的关键.32.已知AE AB ⊥,DA AC ⊥,AE AB =,AD AC =.直线MN 过点A ,交DE 、BC 于点M 、N .(1)若AM 是EAD 中线,求证:AN BC ⊥;(2)若AN BC ⊥,求证:EM DM =.【答案】(1)详见解析;(2)详见解析.【分析】(1)延长AM 至F ,使MF AM =,易证EMF △∵DMA △,可得DAM F ∠=∠,EF AD =,再根据AD AC =可得EF AC =,再利用∵BAC 、∵BAE 、∵EAD 和∵DAC 四个角和为360°,可得180BAC DAE ∠=︒-∠,利用∵AEF 的内角和可得180AEF DAE ∠=︒-,可得BAC AEF ∠=∠,即可证明ABC △∵EAF △,最后利用等角的余角相等的等量代换以及∵ABN 的内角和为180°可得出结论.(2)过点E 作EF AD ∥交AM 的延长线于F ,则F DAM ∠=∠,根据DA AC ⊥,可得90DAM CAN ∠+∠=︒;AN BC ⊥,可得90CAN C ∠+∠=︒,等量代换得出F DAM C ∠=∠=∠.根据周角等于360°,可得180BAC DAE ∠=︒-∠;根据三角形内角和可得180∠=︒-∠AEF DAE ,可得BAC AEF ∠=∠,则可证明ABC △∵EAF △(AAS ),得到EF AC =;易证EFM △∵DAM △,即可得到EM DM =. 【详解】解:(1)如图,延长AM 至F ,使MF AM =,∵AM 是EAD 中线,∵EM DM =.在EMF △和DMA △中,EM DM EMF AMD MF AM =⎧⎪∠=∠⎨⎪=⎩,∵EMF △∵DMA △(SAS ).∵DAM F ∠=∠,EF AD =.∵AD AC =,∵EF AC =.∵AE AB ⊥,DA AC ⊥,∵360902180BAC DAE DAE ∠=︒-︒⨯-∠=︒-∠. ∵180180180AEF F EAM DAM EAM DAE ∠=︒-∠-∠=︒-∠-∠=︒-, ∵BAC AEF ∠=∠.在ABC △和EAF △中,EF AC BAC AEF AB AE =⎧⎪∠=∠⎨⎪=⎩,∵ABC △∵EAF △(SAS ).∵EAF B ∠=∠.∵AE AB ⊥,∵90EAF BAN ∠+∠=︒.∵90B BAN ∠+∠=︒.在ABN 中,()1801809090ANB B BAN ∠=︒-∠+∠=︒-︒=︒,∵AN BC ⊥. (2)如图,过点E 作EF AD ∥交AM 的延长线于F ,则F DAM ∠=∠,∵DA AC ⊥,∵90DAM CAN ∠+∠=︒.∵AN BC ⊥,∵90CAN C ∠+∠=︒.∵F DAM C ∠=∠=∠.∵AE AB ⊥,DA AC ⊥,∵360902180BAC DAE DAE ∠=︒-︒⨯-∠=︒-∠. ∵180180180AEF F EAM DAM EAM DAE ∠=︒-∠-∠=︒-∠-∠=︒-∠, ∵BAC AEF ∠=∠.在ABC △和EAF △中,BAC AEF F C AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵ABC △∵EAF △(AAS ).∵EF AC =.∵AD AC =,∵EF AD =.在EFM △和DAM △中,F DAM EMF DMA EF AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵EFM △∵DAM △(AAS ).∵EM DM =.【点睛】本题考查三角形全等以及角度之间的等量代换,第(1)题通过“倍长中线”这一辅助线做法,构造全等三角形,从而得出角相等,在遇到有中线的题目,并且题中没有全等三角形,那么我们就可以通过延长中线,或者经过中点的线段,构造全等三角形;第(2)题是通过构造平行线,进而得到角相等,构造全等三角形,然后再根据角之间的等量代换,常见的就是等角的余角相等、等角的补角相等,当直角比较多的地方都可以想到这种方法.33.如图,在ABC △中,已知D 是BC 的中点,ED DF ⊥,求证:BE CF EF +>.【答案】证明见解析【分析】延长FD 到M 使MD=DF ,连接BM ,EM.构造出两三角形全等,可得MD=DF ,三角形EFM 中,ED∵MF ,MD=FD ,那么ED 就是MF 的垂直平分线,可得EM=EF ,最后根据三角形三边的关系即可证明.【详解】证明:延长FD 到M 使MD=DF ,连接BM ,EM.∵D 是BC 的中点,∵BD CD =.在MDB △与FDC △中,BD DC MDB CDF FD DM =⎧⎪∠=∠⎨⎪=⎩,∵MDB △∵FDC △(SAS )∵MD DF =.在FMC 中,CF CM MF +>.又∵ED DF ⊥,ED DM =,∵EF FM =.∵CF CM EF +>,即CF BE EF +>.【点睛】本题考查了全等三角形和三角形三边关系;做辅助线构造全等三角形是解答本题的关键.34.如图所示,在ABC ∆中,AC BC =,90ACB ∠=︒,D 是AC 上一点,AE BD ⊥,垂足为E ,BE 交AC 于D ,又12AE BD =.求证:BD 是ABC ∠的平分线.【答案】见解析【解析】【分析】延长AE 、BC 交于点F ,通过证全等得AF=BD ,结合已知条件得E 是AF 的中点,可得BE 是AF 的垂直平分线,根据等腰三角形三线合一即可得.【详解】证明:如图,延长AE 、BC 交于点FAE BE ⊥90BEF ∴∠=︒,又90ACF ACB ∠=∠=︒90DBC AFC FAC AFC ∴∠+∠=∠+∠=︒DBC FAC ∴∠=∠又AC BC =()ASA ACF BCD ≌∴∆∆AF BD ∴=又2BD AE =2AF AE ∴=AE EF ∴=AB BF ∴=BD ∴是ABC ∠的平分线【点睛】本题主要考查全等三角形的判定与性质的综合及等腰三角形的性质,构造全等,即辅助线的引入是解答此题的关键.35.如图1,已知∥ABC 中,AB =BC =1,∥ABC =90°,把一块含30°角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转.(1)在图1中,DE交边AB于M,DF交边BC于N,证明:DM=DN;(2)在这一旋转过程中,直角三角板DEF与∥ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;(3)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【答案】(1)详情见解析;(2)四边形DMBN面积不发生变化,面积为14;(3)仍然成立,证明见解析.【分析】(1)连接BD,求出BD=DC,∵MDB=∵CDN,∵C=∵ABD,根据ASA证明∵MBD∵∵NCD,进而求证即可;(2)根据全等得出∵MBD与∵NCD面积相等,求出四边形DMBN的面积等于∵BDC的面积,进而求解即可;(3)连接BD,求出BD=DC,∵MDB=∵CDN,∵C=∵ABD,根据ASA证明∵MBD∵∵NCD,进而求证即可.【详解】(1)如图1,连接BD.∵在Rt∵ABC中,AB=BC,AD=DC,∵BD=DC=AD,∵BDC=90°,∵∵ABD=∵C=45°,∵∵MDB+∵BDN=90°,∵CDN+∵BDN=90°∵∵MDB=∵NDC,在∵MBD与∵NCD中,∵∵MDB=∵NDC,BD=DC,∵MBD=∵C,∵∵MBD∵∵NCD,∵DM=DN.(2)四边形DMBN面积不发生变化.由(1)得∵MBD∵∵NCD ,∵S ∵MBD =S ∵NCD ,∵四边形DMBN 面积=S ∵DMB +S ∵BDN = S ∵CND + S ∵BDN =12S ∵ABC =14. (3)DM=DN 仍然成立.如图2,连接BD ,∵在Rt∵ABC 中,AB=BC ,AD=DC ,∵DB=DC,∵BDC=90°,∵∵DCB=∵DBC=45°,∵∵DBM=∵DCN=135°,∵∵NDC+∵CDM=90°,∵BDM+∵CDM=90°,∵∵CDN=∵BDM ,在∵CDN 与∵BDM 中,∵∵CDN=∵BDM ,DC=DB ,∵DCN=∵DBM ,∵∵CDN∵∵BDM ,∵DM=DN.【点睛】本题主要考查了三角形旋转问题与全等三角形的综合运用,熟练掌握相关概念是解题关键.36.如图,在四边形ABCD 中,AB AD =,BC CD =,90ABC ADC ∠=∠=︒,12MAN BAD ∠=∠.(1)如图(1),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明;(2)如图(2),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 的延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?并证明你的结论;(3)如图(3),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 的反向延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明.【答案】(1)详见解析;(2)MN BM DN =-,证明见解析;(3)MN DN BM =-.【分析】(1)延长MB 到G ,使BG DN =,连接AG ,易证ABG ∵ADN △,可得AG AN =,BG DN =,∠=∠NAD BAG ,再根据12MAN BAD ∠=∠,可得∠=∠MAG MAN ,易证AMG ∵AMN ,等量代换可得MN BM DN =+.(2)在BM 上截取BG ,使BG DN =,连接AG ,易证ADN △∵ABG ,可得AN AG =,NAD GAB ∠=∠,所以12MAN NAD BAM DAB ∠=∠+∠=∠,可得MAN MAG ∠=∠,易证MAN △∵MAG △,等量代换即可得出MN BM DN =-. (3)在DC 上截取DF=BM ,易证∵ABM∵∵ANF ,可得AFAM =,∠=∠DAF MAB ,根据12∠=∠+∠=∠MAN NAB BAM DAB ,等量代换可得12∠+∠=∠NAB DAF DAB ,可得∠=∠FAN MAN ,即可证明∵FAN∵∵MAN , 得到=FN MN ,等量代换可得MN BM DN =-.【详解】(1)如图(1),延长MB 到G ,使BG DN =,连接AG .∵90ABG ABC ADC ∠=∠=∠=︒,AB AD =,在∵ABG 与∵AND 中,BG DN NDA GBA AG AD =⎧⎪∠=∠⎨⎪=⎩∵ABG ∵ADN △(SAS ).。
高中数学 正余弦定理解三角形 教师版
【教师备案】在初中的时候,我们就学过解直角三角形,解直角三角形是怎么回事呢?在直角三角形中,除了告诉我们直角外,还有5个要素,我们发现,如果解这个三角形,把要素都求出来,必须要知道至少2个要素,当然不能为2个角,换言之,解直角三角形就是知二求三的过程.当然,在我们学习了任意角的三角函数之后,我们的视野不能这么小,如果给我们一个一般的三角形,那我们应该如何解这个三角形呢?我们应该至少要知道几个量?我们先来回顾一下初中边和角相关的东西,我们在初中学过尺规作图,而且学过三角形全等的证明(SSS SAS ASA AAS ,,,),只要给出上述条件我们就能把三角形确定,也就是全等. 那么,为什么我们知道2条边1个夹角就能求出其他要素呢?而知道两条边和一边的对角就无法证明三角形全等呢?三角形的边和角之间存在什么关系呢?尺规作图毕竟是定性的感受,在高中阶段,我们可以给出一个严格的证明,就是今天我们要讲的正余弦定理.正余弦定理的本质就是构造边与角之间的关系,由角就可以求出边,由边就可以求出角.下面我们就先来介绍正弦定理.知识切片我会解三角形你会么?在ABC △中的三个内角A ,B ,C 的对边分别用a b c ,,表示: 1.正弦定理:在三角形中,各边的长和它所对的角的正弦的比相等,即sin sin sin a b cA B C==. 【教师备案】 正弦定理的推导由三角形中的线段关系或者由三角形的外接圆可以直接得到,且2sin sin sin a b cR A B C ===,其中R 为ABC △的外接圆的半径.建议老师用三角形的外接圆给学生证明,因为板块1.4中讲三角形面积的时候还会用到三角形的外接圆,所以不如这时给学生讲了.利用三角形中的线段关系证明正弦定理:①在R t ABC △中(如图),有sin sin a bA B c c==,,因此sin sin a b c A B ==,又因为sin 1C =,所以sin sin sin a b cA B C== ②在锐角ABC △中(如图),作CD AB ⊥于点D ,有sin CDA b =,即sin CD b A =;sin CDB a=,即sin CD a B =,因此 sin sin b A a B =,即sin sin a b A B =,同理可证sin sin a c A C=,因此sin sin sin a b cA B C== ③在钝角ABC △中(如图),作CD AB ⊥,交AB 的延长线于点D ,则sin CDA b =,即sin CD b A =;()sin 180sin CDB B a =-=,即sin CD a B =,因此sin sin b A a B =,即sin sin a b A B =,同理可证sin sin a cA C=,因此sin sin sin a b cA B C== 利用平面几何知识证明正弦定理:如图所示,设O 为ABC △的外接圆的圆心,连BO 并延长交O 于A ',连A C ',则A A '= 或πA A '=-,∴sin sin 2BC a A A A B R '===',即2sin aR A =,同理可证2sin sin b c R B C ==,故有2sin sin sin a b cR A B C=== 当ABC △是钝角三角形时,类似地得出上述结论. 利用向量知识证明正弦定理:①当ABC △是锐角三角形时,过A 点作单位向量i 垂直于AB , 如图,∵AC AB BC =+, ∴()i AC i AB BC i AB i BC i BC ⋅=⋅+=⋅+⋅=⋅, ∴()()cos 90cos 90b A a B -=-,得sin sin b A a B =,1.1正弦定理与其在解三角形中的应用知识点睛iCAc b a DCB A c b aDCB AC B Ac bOA 'C A得sin sin a bA B= ②当ABC △为钝角三角形时,类似地得出上述结论2.利用正弦定理解三角形⑴解三角形:三角形的三个内角和它们的对边分别叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.⑵利用正弦定理可解下列两类型的三角形:①已知三角形的任意两个角与一边,求其它两边和另一角;【教师备案】有了正弦定理之后,我们可以简单的看出,任意的两个角与一边相当于AAS 和ASA 的条件,可以确定所有的角,然后可以确定所有的边,因此,三角形也随之确定.②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其它的边与角.【教师备案】1.已知三角形的两边和一边的对角,由正弦定理可以求得另一边的对角的正弦值,但是解三角形时,因为在(0,π)内,互补的角的正弦值相等,所以求得另一边所对的角的正弦值之后,可能对应有一个角或两个角,因此无法确定三角形的形状,这就是为什么SSA 无法证明三角形全等的原因.2.利用正弦定理证明三角形中“大边对大角”的结论:①当ABC △为锐角三角形时,若a b >,则sin sin A B >,又π02A B ⎛⎫∈ ⎪⎝⎭,,,正弦函数在此区间内单调递增,故A B >;②当ABC △为钝角三角形时,若A 为钝角,则由πA B +<得,πB A <-,又ππ02A B ⎛⎫-∈ ⎪⎝⎭,,,故由正弦函数的单调性知:()sin sin πsin B A A <-=,从而由正弦定理知:b a <.对直角三角形,此结论显然成立,故综上知,在任意三角形中,均有大边对大角.3.此时,到底取一个角还是取两个角,关键保持一个原则“大边对大角”.具体讨论如下:已知,a b 和角A ,若B 为钝角或直角,则C 至多有一个解; 若B 为锐角,得分情况讨论,如图:无解的情况例如:3460b c B ===︒,,,求C . 由sin sin b c B C=sin 4sin 60sin 13c B C b ︒⇒==>, ∴C 无解,从而满足此条件的三角形不存在.这就是sin c B b >的情况.【教师备案】在讲利用正弦定理解三角形时,对于边角互化和利用边角互化判断三角形形状的题型建议放到同步去讲,本板块只讲利用正弦定理解两种类型三角形,在讲完“已知两角和任一边解三角形”后就可以让学生做例1;在讲“已知两边和其中一边的对角解三角形”时一定要注意三角形的多解问题,具体的多解见考点2的【教师备案】,讲完多解问题后就可以让学生做例2的铺垫以及例2.b sin A<a<b , 两解一解考点1:已知两角和任一边解三角形【例1】 已知两角和任一边解三角形⑴ 已知ABC △中,a b c ,,分别是A B C 、、的对边,3c =,60A =︒,45C =︒, 则a =_______.⑵在ABC △中,30B =︒,45C =︒,1c =,则b =_______;三角形的外接圆半径R =_______. ⑶在ABC △中,已知8a =,60B =,75C =,则b =_______. 【解析】⑴322 ⑵22;22已知30B =,45C =,1c =,由正弦定理得:2sin sin b cR B C==, 所以sin 1sin 302sin sin 452c B b C ⋅===,1122sin sin 4522c R C ====,22R =⑶46由60B =,75C =,知45A =,再由正弦定理有846sin 45sin 60bb =⇒=考点2:已知两边和其中一边的对角解三角形【铺垫】根据下列条件解三角形:①6031A a b ===,,;②3012A a b ===,,;③30610A a c ===,,; ④150105A a c ===,,,其中有唯一解的个数为( ) A .1 B .2 C .3 D .4 【解析】C ①3sin 32b A =<,又31>∵,∴有唯一解;②sin 2sin301b A ==,∴有唯一解;③sin 10sin305610c A ==<<,∴有两解;④有唯一解.【例2】 已知两边和一边对角解三角形⑴在ABC △中,已知4522A a b ===,,,则B =_______.⑵已知ABC △中,a b c ,,分别是A B C 、、的对边,222345a b A ===︒,,, 则B =_______.⑶已知ABC △,三个内角A B C ,,的对边分别记为a b c ,,,若245c x b B ===︒,,,且这个 三角形有两解,求x 的取值范围. ⑷(目标班专用)(2010山东卷理数)在ABC △中,角A B C 、、所对的边分别为a b c 、、,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .【解析】⑴30 根据正弦定理得:sin sin a b A B =,∴sin 2sin 451sin 22b A B a ⋅===,b a <∵,B A <∴, B ∴为锐角,即30B = ⑵60或120经典精讲由正弦定理得,sin 23sin 453sin 222b A B a ===,∵sin b A a b <<,∴这个三角形有两组解,即60B =或120. ⑶ 由正弦定理可得:sin sin c b C B =,解得:2sin 4xC =,由于三角形有两解,又45B =︒, 则45135C <<︒且90C ≠,则2sin 12C <<,即22124x<<,解得222x <<.【点评】 本题的⑶也可用以下方法解,当sin c B b c <<,即sin 2x B x <<时,对应两个C 的值,方程有两组解,解得222x <<.⑷ π6由sin cos 2B B +=平方得12sin cos 2B B +=,即sin 21B =,因为0πB <<,所以π4B =.又因为22a b ==,,所以在ABC △中,由正弦定理得:22sin sin A B =,解得1sin 2A =. 又a b <∵,所以AB <,所以π6A =.【点评】 易错点:忽略a b <A B ⇒<的隐藏条件.