2021年勤学早九年级数学(上)第21章《一元二次方程》月考(一)

合集下载

2021年九年级数学上册第二十一章《一元二次方程》经典习题(答案解析)

2021年九年级数学上册第二十一章《一元二次方程》经典习题(答案解析)

一、选择题1.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量. 3.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.4.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.5.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-4D 解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A 解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2B 解析:B【分析】设方程的另一个根为x 1,根据根与系数的关系可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个根为x 1,根据题意得:2+x 1=3,∴x 1=1.故选:B .【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键. 二、填空题11.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)249【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2, 故答案为:814,92. 【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.一元二次方程2210x x -+=的一次项系数为_________.-2【分析】根据一元二次方程的一次项系数的定义即可求解【详解】解:一元二次方程x2-2x +1=0一次项系数是:-2故答案为:-2【点睛】此题考查了一元二次方程的一般形式准确掌握一般式中的相关概念是解解析:-2【分析】根据一元二次方程的一次项系数的定义即可求解.【详解】解:一元二次方程x 2 -2x +1=0一次项系数是:-2.故答案为:-2.【点睛】此题考查了一元二次方程的一般形式,准确掌握一般式中的相关概念是解题的关键. 14.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.15.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】 原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a)-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】 本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键. 16.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019. 【点睛】 本题考查根与系数关系.熟记根与系数关系的公式是解题关键.17.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.﹣2【分析】直接根据根与系数的关系求解即【详解】解:∵mn 是一元二次方程x2+2x ﹣7=0的两个根∴m+n =﹣2故答案为﹣2【点睛】本题考查一元二次方程根与系数的关系是重要考点难度较易掌握相关知识是解析:﹣2.【分析】 直接根据根与系数的关系求解,即b m n a +=-. 【详解】解:∵m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,∴m+n =﹣2.故答案为﹣2.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.18.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.19.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab++=中即可求出结论.【详解】解:∵a ,b 是方程22310x x +-=的两根, 32a b ∴+=-,12ab =-, 3112312a b a b ab -+∴+===-. 故答案为:3.【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2.故答案为:-12. 【点睛】 此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.22.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.解析:(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=415x -=±∴14+15x =,2415x =-【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.如图,为了美化街道,刘大爷准备利用自家墙外的空地种两种不同的花卉,墙外宽度无限,墙的最大可用长度是11.5m ,现有长为21m 的篱笆,计划靠着院墙围成一个中间有一道隔栏的长方形花圃.(1)若要围成总面积为36平方米的花圃,边AB 的长应是多少?(2)花的面积能否达到39平方米?若能,求出边AB 的长;若不能,请说明理由.解析:(1)AB 的长应是4米;(2)花的面积不能达到39平方米.【分析】(1)设AB=x 米,根据题意列一元二次方程,解方程,把不合题意的解舍去即可求解; (2)设AB=x 米,根据题意列一元二次方程,方程无实数根,即可求解.【详解】解:(1)设AB=x 米,由题意得 x (21-3x )=36,整理得 27120x x -+=,解得123,4x x ==,当x=3时,21-3x=12>11.5,不合题意,舍去;当x=4时,21-4x=9<11.5,符合题意.答:若要围成总面积为36平方米的花圃,边AB 的长应是4米.(2)设AB=x 米,由题意得 x (21-3x )=39,整理得 27130x x -+=,()2247411330b ac ∆=-=--⨯⨯=-<∴方程无实数根,∴无法围成总面积为39平方米的花圃.答:无法围成总面积为39平方米的花圃.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题关键,解题时注意根据题意检验根的合理性.24.如图,利用22米长的墙为一边,用篱笆围成一个长方形仓库ABCD ,中间用篱笆分割出两个小长方形,在与墙平行的一边要开两扇1米宽的门,总共用去篱笆34米,为了使这个长方形ABCD 的面积为96平方米,求AB 和BC 的长.解析:AB=8米,BC=12米.【分析】设AB 为x 米,然后表示出BC 的长为(36-3x )米,利用矩形的面积计算方法列出方程求解即可.【详解】解:设AB 为x 米,则BC 为(36-3x )米,x (36-3x )=96,解得:x 1=4,x 2=8,当x=4时,36-3x=24>22(不合题意,舍去),当x=8时,36-3x=12.答:AB=8米,BC=12米.【点睛】本题考查了一元二次方程的应用,解题的关键是设出一边的长,并用未知数表示出另一边的长.25.如图,在ABC 中,13AB AC ==厘米,10BC =厘米,AD BC ⊥于点D ,动点P 从点A 出发以每秒1厘米的速度在线段AD 上向终点D 运动.设动点运动时间为t 秒.(1)求AD的长;(2)当PDC△的面积为15平方厘米时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得112PMD ABCS S=?若存在,请求出t的值;若不存在,请说明理由.解析:(1)12厘米;(2)6秒;(3)存在t的值为2或292814+或292814,使得S△PMD=112S△ABC.【分析】①根据等腰三角形性质和勾股定理解答即可;②根据直角三角形面积求出PD×DC×12=15即可求出t;③根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.【详解】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,PD=12-t,又∵由△PDM面积为12PD×DC=15,解得PD=6,∴t=6.(3)假设存在t,使得S△PMD=112S△ABC.①若点M 在线段CD 上,即 0≤t≤52时,PD=12-t ,DM=5-2t , 由S △PMD =112S △ABC , 即 12×(12−t)(5−2t)=5, 2t 2-29t+50=0解得t 1=12.5(舍去),t 2=2.②若点M 在射线DB 上,即52≤t≤12. 由S △PMD =112S △ABC 得 12(12−t)(2t−5)=5, 2t 2-29t+70=0解得 t 1,t 2综上,存在t 的值为2或294或 294-,使得S △PMD =112S △ABC . 【点睛】 此题关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.26.解下列方程(1)2280x x +-=;(2)(2y +1)2-25=0;(3)24430t t --=;(4)2(m +3)=m 2-9 .解析:(1)x 1=-4,x 2=2;(2)y 1=2,y 2=-3;(3)t 1=32,t 2=12-;(4)m 1=-3,m 2=5【分析】(1)根据因式分解法即可求解;(2)可以变形为:(2y +1)2=25,直接开方求解(3)常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解;(4)先移项,使方程右边为零,然后将方程左边进行因式分解,使分解后的两个一次因式分别为零,即可解答.【详解】(1)x 2+2x -8=0,(x +4)(x -2)=0,则x +4=0或x -2=0,解得x =-4或x =2(2) (2y +1)2-25=0;(2y+1)2=25,∴2y+1=±5,∴y 1=2,y 2=-3;(3)24430t t --=;4t 2−4t=3,4t 2−4t+1=3+1,(2t−1)2=4,∴2t−1=±2,∴t 1=32 ,t 2=12- (4)2(m +3)=m 2-92(m +3)-(m +3)(m-3)=0(m +3)(2-m+3)=0∴m+3=0或5−m=0,∴m 1=-3,m 2=5.【点睛】此题考查解一元二次方程-直接开平方法,解一元二次方程-配方法,解一元二次方程-因式分解法,解题关键在于掌握运算法则.27.某文具商从荷花池小商品批发市场购进一批书包,每个进价50元.调查发现,当销售价为80元时,每季度可售出500个;如果售价每降低1元,那么平均每季度可多售出40个.(1)当降价2元时,平均每季度销售书包_____个.(2)某文具商要想平均每季度赢利18000元,且尽可能让利与顾客,应该如何定价? 解析:(1)580;(2)70元.【分析】(1)根据降价后销量=降价前销量+增加的销量可求得结果;(2)设定价x 元,根据每季度的总利润=每个玩具利润×降价后每天的销售数量列出方程,解方程可求得定价.【详解】(1)500240580+⨯=(个).故答案为:580.(2)设定价x 元,根据题意得:(50)[50040(80)]18000x x -+-=,解得:1272.5,70x x ==,∵尽可能让利与顾客,70x ∴=.答:应该定价70元.【点睛】本题主要考查一元二次方程的实际应用,理解题意找到题目隐含的等量关系是解决问题的关键.28.已知一次函数y kx b =+的图象经过点()0,1和点()1,1-(1)求一次函数的表达式;(2)若点()222,a a +在该一次函数图象上,求a 的值;(3)已知点()()1122,,,A x y B x y 在该一次函数图象上,设()()1212m x x y y =--,判断正比例函数y mx =的图象所在的象限,说明理由.解析:(1)21y x =-+;(2)a 的值是-1或-3;(3)在第二、四象限.【分析】(1)把点()0,1和点()1,1-两点坐标分别代入一次函数y kx b =+,进而求得k 、b 的值,即可求出一次函数的表达式;(2)将点()222,a a +代入一次函数21y x =-+,即可求得a 的值;(3)根据点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,由()()1212m x x y y =--可得()()()212121222112m x x x x x x =--+=--+-,据此可以判断m 的取值,结合正比例函数的性质解答即可.【详解】解:(1)∵一次函数y kx b =+的图象经过点()0,1和点()1,1-,根据题意得: 11b k b =⎧⎨-=+⎩, 解得21k b =-⎧⎨=⎩, ∴一次函数的表达式为21y x =-+;(2)∵点()222,a a +在一次函数21y x =-+的图象上,∴22(22)1a a =-++,解得1a =-或3a =-,即a 的值是-1或-3;(3)正比例函数y mx =的图象在第二、四象限.理由:∵点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,()()1212m x x y y =--,∴()()()212121222112m x x x x x x =--+=--+-,∴m<0,的图象在第二、四象限.∴正比例函数y mx【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、正比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.。

人教版初中数学九年级上册第二十一章《配方法解一元二次方程》 同步练习题(解析版)

人教版初中数学九年级上册第二十一章《配方法解一元二次方程》 同步练习题(解析版)

九年级上册第二十一章《配方法解一元二次方程》同步练习题一、选择题(每小题只有一个正确答案)1.用配方法解方程变形后为A.B.C.D.2.将方程左边变成完全平方式后,方程是()A.B.C.D.3.若方程x2﹣8x+m=0可以通过配方写成(x﹣n)2=6的形式,那么x2+8x+m=5可以配成()A.(x﹣n+5)2=1B.(x+n)2=1C.(x﹣n+5)2=11D.(x+n)2=11 4.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错5.如果一元二次方程x2-ax+6=0经配方后,得(x+3)2=3,则a的值为()A.3 B.-3 C.6 D.-6二、填空题6.方程x2-2x-2=0的解是____________.7.总结配方法解一元二次方程的步骤是:(1)化二次项系数为__________;(2)移项,使方程左边只有__________项;(3)在方程两边都加上__________平方;(4)用直接开平方法求出方程的根.8.(1)____)2,(2)x2-_______.9.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;若多项式x2-ax+2a-3是一个完全平方式,则a=_________.10.x²-3x+____=(x-___)².三、解答题11.解方程:.12.用配方法解方程:.13.用配方法说明:不论x取何值,代数式2x2+5x-1的值总比代数式x2+7x-4的值大,并求出两代数式的差最小时x的值.14.已知关于x的一元二次方程kx2+2x﹣1=0有实数根,(1)求k的取值范围;(2)当k=2时,请用配方法解此方程.15.大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为,再进行配方.现请你先阅读如下方程()的解答过程,并按照此方法解方程().方程().解:,,,,,.方程().参考答案1.A【解析】【分析】在本题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得(x-2)2=6.故选:A【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.A【解析】【详解】∵,∴,∴,∴.故选A.【点睛】配方法的一般步骤:(1)将常数项移到等号右边;(2)将二次项系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.D【解析】分析:已知方程x2﹣8x+m=0可以配方成(x﹣n)2=6的形式,把x2﹣8x+m=0配方即可得到一个关于m的方程,求得m的值,再利用配方法即可确定x2+8x+m=5配方后的形式.详解:∵x2﹣8x+m=0,∴x2﹣8x=﹣m,∴x2﹣8x+16=﹣m+16,∴(x﹣4)2=﹣m+16,依题意有:n=4,﹣m+16=6,∴n=4,m=10,∴x2+8x+m=5是x2+8x+5=0,∴x2+8x+16=﹣5+16,∴(x+4)2=11,即(x+n)2=11.故选D.点睛:考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.D【解析】【分析】通过配方写成完全平方的形式,用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.再说明他的说法错误.【详解】当x2-10x+36=11时;x2-10x+25=0;(x-5)2=0,x1=x2=5,所以他们两人的说法都是错误的,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤是解题的关键.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.D【解析】【分析】可把(x+3)2=3按完全平方式展开,对比即可知a的值.【详解】根据题意,(x+3)2=3可变为:x2+6x+6=0,和已知一元二次方程x2-ax+6=0比较知a=-6.故选:D【点睛】本题考核知识点:本题考查了配方法解一元二次方程,是基础题.6.x1=1+,x2=1-【解析】分析: 首先把常数-2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.详解:x2-2x-2=0,移项得:x2-2x=2,配方得:x2-2x+1=2+1,(x-1)2=3,两边直接开平方得:x-1=±,则x1=+1,x2=-+1.故答案为:x1=1+,x2=1-.点睛: 此题主要考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 7.1二次项及一次一次项系数一半的【解析】分析:根据配方法的步骤解方程即可.详解:总结配方法解一元二次方程的步骤是:(1)化二次项系数为1;(2)移项,使方程左边只有二次项及一次项;(3)在方程两边都加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.点睛:此题考查了配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.3【解析】【详解】根据完全平方公式得,3)2;x2-.故答案为3;.9.;2或6.【解析】【分析】首先把一元二次方程3x2-2x-3=0提出3,然后再配方即可;【详解】根据题意,一元二次方程3x2-2x-3=0化成,括号里面配方得,,即;∵多项式x2-ax+2a-3是一个完全平方式,,∴解得a=2或6.故答案为:(1). ;(2). 2或6.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握用配方法解一元二次方程的步骤.10.,【解析】分析:根据配方法可以解答本题.详解:∵x2﹣3x+=(x﹣)2,故答案为:.点睛:本题考查了配方法的应用,解题的关键是熟练掌握配方法.11.,.【解析】【分析】两边都加1,运用配方法解方程.【详解】解:,,,所以,.【点睛】本题考核知识点:解一元二次方程.解题关键点:掌握配方法.12.,.【解析】【分析】利用配方法得到(x﹣)2=,然后利用直接开平方法解方程即可.【详解】x2﹣x=﹣,x2﹣x+=﹣+,(x﹣)2=x﹣=±,所以x1=,x2=1.【点睛】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.13.详见解析.【解析】【分析】用求差法比较代数式2x2+5x-1的值总与代数式x2+7x-4的大小,即2x2+5x-1-(x2+7x-4)=2x2+5x-1-x2-7x+4=x2-2x+3=(x-1)2+2;当x=1时,两代数式的差最小为2.【详解】解:2x2+5x-1-(x2+7x-4)=2x2+5x-1-x2-7x+4=x2-2x+3=(x-1)2+2,∵(x-1)2≥0,∴(x-1)2+2>0,即2x2+5x-1-(x2+7x-4)>0,∴不论x取任何值,代数式2x2+5y-1的值总比代数式x2+7x-4的值大,当x=1时,两代数式的差最小为2.【点睛】本题考核知识点:配方.解题关键点:用求差法和配方法比较代数式的大小.14.(1)k≥﹣1且k≠0;(2)x1=,x2=.【解析】试题分析:(1)当k=0时,是一元一次方程,有解;当k≠0时,方程是一元二次方程,因为方程有实数根,所以先根据根的判别式△≥0,求出k的取值范围;(2)当k=2时,把k值代入方程,用配方法解方程即可.解:(1)∵一元二次方程kx2+2x﹣1=0有实数根,∴22+4k≥0,k≠0,解得,k≥﹣1且k≠0;(2)当k=2时,原方程变形为2x2+2x﹣1=0,2(x2+x)=1,2(x2+x+)=1+,2(x+)2=,(x+)2=x+=±,x1=,x2=.15.,.【解析】【分析】参照范例的步骤和方法进行分析解答即可.【详解】原方程可化为:,∴,∴ ,∴,.【点睛】读懂范例中的解题方法和步骤是解答本题的关键.。

_人教版 九年级数学上册 第21章 一元二次方程 综合训练(含答案)

_人教版 九年级数学上册 第21章 一元二次方程 综合训练(含答案)