多解.【教师备案】在正弦定理中,我们还有两种类型的全等没有讨论,SAS 和SSS 型,正弦定理处理的是对边对角的情形,仅仅用正弦定理是很难把三角形求解出来的,因此,我们需要一个新的工具,能够把边的条件化成角,就是下面所介绍的余弦定理.1.余弦定理:三角形任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍,即:2222222222cos ,2cos ,2cos .c a b ab C b a c ac B a b c bc A ⎧=+-⎪=+-⎨⎪=+-⎩ 它的变形为:222222222cos ,2cos ,2cos .2a b c C ab a c b B ac b c a A bc ⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩<教师备案> 余弦定理的推导可以由三角形的向量运算直接得到,比如:2222()()2a BC BA AC BA AC BA BA AC AC ==+⋅+=+⋅+()22222cos π2cos c bc A b c bc A b =+-+=-+.也可以通过坐标法及两点距离公式得到.建立合适的坐标系,如图,得()()()cos sin 000A b C b C B a C ,,,,,, 从而有22(cos )(sin )AB c b C a b C ==-+,整理得:2222cos c a b ab C =+-.也可以通过三角形中的线段关系证明:在ABC △中,已知边a b ,及C ∠(为了方便起见,假设C ∠为最大的角),求边c 的长证明:当90C ∠=时,那么222c a b =+1.2余弦定理及其在解三角形中的应用知识点睛bxyB C A (b cosC , b sinC)当90C ∠≠时,如图,无论C ∠为锐角还是为钝角,都过A 点做边BC 的高,交BC (或延长线)于点D ,这时高AD 把ABC △分成两个直角三角形ADB 和ADC , 则sin AD b C =,cos BD a b C =-,在Rt ADB △中,运用勾股定理,得 ()222222sin cos c AD BD b C a b C =+=+-222cos a b ab C =+-2.余弦定理及其变形常用来解决这样两类解三角形的问题: ①已知两边和任意一个内角解三角形; ②已知三角形的三边解三角形.【教师备案】老师在讲完余弦定理后,可以就SSS 和SAS 型的全等证明做个简单讲解,这样子整个讲义的主线就串在一起.然后,可以让学生做【铺垫】,【铺垫】是直接套公式的,做完【铺垫】就可以做例3,例3是灵活的运用余弦定理解三角形,在解题过程中需要转化的;学生在能够灵活运用余弦定理后,就可以讲考点4,用余弦定理判断三角形形状,在三角形中,因为每个角都在()0π,内,所以一个角的正弦不能判断这个角是锐角还是钝角,但是余弦就能很快的判定是锐角还是钝角,在三角形中,当cos 0α>时,α为锐角;当cos 0α<时,α为钝角;当cos 0α=时,α为直角;考点4的【铺垫】是直接根据三角形的三条边判断三角形形状的,老师可以让学生先体会一下怎么样用余弦判定三角形形状,例4是已知三角形形状,求边的取值范围的,在解题过程中要注意用余弦定理和构成三角形的条件.考点3:用余弦定理解三角形【铺垫】⑴在ABC △中,5a =,8b =,60C =︒,则c =_______.⑵在ABC △中,222a b c bc =++,则A 等于( ).A . 60B . 45C .120 D . 30 【解析】⑴ 7 由余弦定理2222cos 25644049c a b ab C =+-=+-=,∴7c =. ⑵C∵2222222()1cos 222b c a b c b c bc A bc bc +-+-++===-∵0180A <<,∴120A =.【例3】 余弦定理解三角形⑴在ABC △中,5a =,8b =,7c =,则sin C =_______.⑵在ABC △中,已知3sin 5A =,sin cos 0A A +<,35a =,5b =,则c =______.⑶在ABC △中,若1378cos 14a b C ===,,,则最大角的余弦是( ). A .15- B .16- C .17- D .18-【解析】⑴32经典精讲abcABCDD cbaCBA由余弦定理2222cos c a b ab C =+-,∴1cos 2C =,3sin 2C =. ⑵∵sin cos 0A A +<,且3sin 5A =,24cos 1sin 5A A =--=-∴,又∵35a =,5b =,2222cos a b c bc A =+-,∴()2224355255c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,即28200c c +-=,解得2c =或10c =-(舍),∴2c = ⑶ C由2222cos c a b ab C =+-,∴3c =,则b a c >>,∴最大角为B ,∴2221cos 27a cb B ac +-==-考点4:用余弦定理判断三角形形状【教师备案】最大角定三角形的形状,由余弦定理易得,较小两边的平方和与最大边的平方的差可以定最大角是锐角、直角或钝角.注意:三角形三边关系应满足的为:较小两边的和大于 第三边.【铺垫】在ABC △中,已知5a =,6b =,7c =,则此三角形是一个 三角形.【解析】锐角三角形 c b a >>∵,∴角C 为最大角,2221cos 025a b c C ab +-==>∴,∴角C 为锐角,∴三角形为锐角三角形 【例4】 判断三角形形状⑴ 若以34x ,,为三边组成一个直角三角形,则x 的值为 . ⑵ 若以34x ,,为三边组成一个锐角三角形,则x 的取值范围为 . ⑶ 若以34x ,,为三边组成一个钝角三角形,则x 的取值范围为 . 【追问】我们还可以考虑,当我们知道三角形两边的情况下,求某一个角的取值范围,例如下面这个问题:已知ABC △中,12AB BC ==,,则C ∠的取值范围是________________⑷ (目标班专用)已知三角形的三边长为三个连续自然数, 且最大角是钝角.求这个三角形三边的长. 【解析】 ⑴ 5722234x +=或22234x +=.⑵)75依题意有:22217434x x x ⎧<<⎪>⎨⎪+>⎩或22217434x x x ⎧<<⎪⎨⎪+>⎩≤75x <.⑶ (()1757,∪, 解法一:依题意有:22217434x x x⎧<<⎪>⎨⎪+<⎩或22217434x x x ⎧<<⎪⎨⎪+<⎩≤解得57x <<或17x <<.解法二:本题也可以由函数的图象来解决,如图,设圆的半径3OA =, 4OB =,圆上任取一点与O B ,两点构成三角形,从图形上看 出,当圆上的点在点D 和点E 上时,构成直角三角形;当点 在DE 上时,构成锐角三角形;当点在AD 和EG 上时,构成 钝角三角形.由此可以很快得出答案.【追问】π06⎛⎤ ⎥⎝⎦,⑷设三角形三边的长为:()12n n n n *++∈N ,,最大角为α,∴222(1)(2)cos 2(1)n n n n n α++-+=+,∵α是钝角,∴cos 0α<,∴222(1)(2)02(1)n n n n n ++-+<+,2(1)0n n +>∵,∴222(1)(2)0n n n ++-+<∴2230n n --<,∴13n n *-<<∈N ,∵,1n =∴或2. 当1n =时,123,,不能构成三角形的三边,故舍去. 当2n =时,234,,即为所求三边的长.【拓展】⑴钝角三角形的三边分别是12a a a ++,,,其最大角不超过120,求a 的取值范围. ⑵在ABC △中,若三条边是三条连续的正整数,且最大角是最小角的2倍,求ABC △的三条边长.【解析】 ⑴∵钝角三角形的三边分别是12a a a ++,,,∴显然有210a a a +>+>>,设钝角三角形 的最大的(内)角为α,依题意,得90120α<≤,由()()()()()()22212313cos 21212a a a a a a a a a a a α++-+-+-===++,可得13022a a--<≤, 解得332a ⎡⎫∈⎪⎢⎣⎭,⑵设最小内角为θ,三边长为11n n n -+,,,根据正弦定理得:11sin sin 2n n θθ-+=, 112cos n n θ+-=∴,()1cos 21n n θ+=-∴,根据余弦定理得:()()()22211cos 21n n n n n θ++--=+,()()()()2221112121n n n n n n n ++--+=-+∴,解得5n =,从而得ABC △的三条边分别为456,,GFEDCBAO1.正弦定理灵活应用:①2sin a R A =,2sin b R B =,2sin c R C = (其中R 为ABC △的外接圆的半径);②sin2a A R =,sin 2b B R =,sin 2cC R=;③::sin :sin :sin a b c A B C =. 2.正余弦定理的综合应用已知条件 应用定理 一般解法一边和两角(如a B C ,,) 正弦定理 由πA B C ++=,求角A ;由正弦定理求出b 与c .两边和夹角 (如a b C ,,) 余弦定理 正弦定理 由余弦定理求第三边c ;由正弦定理求出小边所对的角(此角一定是锐角);再由πA B C ++=,求剩下的角.三边(a b c ,,) 余弦定理正弦定理由余弦定理求出最大角,然后正弦计算剩余两角. 两边和其中一边的对角 (如a b A ,,) 正弦定理余弦定理 由正弦定理求出角B ;由πA B C ++=,求出角C ;再利用正弦定理或余弦定理求c .【教师备案】本板块主要讲正余弦定理在解三角形中的灵活应用,尤其是正弦定理的灵活运用,根据正弦定理可以得到三角形的边与角之间的关系,可以把角全部换成边,也可以把边全部换成角,【铺垫】就是根据正弦定理把边用角表示,例5是先要根据正弦定理把边角化掉再根据余弦定理解三角形,此类题型不属于边角互化题型,是正弦定理的灵活运用,边角互化的题型是比如“2sin a b A =”类型的,对于这类题我们放到同步去讲;在讲完正余弦定理的灵活运用后就可以让学生体会一下正余弦定理在平面几何中的应用,因为在同步的时候不会讲此类题型,所以在预习的时候可以给学生介绍一下,具体见例6和目标班学案2,而对于三角形中()sin sin A B C +=的应用建议放到同步去讲.【铺垫】在ABC △中,若::1:2:3A B C =,则::a b c =______.【解析】 由已知得306090A B C ===,,,::sin :sin :sin 1:3:2a b c A B C ==∴【例5】 正余弦定理的综合运用⑴在ABC △中,若sin :sin :sin 3:2:4A B C =,则cos C 的值为( )A .14-B .14C .23-D .23⑵在ABC △中,若222sin sin sin A B C +<,则角C 为( )A .锐角B .钝角C .直角D .不确定【追问】在ABC △中,若cos cos cos a b cA B C==,则ABC △是( ) A .直角三角形 B .等边三角形C .钝角三角形D .等腰直角三角形 ⑶(2010天津理7)在ABC △中,内角A B C ,,的对边分别为a b c ,,,若223a b bc -=,sin 23sin C B =,则A =( )A .30B .60C .120D .1501.3正余弦定理在解三角形中的灵活应用经典精讲知识点睛【解析】⑴A 根据正弦定理sin 2a A R =,sin 2b B R =,sin 2cC R=,sin :sin :sin ::3:2:4A B C a b c ==∴,2223241cos 2324C +-==-⨯⨯∴⑵B222sin sin sin A B C +<∵,∴根据正弦定理得222a b c +<,222cos 02a b c C ab+-=<∴,∴角C 为钝角 【追问】B ⑶A由sin 23sin C B =,根据正弦定理,得23c b =.所以22236a b bc b -==,即227a b =.由余弦定理得2223cos 22b c a A bc +-==.所以30A =︒.【例6】 正余弦定理在平面几何中的应用⑴ 在平行四边形ABCD 中,3AB =,5BC =,6AC =,求BD⑵ 在ABC △中,已知4AB =,7AC =,BC 边上的中线7AD =,那么BC = .⑶ (目标班专用)在ABC △中,已知46AB =6cos ABC ∠=,AC 边上的中线5BD ,求sin A 的值【解析】 ⑴如图,在ABC △中,2222cos AC AB BC AB BC B =+-⋅,即222635235cos B =+-⋅⋅ ①在ABD △中,2222cos BD AB AD AB AD A =+-⋅,即22235235cos BD A =+-⋅⋅ ② ①+②得:()22226235BD +=+,即42BD =【点评】由本题可以得出平行四边形定理:平行四边形的对角线平方之和等于四条边长平方之和⑵ 解法一:如图:设BD x =,则2BC x =,DC x =,∵πADB ADC ∠=-∠,cos cos ADB ADC ∠=-∠∴,由余弦定理,得222222774722772222x x x x ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭=-⋅⋅⋅⋅,解得92x =,9BC =∴ 解法二:由平行四边形定理得:()2222247781BC =+-=,9BC =∴⑶ 如图:设E 为BC 的中点,连接DE ,则DE AB ∥,且1262DE AB ==BE x =,在BDE △中利用余弦定理可得: 2222cos BD BE ED BE ED BED =+-⋅∠,()()6cos cos πcos πcos BED DEC ABC ABC ∠=-∠=-∠=-∠=∵28266523x =++∴,解得1x =或73x =-(舍),故2BC =,从而222282cos 3AC AB BC AB BC ABC =+-⋅∠=,即DA 72xx745463DCADCB A2213AC =, 又30sin 6ABC ∠=∵,故22123sin 306A =,70sin 14A =∴【教师备案】因为三角形的面积和正余弦定理关系不是特别紧密,而且到本讲结束,三角形的面积公式已经全部讲完,所以把三角形的面积单独做一个板块,老师可以把所有的三角形面积公式给学生讲一下. 面积公式:()11111sin sin sin 222224a abcS ah a b c r ab C bc A ac B R ==++====.其中r 为ABC △内切圆半径,R 为外接圆半径.【教师备案】在求三角形的面积时,学生印象最深的就是12a ah ,那这个时候老师就可以根据12a ah 推导其它公式,并且老师可以在这里把三角形的面积公式全部给学生整理一下,但是本讲重点是介绍1sin 2S ab C =类型的三角形面积公式,如果学生的程度很好,老师可以介绍一下“海伦公式”和圆内接四边形面积公式.【选讲】海伦公式:()()()S p p a p b p c =---,其中2a b cp ++=. 【推导】 ()2222222111sin 1cos 12224a b c S ab C ab C ab a b+-==-=- ()()()2222222222221142244a b a b c ab a b c ab a b c =-+-=++---+()()()()()()22221144a b c c a b a b c a b c a c b b c a ⎡⎤⎡⎤=+---=+++-+-+-⎣⎦⎣⎦ 令()12p a b c =++,则()()()S p p a p b p c =---圆内接四边形面积:()()()()S p a p b p c p d =----,其中2a b c dp +++=. 【推导】由()22222cos 2cos πa b ab c d cd θθ+-=+--,可得2222cos 22a b c d ab cdθ+--=+()()222222222sin 1cos 22ab cd a b c d ab cdθθ+-+--=-=+()()()()=22b c d a a c d b a b d c a b c d ab cd++-++-++-++-+1.4三角形的面积知识点睛CB A c b aDC BAπ-θθd cba(){}()11sin sin πsin 22S ab cd ab cd θθθ=+-=+ ()()()()()()()()1=42222b c d a a c d b a b d c a b c d a b c d a b c d a b c d a b c d a b c d p a p b p c p d ++-++-++-++-++++++++++++⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=----【教师备案】老师在讲完三角形的面积后就可以让学生做【铺垫】,【铺垫】是直接利用公式求三角形面积的,例7不能够直接利用公式求三角形面积,需要先看在面积公式中缺少哪些变量,然后再根据题中的已知条件利用正余弦定理求出所需要的变量,最后再利用面积公式就可以了.第三题放了一道关于圆内接四边形面积的题目,供老师选择使用;例8是已知三角形面积解三角形,在解题过程中会用到正余弦定理,对于求面积的最大值的问题建议放到同步,因为在求最大值的问题时大多数要用到均值定理,学生这时候还没学,所以建议以后再讲.【铺垫】 在ABC △中,若5AB =,7BC =,33sin 14B =,求ABC △的面积. 【解析】 ∵5AB =,7BC =,33sin 14B =, 1133153sin 5722144ABCS AB BC B =⋅⋅=⨯⨯⨯=△∴【例7】求面积⑴ 已知ABC △,三个内角,,A B C 的对边分别记为a b c ,,,43460b c B ===︒,,,求ABC S △. ⑵ 已知ABC △,三个内角,,A B C 的对边分别记为a b c ,,,若234a b c ===,,,求ABC S △. ⑶(目标班专用)已知:四边形ABCD 内接于圆O ,四边长依次为2,7,6,9,求圆直径. 【解析】⑴ 分析:三角形的已知条件为常见的SSA 型.根据条件有两种思路求三角形的面积: 11sin sin 22ABC S bc A ac B ∆=⋅=⋅.所以欲求三角形面积需要先求A 或先求a .方法一:由正弦定理知sin sin b cB C =,sin 4sin 601sin 243c B C b ︒===, 因为C 是三角形的一个内角,故30C ︒=或150︒, 又60B ︒=,故30C ︒=.180603090A ︒︒︒︒=--=,从而1832ABC S bc ∆==.方法二:由余弦定理得222cos 2a c bB ac +-=,即24320a a --=.()()480a a +-=.因为0a >,所以8a =.1sin 832ABC S ac B ∆=⋅=.⑵ 要求面积,先求一个角,已知三边,可以用余弦定理求一角:222416911cos 21616a cb B ac +-+-===,经典精讲∴2315sin 1cos 16B B =-=, ∴113153sin 241522164ABC S ac B ∆==⋅⋅⋅=. ⑶85.【铺垫】已知ABC △的三边长分别为a b c ,,,且面积()22214ABC S b c a =+-△,则A 等于( ) A .45 B .30 C .120 D .15【解析】 A()2221112cos cos 442ABC S b c a bc A bc A =+-=⨯=△,又1sin 2ABC S bc A =△∵,sin cos A A =∴,45A =∴【例8】 已知三角形面积解三角形ABC △中,角A B C ,,的对边分别为a b c ,,,22sin 3cos C C =,7c =,又ABC △的面积为332, 求⑴角C 的大小;⑵a b +的值【解析】⑴由已知得()221cos 3cos C C -=,1cos 2C =∴或cos 2C =-(舍), ∴在ABC △中,60C =⑵133sin 22ABC S ab C ==△∵,133sin 6022ab =∴,6ab =∴,又2222cos c a b ab C =+-∵,()22272cos a b ab C =+-∴,227a b ab +-=∴,2213a b +=∴,222255a b a b ab +=++==∴【演练1】 (2010北京卷文理10)在ABC △中,若2π133b c C ==∠=,,,则________a = 【解析】1 方法一: 由余弦定理222cos 2a b c C ab+-=得, 220a a +-=.