2021人教版九年级数学第21章一元二次方程综合训练一、选择题(本大题共10道小题)1.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )A. 7B. 10C. 11D. 10或112. 若一元二次方程x2-2kx+k2=0的一根为x=-1,则k的值为()A.-1B.0C.1或-1D.2或03.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A. 12x(x-1)=45 B.12x(x+1)=45C. x(x-1)=45D. x(x+1)=454.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则( )A. 10.8(1+x)=16.8B. 16.8(1-x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.85. 有5人患了流感,经过两轮传染后共有605人患了流感,假设每轮传染中一个人传染相同数量的人,则第一轮传染后患流感的人数为()A.10 B.50 C.55 D.456.已知直角三角形的两条直角边长恰好是方程x2-5x+6=0的两个根,则此直角三角形的斜边长是( )A.13B. 5 C.13 D.57. 若x1,x2是一元二次方程x2-4x-5=0的两根,则x1·x2的值为( )A.-5 B.5 C.-4 D.48. 若关于x的方程x2+ax+1=0和x2-x-a=0(a≠-1)只有一个相同的根,则a 的值是()A.0 B.4 C.2 D.39. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=010. 若M=2x2-12x+15,N=x2-8x+11,则M与N的大小关系为( )A.M≥N B.M>N C.M≤N D.M<N二、填空题(本大题共6道小题)11. 方程x-1=2的解是________.12. 用公式法解方程2x2+4 3x=2 2时,其中求得的b2-4ac的值是________.13. 方程(3x-4)2-(3x-4)=0的根是____________.14. 相邻的两个自然数,若它们的平方和比这两数中较小数的2倍大51,则这两个自然数分别为________.15. 小明在解方程x2-2x-1=0时出现了错误,其解答过程如下:x2-2x=-1.(第一步)x2-2x+1=-1+1.(第二步)(x-1)2=0.(第三步)x1=x2=1.(第四步)(1)小明的解答过程是从第________步开始出现错误,其错误原因是__________ ______;(2)请写出此题正确的解答过程.16. 某校课外生物小组的试验园地是长32 m,宽20 m的矩形,为了便于管理,现要在试验园地开辟宽度均为x m的小道(图中的阴影部分).(1)如图①,在试验园地开辟一条纵向小道,则剩余部分的面积为________m2(用含x的代数式表示);(2)如图②,在试验园地开辟三条宽度相等的小道,其中一条是横向的,另两条互相平行.若使剩余部分的面积为570 m2,则小道的宽度为________m.三、解答题(本大题共5道小题)17. 用配方法解下列方程:(1) x2+6x=-7;(2)4y2+4y+3=0;(3)(2x-1)2=x(3x+2)-7.18. 如图,某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用栅栏围成,栅栏长40 m.(1)若养鸡场的面积为128 m2,求养鸡场垂直于墙的一边的长.(2)养鸡场的面积能达到250 m2吗?如果能,请给出设计方案;如果不能,请说明理由.19.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14000元/m2下降到5月份的12600元/m2.(1)问4、5两月平均每月降价的百分率约是多少?(参考数据:0.9≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20. 某商店准备进一批季节性小家电,单价为每个40元,经市场预测,售价为每个52元时,可售出180个,每个小家电的售价每增加1元,销售量净减少10个;每个小家电的售价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个.商店若准备获利2000元.(1)该商店应考虑涨价还是降价?请说明理由;(2)应进货多少个?售价为每个多少元?21. 已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)设x1,x2是方程的两根且x12+x22+x1x2-17=0,求m的值.2021人教版九年级数学第21章一元二次方程综合训练-答案一、选择题(本大题共10道小题)1. 【答案】D 【解析】∵3是方程x2-(m+1)x+2m=0的一个实数根,∴9-3(m+1)+2m=0,解得m=6,∴方程为x2-7x+12=0,解得x1=3,x2=4,若等腰△ABC的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC的腰长为4,底边长为3,则周长为4+4+3=11.2. 【答案】A[解析]把x=-1代入方程得1+2k+k2=0,解得k1=k2=-1,故选A.3. 【答案】A【解析】根据题意:每两队之间都比赛一场,每队参加x-1场比赛,共比赛1 2x(x-1)场比赛,根据题意列出一元二次方程12x(x-1)=45.故选A.4. 【答案】C 【解析】∵设平均年增长率为x,2014年为10.8万人次,则2015年为10.8(1+x)万人次,2016年为10.8(1+x)2万人次,∴根据题意得,10.8(1+x)2=16.8.5. 【答案】C6. 【答案】A [解析] x2-5x+6=0.左边分解因式,得(x-2)(x-3)=0.解得x=2或x=3.即直角三角形的两条直角边长分别为2,3.根据勾股定理得斜边长为22+32=13.7. 【答案】A8. 【答案】C[解析] 设两个方程相同的根为x=m.根据题意,得m2+am+1=0①,m2-m-a=0②,①-②,得m(a+1)+1+a=0.∵a≠-1,∴a+1≠0,∴两边同除以(a+1),得m=-1,∴(-1)2+a·(-1)+1=0,解得a=2.9. 【答案】B10. 【答案】A [解析] M-N=(2x2-12x+15)-(x2-8x+11)=x2-4x+4=(x-2)2.∵(x-2)2≥0,∴M≥N.二、填空题(本大题共6道小题)11. 【答案】x=5【解析】方程两边平方得,x-1=4,解得x=5,经检验,x=5是原方程的解.12. 【答案】64 [解析] 要求b2-4ac的值,需先将原方程转化为ax2+bx+c=0(a≠0)的形式.原方程可化为2x2+4 3x-2 2=0,b2-4ac=(4 3)2-4×2×(-2 2)=64.故填64.13. 【答案】x1=43,x2=53[解析]原方程左边分解因式得(3x-4)[(3x-4)-1]=0,即(3x-4)(3x-5)=0.于是3x-4=0或3x-5=0.所以x1=43,x2=53.14. 【答案】5,6[解析] 设较小的自然数为x,则较大的自然数为(x+1).根据题意,得x2+(x+1)2=2x+51,解得x1=5,x2=-5(舍去).则这两个自然数分别为5,6.15. 【答案】解:(1)一移项时没有变号(2)x2-2x=1.x2-2x+1=1+1.(x-1)2=2.x-1=±2.所以x1=1+2,x2=1- 2.16. 【答案】(1)20(32-x)(2)1[解析] (1)根据题意,得剩余部分的面积为20(32-x)m2.(2)根据题意,得(32-2x)(20-x)=570,解得x1=1,x2=35(不合题意,舍去).即小道的宽度为1 m.三、解答题(本大题共5道小题)17. 【答案】解:(1)配方,得x2+6x+9=-7+9.即(x+3)2=2.方程两边开方,得x+3=±2.所以x1=-3+2,x2=-3- 2.(2)移项,得4y2+4y=-3.配方,得(2y+1)2=-2.因为无论y为何实数,总有(2y+1)2≥0,所以此方程无解.(3)去括号,得4x2-4x+1=3x2+2x-7.整理,得x2-6x=-8.配方,得(x-3)2=1.所以x-3=±1,所以x1=2,x2=4.18. 【答案】解:(1)设养鸡场垂直于墙的一边的长为x m,则平行于墙的一边的长为(40-2x)m. 根据题意,得x(40-2x)=128,解得x1=16,x2=4.当x=16时,40-2x=8<25,符合题意;当x=4时,40-2x=32>25,不合题意,舍去.答:养鸡场垂直于墙的一边的长为16 m.(2)不能.理由:假设养鸡场的面积能达到250 m2.设养鸡场垂直于墙的一边的长为y m.根据题意,得y(40-2y)=250,∴y2-20y+125=0.∵Δ=b2-4ac=(-20)2-4×125=-100<0,∴方程无实数根,∴养鸡场的面积不能达到250 m2.19. 【答案】解:(1)设4、5两月平均每月降价的百分率为x,根据题意,得14000(1-x)2=12600.化简,得(1-x)2=0.9.解得x1≈0.05,x2≈1.95(不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%.(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12600(1-x )2=12600×0.9=11340>10000.由此可知,7月份该市的商品房成交均价不会跌破10000元/m2.20. 【答案】解:(1)该商店应考虑涨价.理由:售价为每个52元时,可售出180个,因为单价为每个40元,所以获利(52-40)×180=2160(元).若准备获利2000元,降价时每个的利润减少,销售量增加,又受库存的影响,每批次进货个数不得超过180个,所以该商店应考虑涨价.(2)由(1)知该商店应考虑涨价,设售价为每个x 元,则x >52. 根据题意,得(x -40)[180-10(x -52)]=2000, 整理,得x 2-110x +3000=0, 解得x 1=50(不合题意,舍去),x 2=60.当x =60时,180-10(x -52)=180-10×(60-52)=100. 答:应进货100个,售价为每个60元.21. 【答案】解:(1)Δ=b 2-4ac =(2m +1)2-4(m 2-1)=4m +5.因为原方程有两个不相等的实数根,所以4m +5>0,解得m>-54.(2)由根与系数的关系,得x 1+x 2=-(2m +1),x 1x 2=m 2-1,所以x 12+x 22+x 1x 2-17=0可化为(x 1+x 2)2-x 1x 2-17=0,即(2m +1)2-(m 2-1)-17=0,解得m 1=53,m 2=-3.因为m>-54,所以m =53.。

2021年九年级数学上册第二十一章《一元二次方程》知识点(答案解析)(1)

2021年九年级数学上册第二十一章《一元二次方程》知识点(答案解析)(1)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=C 解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D 解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D 解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程, 0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14-B 解析:B 【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥,关于x的一元二次方程(m-2)x2+3x-1=0有实数根,m的取值范围是m1-4≥且m≠2.故选:B.【点睛】本题考查关于x的一元二次方程(m-2)x2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.8.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=x2=,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8 B.3,4 C.4,3 D.4,8D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.10.已知方程2202030x x+-=的根分别为a和b,则代数式2a a2020ab++的值为()A .0B .2020C .1D .-2020A解析:A【分析】 将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.13.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.14.写出有一个根为1的一元二次方程是______.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.可以用因式分解法写出原始方程,然后化为一般形式即可,x x-=,如()10化为一般形式为:20-=x x故答案为:20-=.x x【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.15.一元二次方程x2-10x+25=2(x﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0∴(x﹣5)(x﹣7)=0则x﹣5=0或x﹣7=0解得x1=5x2=7故答解析:x1=5,x2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.16.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则(m+2)(n+2)=_____.-1【分析】根据新定义可得出mn为方程x2+2x−1=0的两个根利用根与系数的关系可得出m+n=−2mn=−1变形(m+2)(n +2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算【详解】解析:-1【分析】根据新定义可得出m、n为方程x2+2x−1=0的两个根,利用根与系数的关系可得出m+n =−2、mn=−1,变形(m+2)(n+2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算.【详解】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴(m+2)(n+2)=mn+2(m+n)+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 17.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一 解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根.m <且m≠0【分析】根据一元二次方程的定义及判别式的意义得出m≠0且△=(-3)2-4m×5=9-20m >0解不等式组确定m 的取值范围【详解】解:∵关于x 的一元二次方程mx2-3x+5=0有两个不相解析:m <920且m≠0. 【分析】 根据一元二次方程的定义及判别式的意义得出m≠0,且△=(-3)2-4m×5=9-20m >0,解不等式组,确定m 的取值范围.【详解】解:∵关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根,∴m≠0,且△=(-3)2-4m×5=9-20m >0,解得m <920且m≠0, 故当m <920且m≠0时,关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根. 故答案是:m <920且m≠0. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α解析:40402021【分析】由一元二次方程根与系数的关系解题,即+=-b c a aαβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021; ∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++-1=2(1)2021⨯-4040=2021 故答案为:40402021. 【点睛】 本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.某校园有一块正方形的空地,若从这块空地上划出部分区域栽种鲜花(如图阴影部分为花带),横向花带宽为2m ,纵向花带宽为1m ,栽种鲜花后剩余空地面积为42m 2,求原正方形空地的边长.解析:原正方形空地的边长为8m .【分析】观察图形得到阴影面积=正方形的面积-空白图形的面积,列方程解决问题.【详解】解:设正方形空地的边长为xm ,由题意得()()2142x x --=, 化简得23400x x --=,解得1285x x ==-,,因为0x >,故8x =,答:原正方形空地的边长为8m .【点睛】此题考查一元二次方程的实际应用—图形面积类问题,观察图形得到阴影面积=正方形的面积-空白图形的面积,由此列方程解决问题的思路是解题的关键.22.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.23.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)12x x ==【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14,∴△2﹣4×1×(﹣14)=4>0, 则x=2b a-±, 即x 1,x 2【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 24.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(13=+3=; (2|11)=-1=12=+; (3)102(1)-++121=+-4=-(4)2(1)90x +-=,移项得:2(1)9x +=,∴13x +=或13x +=-, 12x =,24x =-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.25.解方程:(1)23620x x -+=(2)222(3)9x x -=-解析:(1)13x =,233x =;(2)x=3或x=9. 【分析】 (1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴x ==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.26.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.解析:不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.27.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴34x ±=, ∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键.28.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.解析:(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。