∵0a >,∴1a =.方法二: 由正弦定理sin sin b c B C =得,1sin 2B =,π6B =或5π6,又因为b c <,即B C <, 所以π6B =,∴2ππππ366A =--=.∴1a b ==.【演练2】 在ABC △中,角A B C ,,的对边分别为a b c ,,,若()222tan 3a c b B ac +-=,则角B 的值为( ).实战演练A .π6 B . π3 C .π6或5π6 D . π3或2π3【解析】D由余弦定理2222cos a c b ac B +-=及()222tan a c b B +-得, sin B =. 所以π3B =或2π3.【演练3】 在ABC △中,已知222sin sin sin sin B C A A C --=,则角B 的大小为( )A .150︒B .30︒C .120︒D .60︒ 【解析】A由222sin sin sin sin B C A A C --及正弦定理可得222b c a --=即得222cos 2a c b B ac +-==,∴150B =︒.【演练4】 在ABC △中,角A B C ,,所对的边分别是a b c ,,,1tan 2A =,cos B = 若ABC △最长的边为1,则最短边的长为( ).A B C D 【解析】D由cos B =B 为锐角,∴1tan 3B =,故()()tan tan πtan C A B A B =--=-+tan tan 11tan tan A BA B+=-=--⋅①, 由①知135C ∠=︒,故c 边最长,即1c =,又tan tan A B >,故b 边最短,∵sin B =,sin C =sin sin b c B C =,∴sin sin c B b C ==【演练5】(2011西城一模文15) 设ABC △的内角A ,B ,C 所对的边长分别为a ,b ,c ,且4cos 5B =,2b =. ⑴ 当30A =︒时,求a 的值;⑵ 当ABC △的面积为3时,求a c +的值.【解析】 ⑴ 因为4cos 5B =,所以3sin 5B =,由正弦定理sin sin a b A B =,可得10sin303a =︒,所以53a =.⑵ 因为ABC △的面积1sin 2S ac B =,3sin 5B =,所以3310ac =,10ac =.由余弦定理2222cos b a c ac B =+-,得222284165a c ac a c =+-=+-,即2220a c +=.所以2()220a c ac +-=,2()40a c +=,所以,a c +=概念要点回顾1.正弦定理公式;余弦定理公式22a b+-= .2.三角形面积公式S=.盲人数学家——欧拉1783年9月18日,法国人蒙高尔费兄弟举行了第二次热气球升空试验。
立体几何证明题专题(教师版)
立体几何证明题考点1:点线面的位置关系及平面的性质例1.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________.【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示.在正方体ABCD—A′B′C′D′中,直线BB′⊥AB,BB′⊥CB,但AB与CB不平行,∴⑥错.AB∥CD,BB′∩AB=B,但BB′与CD不相交,∴⑦错.如图(2)所示,AB=CD,BC=AD,四边形ABCD不是平行四边形,故⑧也错.【答案】④2.若P是两条异面直线l、m外的任意一点,则( )A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面答案 B解析对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾.对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线.对于选项C,过点P与l、m都相交的直线有一条或零条.对于选项D,过点P与l、m都异面的直线可能有无数条.3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析若c与a,b都不相交,则c与a,b都平行,根据公理4,则a∥b,与a,b异面矛盾.考点2:共点、共线、共面问题例1.下列各图是正方体和正四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的图形是【解析】①在A中易证PS∥QR,∴P、Q、R、S四点共面.②在C中易证PQ∥SR,∴P、Q、R、S四点共面.③在D中,∵QR⊂平面ABC,PS∩面ABC=P且P∉QR,∴直线PS与QR为异面直线.∴P、Q、R、S四点不共面.④在B中P、Q、R、S四点共面,证明如下:取BC中点N,可证PS、NR交于直线B1C1上一点,∴P、N、R、S四点共面,设为α.可证PS∥QN,∴P、Q、N、S四点共面,设为β.∵α、β都经过P、N、S三点,∴α与β重合,∴P、Q、R、S四点共面.【答案】 D2.空间四点中,三点共线是这四点共面的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A3.下面三条直线一定共面的是( )A.a、b、c两两平行B.a、b、c两两相交C.a∥b,c与a、b均相交D.a、b、c两两垂直答案 C4.已知三个平面两两相交且有三条交线,试证三条交线互相平行或者相交于一点.【解析】设α∩β=a,β∩γ=b,γ∩α=c,由a⊂β,b⊂β,则a∩b=O,如图(1),或a∥b,如图(2),若a∩b=O,O∈a,a⊂α,则O∈α,O∈b,b⊂γ,则O∈γ,又γ∩α=c,因此O∈c;若a∥b,a⊄γ,b⊂γ,则a∥γ,又a⊂α,α∩γ=c,则a∥c.因此三条交线相交于一点或互相平行.5.如图所示,已知空间四边形ABCD中,E、H分别是边AB,AD的中点,F,G分别是边BC,CD上的点,且CFCB=CGCD=23.(1)求证:三条直线EF,GH,AC交于一点.(2)若在本题中,AEEB=CFFB=2,AHHD=CGGD=3,其他条件不变.求证:EH、FG、BD三线共点.【解析】(1)∵E,H分别是AB,AD的中点,∴由中位线定理可知,EH綊12BD.又∵CFCB=CGCD=23,∴在△CBD中,FG∥BD,且FG=23BD.∴由公理4知,EH∥FG,且EH<FG.∴四边形EFGH是梯形,EH、FG为上、下两底.∴两腰EF、GH所在直线必相交于一点P.∵P∈直线EF,EF⊂平面ABC,∴P∈平面ABC.同理可得P∈平面ADC.∴P在平面ABC和平面ADC的交线上.又∵面ABC∩面ADC=AC,∴P∈直线AC.故EF、GH、AC三直线交于一点.(2)∵AEEB=CFFB=2,∴EF∥AC.又AHHD=CGGD=3,∴HG∥AC,∴EF∥HG,且EF>HG.∴四边形EFGH为梯形.设EH与FG交于点P,则P∈平面ABD,P∈平面BCD.∴P 在两平面的交线BD 上. ∴EH 、FG 、BD 三线共点.考点3:异面直线的夹角1.在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点.求BD 1与CE 所成角的余弦值.【解析】 连接AD 1,A 1D 交点为M ,连接ME ,MC ,则∠MEC (或其补角)即为异面直线BD 1与CE 所成的角,设AB =1,CE =52,ME =12BD 1=32,CM 2=CD 2+DM 2=32. 在△MEC 中,cos ∠MEC=CE 2+ME 2-CM 22CE ·ME =1515,因此异面直线BD 1与CE 所成角的余弦值为1515.2.如图,若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的正切值是______.答案 53.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为 A.1010 B.15 C.31010 D.35答案 C解析 连接BA 1,则CD 1∥BA 1,于是∠A 1BE 就是异面直线BE 与CD 1所成的角(或补角),设AB =1,则BE =2,BA 1=5,A 1E =1,在△A 1BE 中,cos ∠A 1BE =5+2-125·2=31010,选C. 4.已知正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为________. 【解析】 取A 1B 1的中点F ,连接EF ,FA ,则有EF ∥B 1C 1∥BC ,∠AEF 即是直线AE 与BC 所成的角或其补角.设正方体ABCD —A 1B 1C 1D 1的棱长为2a ,则有EF =2a ,AF =2a2+a 2=5a ,AE =2a2+2a2+a 2=3a .在△AEF 中,cos ∠AEF =AE 2+EF 2-AF 22AE ·EF =9a 2+4a 2-5a 22×3a ×2a =23.因此,异面直线AE 与BC 所成的角的余弦值是23.【答案】2 3考点4:直线与平面平行的判定与性质1.下列命题中正确的是________.①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行;⑤若l与平面α平行,则l与α内任何一条直线都没有公共点;⑥平行于同一平面的两直线可以相交.答案⑤⑥解析a∩α=A时,a不在α内,∴①错;直线l与α相交时,l上有无数个点不在α内,故②错;l ∥α时,α内的直线与l平行或异面,故③错;a∥b,b∥α时,a∥α或a⊂α,故④错;l∥α,则l与α无公共点,∴l与α内任何一条直线都无公共点,⑤正确;如图,长方体中,A1C1与B1D1都与平面ABCD 平行,∴⑥正确.2.给出下列四个命题:①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.其中正确命题的个数是________个.答案 1解析命题①错,需说明这条直线在平面外.命题②错,需说明这条直线在平面外.命题③正确,由线面平行的判定定理可知.命题④错,需说明另一条直线在平面外.3.已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a⊂α,则b∥α或b⊂α,上面命题中正确的是________(填序号).答案④解析①若a∥α,b⊂α,则a,b平行或异面;②若a∥α,b∥α,则a,b平行、相交、异面都有可能;③若a ∥b ,b ⊂α,a ∥α或a ⊂α.4.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ .求证:PQ ∥平面BCE .【证明】 方法一 如图所示. 作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N , 连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又AP =DQ ,∴PE =QB . 又PM ∥AB ∥QN ,∴PM AB =PE AE =QB BD ,QN DC =BQBD.∴PM AB =QN DC. ∴PM 綊QN ,即四边形PMNQ 为平行四边形. ∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE .方法二 如图,连接AQ ,并延长交BC 延长线于K ,连接EK . ∵AE =BD ,AP =DQ , ∴PE =BQ ,∴AP PE =DQBQ .又AD ∥BK ,∴DQ BQ =AQ QK,∴AP PE =AQQK,∴PQ ∥EK .又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE .方法三 如图,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M ,连接QM . ∴PM ∥平面BCE .又∵平面ABEF ∩平面BCE =BE , ∴PM ∥BE ,∴AP PE =AMMB.又AE =BD ,AP =DQ ,∴PE =BQ . ∴AP PE =DQ BQ ,∴AM MB =DQ QB. ∴MQ ∥AD .又AD ∥BC ,∴MQ ∥BC ,∴MQ ∥平面BCE .又PM ∩MQ =M , ∴平面PMQ ∥平面BCE .又PQ ⊂平面PMQ , ∴PQ ∥平面BCE .5.一个多面体的直观图和三视图如图所示(其中M ,N 分别是AF ,BC 中点).<1>求证:MN ∥平面CDEF ; <2>求多面体A —CDEF 的体积.解析 (1)证明 由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 分别是AF ,BC 中点,可知:NG ∥CF ,MG ∥EF .又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH = 2. ∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83.6.若P 为异面直线a ,b 外一点,则过P 且与a ,b 均平行的平面 A .不存在 B .有且只有一个 C .可以有两个 D .有无数多个答案 B7.如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN ,求证:MN ∥平面AA 1B 1B .【证明】 方法一 如右图,作ME ∥BC ,交BB 1于E ;作NF ∥AD ,交AB 于F ,连接EF ,则EF ⊂平面AA 1B 1B .∵BD =B 1C ,DN =CM , ∴B 1M =BN .∵ME BC =B 1M B 1C ,NF AD =BN BD,∴ME BC =BN BD =NFAD,∴ME =NF . 又ME ∥BC ∥AD ∥NF , ∴MEFN 为平行四边形. ∴NM ∥EF .又∵MN ⊄面AA 1B 1B , ∴MN ∥平面AA 1B 1B .方法二 如图,连接CN 并延长交BA 的延长线于点P ,连接B 1P ,则B 1P ⊂平面AA 1B 1B . ∵△NDC ∽△NBP , ∴DN NB =CNNP.又CM =DN , B 1C =BD ,CM MB 1=DN NB =CN NP, ∴MN ∥B 1P .∵B 1P ⊂平面AA 1B 1B , ∴MN ∥平面AA 1B 1B .方法三 如右图,作MP ∥BB 1,交BC 于点P ,连接NP . ∵MP ∥BB 1,∴CM MB 1=CP PB. ∵BD =B 1C ,DN =CM , ∴B 1M =BN .∵CM MB 1=DN NB, ∴CP PB =DNNB,∴NP ∥DC ∥AB . ∴平面MNP ∥平面AA 1B 1B . ∴MN ∥平面AA 1B 1B .8.如图所示,四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,PD =AB =2,E ,F ,G 分别为PC 、PD 、BC 的中点.(1)求证:PA ∥平面EFG ; (2)求三棱锥P —EFG 的体积.解析 (1)证明 如图,取AD 的中点H ,连接GH ,FH .∵E ,F 分别为PC ,PD 的中点, ∴EF ∥CD .∵G ,H 分别是BC ,AD 的中点, ∴GH ∥CD .∴EF ∥GH ,∴E ,F ,H ,G 四点共面. ∵F ,H 分别为DP ,DA 的中点,∴PA ∥FH . ∵PA ⊄平面EFG ,FH ⊂平面EFG , ∴PA ∥平面EFG .(2)∵PD ⊥平面ABCD ,CG ⊂平面ABCD ,∴PD ⊥CG . 又∵CG ⊥CD ,CD ∩PD =D ,∴GC ⊥平面PCD . ∵PF =12PD =1,EF =12CD =1,∴S △PEF =12EF ·PF =12.又GC =12BC =1,∴V P —EFG =V G —PEF =13×12×1=16.9.如图所示,a ,b 是异面直线,A 、C 与B 、D 分别是a ,b 上的两点,直线a ∥平面α,直线b ∥平面α,AB ∩α=M ,CD ∩α=N ,求证:若AM =BM ,则CN =DN .【证明】 连接AD 交平面α于E 点,并连接ME ,NE . ∵b ∥α,ME ⊂平面ABD ,平面α∩面ABD =ME , ∴ME ∥BD .又在△ABD 中AM =MB , ∴AE =ED .即E 是AD 的中点.又a ∥α,EN ⊂平面ACD ,平面α∩面ADC =EN , ∴EN ∥AC ,而E 是AD 的中点. ∴N 必是CD 的中点,∴CN =DN .10.如图,在三棱柱ABC -A 1B 1C 1中,E 为AC 上一点,若AB 1∥平面C 1EB ,求:AE ∶EC .【解析】 连接B 1C 交BC 1于点F , 则F 为B 1C 中点. ∵AB 1∥平面C 1EB ,AB 1⊂平面AB 1C ,且平面C 1EB ∩平面AB 1C =EF .∴AB1∥EF,∴E为AC中点.∴AE∶EC=1∶1.【答案】1∶1考点5:面面平行的判定及性质1.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2 C.m∥β且n∥βD.m∥β且n∥l2答案 B解析因m⊂α,l1⊂β,若α∥β,则有m∥β且l1∥α,故α∥β的一个必要条件是m∥β且l1∥α,排除A.因m,n⊂α,l1,l2⊂β且l1与l2相交,若m∥l1且n∥l2,因l1与l2相交,故m与n也相交,∴α∥β;若α∥β,则直线m与直线l1可能为异面直线,故α∥β的一个充分而不必要条件是m∥l1且n∥l2,应选B.2.棱长为1的正方体ABCD—A1B1C1D1中,点P,Q,R分别是面A1B1C1D1,BCC1B1,ABB1A1的中心,给出下列结论:①PR与BQ是异面直线;②RQ⊥平面BCC1B1;③平面PQR∥平面D1AC;④过P,Q,R的平面截该正方体所得截面是边长为2的等边三角形.以上结论正确的是________.(写出所有正确结论的序号)答案③④解析由于PR是△A1BC1的中位线,所以PR∥BQ,故①不正确;由于RQ∥A1C1,而A1C1不垂直于面BCC1B1,所以②不正确;由于PR∥BC1∥D1A,PQ∥A1B∥D1C,所以③正确;由于△A1BC1是边长为2的正三角形,所以④正确.故填③④.3.已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.<1>求证:平面G1G2G3∥平面ABC;<2>求S△G1G2G3∶S△ABC.【解析】(1)如图,连接PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F.连接DE、EF、FD.则有PG1∶PD=2∶3,PG2∶PE=2∶3.∴G1G2∥DE.又G1G2不在平面ABC内,∴G1G2∥平面ABC.同理G2G3∥平面ABC.又因为G1G2∩G2G3=G2,∴平面G1G2G3∥平面ABC.(2)由(1)知PG 1PD =PG 2PE =23,∴G 1G 2=23DE . 又DE =12AC ,∴G 1G 2=13AC . 同理G 2G 3=13AB ,G 1G 3=13BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3.∴S △G 1G 2G 3∶S △ABC =1∶9.4.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题为________.答案 ③解析 ①中当α与β不平行时,也能存在符合题意的l 、m .②中l 与m 也可能异面.③中 ⎭⎪⎬⎪⎫l ∥γl ⊂ββ∩γ=m ⇒l ∥m ,同理l ∥n ,则m ∥n ,正确.5.如图所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点.求证:平面AMN ∥平面EFDB .【证明】 连接MF ,∵M 、F 是A 1B 1、C 1D 1的中点,四边形A 1B 1C 1D 1为正方形,∴MF A 1D 1.又A 1D 1 AD ,∴MF AD .∴四边形AMFD 是平行四边形.∴AM ∥DF .∵DF ⊂平面EFDB ,AM ⊄平面EFDB ,∴AM ∥平面EFDB ,同理AN ∥平面EFDB .又AM 、AN ⊂平面ANM ,AM ∩AN =A ,∴平面AMN ∥平面EFDB .6.在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1C ,B 1C 1,C 1D 1的中点,求证:平面MNP ∥平面A 1BD . 证明 方法一如图(1)所示,连接B 1D 1.∵P ,N 分别是D 1C 1,B 1C 1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄平面A1BD,∴PN∥平面A1BD.同理:MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.方法二如图(2)所示,连接AC1,AC,∵ABCD-A1B1C1D1为正方体,∴AC⊥BD.又CC1⊥平面ABCD,∴AC为AC1在平面ABCD上的射影,∴AC1⊥BD.同理可证AC1⊥A1B,∴AC1⊥平面A1BD.同理可证AC1⊥平面PMN.∴平面PMN∥平面A1BD.7.如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E、F分别在线段AB,CD上,且AE∶EB=CF∶FD.求证:EF∥β.【证明】①当AB,CD在同一平面内时,由α∥β,α∩平面ABDC=AC,β∩平面ABDC=BD,∴AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥β.②当AB与CD异面时,设平面ACD∩β=DH,且DH=AC,∵α∥β,α∩平面ACDH=AC,∴AC∥DH.∴四边形ACDH是平行四边形.在AH上取一点G,使AG∶GH=CF∶FD,又∵AE∶EB=CF∶FD,∴GF∥HD,EG∥BH.又EG∩GF=G,∴平面EFG∥平面β.∵EF⊂平面EFG,∴EF∥β.综上,EF∥β.8.已知:如图,斜三棱柱ABC—A1B1C1中,点D、D1分别为AC、A1C1上的点.(1)当A 1D 1D 1C 1的值等于何值时,BC 1∥平面AB 1D 1; (2)若平面BC 1D ∥平面AB 1D 1,求ADDC 的值.【解析】 (1)如图,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1,连接A 1B 交AB 1于点O ,连接OD 1. 由棱柱的性质,知四边形A 1ABB 1为平行四边形,所以点O 为A 1B 的中点.在△A 1BC 1中,点O 、D 1分别为A 1B 、A 1C 1的中点,∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1,∴BC 1∥平面AB 1D 1.∴A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由已知,平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BDC 1=BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,因此BC 1∥D 1O ,同理AD 1∥DC 1.∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD. 又∵A 1O OB =1,∴DC AD =1,即AD DC =1. 考点6:线线、线面垂直1.设α、β是两个不同的平面,a 、b 是两条不同的直线,给出下列四个命题,其中真命题是A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,b ∥β,a ∥b ,则α∥βC .若a ⊥α,b ⊥β,a ⊥b ,则α⊥βD .若a 、b 在平面α内的射影互相垂直,则a ⊥b答案 C解析 与同一平面平行的两条直线不一定平行,所以A 错误;与两条平行直线分别平行的两个平面未必平行,所以B 错误;如图(1),设OA ∥a ,OB ∥b ,直线OA 、OB 确定的平面分别交α、β于AC 、BC ,则OA ⊥AC ,OB ⊥BC ,所以四边形OACB 为矩形,∠ACB 为二面角α-l -β的平面角,所以α⊥β,C 正确;如图(2),直线a 、b 在平面α内的射影分别为m 、n ,显然m ⊥n ,但a 、b 不垂直,所以D 错误,故选C.2.“直线l 垂直于平面α内的无数条直线”是“l ⊥α”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 B 3.若m ,n 表示直线,α表示平面,则下列命题中,正确命题的个数为①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α ② ⎭⎪⎬⎪⎫n ⊥αm ⊥α⇒m ∥n ③ ⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n ④ ⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥αA .1B .2C .3D .4答案 C解析 ①②③正确,④错误.4.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【证明】 (1)∵PA ⊥底面ABCD ,∴CD ⊥PA .又CD ⊥AC ,PA ∩AC =A ,故CD ⊥平面PAC ,AE ⊂平面PAC .故CD ⊥AE .(2)∵PA =AB =BC ,∠ABC =60°,故PA =AC .∵E 是PC 的中点,故AE ⊥PC .由(1)知CD ⊥AE ,从而AE ⊥平面PCD ,故AE ⊥PD .易知BA ⊥PD ,故PD ⊥平面ABE .5.设l 是直线,α,β是两个不同的平面( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若l ⊥α,α⊥β,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β答案 B解析 A 项中由l ∥α,l ∥β不能确定α与β的位置关系,C 项中由α⊥β,l ⊥α可推出l ∥β或l⊂β,D项由α⊥β,l∥α不能确定l与β的位置关系.6.设b,c表示两条直线,α,β表示两个平面,下列命题中真命题是A.若b⊂α,c∥α,则b∥cB.若b⊂α,b∥c,则c∥αC.若c∥α,c⊥β,则α⊥βD.若c∥α,α⊥β,则c⊥β答案 C解析如果一条直线平行于一个平面,它不是与平面内的所有直线平行,只有部分平行,故A错;若一条直线与平面内的直线平行,该直线不一定与该平面平行,该直线可能是该平面内的直线,故B 错;如果一个平面与另一个平面的一条垂线平行,那么这两个平面垂直,这是一个真命题,故C对;对D来讲若c∥α,α⊥β,则c与β的位置关系不定,故选C.7. 在三棱柱ABC—A1B1C1中,AA1⊥平面ABC,AC=BC=AA1=2,∠ACB=90°,E为BB1的中点,∠A1DE =90°,求证:CD⊥平面A1ABB1.证明连接A1E,EC,∵AC=BC=2,∠ACB=90°,∴AB=2 2.设AD=x,则BD=22-x.∴A1D2=4+x2,DE2=1+(22-x)2,A1E2=(22)2+1.∵∠A1DE=90°,∴A1D2+DE2=A1E2.∴x= 2.∴D为AB的中点.∴CD⊥AB.又AA1⊥CD,且AA1∩AB=A,∴CD⊥平面A1ABB1.8.如图,长方体ABCD—A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.<1>证明:BD⊥EC1;<2>如果AB=2,AE=2,OE⊥EC1,求AA1的长.【解析】(1)如图,连接AC,A1C1,AC与BD相交于点O.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊂平面ABCD,所以AA1⊥BD.又由AA1∩AC=A,所以BD⊥平面AA1C1C.再由EC1⊂平面AA1C1C知,BD⊥EC1.(2)设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=2 2.故EC 21=(h -2)2+(22)2. 在Rt △OCC 1中,OC =2,CC 1=h ,OC 21=h 2+(2)2. 因为OE ⊥EC 1,所以OE 2+EC 21=OC 21.即4+(h -2)2+(22)2=h 2+(2)2,解得h =3 2.所以AA 1的长为3 2.考点7:面面垂直1.△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点,求证:①DE =DA ;②平面BDM ⊥平面ECA ;③平面DEA ⊥平面ECA .【证明】 ①取EC 的中点F ,连接DF .∵BD ∥CE ,∴DB ⊥BA .又EC ⊥BC ,在Rt △EFD 和Rt △DBA 中,∵EF =12EC =BD ,FD =BC =AB , ∴Rt △EFD ≌Rt △DBA ,∴DE =DA .②取CA 的中点N ,连接MN 、BN ,则MN 綊12EC . ∴MN ∥BD ,∴N 点在平面BDM 内.∵EC ⊥平面ABC ,∴EC ⊥BN .又CA ⊥BN ,∴BN ⊥平面ECA .∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .③∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA ,又DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .2.已知平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC .AE ⊥平面PBC ,E 为垂足.①求证:PA ⊥平面ABC ;②当E 为△PBC 的垂心时,求证:△ABC 是直角三角形.【证明】 ①在平面ABC 内取一点D ,作DF ⊥AC 于F .平面PAC ⊥平面ABC ,且交线为AC ,∴DF ⊥平面PAC .又PA ⊂平面PAC ,∴DF ⊥PA .作DG ⊥AB 于G ,同理可证:DG ⊥PA . DG 、DF 都在平面ABC 内,∴PA ⊥平面ABC .②连接BE 并延长交PC 于H ,∵E 是△PBC 的垂心,∴PC ⊥BH .又已知AE 是平面PBC 的垂线,PC ⊂平面PBC ,∴PC ⊥AE .又BH ∩AE =E ,∴PC ⊥平面ABE .又AB ⊂平面ABE ,∴PC ⊥AB .∵PA ⊥平面ABC ,∴PA ⊥AB .又PC ∩PA =P ,∴AB ⊥平面PAC .又AC ⊂平面PAC ,∴AB ⊥AC .即△ABC 是直角三角形.3.如图所示,在斜三棱柱A 1B 1C 1-ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证:截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥侧面BB 1C 1C 的充要条件吗?请你叙述判断理由.【证明】 (1)∵AB =AC ,D 是BC 的中点,∴AD ⊥BC .∵底面ABC ⊥侧面BB 1C 1C ,且交线为BC ,∴由面面垂直的性质定理可知AD ⊥侧面BB 1C 1C .又∵CC 1⊂侧面BB 1C 1C ,∴AD ⊥CC 1.(2)方法一 取BC 1的中点E ,连接DE 、ME .在△BCC 1中,D 、E 分别是BC 、BC 1的中点.∴DE 綊12CC 1. 又AA 1綊CC 1,∴DE 綊12AA 1. ∵M 是AA 1的中点(由AM =MA 1知),∴DE 綊AM .∴AMED 是平行四边形,∴AD 綊ME .由(1)知AD ⊥面BB 1C 1C ,∴ME ⊥侧面BB 1C 1C .又∵ME ⊂面BMC 1,∴面BMC 1⊥侧面BB 1C 1C .方法二 延长B 1A 1与BM 交于N (在侧面AA 1B 1B 中),连接C 1N .∵AM =MA 1,∴NA 1=A 1B 1.又∵AB =AC ,由棱柱定义知△ABC ≌△A 1B 1C 1.∴AB =A 1B 1,AC =A 1C 1.∴A 1C 1=A 1N =A 1B 1.在△B 1C 1N 中,由平面几何定理知:∠NC 1B 1=90°,即C 1N ⊥B 1C 1.又∵侧面BB 1C 1C ⊥底面A 1B 1C 1,交线为B 1C 1,∴NC 1⊥侧面BB 1C 1C .又∵NC 1⊂面BNC 1,∴截面C 1NB ⊥侧面BB 1C 1C ,即截面MBC 1⊥侧面BB 1C 1C .(3)结论是肯定的,充分性已由(2)证明.下面仅证明必要性(即由截面BMC 1⊥侧面BB 1C 1C 推出AM =MA 1,实质是证明M 是AA 1的中点), 过M 作ME 1⊥BC 1于E 1.∵截面MBC 1⊥侧面BB 1C 1C ,交线为BC 1.∴ME 1⊥面BB 1C 1C .又由(1)知AD ⊥侧面BB 1C 1C ,∵垂直于同一个平面的两条直线平行,∴AD ∥ME 1,∴M 、E 1、D 、A 四点共面.又∵AM ∥侧面BB 1C 1C ,面AME 1D ∩面BB 1C 1C =DE 1,∴由线面平行的性质定理可知AM ∥DE 1.又AD ∥ME 1,∴四边形AME 1D 是平行四边形.∴AD =ME 1,DE 1綊AM .又∵AM ∥CC 1,∴DE 1∥CC 1.又∵D 是BC 的中点,∴E 1是BC 1的中点.∴DE 1=12CC 1=12AA 1. ∴AM =12AA 1,∴MA =MA 1. ∴AM =MA 1是截面MBC 1⊥侧面BB 1CC 1的充要条件.考点8:平行与垂直的综合问题1.如图所示,在直角梯形ABEF 中,将DCEF 沿CD 折起使∠FDA =60°,得到一个空间几何体.(1)求证:BE ∥平面ADF ;(2)求证:AF ⊥平面ABCD ;(3)求三棱锥E —BCD 的体积.【解析】 (1)由已知条件,可知BC ∥AD ,CE ∥DF ,折叠之后平行关系不变.又因为BC ⊄平面ADF ,AD ⊂平面ADF ,所以BC ∥平面ADF .同理CE ∥平面ADF .又因为BC ∩CE =C ,BC ,CE ⊂平面BCE ,所以平面BCE ∥平面ADF .所以BE ∥平面ADF .(2)由于∠FDA =60°,FD =2,AD =1,所以AF 2=FD 2+AD 2-2×FD ×AD ×cos FDA =4+1-2×2×1×12=3.即AF = 3. 所以AF 2+AD 2=FD 2.所以AF ⊥AD .又因为DC ⊥FD ,DC ⊥AD ,AD ∩FD =D ,所以DC ⊥平面ADF .又因为AF ⊂平面ADF ,所以DC ⊥AF .因为AD ∩DC =D ,AD ,DC ⊂平面ABCD ,所以AF ⊥平面ABCD .(3)因为DC ⊥EC ,DC ⊥BC ,EC ,BC ⊂平面EBC ,EC ∩BC =C ,所以DC ⊥平面EBC .又因为DF ∥EC ,AD ∥BC ,∠FDA =60°,所以∠ECB =60°.又因为EC =1,BC =1,所以S △ECB =12×1×1×32=34. 所以V E -BCD =V D -EBC =13×DC ×S △ECB =13×1×34=312. 2.如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.<1>求证:DE ∥平面A 1CB ;<2>求证:A 1F ⊥BE ;<3>线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.【解析】 (1)因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC .又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB .(2)由已知得AC ⊥BC 且DE ∥BC ,所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC .而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F .又因为A 1F ⊥CD ,所以A 1F ⊥平面BCDE .所以A 1F ⊥BE .(3)线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下:如图,分别取A 1C ,A 1B 的中点P ,Q ,连接PQ ,QE ,PD ,则PQ ∥BC .因为DE ∥BC ,所以DE ∥PQ .所以平面DEQ 即为平面DEP .由(2)知,DE ⊥平面A 1DC ,所以DE ⊥A 1C .又因为P 是等腰三角形DA 1C 底边A 1C 的中点,所以A 1C ⊥DP .所以A 1C ⊥平面DEP .从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .3.如图,四棱锥P -ABCD 中,四边形ABCD 为矩形,△PAD 为等腰三角形,∠APD =90°,平面PAD ⊥平面ABCD ,且AB =1,AD =2,E 、F 分别为PC 、BD 的中点.<1>证明:EF ∥平面PAD ;<2>证明:平面PDC ⊥平面PAD ;<3>求四棱锥P —ABCD 的体积.解析 (1)证明:如图,连接AC .∵四边形ABCD 为矩形且F 是BD 的中点,∴F 也是AC 的中点.又E 是PC 的中点,EF ∥AP ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD .(2)证明:∵面PAD ⊥平面ABCD ,CD ⊥AD ,平面PAD ∩平面ABCD =AD ,∴CD ⊥平面PAD .∵CD ⊂平面PDC ,∴平面PDC ⊥平面PAD .(3)取AD 的中点为O .连接PO .∵平面PAD ⊥平面ABCD ,△PAD 为等腰直角三角形,∴PO ⊥平面ABCD ,即PO 为四棱锥P —ABCD 的高.∵AD =2,∴PO =1.又AB =1,∴四棱锥P —ABCD 的体积V =13PO ·AB ·AD =23.21。
立体几何证明(教师版)