(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)

(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)

go 18.设 x1,x2 是方程 x2-4x+m=0 的两个根,且 x1+x2-x1x2=1,
re 则 x1+x2= ,m=

a 19.关于 x 的一元二次方程 x2-2x+m-1=0 有两个相等的实数根,
ing 则 m 的值为

e 20.设 m,n 分别为一元二次方程 x2+2x-2 018=0 的两个实数根,
解得 x1=3,x2=9. 10.解:∵2☆a 的值小于 0,∴22a+a=5a<0,解得 a<0.在方程 2x2-bx+a=0 中,b2-4ac=(-b)2-8a≥-8a>0,∴方程 2x2-bx+a=0 有两个不相等的实数根. 11.A 12.B
3 13. C【解析】根据题意,将 x=-2 代入方程 x2+2ax-a2= 0, 得 4-3a-a2=0,即 a2+3a-4=0, 左边因式分解,得(a-1)(a+4) =0, ∴a=1 或-4.故选 C. 14.B 15. B【解析】∵(a-c)2=a2+c2-2ac>a2+c2, ∴ac<0.在方程 ax2+bx+c=0 中,b2-4ac≥-4ac>0, ∴方程 ax2+bx+c=0 有两个不相等的实数根.故选B.
ll th 的取值范围是( )
A 3 d A.m≥-4
B.m≥0
t a time an C.m≥1
D.m≥2
3 13.若 x=-2 是关于 x 的一元二次方程x2+2ax-a2=0 的一个根,则
a 的值为( )
A.-1 或 4 B.-1 或-4
C.1 或-4
D.1 或 4
14.若关于 x 的一元二次方程的两根为 x1=1,x2=2,则这个方程是( )
ome 18. 3【解析】∵x1,x2 是方程 x2-4x+m=0 的两个根, r s ∴x1+x2=4,x1x2=m.代入 x1+x2-x1x2=1,得 4-m=1,∴m=3.

2.勤学早九年级数学(上)第21章《一元二次方程》周测(二)

2.勤学早九年级数学(上)第21章《一元二次方程》周测(二)

2.勤学早九年级数学(上)第21章《一元二次方程》周测(二)2. 勤学早九年级数学(上)第21章《一元二次方程》周测(二)考试范围:第21.3实际问题与-元二次方程解答参考时问90分钟满分120分一、选择题(每小题3分,共30分)1.一个两位数等于它的个位数的平方,且个位数字比十位数宁大3,则这个两位数为( C )A .25 8 .36 C.25或36 D.无法确定2. 矩形周长为14cm,面积为122cm,则它的长和宽分别为( C )A .2cm,5cm B. 1cm,6cm C.3cm,4cm D . 2cm,6cm3.(2017巴中)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,设每次降价的百分率为x,下面所列的方程中正确的是( B )A. 560(l+x)2=315B.560(1-x)2=315C.560(1-2x)2=315D.560(l-x2)=3154.(2017呼伦贝尔)学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,下面所列方程正确的是( B )A . x2=21 B. 12x(x-1)=21 C.12x2=21 D. x(x-1)=215.(2017揭阳)一个数的平方是这个数的2倍,则这个数是( C )A .0B .2 C. 0或2 D.6 .(2017宁夏}如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道. 若设人行道的宽度为x米,则可以列出关于x 的方程是( C )A. x2+9x-8=0B. x2- 9x - 8 =0C. x2-9x+8=0D.2 x2-9x+8=07.(2017广州)某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查每降价1元,每星期可多卖出8件,店里每周利润要达到8450元,若设店主把该商品每件售价降低x元,则可列方程为( B )A. (80-x)(200+8x)=8450B. (40-x)(200+8x)=8450C. (40– x)(200 +40x) =8450D. (40 –x)( 200+x) =84508. (2017兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停. 已知一只股票某天跌停,之后两天时间,又涨回到原价. 若这两天此股票股价的平均增长率为x,则x满足的方程是( B )A. (1+x)2=1110B.(l+x)2=109C. l+2x=1110D. 1 +2x=1099. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,D点在BC上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重台,则CD 的长度是( B )A . 2cm B. 3cm C. 4cm D. 5cm10. 如图,要设计一本书的封面,封面长25cm,宽15cm. 正中央是一个与整个封面长宽比例相同的矩形,如果要使四周边衬所占面积是封面面积的925,且上、下边衬等宽,左、右边衬等宽,则上、下边衬的宽为( C )A. 1. 5cmB. 2cm C . 2 .5cm D . 5cm二、填空题(每小题3分,共18分)11.(2017和县)两个连续偶数的积为168,设较大的偶数为x,则得到关于x的方程是_______.[x(x-2)=18] 12. (2017南岗)某公司2月份的利润为160万元,4月份的利润250万元,则平均每月的增长率为_______. (25%)13.(2017道真)如果一个多边形的对角线共有14条,则这个多边形的边数是____. (7)14.(2017洪山)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若接此传染速度,第三轮传染后,患流感人数共有_____人.(1000) 15. 如图,将边长为4的正方形,沿两边剪去两个边长为x 的矩形,剩余部分的面积为9,则x=_____. (1)16. 阅读材料:对于任何实数,我们规定符号a bc d的意义是a bc d=ad-bc. 例如:1 23 4=1×4-2×3= - 2,按照这个规定计算:当2x -4x+4=0时,x+1 2x x-1 2x-3的值是____. (-1)三、解答题(共8题,共72分)17.(本题8分)两数之和为3,它们的平方和为5,求这两个数. (这两个数是2和1)18.(本题8分)从正方形铁片中截去2cm 宽的一条长方形,余下的面积是48cm 2,求原来的正方形铣片的面积.解:原来的正方形铁片边长为xcm ,则x (x-2)=48,得:2x -2x-48=0,∴1x =8,2x = -6(舍),∴2x =6419. (本题8分)(2017大连)制造一种产品,原来每件的成本是300元,由于连续两次降低成本,现在每件的成本是192元. 若两次降低成本的百分率相同. 求第一次降低成本后每件的售价是多少元?(240)20.(本题8分)已知等腰三角形两腰长分别是2x ,2x+3,底为3.求该三角形的周长.解:等腰三角形两腰长分别是2x ,2x+3,解得:x=3或x= -1(),当x=3时,2x =9,2x+3=2×3+3=9. ∴周长为:9+9+3=21.当x=-l 时,2x =l ,2x+3=1 ,1+1<3,不能组成三角形,舍去.故该三角形的周长为21.21.(本题8分)(2017崂山)如图,用长为39米的篱笆(虚线部分),一面靠墙围成矩形ABCD菜园(AB<="" ),且在边bc="">解:设AM=xm ,则x (40-2x )=128,∴1x =,4,2x =16(舍),∴AB=422.(本题10分)(2017淮安)如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)当通道宽a 为10米时,花圃的面积=__;(2)通道的面积与花圃的面积之比能否恰好等于3∶5?如果可以,试求出此时通道的宽.解:(1) 802m (2) (40-2a) (60-2a)=40×60×58,∴a=523.(本题10分)(2017西安)鑫都小商品市场以每副60元的价格购进800副羽毛球拍. 九月份以单价100元销售,售出了200副. 十月份如果销售单价不变,预计仍可售出200副,鑫都小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格. 十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元. 设十月份销售单价降低x 元.(1) 填表:(2) 如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?(80元)24.(本题12分)(2017改编题)等腰Rt △ABC 的直角边AB=BC=10cm .点P 、Q 分别从A 、C 两点同时出发,均以1 cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D. 设P 点运动时间为t ,△PCQ 的面积为S.(1)分别写出O<t10时,S 与t 之间的等量关系式;</t(2) 当点P 运动几秒时,△PCQ 面积=△ABC 面积?(3) 作PE ⊥AC 于点E ,当点P 、Q 运动时,线段DE 的长度是否改变?若不变,求DE 的长;若改变,求DE 的取值范围.提示:(1)当t< bdsfid="227" p=""><>2t(10-t)=12(10t-2t);当t >10秒时,P在线段AB延长线上,此时CQ=t,PB=t -10,∴S=12(2t-10t).(2)∵△ABC面积=AB?BC=50,∴当t<10秒时,△PCQ面积=1 2(10t-2t)=50,整理得:2t-10t+100=0,无解;当t>10秒时,△PCQ面积=12(2t-10t)=50,整理得:2t-10t-100=0,解得:1x2x,∴当点P运动(PCQ面积=△ABC面积.(3)当点P、Q运动时,线段DE的长不会改变.过Q作QM⊥AC,交直线AC于点M,易证△APE≌△QCM,∴t,∴四边形PEQM是长方形,且DE是对角线EM的一半,又∵,∴,∴当点P、Q运动时,线段DE的长不会改变.。

2021年九年级数学上册第二十一章《一元二次方程》知识点复习(答案解析)(1)

2021年九年级数学上册第二十一章《一元二次方程》知识点复习(答案解析)(1)

一、选择题1.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=2.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=3.方程2240x x --=经过配方后,其结果正确的是( )A .()215x -=B .()217x -=C .()214x -=D .()215x += 4.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .7或10C .10或11D .115.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m < B .3m C .3m <且2m ≠D .3m 且2m ≠ 6.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .16 7.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x += B .2 (x+2)11= C .2 (2)3?x -= D .2()211x -= 8.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 9.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=10.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 11.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( )A .1-B .1C .17-D .17 12.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x +=13.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长14.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 15.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2二、填空题16.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.17.写出有一个根为1的一元二次方程是______.18.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.19.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.20.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.21.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.22.关于x 的方程2880kx x -+=有两个实数根,则k 的取值范围______________.23.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________24.当m =___________时,方程(2150m m x mx --+=是一元二次方程. 25.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________. 26.若方程()22110a x ax -+-=的一个根为1x =,则a =_______. 三、解答题27.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 28.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 29.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.30.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.。