立体几何证明1.(2021·北京师大附中高一期末)已知四棱锥P ABCD -的底面为直角梯形,//,90,AB DC DAB PA ∠=⊥平面ABCD ,且112PA AD DC AB ====,M 是棱PB 上的动点.(1)求证:平面PAD ⊥平面PCD ;(2)若//PD 平面ACM ,求PM MB的值; (3)当M 是PB 中点时,设平面ADM 与棱PC 交于点N ,求截面ADNM 的面积.2.(2021·北京·人大附中高一期末)如图,已知正方体1111ABCD A B C D -,点E 为棱1CC 的中点.(1)证明:1AC ∥平面BDE .(2)证明1AC BD ⊥.3.(2021·北京·汇文中学高一期末)如图1,已知菱形AECD 的对角线AC ,DE 交于点F ,点E 为AB 的中点.将三角形ADE 沿线段DE 折起到PDE 的位置,如图2所示.(1)求证:DE PC ⊥;(2)试问平面PFC 与平面PBC 所成的二面角是否为90︒,如果是,请证明;如果不是,请说明理由;(3)在线段PD ,BC 上是否分别存在点M ,N ,使得平面//CFM 平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.4.(2021·北京·首都师范大学附属中学高一期末)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,O ,M 分别为BD ,PC 的中点.设平面PAD 与平面PBC 的交线为l .(1)求证://OM 平面PAD ;(2)求证://BC l ;(3)在棱PC 上是否存在点N (异于点C ),使得//BN 平面PAD ?若存在,求出PN PC的值;若不存在,说明理由.5.(2021·北京·101中学高一期末)已知正四棱柱1111ABCD A B C D -中,M 是1DD 的中点.(1)求证:1//BD 平面AMC ;(2)求证:1AC BD ⊥;(3)在线段1BB 上是否存在点P ,当1BP BB λ=时,平面11//A PC 面AMC ?若存在,求出λ的值并证明;若不存在,请说明理由.6.(2021·北京师大附中高一期末)在正方体1111ABCD A B C D -中,E 为1CC 中点.(1)求证:1//BC 平面1AD E ;(2)求证:1A D ⊥平面11ABC D .7.(2021·北京·汇文中学高一期末)如图所示,在三棱锥A BCD -中,点M 、N 分别在棱BC 、AC 上,且//MN AB .(1)求证://MN 平面ABD ;(2)若MN CD ⊥,BD CD ⊥,求证:平面CBD ⊥平面ABD .8.(2019·北京师大附中高一期末)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90BAC ∠=,2AB AC ==,1AA ,M N 分别为1,BC CC 的中点,P 为侧棱1BB 上的动点(Ⅰ)求证:平面APM ⊥平面11BB C C ;(Ⅱ)若P 为线段1BB 的中点,求证:1//A N 平面APM ;(Ⅲ)试判断直线1BC 与平面APM 是否能够垂直.若能垂直,求PB 的值;若不能垂直,请说明理由9.(2019·北京师大附中高一期末)如图,已知四棱锥S ABCD-,底面ABCD是边长为2的菱形,60∠=,侧面SAD为正三角形,侧面SAD⊥底面ABCD,M为侧棱SB的中点,ABCE为线段AD的中点SD平面MAC;(Ⅰ)求证://⊥;(Ⅱ)求证:SE AC-的体积(Ⅲ)求三棱锥M ABC-中,PA⊥平面ABCD,底10.(2019·北京·101中学高一期末)如图,在四棱锥P ABCD部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.11.(2019·北京·中央民族大学附属中学高一期末)在四面体ABCD 中,CB =CD ,AD BD ⊥,且E ,F 分别是AB ,BD 的中点,求证:(I )直线EF ACD 面;(II )EFC BCD ⊥面面.12.(2020·北京师大附中高一期末)如图,四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点.(1)求证://CD 平面PAB ;(2)求证://PC 平面BDE ;(3)证明:BD CE ⊥.13.(2021·北京·人大附中高一期末)如图1,已知△ABD 和△BCD 是两个直角三角形,∠BAD =∠BDC =2π.现将△ABD 沿BD 边折起到1A BD 的位置,如图2所示,使平面1A BD ⊥平面BCD .(1)求证:平面1A BC ⊥平面1A CD ;(2)1A C 与BD 是否有可能垂直,做出判断并写明理由.14.(2020·北京·101中学高一期末)如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB AC ==4BC =.将△ADE 沿DE 折起到△1A DE 的位置,使得平面1A DE ⊥平面BCED ,F 为1A C 的中点,如图2.(1)求证://EF 平面1A BD ;(2)求证:平面1A OB ⊥平面1A OC ;(3)线段OC 上是否存在点G ,使得OC ⊥平面EFG ?说明理由.15.(2020·北京师大附中高一期末)如图,在多面体ABCDEF 中,底面ABCD 为矩形,侧面ADEF 为梯形,//AF DE ,DE AD ⊥,DC DE =.⊥;(Ⅰ)求证:AD CEBF平面CDE;(Ⅱ)求证://(Ⅲ)判断线段BE上是否存在点Q,使得平面ADQ⊥平面BCE?并说明理由.-中,平面16.(2020·北京·中国人民大学附属中学朝阳学校高一期末)在三棱锥P ABC⊥.设D,E分别为PA,AC中点.PAC⊥平面ABC,PA AC⊥,AB BCDE平面PBC;(Ⅰ)求证://(Ⅱ)求证:BC⊥平面PAB;(Ⅲ)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.答案:1.(1)证明见解析;(2)12;【分析】 (1) 要证平面PAD ⊥平面PCD ,只需证明DC ⊥平面PAD ,利用线面垂直的判定可证DC ⊥平面PAD .(2) 根据题意,作出点M ,再利用相似三角形求PM MB的值 (3) 从四点共面角度出发,利用平面向量基本定理确定点N 的位置,再求截面面积.【详解】(1)证明:因为90DAB ∠=,所以AB AD ⊥,又//AB DC ,所以DC AD ⊥.因为PA ⊥平面ABCD ,DC ⊂平面ABCD ,所以PA DC ⊥.又AD ,PA 在平面PAD 内,且相交于点A ,所以DC ⊥平面PAD . 又DC ⊂平面PCD ,所以平面PAD ⊥平面PCD .(2)如图,连接AC ,BD 相交于点E ,过点E 作//EM PD ,交PB 于点M . 因为//EM PD ,PD ⊄平面ACM ,EM ⊂平面ACM ,所以//PD 平面ACM . 故上述所作点M 为使得//PD 平面ACM 的点M .如图在梯形ABCD 中,有//AB DC ,112AD DC AB === 令()22DE DB DA DC DA DC λλλλ==+=+, 因为A ,E ,C 三点共线,所以21λλ+=,13λ=.即13DE DB =,所以23BE DB =,12DE BE =. 因为//EM PD ,所以BME BPD ,12DE P MB BE M ==. (3)设PN PC μ=, 因为,,,A D N M 四点共面,所以存在实数m ,n ,使得AN mAD nAM =+. 因为()12AN AP PN AP PC AD AB AP μμμμ=+=+=++-,22n n mAD nAM mAD AB AP +=++, 又AD ,AB ,AP 为一组基底, 所以,,2212m n n μμμ⎧⎪=⎪⎪=⎨⎪⎪-=⎪⎩解得23m n ==. 所以2233AN AD AM =+.因为PA ⊥平面ABCD ,AD ⊂平面ABCD ,所以PA AD ⊥. 又AD AB ⊥,PA ,AB 在平面PAB 内,且相交于点A , 所以AD ⊥平面PAB ,又AM ⊂平面PAB ,所以AD AM ⊥. 在四边形AMND 中,AD AM ⊥,1AD =,AM = 因为2233AN AD AM =+,点N 到AM 的距离为2233AD =,点N 到AD的距离为23AM . 所以截面ADNM的面积1121223ADN AMNS S S =+=⨯+2.(1)见解析;(2)见解析【详解】试题分析:(1)连结AC 交BD 于F ,连结EF ,通过正方形对角线的性质以及三角形中位线可得112EF AC ,根据线面平行判定定理可得结果;(2)通过证明BD ⊥平面1ACC 可得结论.试题解析:(1)证明:连结AC 交BD 于F ,连结EF ,正方形ABCD 中,AC 与BD 互相平分,∴F 为AC 中点,在1ACC 中,∵E ,F 分别为1CC 与AC 中点,∴112EF AC ,∵EF ⊂平面BDE ,1AC ⊄平面BDE ,∴EF 平面BDE .(2)证明:在正方形ABCD 中,AC BD ⊥,在正方体1111ABCD A B C D -中, 1CC ⊥平面ABCD ,∵BD ⊂平面ABCD ,∴1CC BD ⊥,∵1AC CC C ⋂=,∴BD ⊥平面1ACC ,∵1AC ⊂平面1ACC ,∴1AC BD ⊥.3.(1)证明见解析;(2)平面PFC 与平面PBC 所成的二面角为90︒,证明见解析;(3)存在满足条件的,M N ,,M N 分别为,PD BC 中点,证明见解析. 【分析】(1)根据线面垂直的判定可证得DE ⊥平面PCF ,由线面垂直性质可证得结论; (2)根据平行关系可证得BC ⊥平面PCF ,由面面垂直的判定可证得两平面垂直,由此得到所成角为90︒;(3)利用平行四边形和三角形中位线性质可证得线线平行关系,由此证得线面平行和面面平行,从而确定存在满足条件的,M N . 【详解】(1)四边形AECD 为菱形,AC DE ∴⊥,即DE PF ⊥,DE CF ⊥, 又,PF CF ⊂平面PCF ,PFCF F =,DE ∴⊥平面PCF ,PC ⊂平面PCF ,DE PC ∴⊥.(2)平面PFC 与平面PBC 所成的二面角为90︒,证明如下:E 为AB 中点且四边形AECD 为菱形,//BE CD ∴,∴四边形BCDE 为平行四边形,//BC DE ∴,由(1)知:DE ⊥平面PCF ,BC ∴⊥平面PCF ,又BC ⊂平面PBC ,∴平面PCF ⊥平面PBC ,即平面PFC 与平面PBC 所成的二面角为90︒.(3)存在满足条件的,M N ,,M N 分别为,PD BC 中点,证明如下:由(2)知:四边形BCDE 为平行四边形,又,F N 分别为,DE BC 中点,//EF CN ∴,∴四边形EFCN 为平行四边形,//CF EN ∴,又EN ⊂平面PEN ,CF ⊄平面PEN ,//CF ∴平面PEN ;,M F 分别为,PD DE 中点,MF ∴为PDE △中位线,//MF PE ∴,又PE ⊂平面PEN ,MF ⊄平面PEN ,//MF ∴平面PEN ,又MFCF F =,,MF CF ⊂平面FCM ,∴平面//CFM 平面PEN .【点睛】本题考查立体几何中线线垂直关系、面面垂直与平行关系的证明问题,涉及到线面垂直的判定与性质、面面垂直的判定、线面平行与面面平行的判定等定理的应用,属于常考题型.4.(1)证明见解析;(2)证明见解析;(3)不存在,理由见解析. 【分析】(1)连接AC , 易知O 为AC 的中点,进而得//AP OM ,再结合线面平行的判定定理即可证明;(2)由题知//BC 平面PAD ,进而根据线面平行的性质定理即可证明//BC l ;(3))假设在棱PC 上存在点N (异于点C ),使得//BN 平面PAD ,进而在平面PDC 中,过点N 作PD 的平行线EN ,交DC 于E ,故平面//BEN 平面PAD ,进而得//BE AD ,另一方面,在平行四边形ABCD 中,BE 与AD 不平行,矛盾,故不存在. 【详解】解:(1)证明:连接AC ,因为底面ABCD 为平行四边形,O 为BD 的中点, 所以O 为AC 的中点,因为M 为PC 的中点, 所以在APC △中,//AP OM ,因为OM ⊄平面PAD ,AP ⊂平面PAD , 所以//OM 平面PAD(2)因为底面ABCD 为平行四边形, 所以//AD BC ,因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD ,因为平面PAD 与平面PBC 的交线为l ,BC ⊂平面PBC , 所以//BC l(3)假设在棱PC 上存在点N (异于点C ),使得//BN 平面PAD , 在平面PDC 中,过点N 作PD 的平行线EN ,交DC 于E , 因为EN ⊄平面PAD ,PD ⊂平面PAD ,所以//EN 平面PAD , 因为EN BN N ⋂=,所以平面//BEN 平面PAD , 因为BE ⊂平面BEN ,所以//BE 平面PAD ,又因为BE ⊂平面ABCD ,平面ABCD 平面PAD AD =,所以//BE AD 另一方面,在平行四边形ABCD 中,BE 与AD 不平行,矛盾, 所以在棱PC 上不存在点N (异于点C ),使得//BN 平面PAD .5.(1)证明见解析;(2) 证明见解析;(3)在线段1BB 上存在点P ,当12λ=时,平面11//A PC 平面AMC . 【分析】(1) 利用线面平行的判定定理证明1//BD 平面AMC ;(2) 利用线面垂直的判定定理证明AC ⊥平面11BB D D ,则有1AC BD ⊥; (3) 先确定λ的值,再根据面面平行的判定定理证明两平面平行. 【详解】因为四棱柱1111ABCD A B C D -是正四棱柱,所以底面ABCD 为正方形,侧棱垂直底面,侧面均为矩形.(1)证明:记AC 和BD 相交于点N ,因为ABCD 为正方形,所以N 为BD 的中点.又M 是1DD 的中点, 所以1//MN BD .又1BD ⊄平面AMC ,MN ⊂平面AMC , 所以1//BD 平面AMC .(2)证明:因为ABCD 为正方形,所以AC BD ⊥.因为1D D ⊥平面ABCD ,AC ⊂平面ABCD ,所以1D D AC ⊥. 又BD ,1D D 在平面11BB D D 内,且相交于点D , 所以AC ⊥平面11BB D D .又1BD ⊂平面11BB D D , 所以1AC BD ⊥.(3) 在线段1BB 上存在点P ,当12λ=,即112BP BB =时,平面11//A PC 面AMC . 理由如下:当112BP BB =时,P 为1BB 的中点. 取1CC 的中点G ,连接1PC ,GB ,则有1//PC GB .连接MG ,因为四边形11CC D D 是矩形,M 是1DD 的中点,G 是1CC 的中点, 所以//MG CD ,MG CD =.在正方形ABCD 中,有,//CD AB ,CD AB =.所以//MG AB ,MG AB =,四边形ABGM 为平行四边形. 有//BG AM ,又1//PC GB ,所以1//PC AM ,又1PC ⊄平面AMC ,AM ⊂平面AMC ,所以1PC //平面AMC . 同理可证:1//PA 平面AMC .又1PC ,1PA 在平面11A PC 内,且相交于点P , 所以平面11//A PC 平面AMC . 6.(1)证明见解析;(2) 证明见解析. 【分析】(1)先证明四边形11ABC D 为平行四边形,得到11//BC AD ,再利用线面平行的判定定理证明1//BC 平面1AD E ;(2)先证明11A D AD ⊥,再由线面垂直的性质得到1AB A D ⊥,最后由线面垂直的判定定理证明1A D ⊥平面11ABC D.(1)证明:在正方体1111ABCD A B C D -中, 有//AB CD ,11//CD C D ,所以11//AB C D .又11AB C D =,所以四边形11ABC D 为平行四边形,有11//BC AD . 又1BC ⊄平面1AD E ,1AD ⊂平面1AD E , 所以1//BC 平面1AD E(2)证明:因为1A D ,1AD 为正方形的对角线,所以11A D AD ⊥. 因为AB ⊥平面11AA D D ,1A D ⊂平面11AA D D ,所以1AB A D ⊥. 又1AD ,AB 在平面11ABC D 内,且相交于点A , 所以1A D ⊥平面11ABC D .7.(1)证明见解析;(2)证明见解析. 【分析】(1)由//MN AB ,利用直线与平面平行的判断定理,证明//MN 平面ABD .(2)推导出BA DC ⊥,DC BD ⊥,从而CD ⊥平面ABD ,由此能证明平面ABD ⊥平面BCD . 【详解】(1)∵在三棱锥A BCD -中,点M 、N 分别在棱BC 、AC 上,且//MN AB .MN ⊄平面ABD ,AB 平面ABD ,∴//MN 平面ABD(2)∵MN CD ⊥,//MN AB ,∴AB CD ⊥, ∵BD CD ⊥,ABBD B =∴CD ⊥平面ABD , ∵CD ⊂平面BCD ∴平面ABD ⊥平面BCD . 【点睛】本题考查的是空间中平行与垂直的证明,较简单.8.(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)直线BC 1与平面APM 不能垂直,详见解析 【分析】(Ⅰ)由等腰三角形三线合一得AM BC ⊥;由线面垂直性质可得1AM BB ⊥;根据线面垂直的判定定理知AM ⊥平面11BB C C ;由面面垂直判定定理证得结论;(Ⅱ)取11C B 中点D ,可证得1//A D AM ,//DN MP ;利用线面平行判定定理和面面平行判定定理可证得平面1//A DN 平面APM ;根据面面平行性质可证得结论;(Ⅲ)假设1BC ⊥平面APM ,由线面垂直性质可知1BC PM ⊥,利用相似三角形得到111C B PB MB BB =,从而解得BP 长度,可知满足垂直关系时,P 不在棱1BB 上,则假设错误,可得到结论.(Ⅰ)AB AC =,M 为BC 中点 AM BC ∴⊥1AA ⊥平面ABC ,11//AA BB 1BB ∴⊥平面ABC又AM ⊂平面ABC 1AM BB ∴⊥ 1,BB BC ⊂平面11BB C C ,1BB BC B = AM ∴⊥平面11BB C C又AM ⊂平面APM ∴平面APM ⊥平面11BB C C (Ⅱ)取11C B 中点D ,连接11,,,A D DN DM B C,D M 分别为11,C B CB 的中点 1//DM AA ∴且1DM AA = ∴四边形1A AMD 为平行四边形 1//A D AM ∴又1A D ⊄平面APM ,AM ⊂平面APM 1//A D ∴平面APM,D N 分别为111,C B CC 的中点 1//DN B C ∴又,P M 分别为1,BB CB 的中点 1//MP B C ∴ //DN MP ∴ 又DN ⊄平面APM ,MP ⊂平面APM //DN ∴平面APM 1,A D DN ⊂平面1A DN ,1A DDN D = ∴平面1//A DN 平面APM又1A N ⊂平面1A DN 1//A N ∴平面APM(Ⅲ)假设1BC ⊥平面APM ,由PM ⊂平面APM 得:1BC PM ⊥设PB x =,x ⎡∈⎣当1BC PM ⊥时,11BPM B C B ∠=∠ Rt PBM ∴∆∽11Rt B C B ∆ 111C B PB MB BB =∴由已知得:MB11C B =1BB=,解得:x ⎡=⎣ ∴假设错误 ∴直线1BC 与平面APM 不能垂直【点睛】本题考查立体几何中面面垂直、线面平行关系的证明、存在性问题的求解;涉及到线面垂直的判定与性质、线面平行的判定、面面平行的判定与性质定理的应用;处理存在性问题时,常采用假设法,通过假设成立构造方程,判断是否满足已知要求,从而得到结论. 9.(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)12【分析】(Ⅰ)连接BD ,交AC 于点O ;根据三角形中位线可证得//MO SD ;由线面平行判定定理可证得结论;(Ⅱ)由等腰三角形三线合一可知SE AD ⊥;由面面垂直的性质可知SE ⊥平面ABCD ;根据线面垂直性质可证得结论;(Ⅲ)利用体积桥的方式将所求三棱锥体积转化为14S ABCD V -;根据已知长度和角度关系分别求得四边形面积和高,代入得到结果. 【详解】(Ⅰ)证明:连接BD ,交AC 于点O四边形ABCD 为菱形 O ∴为BD 中点 又M 为SB 中点 //MO SD ∴MO ⊂平面MAC ,SD ⊄平面MAC //SD ∴平面MAC (Ⅱ)SAD ∆为正三角形,E 为AD 中点 SE AD ∴⊥平面SAD ⊥平面ABCD ,平面SAD ⋂平面ABCD AD =,SE ⊂平面SADSE ∴⊥平面ABCD ,又AC ⊂平面ABCD SE AC ∴⊥ (Ⅲ)M 为SB 中点 11112443M ABC M ABCD S ABCD ABCDV V V SSE ---∴===⨯⋅又2AB BC AD CD SA SD ======,60ABC ∠= 2AC ∴=,12222sin 60232ABCDABC SS ∆==⨯⨯⨯=由(Ⅱ)知,SE AD ⊥ SE ∴=11122M ABC V -=⨯∴ 【点睛】本题考查立体几何中线面平行、线线垂直关系的证明、三棱锥体积的求解问题;涉及到线面平行判定定理、面面垂直性质定理和判定定理的应用、体积桥的方式求解三棱锥体积等知识,属于常考题型. 10.(Ⅰ)见解析; (Ⅱ)见解析; (Ⅲ)见解析. 【分析】(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点. 【详解】(Ⅰ)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥; 因为底面ABCD 是菱形,所以AC BD ⊥; 因为PAAC A =,,PA AC ⊂平面PAC ,所以BD ⊥平面PAC .(Ⅱ)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥, 因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以AE PA ⊥; 因为PA AB A = 所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE .(Ⅲ)存在点F 为PB 中点时,满足//CF 平面PAE ;理由如下:分别取,PB PA 的中点,F G ,连接,,CF FG EG , 在三角形PAB 中,//FG AB 且12FG AB =;在菱形ABCD 中,E 为CD 中点,所以//CE AB 且12CE AB =,所以//CE FG 且CE FG =,即四边形CEGF 为平行四边形,所以//CF EG ; 又CF⊄平面PAE ,EG ⊂平面PAE ,所以//CF 平面PAE .【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力. 11.(I )证明见解析. (II )证明见解析. 【详解】证明:(I )E ,F 分别为AB ,BD 的中点EF AD ⇒}EF ADAD ACD EF ACD EF ACD⇒⊂⇒⊄面面面. (II )}}}EF ADEF BDAD BD CD CB CF BD BD EFCF BD EF CF F⇒⊥⊥=⇒⊥⇒⊥⋂=面为的中点,又BD BCD ⊂面,所以EFC BCD ⊥面面.12.(1)证明见解析;(2)证明见解析;(3)证明见解析. 【分析】(1)根据底面是正方形,得到CDAB ,再利用线面平行判定定理证明.(2)连结AC ,BD ,交于点O ,连结OE ,由中位线定理得到OE PC ∥,再利用线面平行判定定理证明.(3)根据底面是正方形,得到BD AC ⊥,由侧棱PA ⊥底面ABCD ,得到BD PA ⊥,从而BD ⊥平面ACE ,由此能证明BD CE ⊥. 【详解】(1)∵四棱锥P ABCD -的底面是正方形, ∴CDAB ,∵CD CD ⊄平面PAB ,AB 平面PAB ,∴CD ∥平面PAB . (2)如图所示:连结AC ,BD ,交于点O ,连结OE ,∵四棱锥P ABCD -的底面是正方形,∴O 是AC 中点,∵E 是PA 的中点.∴OE PC ∥,∵PC ⊄平面BDE ,OE ⊂平面BDE ,∴PC 平面BDE .(3)∵四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,∴BD AC ⊥,BD PA ⊥,∵AC PA A ⋂=,∴BD ⊥平面ACE ,∵CE ⊂平面ACE ,∴BD CE ⊥.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理,还考查了转化化归的思想和逻辑推理的能力,属于中档题.13.(1)证明见解析;(2)1A C 与BD 不可能垂直,证明见解析.【分析】(1)证得1A B ⊥平面1A CD ,结合面面垂直的判定定理即可得出结论;(2)假设1A C 与BD 垂直,然后推出与已知条件11A B A D ⊥矛盾,即可得出1A C 与BD 不可能垂直.【详解】(1)因为平面1A BD ⊥平面BCD ,平面1A BD 平面BCD =BD ,CD ⊂平面BCD ,CD ⊥BD ,所以CD ⊥平面1A BD ,又因为1A B ⊂平面1A BD ,所以CD ⊥1A B ,又因为11A B A D ⊥,1A D CD D =,所以1A B ⊥平面1A CD ,且1A B ⊂平面1A BC ,所以平面1A BC ⊥平面1A CD ;(2)假设1A C 与BD 垂直,又因为CD ⊥BD ,且1AC CD C ⋂=,所以DB ⊥平面1A CD ,又因为1A D ⊂平面1A CD ,所以1DB A D ⊥,这与11A B A D ⊥矛盾,故假设不成立,即1A C 与BD 不可能垂直.23.(1)见解析;(2)见解析;(3)见解析【解析】试题分析:(1)取线段1A B 的中点H ,由三角形中位线性质以及平行四边形性质得四边形DEFH 为平行四边形,即得//EF HD .再根据线面平行判定定理得结论,(2)先根据等腰三角形性质得1A O DE ⊥.再根据面面垂直性质定理得1A O ⊥平面BCED ,即得1CO A O ⊥,根据勾股定理得CO BO ⊥,所以由线面垂直判定定理得 CO ⊥平面1A OB ,最后根据面面垂直判定定理得结论,(3)假设线段OC 上存在点G ,使得OC ⊥平面EFG ,则EO EC =,与条件矛盾.试题解析:解:(1)取线段1A B 的中点H ,连接HD ,HF .因为在△ABC 中,D ,E 分别为AB ,AC 的中点,所以 //DE BC ,12DE BC =. 因为 H ,F 分别为1A B ,1A C 的中点,所以 //HF BC ,12HF BC =, 所以 //HF DE ,HF DE =,所以 四边形DEFH 为平行四边形,所以 //EF HD . 因为 EF ⊄平面1A BD , HD ⊂平面1A BD ,所以 //EF 平面1A BD .(2)因为在△ABC 中,D ,E 分别为AB ,AC 的中点,所以 AD AE =.所以11A D A E =,又O 为DE 的中点,所以 1A O DE ⊥.因为平面1A DE ⊥平面BCED ,且1AO ⊂平面1A DE , 所以 1A O ⊥平面BCED ,所以 1CO A O ⊥.在△OBC 中,4BC =,易知 OB OC ==所以 CO BO ⊥,所以 CO ⊥平面1A OB ,所以 平面1A OB ⊥平面1A OC .(3)线段OC 上不存在点G ,使得OC ⊥平面EFG .否则,假设线段OC 上存在点G ,使得OC ⊥平面EFG ,连接 GE ,GF ,则必有 OC GF ⊥,且OC GE ⊥.在Rt △1A OC 中,由F 为1A C 的中点,OC GF ⊥,得G 为OC 的中点.在△EOC 中,因为OC GE ⊥,所以EO EC =,这显然与1EO =,EC =所以线段OC 上不存在点G ,使得OC ⊥平面EFG .14.(Ⅰ)见证明;(Ⅱ)见证明;(Ⅲ)见解析【分析】(I )由AD ⊥DE ,AD ⊥CD 可得AD ⊥平面CDE ,故而AD ⊥CE ;(II )证明平面ABF ∥平面CDE ,故而BF ∥平面CDE ;(III )取CE 的中点P ,BE 的中点Q ,证明CE ⊥平面ADPQ 即可得出平面ADQ ⊥平面BCE .【详解】(Ⅰ)由底面ABCD 为矩形,知AD CD ⊥.又因为DE AD ⊥,DE CD D ⋂=,所以AD ⊥平面CDE .又因为CE ⊂平面CDE ,所以AD CE ⊥.(Ⅱ)由底面ABCD 为矩形,知//AB CD ,又因为AB ⊄平面CDE ,CD ⊂平面CDE ,所以//AB 平面CDE .同理//AF 平面CDE ,又因为AB AF A ⋂=,所以平面//ABF 平面CDE .又因为BF ⊂平面ABF ,所以//BF 平面CDE .(Ⅲ)结论:线段BE 上存在点Q (即BE 的中点),使得平面ADQ ⊥平面BCE . 证明如下:取CE 的中点P ,BE 的中点Q ,连接,,AQ DP PQ ,则//PQ BC .由//AD BC ,得//PQ AD .所以,,,A D P Q 四点共面.由(Ⅰ),知AD ⊥平面CDE ,所以AD DP ⊥,故BC DP ⊥.在△CDE 中,由DC DE =,可得DP CE ⊥.又因为BC CE C ⋂=,所以DP ⊥平面BCE .又因为DP ⊂平面ADPQ所以平面ADPQ ⊥平面BCE (即平面ADQ ⊥平面BCE ).即线段BE 上存在点Q (即BE 中点),使得平面ADQ ⊥平面BCE【点睛】本题考查了线面垂直、面面垂直的判定与性质定理的应用,线面平行的判定,熟练运用定理是解题的关键,属于中档题.15.(Ⅰ)见证明;(Ⅱ)见证明;(Ⅲ)见解析.【分析】(Ⅰ)证明以DE ∥平面PBC ,只需证明DE ∥PC ;(Ⅱ)证明BC ⊥平面PAB ,根据线面垂直的判定定理,只需证明PA ⊥BC ,AB ⊥BC ;(Ⅲ)当点F 是线段AB 中点时,证明平面DEF ∥平面PBC ,可得平面DEF 内的任一条直线都与平面PBC 平行.【详解】(Ⅰ)证明:因为点E 是AC 中点,点D 为PA 的中点,所以//DE PC .又因为DE ⊄面PBC ,PC ⊂面PBC ,所以DE ∥平面PBC .(Ⅱ)证明:因为平面PAC ⊥面ABC ,平面PAC ∩平面ABC =AC ,又PA ⊂平面PAC ,PA ⊥AC , 所以PA ⊥面ABC ,因为BC ⊂平面ABC ,所以PA ⊥BC .又因为AB ⊥BC ,且PA ∩AB =A ,所以BC ⊥面PAB .(Ⅲ)当点F 是线段AB 中点时,过点D ,E ,F 的平面内的任一条直线都与平面PBC 平行. 取AB 中点F ,连EF ,连DF .由(Ⅰ)可知DE ∥平面PBC .因为点E 是AC 中点,点F 为AB 的中点,所以EF ∥BC .又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF ∥平面PBC .又因为DE ∩EF =E ,所以平面DEF ∥平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.故当点F 是线段AB 中点时,过点D ,E ,F 所在平面内的任一条直线都与平面PBC 平行.【点睛】本题考查线面平行,考查线面垂直,考查面面平行,考查学生分析解决问题的能力,掌握线面平行、线面垂直、面面垂直的判定定理是关键.16.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据底面是正方形,得到CD AB ,再利用线面平行判定定理证明.(2)连结AC ,BD ,交于点O ,连结OE ,由中位线定理得到OE PC ∥,再利用线面平行判定定理证明.(3)根据底面是正方形,得到BD AC ⊥,由侧棱PA ⊥底面ABCD ,得到BD PA ⊥,从而BD ⊥平面ACE ,由此能证明BD CE ⊥.【详解】(1)∵四棱锥P ABCD -的底面是正方形,∴CD AB ,∵CD ⊄平面PAB ,AB平面PAB , ∴CD ∥平面PAB .(2)如图所示:连结AC ,BD ,交于点O ,连结OE ,∵四棱锥P ABCD -的底面是正方形,∴O 是AC 中点,∵E 是PA 的中点.∴OE PC ∥,∵PC ⊄平面BDE ,OE ⊂平面BDE ,∴PC 平面BDE .(3)∵四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,∴BD AC ⊥,BD PA ⊥,∵AC PA A ⋂=,∴BD ⊥平面ACE ,∵CE ⊂平面ACE ,∴BD CE ⊥.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理,还考查了转化化归的思想和逻辑推理的能力,属于中档题.。
20 相似三角形重要模型之母子型(共边共角模型)(教师版)-2024年中考数学几何模型归纳讲练
专题20 相似三角形重要模型之母子型(共边共角模型)相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。
在相似三角形中存在众多的相似模型,其中“母子型”相似模型应用较为广泛,深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“母子”模型。
母子相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等;④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。
模型1.“母子”模型(共边角模型)【模型解读与图示】“母子”模型的图形(通常有一个公共顶点和另外一个不是公共的顶点,由于小三角形寓于大三角形中,恰似子依母怀),也是有一个“公共角”,再有一个角相等或夹这个公共角的两边对应成比例就可以判定这两个三角形相似.图1 图2 图3 图41)“母子”模型(斜射影模型)条件:如图1,∠C=∠ABD ; 结论:△ABD ∽△ACB ,AB 2=AD ·AC .2)双垂直模型(射影模型)条件:如图2,∠ACB=90o ,CD ⊥AB ;结论:△ACD ∽△ABC ∽△CBD ;CA 2=AD ·AB ,BC 2=BD ·BA ,CD 2=DA ·DB .3)“母子”模型(变形)条件:如图3,∠D=∠CAE ,AB=AC ; 结论:△ABD ∽△ECA ;4)共边模型条件:如图1,在四边形ABCD 中,对角线BD 平分ABC ∠,ADB DCB ∠=∠,结论:2BD BA BC =⋅;例1.(2022·贵州贵阳·中考真题)如图,在ABC V 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC V 与ACB △的周长比是( )A.B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.【答案】(1)见解析;(【分析】(1)根据相似三角形的判定两边成比例且夹角相等的两个三角形相似,即可得出(2)由ACD ABC ~V V 得例3.(2022.山西九年级期中)如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC•BD.(1)证明:CABD BA∽△△;(2)【答案】(1)见解析(2)185 BD=【分析】(1)根据三角形高的定义得出例5.(2023.浙江中考模拟)如图,在V ABC中,∠ACB=90°,CD⊥AB.(1)图1中共有 对相似三角形,写出来分别为 (不需证明):(2)已知AB=5,AC=4,请你求出CD的长:(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)3,V ABC∽V ACD,V ABC∽V CBD,V ACD∽V CBD;(2)125;(3)存在,(2740,32),(98,910)【分析】(1)根据两角对应相等的两三角形相似即可得到3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.(2)先在△ABC中由勾股定理求出BC的长,再根据△ABC的面积不变得到12AB•CD=12AC•BC,即可求出CD的长.(3)由于∠B公共,所以以点B、P、Q为顶点的三角形与△ABC相似时,分两种情况进行讨论:①△PQB∽△ACB;②△QPB∽△ACB.【详解】解:(1)图1中共有3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.证明:∵CD⊥AB,∴∠ADC=∠ACB=90°,又∵∠A=∠A,∴△ADC∽△ACB同理可证:△ABC∽△CBD,△ACD∽△CBD.故答案为:3;△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.(2)如图2中,在△ABC中,∵∠ACB=90°,AB=5,AC=4,∴BC3.∵△ABC的面积=12AB•CD=12AC•BC,∴CD=AC BCAB⋅=125.(3)存在点P,使以点B、P、Q为顶点的三角形与△ABC相似,理由如下:在△BOC中,∵∠COB=90°,BC=3,OC=125,∴OB=95.分两种情况:①当∠BQP=90°时,如图2①,此时△PQB∽△ACB,∴BP AB =BQBC,∴353t t-=,解得t=98,即98BQ CP==,∴915388BP BC CP=-=-=.在△BPQ中,由勾股定理,得32PQ===,∴点P的坐标为273(,)402;②当∠BPQ =90°时,如图2②,此时△QPB ∽△ACB ,∴BP BQ BC AB =,∴335t t -=,解得t =158,即15159,3888BQ cP BP BC CP ===-=-=,过点P 作PE ⊥x 轴于点E .∵△QPB ∽△ACB ,∴PE BQ CO AB ⋅=,即1581255PE =,∴PE =910.在△BPE中,2740BE ===,∴92795408OE OB BE =-=-=,∴点P 的坐标为99(,)810,综上可得,点P 的坐标为(2740,32);(98,910).【点睛】本题属于相似形综合题,考查了相似三角形的判定与性质,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.例6.(2022·陕西汉中·九年级期末)如图,CD 是等腰直角ABC V 斜边AB 的中线,以点D 为顶点的EDF ∠绕点D 旋转,角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AE 交于点M ,DE 与BC 交于点N ,且45EDF ∠=︒.(1)如图1,若CE CF =,求证:DE DF =;(2)如图2,若CE CF ≠,求证:2CD CE CF =⋅;(3)如图2,过D 作DG BC ⊥于点G ,若2CD =,CF =DN 的长.当CD=2,CF=2时,由CD 在Rt△DCG中,CG DG=∵∠ECN =∠DGN,∠ENC=∠DNG∴2222CN CEGN DG===,∴GN∴22( DN GN DG=+=助线,并熟记相似三角形的判定条件与性质是解题的关键.例7.(2023·浙江·九年级期末)(1)如图1,在ABC V 中,D 为AB 上一点,2AC AD AB =⋅.求证:ACD B ∠=∠.(2)如图2,在ABCD Y 中,E 是AB 上一点,连接AC ,EC .已知4AE =,6AC =,9CD =.求证:23AD EC =.(3)如图3,四边形ABCD 内接于O ,AC 、BD 相交于点E .已知O 的半径为2,AE CE =,AB =,BD =ABCD 的面积.(3)解:如图3,连接OA【拓展提高】(3)如图ABC V 中,D 是BC 上一点,连结AD ,点E ,F 分别在BE ,CE ,EF ,若DE ,BEC AEF ∠=∠,16BE =,7=,34CE BC =,求【答案】(1)见解析;(254;(3)75【分析】(1)据角平分线的定义及相似三角形的判定可知DBC V ∽,再根据相似三角形的性质即可解【点睛】本题考查了相似三角形的性质,平行四边形的性质,平行线的性质,掌握相似三角形的判定与性质是解题的关键.课后专项训练1.(2023成都市九年级期中)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,ADAB=12,△CEF的面积为S1,△AEB的面积为S2,则S1S2的值等于( )A.116B.15C.14D.125【解答】解:∵ADAB=12,∴设AD=BC=a,则AB=CD=2a,∴AC=,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE,4a2=AE,∴CE AE,∴CEAE=14,∵△CEF∽△AEB,∴S1=(CE)2=1,故选:A.A.36∠=︒BCE【答案】C∵CE平分ACB∠,EG∴1212AECBECAC EH SS BC EG⋅⋅==⋅⋅△△【点睛】此题考查了等腰三角形等边对等角,相似三角形的判定和性质,角平分线的作图及性质,解一元二次方程,熟练掌握各知识点是解题的关键.A .1:2B .【答案】C 【分析】证明ACD △∽△【答案】12【分析】过点B 作BM AC ∥交CG 的延长线于点96ACG BCG S AG AC S GB BC ===V V 32=,即可求解.【详解】解:如图所示,过点B 作BM AC ∥8.(2022·河北邢台·校考二模)如图1,在ABC V 中,AB AC =,24BC =,5tan 12C =,点P 为BC 边上一点,则点P 与点A 的最短距离为______.如图2,连接AP ,作APQ ∠,使得APQ B ∠=∠,PQ 交AC 于Q ,则当11BP =时,AQ 的长为______.【答案】①③④【分析】根据正五边形的性质得出各角及各边之间的关系,然后由各角之间的关系及相似三角形的判定和性质,菱形的判定依次证明即可.【详解】解:①∵正五边形【答案】16【分析】根据正方形及旋转的性质可以证明【详解】解:在正方形ABCD ∵ABC ∆绕点A 逆时针旋转到11.(2021·四川南充·中考真题)如图,在ABC V 中,D 为BC 上一点,3BC BD ==,则:AD AC 的值为________.12.(2022·四川宜宾·九年级期末)如图,在△ABC 中,点D 在BC 边上,点E 在AC 边上,且AD =AB ,∠DEC =∠B .