2020-2021学年数学人教版九年级上册21.1_一元二次方程_同步训练及答案

2020-2021学年数学人教版九年级上册21.1_一元二次方程_同步训练及答案

2020-2021学年数学人教版九年级上册21.1_一元二次方程_同步训练及答案2020-2021学年数学人教版九年级上册21.1 一元二次方程同步训练一、选择题1. ( 2分) 方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为()A. 3、2、5B. 2、3、5C. 2、﹣3、﹣5D. ﹣2、3、52. ( 2分) 下列方程中,一定是关于x的一元二次方程的是()A. ax2+bx+c=0B. ﹣3(x+1)2=2(x+1)C. x2﹣x(x﹣3)=0D.3. ( 2分) 已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A. ﹣4B. 4C. ﹣2D. 24. ( 2分) 如图,在宽为,长为的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.如果设小路宽为,根据题意,所列方程正确的是().A. B.C. D.5. ( 2分) 已知a是方程x2﹣3x﹣1=0的一个根,则代数式﹣2a2+6a﹣3的值是()A. ﹣5B. ﹣6C. ﹣12﹣2D. ﹣12+26. ( 2分) 已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是()A. 1B. ﹣2C. 0D. ﹣17. ( 2分) 若关于x的一元二次方程(m﹣2)x2+3x+m2﹣3m+2=0的常数项为0,则m等于()A. 0B. 1C. 2D. 1或28. ( 2分) 若关于x的一元二次方程ax2﹣bx+4=0的解是x=2,则2020+2a﹣b的值是()A.2016B.2018C.2020D.20229. ( 2分) 若是关于x的一元二次方程,则a的值是()A. 0B. 2C. -2D. ±210. ( 2分) 随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2017年底某市汽车拥有量为16.9万辆.己知2015年底该市汽车拥有量为10万辆,设2015年底至2017年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.9二、填空题11. ( 4分) 把一元二次方程化为一般形式为:________,二次项为:________,一次项系数为:________,常数项为:________。

人教版2020-2021学年九年级数学上册第21章《一元二次方程》单元测试题(含答案)

人教版2020-2021学年九年级数学上册第21章《一元二次方程》单元测试题(含答案)

人教版2020-2021学年九年级数学上册第21章《一元二次方程》单元测试题一.选择题(共10小题)1.下列方程:①5x2=2y;②2x(x+3)=x2﹣5;③ x2+x+3=0;④﹣x2+5x=0;⑤3x2++3=0;⑥mx2+nx=0.其中是一元二次方程的有()A.1个B.2个C.3个D.4个2.若c为实数,方程x2﹣3x+c=0的一个根的相反数是方程x2+3x﹣c=0的一个根,那么方程x2﹣3x+c=0的根是()A.1,2 B.0,3 C.﹣1,﹣2 D.0,﹣33.方程(x﹣a)2=b(b>0)的根是()A.B.C.D.x=±a±b4.方程x2+3x=14的解是()A.x=B.x=C.x=D.x=5.已知关于x的一元二次方程x2﹣6x+k=0的一个根是1,则另一个根是()A.5 B.﹣5 C.﹣6 D.﹣76.当x为何值时,此代数式x2+14+6x有最小值()A.0 B.﹣3 C.3 D.不确定7.已知(m2+n2)2﹣2(m2+n2)﹣3=0,则m2+n2=()A.﹣1或3 B.3 C.﹣1 D.无法确定8.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2020年底某市汽车拥有量为35万辆.已知2018年底该市汽车拥有量为10万辆,设2018年底至2020年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=35 B.10(1+2x)=35C.10(1﹣x)2=35 D.10(1﹣2x)=359.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.5cm2B.6cm2C.7cm2D.8cm210.如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m 的围栏.已知墙长9m,问围成矩形的长为()A.8m B.6m C.4m D.2cm二.填空题(共8小题)11.一元二次方程x(11﹣x)=30的常数项是.12.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是xm,根据题意可列方程为.13.若关于x的一元二次方程(m﹣2)x2﹣4x+3=0有实数解,则m的取值范围为.14.若关于x的一元二次方程ax2+bx﹣2020=0有一个根为1,则a+b=.15.填入适当的代数式: x2﹣xy+ =()2.16.当x=,代数式x2﹣2的值与2x+1的值相等.17.已知x2﹣8x+16=0,则x=.18.平遥牛肉是我国美食文化的精华之一.已知某专卖店平遥牛肉的进价为每份10元,现在的售价是每份16元,每天可卖出120份.据市场调查,每涨价1元,每天要少卖出10份.如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价元.三.解答题(共7小题)19.解方程:(1)x2+2x﹣3=0;(2)2(5x﹣1)2=5(5x﹣1);(3)(x+3)2﹣(2x﹣3)2=0;(4)3x2﹣4x﹣1=0.20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.21.关于x的一元二次方程mx2﹣(m﹣4)x﹣m2=0的一个根是1,求m及另一个根.22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.23.已知关于x的方程(a2﹣1)x2+(1﹣a)x+a﹣2=0(1)当a为何值时,该方程为一元二次方程?(2)当a为何值时,该方程为一元一次方程?24.如图,某工厂直角墙角处,用可建60米长围墙的建筑材料围成一个矩形堆货场地,中间用同样的材料分隔成两间,问AB为多长时,所围成的矩形面积是450平方米?25.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A出发沿AB边向点B以1cm/秒的速度移动,点Q从点B出发沿BC边向点C以2cm/秒的速度移动.P、Q从A、B 点同时出发.(1)几秒后△PBQ的面积等于4cm2?(2)几秒后PQ的长等于5cm2?(3)△PBQ的面积能否等于7cm2?答案与试题解析一.选择题(共10小题)1.解:①5x 2=2y ,方程含有两个未知数,故错误;②2x (x +3)=x 2﹣5,符合一元二次方程的定义,正确;③x 2+x +3=0,符合一元二次方程的定义,正确;④﹣x 2+5x =0,符合一元二次方程的定义,正确;⑤3x 2++3=0,不是整式方程,故错误;⑥mx 2+nx =0,方程二次项系数可能为0,故错误.故选:C .2.解:设方程x 2﹣3x +c =0的一个根为a ,则方程x 2+3x ﹣c =0的一个根是﹣a ;把两根分别代入得:a 2﹣3a +c =0,a 2﹣3a ﹣c =0;两方程相减得c =0;则方程x 2﹣3x +c =0为方程x 2﹣3x =0,解得x 1=0,x 2=3;故方程x 2﹣3x +c =0的解为x 1=0,x 2=3,故选:B .3.解:(x ﹣a )2=b (b >0),两边直接开平方得:x ﹣a =±,故:x 1=+a ,x 2=﹣+a , 故选:A .4.解:方程整理得: x 2+3x ﹣14=0a =1,b =3,c =﹣14,△=9+56=65x =.故选:B .5.解:设方程x2﹣6x+k=0的两根为α、β,则有:α+β=6,∵α=1,∴β=6﹣1=5.故选:A.6.解:∵x2+14+6x=x2+6x+9+5=(x+3)2+5,∴当x+3=0时,(x+3)2+5最小,∴x=﹣3时,代数式x2+14+6x有最小值.故选:B.7.解:设y=m2+n2,则原式化为:y2﹣2y﹣3=0,(y﹣3)(y+1)=0,∴y=3或y=﹣1,∵m2+n2≥0,∴m2+n2=3.故选:B.8.解:设2018年底至2020年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=35,故选:A.9.解:设矩形的长为xcm,宽为ycm,依题意,得:,(②﹣①)÷3,得:y﹣x+1=0,∴x=y+1③.将③代入②,得:y(y+1)=16+3(y﹣4)+11,整理,得:y2﹣2y﹣15=0,解得:y1=5,y2=﹣3(舍去),∴x=6.∴按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为(x﹣4)(y﹣3)+(x﹣3)(y﹣4)=2×2+3×1=7.故选:C .10.解:设宽为xm ,则长为(20﹣2x )m .由题意,得 x •(20﹣2x )=48,解得 x 1=4,x 2=6. 当x =4时,20﹣2×4=12>9(舍去), 当x =6时,20﹣2×6=8.即:围成矩形的长为8m .故选:A .二.填空题(共8小题)11.解:x (11﹣x )=30,11x ﹣x 2﹣30=0,x 2﹣11x +30=0,即一元二次方程的常数项是30, 故答案为:30.12.解:设道路的宽应为x 米,由题意有(30﹣x )(20﹣x )=×30×20.故答案为:(30﹣x )(20﹣x )=×30×20.13.解:∵关于x 的一元二次方程(m ﹣2)x 2﹣4x +3=0有实数解,∴,解得:m ≤且m ≠2.故答案为:m ≤且m ≠2. 14.解:根据题意,一元二次方程ax 2+bx ﹣2020=0有一个根为1,即x =1时,ax 2+bx ﹣2020=0成立,即a +b =2020,故答案为:2020.15.解: x 2﹣xy +y 2=(x ﹣y )2.故答案为: y 2, x ﹣y .16.解:根据题意得x 2﹣2=2x +1,整理得x 2﹣2x ﹣3=0,(x +1)(x ﹣3)=0,x +1=0或x ﹣3=0,所以x 1=﹣1,x 2=3,即x =﹣1或3时,数式x 2﹣2的值与2x +1的值相等.故答案为﹣1或3.17.解:x 2﹣8x +16=0,(x ﹣4)2=0,则x 1=x 2=4.故答案是:4.18.解:设售价应涨价x 元,则:(16+x ﹣10)(120﹣10x )=770,解得:x 1=1,x 2=5.又要尽可能的让利给顾客,则涨价应最少,所以x 2=5(舍去).∴x =1.即:专卖店涨价1元时,每天可以获利770元.故答案是:1.三.解答题(共7小题)19.解:(1)分解因式得:(x +3)(x ﹣1)=0,可得x +3=0或x ﹣1=0,解得:x 1=﹣3,x 2=1;(2)方程整理得:2(5x ﹣1)2﹣5(5x ﹣1)=0,分解因式得:(5x ﹣1)[2(5x ﹣1)﹣5]=0,可得5x ﹣1=0或10x ﹣7=0,解得:x 1=0.2,x 2=0.7;(3)分解因式得:(x +3+2x ﹣3)(x +3﹣2x +3)=0,可得3x =0或﹣x +6=0,解得:x 1=0,x 2=6;(4)这里a =3,b =﹣4,c =﹣1,∵△=16+12=28>0,∴x ==, 解得:x 1=,x 2=.20.解:设方程另一个根为x 1,根据题意得2x 1=﹣6,解得x 1=﹣3,即方程的另一个根是﹣3.21.解:∵关于x 的一元二次方程mx 2﹣(m ﹣4)x ﹣m 2=0的一个根是1,∴m ﹣(m ﹣4)﹣m 2=0,解得:m =±2,∴方程变为x 2﹣3x +2=0或x 2+x ﹣2=0,解得:x =1,x =2或x =1,x =﹣2,∴方程的另一根为±2,∴m 的值为±2,另一根为±2.22.解:当a =4时,∵a ,b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴4+b =12,∴b =8,而4+4≠0,不符合题意;当b =4时,∵a ,b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴4+a =12,而4+4=8,不符合题意;当a =b 时,∵a ,b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴12=a +b ,解得a =b =6,∴m +2=36,∴m =34.23.解:(1)该方程为一元二次方程,则a2﹣1≠0,解得a≠±1;(2)该方程为一元一次方程,则a2﹣1=0且1﹣a≠0,解得a=±1且a≠1,所以,a=﹣1.24.解:设AB的长为x米,则EF也长x米,那么BC长(60﹣2x)米,依题意得x(60﹣2x)=450.解得:x=15,答:AB为15m时,所围成的矩形面积是450平方米.25.解:(1)设x秒后,△BPQ的面积为4cm2,此时AP=xcm,BP=(5﹣x)cm,BQ=2xcm,由BP×BQ=4,得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).当x=4时,2x=8>7,说明此时点Q越过点C,不合要求,舍去.答:1秒后△BPQ的面积为4cm2.(2)由BP2+BQ2=52,得(5﹣x)2+(2x)2=52,整理得x2﹣2x=0,解方程得:x=0(舍去),x=2.所以2秒后PQ的长度等于5cm;(3)不可能.设(5﹣x)×2x=7,整理得x2﹣5x+7=0,∵b2﹣4ac=﹣3<0,∴方程没有实数根,所以△BPQ的面积不可能等于7cm2.。

2021年九年级数学上册第二十一章《一元二次方程》知识点(答案解析)(1)

2021年九年级数学上册第二十一章《一元二次方程》知识点(答案解析)(1)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2-C .2D .4 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x += 3.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=- 4.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A .512B .512C 53+D 21 5.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠ 6.方程22x x =的解是( ) A .0x =B .2x =C .10x =,22x =D .10x =,22x =7.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=28.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根9.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 10.下列方程中是关于x 的一元二次方程的是( )A .210x x +=B .ax 2+bx +c =0C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)211.方程23x x =的解为( ) A .3x = B .3x =- C .10x =,23x = D .10x =,23x =-12.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x += B .24410x x -+= C .210x x ++=D .210x x +-= 13.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 14.下列方程中,有两个不相等的实数根的是( ) A .x 2=0 B .x ﹣3=0 C .x 2﹣5=0 D .x 2+2=0 15.如图,是一个简单的数值运算程序,则输入x 的值为( )A .31+B .31-+C .31+或31-+D .无法确定二、填空题16.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.17.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.18.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______. 19.一元二次方程-+=(5)(2)0x x 的解是______________.20.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.21.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.22.一元二次方程()10x x -=的根是________________________.23.关于x 的方程2880kx x -+=有两个实数根,则k 的取值范围______________.24.一元二次方程x 2=2x 的解为__________25.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.26.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 三、解答题27.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.28.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=29.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.30.解方程:212270x x -+=。