(1)求证:△AED ∽△ADC ;(2)若AE =1,EC =3,求AB 的长.13.(2022·江苏盐城·中考真题)如图,在ABC V 与A B C '''V 中,点D 、D ¢分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.(1)证明:CABD BA∽△△;(2)【答案】(1)见解析(2)185 BD=【分析】(1)根据三角形高的定义得出探究发现:如图1,在ABC V(1)操作发现:将V DE ,DB ,则BDE ∠(2)进一步探究发现:512BC AC -=底腰; 拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图黄金三角形.如图2,在菱形【答案】(1)72,1x ︒-(2)证明见解析,拓展应用:【分析】(1)利用等边对等角求出,BDC BDE BC BE ∠=∠=,利用三角形内角和定理求出,∵在菱形ABCD 中,BAD ∠=∴72EDC DAC ACD ∠=∠+∠=∴EDC AEC ∠=∠,∴CE CD =∴512CE AC -=,∴251AC =-【点睛】本题考查等腰三角形的判定和性质,菱形的性质,相似三角形的判定和性质.解题的关键是理解(1)如图①,若点D 是ABC V 的边AB 的中点,22AC =,4AB =,试判断点并说明理由;(2)如图②,在Rt ABC V 中,90C ∠=︒,5AB =,4AC =,若点D 是ABC V 【答案】(1)D 为ABC V 的理想点,理由见解析(2)125或94D 是ABC ∆的“理想点”,当ACD B ∠=∠时,ACD ∠ 90CDB ∴∠=︒,即CD 是BCD A ∠=∠D是ABC∆的“理想点”,又C C∠=∠,BDC ABC∴∆∆∽∴CD BCBC AC=,即334CD=(1)求证:ABC AEBV V∽;(2)当【答案】(1)证明见解析;(2)326+(3)5051【分析】(1)先证明C ABD BA ∽△△,再根据相似三角形的性质,即可证明结论;(2)延长BC 至点E ,使得AEB BAC ∠=∠,连接AE ,根据三角函数值,设到221625AB x =+,53BE x =+,8BC =,证明ABC EBA V V ∽,得出3tan 4BAC ∠=,ADAB AC = ,AG BC ⊥,∴::2:5:6BD BA BC = ,∴设BD 3BG CG a ∴==,DG BG ∴=-在Rt ABG V 中,2AG AB =-(1)如图2,在ABC V 中,2BC AB =,求证:ABC V 为关于边BC 的“华益美三角”;(2)如图3,已知ABC V 为关于边BC 的“华益美三角”,点D 是ABC V 边BC 的中点,以BD 为直径的经过点A .①求证:直线CA 与O e 相切;②若O e 的直径为26,求线段AB 的长;(3)已知ABC V 为关于边BC 的“华益美三角”,4BC =,30B ∠=︒,求ABC V 的面积.∵AD 为ABC V 的中线,∴∵2BC AB =,∴1AB =由题意可知ACD BCA △∽△,∴CAD ∠又∵OA OD =,∴OAD ODA ∠=∠,又∵OA 为O e 的半径,∴CA 为O e ②ACD BCA △∽△∵ABC V 为关于边BC 的“华益美三角∴122BD CD BC ===,BAD △∽△∵ABCV为关于边BC的“华益美三角∴AC BCCD AC=,即28AC BC CD=⨯=20.(2022·浙江台州·统考一模)已知在▱ABCD,AB=BC=10,∠B=60°,E是边BC上的动点,以AE 为一边作▱AEFG,且使得直线FG经过点D.(1)如图1,EF与AD相交于H,若H是EF的中点.①求证:GF=DF;②若GF⊥CD,求GD的长;(2)如图2,设AE=x,AG=y,当点E在边BC上移动时,始终保持∠AEF=45°,①求y关于x的函数关系式,并求函数y的取值范围;②连接ED,当△AED是直角三角形时,求DF的值.∵四边形AGFE是平行四边形,∵∠G=45°,AD=BC=10,∴点的运动轨迹的弧,当∠ADG最小时,AG的值最小,当点E与C重合时,∠ADG=∠DAC最小,AG的值最小,AH=3,CH=10﹣3,2BAC B BAD ∠∠∠=∴= ,ACD BCA ACD ∠∠=∴~ V ,设DC x =,则AD BD a ==-AC b BC a AB c === ,,ABD D ∴∠=∠,CAB ∠∴2CAB ABC ∠∠= ,ACB BCD ∠=∠ ,AC BC BC CD ∴=,b a ∴=【点睛】本题考查了等边对等角,三角形外角的性质,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.22.(2022·安徽·校联考三模)在ABC V 中,2ABC ACB ∠=∠,BD 平分ABC ∠.(1)如图1,若3AB =,5AC =,求AD 的长.(2)如图2,过A 分别作AE AC ⊥交BC 于E ,AF BD ⊥于F .①求证:ABC EAF ∠=∠;②求BF AC的值.【答案】(1)PCDV是等边三角形,理由见解析【分析】(1)根据相似三角形的性质得出∴3336222 PE CD==⨯=∴ABPV的面积为1AB PE⨯(1)求证:2=⋅AE EF EM【答案】(1)见解析(2)AE【分析】(1)根据正多边形的性质可以得到义得到MAE F∠=∠,再根据【点睛】本题考查相似三角形的判定和性质,解一元二次方程,全等三角形的判定和性质,正多边形的性质,掌握相似三角形的判定和性质是解题的关键.25.(2022·江苏苏州·统考中考真题)点D ,DE //AC ,交BC ①若1DE =,32BD =,求【答案】(1)①94BC =;②BE AD DE -是定值,定值为1;(2)cos CBD ∠【分析】(1)①证明CED CDB V V ∽,根据相似三角形的性质求解即可;②由DE AC ∥,可得AB BC AD DE =,由①同理可得CE DE =,计算AB BE AD DE-(2)根据平行线的性质、相似三角形的性质可得12S AC BC S DE BE ==,又32S S∵12BD CD x ==,∴1922BH BC x ==.∴【点睛】本题考查了相似三角形的性质与判定,求余弦,掌握相似三角形的性质与判定是解题的关键.。
相似三角形解题方法步骤(教师版)
- 1 -相似三角形解题方法、技巧、步骤一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形(1)三角形相似的条件: ①;②;③.三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例三边对应成比例,两三角形相似找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理1或判定定理4找顶角对应相等判定定理1找底角对应相等判定定理1找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)
立体几何之所成角1 异面直线所成的角①范围(0∘ ,90∘];②作异面直线所成的角:平移法.如图,在空间任取一点O,过O作a′ // a ,b′ // b,则a′ ,b′所成的θ角为异面直线a ,b所成的角.特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2 线面所成的角①定义如下图,平面的一条斜线(直线l)和它在平面上的射影(AO)所成的角,叫做这条直线和这个平面所成的角.一条直线垂直平面,则θ=90°;一条直线和平面平行或在平面内,则θ=0°.②范围[0∘ ,90∘]3 二面角①定义从一条直线出发的两个半平面所组成的图形叫做二面角.在二面角的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB 构成的∠AOB叫做二面角的平面角.②范围[0° ,180°].【题型一】异面直线所成的角【典题1】如图,正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°【解析】连结A1D、BD、A1B,∵正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD ,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选 C.【点拨】①找异面直线所成的角,主要是把两条异面直线通过平移使得它们共面,可平移一条直线也可以同时平移两条直线;②平移时常利用中位线、平行四边形的性质;【典题2】如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1 ,AD 的中点,那么异面直线OE和FD1所成角的余弦值等于.【解析】取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∵E是CC1的中点,∴GC1∥EH,∴∠OEH为异面直线所成的角.在△OEH中,OE=√3,HE=√52,OH=√52.由余弦定理,可得cos∠OEH=OE 2+EH2−OH22OE⋅EH=3⋅√2=√155.故答案为√155【点拨】本题利用平移法找到异面直线所成的角(∠OEH)后,确定含有该角的三角形(△OEH),利用解三角形的方法(正弦定理,余弦定理等)把所求角∠OEH最终求出来.【典题3】如图,已知P是平行四边形ABCD所在平面外一点,M,N分别是AB ,PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4 ,PA=4√3,求异面直线PA与MN所成的角的大小.【解析】(1)证明:取PD中点Q,连AQ、QN,则AM∥QN,且AM=QN,∴四边形AMNQ为平行四边形∴MN∥AQ又∵AQ在平面PAD内,MN不在平面PAD内∴MN∥面PAD;(2)解方法一∵MN∥AQ∴∠PAQ即为异面直线PA与MN所成的角∵MN=BC=4 ,PA=4√3,∴AQ=4,设PQ=x,根据余弦定理可知cos∠AQD+cos∠AQP=0即16+x 2−488x +16+x2−168x=0,解得x=4在三角形AQP中,AQ=PQ=4 ,AP=4√3∴cos∠PAQ=2×4×4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°方法二过点A作AH⊥PD交PD于H,如图∵MN=BC=4,∴H是QD的中点设HD=x,则QH=x,PQ=2x,在Rt△AQD和Rt△APH利用勾股定理可得AH2=16−x2=48−9x2,解得x=2∴cos∠PAQ=PHAP =4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°【点拨】本题中所成角∠PAQ找到后,无法在一个三角形里求出,此时把问题转化为平面几何问题, 再利用解三角形的方法进行求解.【题型二】线面所成的角【典题1】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB= 2CD=2BC,EA⊥EB.(1)求证:AB⊥DE;(2)求直线EC与平面ABE所成角的正弦值.【解析】(1)证明:取AB中点O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,∴四边形OBCD为正方形,∴AB⊥OD.又∵EO∩OD=O,∴AB⊥平面EOD.∴AB⊥ED.(2)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE.则∠CEB为直线EC与平面ABE所成的角.设BC=a,则AB=2a,BE=√2a,∴CE=√3a,在直角三角形CBE中,sin∠CEB=CBCE =√3=√33.即直线EC与平面ABE所成角的正弦值为√33.【点拨】本题中的“直线EC与平面ABE所成的角”是根据线面角的定义直接在题目原图上找到的,在含所求角∠CEB的直角三角形CBE中求出角度!【典题2】如图,四边形ABCD为正方形,PA⊥平面ABCD,且AB=4,PA=3,点A在PD上的射影为G点,E点在AB边上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC;(2)求BE的长;(3)求直线AG与平面PCA所成角的余弦值.【解析】(1)证明:∵CD ⊥AD,CD ⊥PA∴CD ⊥平面PAD ∴CD ⊥AG,又PD ⊥AG∴AG ⊥平面PCD作EF ⊥PC 于F,因面PEC ⊥面PCD∴EF ⊥平面PCD∴EF ∥AG,又AG ⊄面PEC,EF ⊂面PEC,∴AG ∥平面PEC(2)由(1)知A 、E 、F 、G 四点共面,又AE ∥CD ∴AE ∥平面PCD∴AE ∥GF ∴四边形AEFG 为平行四边形,∴AE =GF∵PA =3,AD =AB =4 ∴PD =5,AG =125, 在Rt △PAGP 中,PG 2=PA 2−AG 2=8125 ∴PG =95 又GF CD =PG PD∴GF =3625 ∴AE =3625,故BE =6425(3)∵EF ∥AG,所以AG 与平面PAC 所成角等于EF 与平面PAC 所成的角,过E 作EO ⊥AC 于O 点,易知EO ⊥平面PAC,又EF ⊥PC,∴OF 是EF 在平面PAC 内的射影∴∠EFO 即为EF 与平面PAC 所成的角EO =AEsin45°=3625×√22=18√225,又EF =AG =125,∴sin∠EFO=EOEF =18√225×512=3√210故cos∠EFO=√1−sin2∠EFO=√8210所以AG与平面PAC所成角的余弦值等于√8210.【点拨】①若在题目中不能直接找到所求线面角,则可用“作高法”确定所求角,比如下图中,求直线AP与平面α所成的角,具体步骤如下:(1) 如图,过点P作平面α的高PO,垂足为O,则AO是线段AP在平面α上的投影;(2) 找到所求角θ;(3) 求解三角形APO进而求角θ.(此方法关键在于找到垂足O的位置,证明到PO⊥平面α,如本题中EO⊥平面PAC的证明)②本题若直接求“AG与平面PAC所成角”,过点G做高有些难度,则由EF∥AG,能把“AG与平面PAC所成角”转化为“EF与平面PAC所成的角”,这方法称为“间接法”吧.【典题3】如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.(Ⅰ)求证:EP⊥AC;(Ⅰ)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.【解析】证明:(Ⅰ)连接AC交BD于O,∵S-ABCD是正四棱锥,∴ SO⊥平面ABCD,∴SO⊥AC,又∵AC⊥BD,SO∩BD=O,∴AC⊥平面SBD,∴AC⊥SD,∵F,G分别为SC,CD的中点,∴SD∥FG,∴AC⊥GF,同理AC⊥EF,∴AC⊥平面GEF,又∵PE⊂平面GEF,∴EP⊥AC.(Ⅰ) 方法一过B作BH⊥GE于点H,连接PH,∵BD⊥AC,BD∥GF,∴BH∥AC,由(Ⅰ)知:AC⊥平面GEF,∴BH⊥平面GEF,∴∠BPH就是直线BP与平面EFG所成的角,∵SA=AB=2,∴在Rt△BHP中,解得BH=√22,PH=√132,PB=√152,(易知△BHE是等腰直角三角形,又由斜边BE=1,∴BH=√22;在三角形PGH中,PG=12,GH=3√22,∠PGH=π4,用余弦定理可得PH=√132)则cos∠BPH=PHPB =√19515,故直线BP与平面EFG所成角的余弦值为√19515.方法二设过点B作平面EFG的垂直,垂直为T,则∠BPT就是直线BP与平面EFG所成的角,BT是点B到平面PGE的距离,由已知条件可求GF=EF=1,GE=√2,则∠GFE=90°,∴S△PEG=12S△GFE=12×12=14,由于P、F是中点,易得点P到平面ABCD的距离ℎ1=14SO=√24,而S△GEB=12S△GCB=12×1=12,对于三棱锥P−GEB,由V B−PEG=V P−GEB⇒13×BT×S△PEG=13×ℎ1×S△GEB⇒112BT=√224⇒BT=√22,在正四棱锥S-ABCD中可求PB=√152,(方法较多,提示过点P作平面ABCD的高PI)∴sin∠BPT=BTBP =√3015∴cos∠BPT=√1−sin∠BPT=√19515,故直线BP与平面EFG所成角的余弦值为√19515.【点拨】①本题第二问中方法一就是用“做高法”,计算量有些大;方法二是觉得垂足H的位置难确定,可设点B到平面EFG的投影为T(即垂足),再用“等积法”求高BT,则sin∠BPT=BTBP,可求所求角∠BPT,这种方法称为“等积法”;②思考:上一题试试用“等积法”!【题型三】二面角【典题1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,AC 与BD相交于点O.求二面角 A1-BD-A 的正切值.【解析】在正方体中BD⊥平面A1ACC1,∴AO⊥BD,A1O⊥BD,∴二面角A1-BD-A的平面角为∠A1OA由题中的条件求出:AO=√22a ,AA1=a∴tan∠A1OA=√22a=√2,所以二面角 A1-BD-A 的正切值为√2.【点拨】本题根据二面角的定义找到二面角二面角A1-BD-A的平面角为∠A1OA,再在三角形AOA1内用解三角形的方法求解角∠A1OA.【典题2】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=√6,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=√3,求二面角A-EC-D的平面角的余弦值.【解析】(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,可得△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB ∴BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=√6,所以AE=12PB=12√PA2+AB2=√3(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,连接DG,则∠DFG为所求的二面角的平面角.由(1)知BC⊥AE,又AD∥BC,得AD⊥AE,从而DE=√AE2+AD2=√6在Rt△CBE中,CE=√BE2+BC2=√6,由CD=√6,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sinπ3=3√22因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.∴G点为AC的中点,FG=12AE=√32,则在Rt△ADC中,DG=12√AD2+CD2=32,所以cos∠DFG=DF 2+FG2−DG22DF⋅FG=√63【点拨】若在题目中不能直接得到所求二面角,就需要构造出二面角,比如本题求二面角A-EC-D,解题具体步骤如下(1) 过点D作DF⊥EC,过点F作FG⊥EC交AC于点D,则二面角∠DFG为所求的二面角的平面角;(2) 确定含角∠DFG的三角形DFG,利用解三角形的方法求出角∠DFG,常见的是求出三角形三边再用余弦定理.【典题3】如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.(1)求证:PC⊥BC.(2)求二面角M-AC-B的大小.【解析】(1)证明:由PA⊥平面ABC,∴PA⊥BC,又因为∠ACB=90°,即BC⊥AC.∴BC⊥面PAC,∴PC⊥BC.(2)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,∵M是PB的中点,∴MO∥PA,又∵PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M-AC-B的平面角.设AC=2,则BC=2√3,MO=1,OH=√3,在Rt△MHO中,tan∠MHO=MOHO =√3=√33.二面角M-AC-B的大小为30∘.【点拨】求二面角也可以转化为线面角,比如求二面角D-AB-C,解题思路如下过点D作DE⊥AB,则二面角D-AB-C等于直线ED与平面ABC所成的角或其补角,若过点D作DF⊥平面ABC,则二面角D-AB-C是锐角,等于角∠DEF;二面角D-AB-C是钝角,等于角∠DEF的补角.1(★)在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0 <θ <π2B.0 <θ≤π2C.0≤θ≤π3D.0 <θ≤π3【答案】D【解析】∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为π3,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0 <θ≤π3.故选D.2(★★)如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.O1,O2,O2′分别为AB ,BC ,DE的中点,F为弧AB的中点,G为弧BC的中点.则异面直线AF与GO2′所成的角的余弦值为.【答案】√1010【解析】如图,连接AF、FB、BG、GC,∵F为半圆弧AFB的中点,G为半圆弧BGC的中点,由圆的性质可知,G、B、F三点共线,且AF=CG,FB=GB,AB=BC,∴△AFB≌△CGB,∴AF∥CG,则∠CGO2′即为所求的角或其补角,又∵半径为1,高为2,且△AFB,△CG B都是等腰Rt△,∴CG=√2,CO2′=GO2′=√1+22=√5,∴在△CGO2′中,cos∠CGO2′=√52√22√522√2⋅√5=√1010,即异面直线AF与GO2′所成的角余弦值√1010.故答案为√1010.3 (★★)如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点, MN⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.【答案】(1) 见解析(2)π4【解析】(1)证明:由ABCD-A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,,由正方体可知∠D1AD=π4∴MN与平面ABCD所成的角为π.44(★★★) 如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P ,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.【答案】(1) 见解析(2)√55【解析】(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ 平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB. 故CQ⊥平面ABE.EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,由(1)有PQ∥DC,又PQ=12∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=√5,DP=1,sin∠DAP=√5,即AD与平面ABE5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何证明专题讲座——如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1所示,∆ABC中,∠=︒===C AC BC AD DB AE CF90,,,。
求证:DE=DFC F BA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒D CF 45。
从而不难发现∆∆D CF D AE ≅ 证明:连结CDAC BC A BACB AD D BCD BD AD D CB B A AE CF A D CB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E C D FDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。
本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。
有兴趣的同学不妨一试。
例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。
求证:∠E =∠FDBCF EA 图2证明:连结AC 在∆ABC 和∆CD A 中,A B C D B C A D A C C A A B C C D A SSS B DA B C D A E C F B E D F===∴≅∴∠=∠==∴=,,,∆∆()在∆BCE 和∆D A F 中,BE D F B D BC D A BC E D AF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。
2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
例3. 如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。
求证:KH ∥BCABCMNQ PKH 图3分析:由已知,BH 平分∠ABC ,又BH ⊥AH ,延长AH 交BC 于N ,则BA =BN ,AH =HN 。
同理,延长AK 交BC 于M ,则CA =CM ,AK =KM 。
从而由三角形的中位线定理,知KH ∥BC 。
证明:延长AH 交BC 于N ,延长AK 交BC 于M∵BH 平分∠ABC ∴=∠∠ABH NBH 又BH ⊥AH∴==︒∠∠A H B N H B 90 BH =BH∴≅∴==∆∆ABH NBH ASA BA BN AH H N(),同理,CA =CM ,AK =KM ∴KH 是∆A M N 的中位线 ∴K H M N // 即KH//BC说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。
我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。
例4. 已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =︒==90。
求证:FD ⊥EDB CAFED 321图4证明一:连结ADAB AC BD D CD AE D ABBAC BD D CBD ADB D AB D AE==∴+=︒==︒=∴=∴==,∠∠,∠∠∠,∠∠∠129090在∆A D E 和∆B D F 中,AE BF B D AE AD BD AD E BD FFD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。
证明二:如图5所示,延长ED 到M ,使DM =ED ,连结FE ,FM ,BMBCAEFD M图5BD D CBD M C D E D M D E BD M C D EC E BM C C BMBM ACA ABM A AB AC BF AE AF C E BM=∠=∠=∴≅∴=∠=∠∴∠=︒∴∠=︒=∠==∴==,,,∆∆//9090∴≅∴==∴⊥∆∆AEF BFMFE FM D M D E FD ED说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。
(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。
(3)证明二直线的夹角等于90°。
3、证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法)例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。
求证:AC =AE +CD图6BCAEDF O142356分析:在AC 上截取AF =AE 。
易知∆∆AEO AFO ≅,∴∠=∠12。
由∠=︒B 60,知∠+∠=︒∠=︒∠+∠=︒566016023120,,。
∴∠=∠=∠=∠=︒123460,得:∆∆FOC DOC FC DC ≅∴=,证明:在AC 上截取AF =AE()∠=∠=∴≅∴∠=∠BAD CAD AO AOAEO AFO SAS ,∆∆42又∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FO C D O C AAS FC D C()即AC AE CD =+(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。
(补短法)例6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒EAF 45。
求证:EF =BE +DFG B E CAFD123图7分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。
不妨延长CB 至G ,使BG =DF 。
证明:延长CB 至G ,使BG =DF在正方形ABCD 中,∠=∠=︒=ABG D AB AD 90,又∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145即∠GAE =∠FAE∴=∴=+G E E F E F B E D F4、证明几何不等式:例7. 已知:如图9所示,∠=∠>12,AB AC 。
求证:BD DC >D B A1C 2E图9证明一:延长AC 到E ,使AE =AB ,连结DE 在∆A D E 和∆AD B 中,AE AB AD AD AD E AD BBD D E E B D C E B D C E ED E D C BD D C=∠=∠=∴≅∴=∠=∠∠>∠∴∠>∠∴>∴>,,,,21∆∆证明二:如图10所示,在AB 上截取AF =AC ,连结DFD BA2C1F 图1043则易证∆∆AD F AD C ≅∴∠=∠=>∠∠>∠∴∠>∠∴>∴>3434,,D F D C B F D BB F D BB D D F B D D C说明:在有角平分线条件时,常以角平分线为轴翻折构造全等三角形,这是常用辅助线。
5、中考题:例8. 如图8所示,已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。
求证:EC =EDE B DF AC 图8证明:作DF//AC 交BE 于F ∆ABC 是正三角形 ∴∆BFD 是正三角形 又AE =BDDA BCEFG DEABCFG DEAB C∴==∴==A E F D B F B A A F E F即EF =ACAC FD EAC EFD EAC D FE SAS EC ED//()∴∠=∠∴≅∴=∆∆例9. 如图,等边三角形ABC 和等边三角形DEC ,CE 和AC 重合,CE=23AB,(1)求证:AD=BE ;(2)若CE 绕点C 顺时针旋转30度,连BD 交AC 于点G ,取AB 的中点F 连FG ,求证:BE=2FG ;(3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)考点:旋转的性质;全等三角形的判定与性质. 专题:证明题.分析:(1)由三角形ABC 和等三角形DEC 都是等边三角形,得到∠BCE=∠ACD=60°,CE=CD ,CB=CA ,则△CBE ≌△CAD ,从而得到BE=AD .(2)过B 作BT ⊥AC 于T ,连AD ,则∠ACE=30°,得∠GCD=90°,而CE=23 AB ,BT=23AB ,得BT=CD ,可证得Rt △BTG ≌Rt △DCG ,有BG=DG ,而F 为AB 的中点,所以FG ∥AD ,FG= 21AD ,易证Rt △BCE ≌Rt △ACD ,得到BE=AD=2FG ;(3)由(2)Rt △BTG ≌Rt △DCG ,得到AT=TC ,GT=CT ,即可得到AG=23.解答:解:(1)证明:∵三角形ABC 和等三角形DEC 都是等边三角形,∴∠BCE=∠ACD=60°,CE=CD ,CB=CA ,QPDABCE∴△CBE ≌△CAD ,∴BE=AD .(2)证明:过B 作BT ⊥AC 于T ,连AD ,如图:∵CE 绕点C 顺时针旋转30度, ∴∠ACE=30°, ∴∠GCD=90°, 又∵CE=23AB ,而BT=23AB ,∴BT=CD ,∴Rt △BTG ≌Rt △DCG ,∴BG=DG . ∵F 为AB 的中点, ∴FG ∥AD ,FG=21AD ,∵∠BCE=∠ACD=90°, CB=CA ,CE=CD ,∴Rt △BCE ≌Rt △ACD .∴BE=AD , ∴BE=2FG ;(3)∵AB=2,由(2)Rt △BTG ≌Rt △DCG , ∴AT=TC ,GT=CG , ∴GT=21, ∴AG=23.故答案为23.例10. 在等边△ABC 中,D 、E 分别在AC 、BC 上,且AD=CE=nAC ,连AE 、BD 相交于P ,过B 作BQ ⊥AE 于点Q ,连CP. (1)∠BPQ=______,BP PQ =____(2)若BP ⊥CP ,求BPAP ;(3)当n=_____时,BP ⊥CP?考点:等边三角形的性质;全等三角形的判定与性质. 专题:计算题.分析:(1)根据△ACE ≌△BAD 及三角形的每一个内角是60°解答;(2)通过作辅助线连AK (在BP 上取BK=AP .连AK )来证明△ACP ≌△BAK ,然后求出∠AKP=∠KAP=30°,从而求得AP=PK ;(3)通过作辅助线CF ⊥AE (过C 点作CF ⊥AE ,交AE 延长线于点F ),然后利用平行线的判定(内错角相等,两直线平行)和平行线的性质(平行线间的线段成比例)解答.解答:解:(1)在△ACE 和△BAD 中,CE=AD ,∠ACE=∠BAD=60°(等边三角形的三个内角都是60°),AC=BA ,∴△ACE ≌△BAD ;∴∠EAC=∠ABD ,∴∠BAP+∠EAC=∠BAP+∠ABD=60°, ∴∠BPQ=∠BAP+∠ABD=60°; 在三角形BPQ 中,BQ ⊥AE , ∴BPPQ =21;(2)解:在BP 上取BK=AP .连AK ∵△ACE ≌△BAD , ∴∠CAE=∠ABD ; ∵BK=AP ,AB=CA , ∴△ACP ≌△BAK , ∴∠BAK=∠ACP , ∴∠AKP=∠CPE=30°. 又∠APB=120°. ∴∠AKP=∠KAP=30°, ∴AP=PK , ∴BPAP =21;(3)过C 点作CF ⊥AE ,交AE 延长线于点F . ∵∠BPQ=60°,BP ⊥CP , ∴∠CPF=30°, ∵CP=2CF ,∵∠PBQ=∠CPF=30°,∠BQP=∠PFC=90°, ∴△BPQ ∽△PCF , ∴BQ :PC=PQ :CF ,(如图2)NMACEFB(如图3)MNEACFB(如图1)NMFA EB C∴BQ :PQ=2,假设AD=1,则CD=1-n , CD :AD=BQ :CE ,∴(1-n ):n=BQ :CE=2, ∴n=31.点评:此题是一个综合性很强的题目,主要考查等边三角形的性质、解直角三角形、全等三角形的判定与性质等知识,难度很大,有利于培养同学们钻研和探索问题的精神. 例11. 点A 、B 、C 在同一直线上,在直线AC 的同侧作ABE ∆和BCF ∆,连接AF ,CE .取AF 、CE 的中点M 、N ,连接BM ,BN , MN .(1)若ABE ∆和F B C ∆是等腰直角三角形,且090=∠=∠FBC ABE (如图1),则M B N∆是三角形. (2)在ABE ∆和BCF ∆中,若BA =BE ,BC =BF ,且α=∠=∠FBC ABE ,(如图2),则M B N∆是 三角形,且=∠MBN .(3)若将(2)中的ABE ∆绕点B 旋转一定角度,(如同3),其他条件不变,那么(2)中的结论是否成立? 若成立,给出你的证明;若不成立,写出正确的结论并给出证明.考点:等腰三角形的判定;全等三角形的判定与性质;旋转的性质. 专题:综合题.分析:(1)根据题意可知△ABF ,△EBC 的关系可看作△EBC 是由△ABF 绕点B 顺时针旋转90度得到的,所以BM=BN ,BM ⊥BN ,即△MBN 是等腰直角三角形;(2)根据题意可知△ABF ≌△EBC ,根据全等三角形的性质可知对应中线相等,所以MB=NB ,即△MBN 是等腰三角形,所以△BMN ∽△BEA ,则∠MBN=∠ABE=∠FBC=α; (3)结论仍然成立,先根据条件证明△ABF ≌△EBC ,得到AF=CE .∠AFB=∠ECB ,从而证明△MFB ≌△NCB ,所以BM=BN ,∠MBF=∠NBC ,则∠MBN=∠MBF+∠FBN=∠FBN+∠NBC=∠FBC=α.解答:解:(1)∵BM=BN ,BM ⊥BN ,∴△MBN是等腰直角三角形;(2)∵∠ABE=∠FBC=α,∴∠ABF=∠EBC,又∵BA=BE,BC=BF,∴△ABF≌△EBC,∴MB=NB,即△MBN是等腰三角形,∴△BMN∽△BEA,则∠MBN=∠ABE=∠FBC=α;(3)结论仍然成立.证明:在△ABF和△EBC中,BA=BE∠ABF=∠EBCBF=BC (SAS),∴△ABF≌△EBC,∴AF=CE,∠AFB=∠ECB.∵M,N分别是AF、CE的中点,∴FM=CN,∴△MFB≌△NCB,∴BM=BN,∠MBF=∠NBC,∴∠MBN=∠MBF+∠FBN=∠FBN+∠NBC=∠FBC=α.点评:主要考查了旋转的性质,等腰三角形和全等三角形的判定.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.例12.以ABC∆,∆的两边AB、AC为腰分别向外作等腰Rt ABD∆和等腰Rt ACE∠=∠=︒连接DE,M、N分别是90,BAD CAEBC、DE的中点.探究:AM与DE的位置及数量关系.(1)如图①当ABC∆为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰Rt ABD∆绕点A沿逆时针方向θ(0<θ<90)后,如图②所示,(1)问中得到的旋转︒两个结论是否发生改变?并说明理由.考点:旋转的性质;全等三角形的判定与性质.专题:证明题.分析:(1)ED=2AM,AM⊥ED.延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再结合已知条件可以证明△DAE≌△ABG,根据全等三角形的性质可以得到DE=2AM,∠BAG=∠EDA,再延长MG交DE于H,因为∠BAG+∠DAH=90°,所以∠HDA+∠DAH=90°这样就证明了AM⊥ED;(2)延长CA 至F ,使FA=AC ,FA 交DE 于点P ,并连接BF ,证出△FAB ≌△EAD ,利用相似三角形的性质得到BF=DE ,∠F=∠AEN ,从而证出∠FPD+∠F=∠APE+∠AEN=90°,得到FB ⊥DE ,根据AM ∥FB ,可得到AM=21FB .解答:(1)ED=2AM ,AM ⊥ED ;证明:延长AM 到G ,使MG=AM ,连BG ,则ABGC 是平行四边形,再延长MA 交DE 于H .∴AC=BG ,∠ABG+∠BAC=180° 又∵∠DAE+∠BAC=180°, ∴∠ABG=∠DAE . 再证:△DAE ≌△ABG ∴DE=2AM ,∠BAG=∠EDA . 延长MN 交DE 于H , ∵∠BAG+∠DAH=90°, ∴∠HDA+∠DAH=90°. ∴AM ⊥ED .(2)结论仍然成立. 证明:如图,延长CA 至F ,使FA=AC ,FA 交DE 于点P ,并连接BF . ∵DA ⊥BA ,EA ⊥AF , ∴∠BAF=90°+∠DAF=∠EAD . ∵在△FAB 和△EAD 中, FA=AE∠BAF=∠EAD BA=DA∴△FAB ≌△EAD (SAS )∴BF=DE ,∠F=∠AEN ,∴∠FPD+∠F=∠APE+∠AEN=90°. ∴FB ⊥DE .又∵CA=AF ,CM=MB . ∴AM ∥FB ,且AM=21FB ,∴AM ⊥DE ,AM=21DE .点评:本题考查了旋转的性质和相似三角形的性质,利用旋转不变性找到三角形全等的条件.此题综合性较强,要注意观察图象的特点. 【实战模拟】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D ,交BC 于E ,且有AC AD CE ==。