2021年新人教版九年级上数学第21章_一元二次方程单元测试卷含答案

2021年新人教版九年级上数学第21章_一元二次方程单元测试卷含答案

2021年新人教版九年级上数学第21章一元二次方程单元测试卷含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 若关于x的一元二次方程x2−2ax+a=0有两个不相同的实数根,则实数a的取值范围是()A.a≥0B.a<1C.a>1或a<0D.a≤12. 若x=−1是关于x的一元二次方程ax2+bx−1=0的一个根,则2021+2a−2b=( )A. 2020B.2021C.2022D.20233. 解一元二次方程x(x−1)=x−1的过程中,变形正确的为( )A.x=1B.(x+1)(x−1)=0C.(x−1)2=0D.(x+1)2=04. 方程x2−3x−4=0的两根之和为()A.−4B.−3C.3D.45. 将一张长方形桌布铺在长为3m,宽为2m的长方形桌面上,各边下垂的长度相同,且桌布的面积是桌面面积的2倍,求桌布下垂的长度,设桌布下垂的长度为xm,则所列的方程是( )A.(2x+3)(2x+2)=2×3×2B.2(x+3)(x+2)=3×2C.(x+3)(x+2)=2×3×2D.2(2x+3)(2x+2)=3×26. 若关于x的方程(a−2)x2−3x+a=0是一元二次方程,则()A.a≠2B.a>2C.a=0D.a>07. 用配方法解一元二次方程x2+4x−5=0,此方程可变形为( )A.(x+2)2=9B.(x−2)2=9C.(x+2)2=1D.(x−2)2=18. 根据方程x2−3x−5=0可列表如下()A.−1<x<4B.−2<x<−1C.4<x<5D.−2<x<−1或4<x<59. 一个两位数,十位数字与个位数字之和为9,且这两个数字之积等于它们两个数字和的2倍,这个两位数是( )A.36B.72C.36或63D.27或7210.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x 的范围是( )<1.4 D.1.1<x<1.4二、填空题(本题共计 6 小题,每题 3 分,共计18分,)11. 某商品经过连续两次降价,售价由原来的100元/件降到64元/件,则平均每次降价的百分率为________.12. 将方程2x(x+1)=3x2−3化为一般式为:________.13. 某种商品两次降价后,每件售价从原来100元降到81元,平均每次降价的百分率是________.14. 已知x为实数,设M=x2+1,N=2x−3,则M与N的大小关系为M________N.15. 若方程(x−2)2=a−4有实数根,则a的取值范围是________.16. 方程3x2−8xy+7y2−4x+2y=109的整数解是________.三、解答题(本题共计 8 小题,每题 9 分,共计72分,)17. 用适当的方法解方程.(1)3(x−7)2=x(7−x);(2)2x(x+4)=1.18. 如图,某课外活动小组借助直角墙角(两边足够长)用篱笆围成矩形花园ABCD,篱笆只围AB,BC两边.已知篱笆长为40m,篱笆围成的矩形ABCD的面积为300m2.求边AB的长.19. 已知n边形的对角线共有n(n−3)2条(n是不小于3的整数);(1)五边形的对角线共有________条;(2)若n边形的对角线共有35条,求边数n;(3)若n边形的边数增加1,对角线总数增加9,求边数n.20. 阅读下面的材料,回答问题:解方程x4−5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2−5y+4=0①,解得y1=1,y2= 4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=−1,x3=2,x4=−2.请你按照上述解题思想解方程(x2+x)2−4(x2+x)−12=0.21. 已知关于x的一元二次方程x²−3x+m−2=0有实数根.(1)求m的取值范围;(2)当m为符合条件的最大整数时,求此时方程的解.22. 已知关于x的一元二次方程x2−kx+k2−14=0.(1)求证:方程有两个实数根;(2)若等腰三角形ABC的两边是一元二次方程的两个根,当k=2时,求△ABC的周长.23. 阅读下面的例题.解方程:x2−|x|−1=0.解:(1)当x≥0时,原方程化为x2−x−2=0,解得:x1=2,x2=−1(不合题意,舍去).(2)当x<0时,原方程化为x2+x−2=0,解得:x1=−2,x2=1(不合题意,舍去).∴原方程的解是x1=2,x2=−2.请参照上述方法解方程x2−|x−1|−1=0.24. 在化简:(x+1)(x−1)+(◆ x2−1)时,表示+,−,×,÷四个运算符号中的某一个,◆ 表示二次项的系数.(1)若表示“×”.①嘉琪把◆ 错看成2,请化简(x+1)(x−1)+(2x2−1);②若结果是一个常数,请说明◆ 表示的数是几;(2)若◆ 表示−2,当x=1时,(x+1)(x−1)+(−2x2−1)的值为−1,请推算所表示的符号.参考答案与试题解析2021年新人教版九年级上数学第21章一元二次方程单元测试卷含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】根的判别式【解析】(1).解题的关键是根据是从一元二次方程有两个不相同的实数根下手.【解答】解:已知若关于x的一元二次方程x2−2ax+a=0有两个不相同的实数根,Δ=b2−4ac=4a2−4a=4a(a−1)>0.解得a>1或a<0.故选C.2.【答案】D【考点】一元二次方程的解【解析】根据方程解的定义,求出a+b,利用作图代入的思想即可解决问题.【解答】解:∵关于x的一元二次方程ax2+bx−1=0的一个解是x=−1,∴(−1)2a−b−1=0,∴a−b=1,∴原式=2021+2(a−b)=2021+2=2023.故选D.3.【答案】C【考点】解一元二次方程-因式分解法【解析】依题意,将方程右边代数式移项到左边,然后提取公因式,即可.【解答】解:依题意:x(x−1)=x−1,移项x(x−1)−(x−1)=0,提取公因式(x−1)2=0.故选C.4.C【考点】根与系数的关系【解析】根据根与系数的关系求解.【解答】=3.解:方程x2−3x−4=0的两根之和为−ba故选C.5.【答案】A【考点】由实际问题抽象出一元二次方程一元二次方程的应用——几何图形面积问题【解析】此题暂无解析【解答】解:依题得图:根据面积相等可得:(2x+3)(2x+2)=2×3×2,故选A.6.【答案】A【考点】一元二次方程的定义【解析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】关于x的方程(a−2)x2−3x+a=0是一元二次方程,得a−2≠0,所以a≠2.7.【答案】A【考点】解一元二次方程-配方法【解析】(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2+4x−5=0,∴x2+4x+4=5+4,∴(x+2)2=9.故选A.8.【答案】D【考点】估计一元二次方程的近似解【解析】观察表格可知,x2−3x−5的值在−2∼−1之间由正到负,在4∼5之间由负到正,故可判断x2−3x−5=0时,对应的x的值在−2∼−1与4∼5之间.【解答】解:根据表格可知,x2−3x−5=0时,对应的x的值在−2∼−1与4∼5之间.故选D9.【答案】C【考点】一元二次方程的应用——数字问题【解析】设十位数字为x,个位数字为(9−x),根据这两个数字之积等于它们数字和的2倍列方程求出其解即可.【解答】解:设十位数字为x,个位数字为(9−x),由题意得,x(9−x)=9×2,解得:x1=3,x2=6,∴9−x=6或9−x=3,∴这个两位数是36或63.故选C.10.【答案】A【考点】估计一元二次方程的近似解【解析】仔细看表,可发现y的值−0.59和0.84最接近0,再看对应的x的值即可得出答案.【解答】解:由表可以看出,当x取1.1与1.2之间的某个数时,y=0,则ax 2+bx +c =0的一个解x 的取值范围为1.1<x <1.2.故选A .二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】20%【考点】一元二次方程的应用——增长率问题一元二次方程的应用【解析】设降价得百分率为x ,根据降低率的公式a(1−x)2=b 建立方程,求解即可.【解答】解:设降价的百分率为x ,根据题意可列方程为100(1−x)2=64,解方程得x 1=15,x 2=95(舍), ∴ 每次降价得百分率为20%.故答案为:20%.12.【答案】x 2−2x −3=0【考点】一元二次方程的一般形式【解析】直接去括号,整理,化简即可.【解答】解:∵ 2x(x +1)=3x 2−3,∴ 2x 2+2x =3x 2−3,即x 2−2x −3=0.故答案为:x 2−2x −3=0.13.【答案】10%【考点】一元二次方程的应用——增长率问题【解析】此题暂无解析【解答】解:设平均每次降价的百分率是x ,则100(1−x)2=81,解得x =0.1,所以平均每次降价的百分率是10%.故答案为:10%.14.>【考点】非负数的性质:偶次方配方法的应用【解析】将M与N代入M−N中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M−N=x2+1−2x+3=(x−1)2+3≥3>0,∴M>N.故答案为:>.15.【答案】a≥4【考点】一元二次方程根的分布根的判别式【解析】根据已知得出关于a的不等式,求出不等式的解即可.【解答】解:∵方程(x−2)2=a−4有实数根,∴a−4≥0,∴a≥4.故答案为:a≥4.16.【答案】(14, 9);(−10, −7);(2, 5);(2, −3)【考点】一元二次方程的整数根与有理根【解析】将方程3x2−8xy+7y2−4x+2y=109整理为关于x的一元二次方程,再利用根的判别式以及完全平方数确定所有方程组的解.【解答】解:3x2+(−8y−4)x+(7y2+2y−109)=0,其判别式△=(8y+4)2−12(7y2+2y−109)=4(−5y2+10y+331)应为完全平方数,设−5y2+10y+331=u2(u为正整数),则x=4y+2±u3(1),又由−5y2+10y+331−u2=0(2),其判别式△′=100+20(331−u2)=4×5(336−u2)应为完全平方数.从而336−u2必有因数5,设336−u2=5v2(v为正整数)(3),则y=1±v(4),v2=15(336−u2)<15(336−12)=67,易得方程(3)的正整数解为{u 1=4v 1=8{u 2=16v 2=4, 代入(1)(4)可得原方程组的四组整数解:(14, 9);(−10, −7);(2, 5);(2, −3). 故填:(14, 9);(−10, −7);(2, 5);(2, −3).三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )17.【答案】解:(1)3(x −7)2=x(7−x),移项得:3(x −7)2+x(x −7)=0,合并同类项得:[3(x −7)+x](x −7)=0,化简得:(4x −21)(x −7)=0,解得:x 1=214,x 2=7.(2)2x(x +4)=1,去括号、移项得:2x 2+8x −1=0,Δ=82−4×2×(−1)=72,∴ x =−8±√724=−4±3√22, 即x 1=−4+3√22,x 2=−4−3√22. 【考点】解一元二次方程-因式分解法解一元二次方程-公式法【解析】此题暂无解析【解答】解:(1)3(x −7)2=x(7−x),移项得:3(x −7)2+x(x −7)=0,合并同类项得:[3(x −7)+x](x −7)=0,化简得:(4x −21)(x −7)=0,解得:x 1=214,x 2=7.(2)2x(x +4)=1,去括号、移项得:2x 2+8x −1=0,Δ=82−4×2×(−1)=72,∴ x =−8±√724=−4±3√22, 即x 1=−4+3√22,x 2=−4−3√22. 18.【答案】解:设AB =x ,则BC =40−x ,则有x(40−x)=300,解得x 1=10,x 2=30,一元二次方程的应用——几何图形面积问题【解析】暂无【解答】解:设AB =x ,则BC =40−x ,则有x(40−x)=300,解得x 1=10,x 2=30,∴ AB 的长为10m 或30m .19.【答案】5(2)n(n−3)2=35,整理得n 2−3n =70,配方得(n −32)2=70+94, 即(n −32)2=2894, 开方得n −32=±172,解得n 1=32+172=10,n 2=32−172=−7(舍),∴ 多边形的边数n 为10;(3)由题意知(n+1)(n+1−3)2=n(n−3)2+9,即(n +1)(n −2)=n(n −3)+18,化简得2n =20,即n =10.即边数n 为10.【考点】一元二次方程的应用——其他问题多边形的对角线【解析】此题暂无解析【解答】解:(1)N =5(5−3)2=5(条).故答案为:5;(2)n(n−3)2=35,整理得n 2−3n =70,配方得(n −32)2=70+94,即(n −32)2=2894, 开方得n −32=±172,解得n1=32+172=10,n2=32−172=−7(舍),∴多边形的边数n为10;(3)由题意知(n+1)(n+1−3)2=n(n−3)2+9,即(n+1)(n−2)=n(n−3)+18,化简得2n=20,即n=10.即边数n为10.20.【答案】解:y=x2+x,则由原方程,得y2−4y−12=0,整理,得(y−6)(y+2)=0,解得y=6或y=−2,当y=6时,x2+x=6,即(x+3)(x−2)=0,解得x1=−3,x2=2.当y=−2时,x2+x=−2,即x2+x+2=0,该方程无解.综上所述,该方程的解为:x1=−3,x2=2.【考点】换元法解一元二次方程【解析】设y=x2+x,将原方程转化为关于y的一元二次方程,通过解方程求得y即x2+x的值,然后再来解关于x的一元二次方程.【解答】解:y=x2+x,则由原方程,得y2−4y−12=0,整理,得(y−6)(y+2)=0,解得y=6或y=−2,当y=6时,x2+x=6,即(x+3)(x−2)=0,解得x1=−3,x2=2.当y=−2时,x2+x=−2,即x2+x+2=0,该方程无解.综上所述,该方程的解为:x1=−3,x2=2.21.【答案】(1)m≤174;(2))x1=1,x2=2【考点】一元二次方程根的分布【解析】(1)根据一元二次方程根与判别式的关系可得答案;(2)根据(1)中m的取值范围可得出m的值,即可得出此时的方程,解方程即可得答案.【解答】(1)关于x 的一元二次方程x 2−3x +m −2=0有实数根, Δ=(−3)2−4(m −2)=9−4m +8=17−4m ≥0 m ≤174(2)∵ m ≥174,m 为最大的整数,m =4…方程为x 2−3x +2=0(x −1)(x −2)=0解得:x 1=1,x 2=2….m 为符合条件的最大整数时,方程得根为x 1=1,x 2=2 22.【答案】(1)证明:∵ Δ=(−k )2−4×1×(k 2−14) =k 2−2k +1=(k −1)2≥0,∴ 方程有两个实数根.(2)解:当k =2时,方程为x 2−2x +34=0, 解得x 1=12,x 2=32.①当12为腰时,∵ 12+12<32,∴ 12,12,32不能构成三角形;②当32为腰时,等腰三角形的三边长分别为32,32,12, 此时周长为32+32+12=72,∴ 当k =2时,△ABC 的周长为72. 【考点】根的判别式三角形三边关系解一元二次方程-因式分解法等腰三角形的性质【解析】【解答】(1)证明:∵ Δ=(−k )2−4×1×(k 2−14) =k 2−2k +1=(k −1)2≥0,∴ 方程有两个实数根.(2)解:当k =2时,方程为x 2−2x +34=0, 解得x 1=12,x 2=32.①当12为腰时,∵ 12+12<32, ∴ 12,12,32不能构成三角形;②当32为腰时,等腰三角形的三边长分别为32,32,12, 此时周长为32+32+12=72,∴ 当k =2时,△ABC 的周长为72.23.【答案】解:x 2−|x −1|−1=0,(1)当x ≥1时,原方程化为x 2−x =0,解得:x 1=1,x 2=0(不合题意,舍去).(2)当x <1时,原方程化为x 2+x −2=0,解得:x 1=−2,x 2=1(不合题意,舍去).故原方程的解是x 1=1,x 2=−2.【考点】含绝对值符号的一元二次方程解一元二次方程-因式分解法【解析】此题暂无解析【解答】解:x 2−|x −1|−1=0,(1)当x ≥1时,原方程化为x 2−x =0,解得:x 1=1,x 2=0(不合题意,舍去).(2)当x <1时,原方程化为x 2+x −2=0,解得:x 1=−2,x 2=1(不合题意,舍去).故原方程的解是x 1=1,x 2=−2.24.【答案】解:(1)①(x +1)(x −1)+(2x 2−1)=x 2−1+2x 2−1=3x 2−2.②设◆ 表示的数为a ,(x +1)(x −1)+(ax 2−1)=(1+a)x 2−2, ∵ 化简结果是一个常数,∴ 1+a =0,∴ a =−1,∴ ◆ 表示的数是−1.(2)由题意得,20+(−2−1)=−1,∴ 20=2,∴ 表示的符号为+或−.【考点】含字母系数的一元二次方程平方差公式【解析】此题暂无解析【解答】解:(1)①(x+1)(x−1)+(2x2−1)=x2−1+2x2−1=3x2−2.②设◆表示的数为a,(x+1)(x−1)+(ax2−1)=(1+a)x2−2,∵ 化简结果是一个常数,∴ 1+a=0,∴ a=−1,∴ ◆表示的数是−1.(2)由题意得,20+(−2−1)=−1,∴ 20=2,∴ 表示的符号为+或−.。

湖北省武汉市勤学早元月调考九年级数学模拟试卷(一)(word版含答案)

湖北省武汉市勤学早元月调考九年级数学模拟试卷(一)(word版含答案)

勤学早●2021元月调考数学模拟试卷(一)一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A.x x 6132=+B.x x 6132=-C.1632=+x xD.1632=-x x 2.下列由正三角形和正方形拼成的图形中,不是中心对称图形的是( )3.二次函数12-=x y 的图象的顶点坐标为( )A.(0,1)B.(0,-1)C.(1,0)D.(-1,0)4.一个不透明的袋子中装有10个黑球和1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( )A.这个球一定是黑球B.摸到黑球和白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球5.已知⊙O 的半径等于8,圆心O 到直线l 上一点的距离为9,则直线l 与⊙O 的公共点的个数为( )A.0B.1C.2D.0或1或26.已知二次函数22-+=bx x y 的图象与x 轴的一个交点的坐标为(1,0),则它与x 轴的另一个交点的坐标是( )A.(1,0)B.(-2,0)C.(2,0)D.(-1,0)7.如图,将△ABC 绕点C 顺时针旋转25°,得到△B A '' C.若AC⊥B A '',则∠BAC 的度数为( )A.65°B.75°C.55°D.35°8. 从甲、乙、丙、丁四人中随机抽调两人参加“垃圾分类宣传”志愿服务队,恰好抽到甲和乙的概率是( ) A.121 B.81 C.61 D.219.关于x 的方程0)1(222=-+-+m m x m x 有两个实数根α,β,且1222=+βα,那么m 的值为( )A.-1B.-4C.-4或1D.-1或4 10.如图,△AB C 是⊙O 的内接等边三角形,D 是弧AC 上一点,连接DA ,DB,DC ,CD=22,∠ABD=15°,则△ADB 的面积为( ) A.32 B.3 C.2 D.22 二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B 关于原点的对称点的坐标是________12.某射击运动员在同一条件下的射击成绩统计记录如下:射击次数20 80 100 200 400 1000 “射中九环以上”的次数 18 68 82 168 327 803 “射中九环以上”的频率 (结果保留两位小数)0.90.850.820.840.820.80根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率(结果保留一位小数)约是_________13.如图,⊙O 是△ABC 的外接圆,连接OA,∠OAC=20°,则∠ABC 的度数为_________第13题图 第14题图 第15题图14.如图是一张长12cm,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm 2的有盖的长方体铁盒,设剪去的正方形的边长为x cm,根据题意,所列方程化成一般形式后为__________________15.如图,AB 为⊙O 的直径,BC,CD 是⊙O 的切线,切点分别为B,D,点E 为线段OB 上的一个动点,连接CE,DE.若AB=34,BC=2,则CE+DE 的最小值为__________16.下列关于函数642+-=x x y 的四个命题: ①当x =2时,y 有最大值2;②若函数图象经过点(0,m a )和(1,0+m b ),其中a <0,b>2,则4>+b a ; ③m 为任意实数,m x -=2时的函数值大于m x +=2时的函数值; ④当-3≤x ≤3时,2≤y≤27.上述四个命题中,其中真命题是(填写所有真命题的序号).________ 三解答题(共8小题,共72分)17.(本题8分)已知x =-2是关于x 的一元二次方程0)2()1(22=+---m m x m x 的一个根,求实数m 的值.18.(本题8分)如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,∠ACD=30°,AE=2.求DB 的长.19.(本题8分)一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n 个白球,搅匀后从盒子里随机摸出1个球,摸到白球的概率为5. (1)n 的值是_____(直接写出结果)(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出1个球.求两次摸球摸到一个白球和一个黑球的概率,请用画树状图或列表的方法进行说明.20.(本题8分)如图,正六边形ABCDEF.请仅用无刻度直尺完成下列画图,不写画法,保留画图痕迹(用虛线表示画图过程,实线表示画图结果)。

2021年九年级数学上册第二十一章《一元二次方程》经典复习题(答案解析)

2021年九年级数学上册第二十一章《一元二次方程》经典复习题(答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.5D解析:D【分析】设AD 长为x 米,四边形ABCD 是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x (30−4x )=54,解此方程即可求得x 的值.【详解】解:设与墙头垂直的边AD 长为x 米,四边形ABCD 是矩形,∴BC =MN =PQ =x 米,∴AB =30−AD−MN−PQ−BC =30−4x (米),根据题意得:x (30−4x )=54,解得:x =3或x =4.5,∴AD 的长为3或4.5米.故选:D .【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.3.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5%A 解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 4.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-=D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116 D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109B 解析:B【分析】 将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A 、由x 2﹣2x ﹣99=0得x 2﹣2x=99,则x 2﹣2x+1=100,即(x ﹣1)2=100,故本选项正确,不符合题意;B 、由x 2+8x+9=0得x 2+8x=-9,则x 2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C 、由2x 2﹣7x ﹣4=0得2x 2﹣7x=4,则x 2﹣72x =2,∴x 2﹣72x+4916=2+4916,即274x ⎛⎫- ⎪⎝⎭=8116,故本选项正确,不符合题意; D 、由3x 2﹣4x ﹣2=0,得3x 2﹣4x=2,则x 2﹣43x =23,∴故x 2﹣43x+49=23+49,即(x﹣23)2=109,故本选项正确,不符合题意; 故选:B .【点睛】 本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a 2x +bx +c =0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4B 解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .3D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.8.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=D 解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.9.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=D 解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0C 解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 二、填空题11.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 12.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或 解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.13.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019.【点睛】本题考查根与系数关系.熟记根与系数关系的公式是解题关键.14.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____.3【分析】先移项再两边配上4写成完全平方公式即可【详解】解:∵∴即故答案为:3【点睛】本题考查了用配方法解一元二次方程掌握用配方法解一元二次方程的步骤即可 解析:3【分析】先移项,再两边配上4,写成完全平方公式即可.【详解】解:∵241x x +=-,∴24414x x ++=-+,即()223x +=,故答案为:3.【点睛】本题考查了用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤即可. 15.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.16.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.17.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.若()22214x y +-=,则22x y +=________.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a aαβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021; ∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.解析:(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.22.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?解析:(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 23.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 解析:每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)1x =,2x =2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=2±,解得:1x =2x =. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 25.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 解析:11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义, 则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键. 26.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.解析:(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴22x -±=, 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用求解. 27.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩ 解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-.(2)()31512272x x x ->⎧⎨+<+⎩解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】 本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.28.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。

勤学早九年级数学(上)第21章《一元二次方程》周测(一)关键题(word版)

勤学早九年级数学(上)第21章《一元二次方程》周测(一)关键题(word版)

勤学早九年级数学(上)第21章《一元二次方程》周测(一)关键题编辑:一品数学9.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对10.已知m,n使关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=6,则a的值为()A.-10 B.4 C.-4 D.1015.(2016锦江)小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2-2b+3.若将实数对(x,-2x)放入其中,得到一个新数为8,则x=___________.16.(2017莱芜)若点(5-k2,2k+3)在第四象限,且在第二、四象限的角平分线上,则k的值是______.22.已知关于x的一元二次方程x2-4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1、x2,且满足x1-x2=-8,求实数m的值.23.(2017嵊州)如图,如图,在边长为12 cm的等边△ABC中,点P从点A开始沿AB边向点B以1 cm/s 的速度移动,点Q从点B开到始沿BC边向点C以2 cm/s的速度移动.若P,Q分别从A,B同时出发,其中任意一点到达目的地后,两点同时停止运动.(1)第6秒时,BP=_________cm,BQ=_________cm;(2)经过几秒时,△BPQ是直角三角形?(3)经过几秒时,△BPQ的面积等于103cm2?24.(2017濉溪)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=2c,这时我们把关于x的形如ax2+2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”___________________(一个即可);(2)求证:关于x的“勾系一元二次方程”ax2+2cx+b=0必有实数根;(3)若x=-1是“勾系一元二次方程”ax2+2cx+b=0的一个根,且四边形ACDE的周长是62,求△ABC面积.。

九年级数学上册第二十一章一元二次方程经典大题例题(带答案)

九年级数学上册第二十一章一元二次方程经典大题例题(带答案)

九年级数学上册第二十一章一元二次方程经典大题例题单选题为根的一元二次方程可能是()1、以x=4±√16+4c2A.x2−4x−c=0B.x2+4x−c=0C.x2−4x+c=0D.x2+4x+c=0答案:A分析:根据求根公式逐一判断即可.,符合题意;解:A.此方程的根为x=4±√16+4c2,不符合题意;B.此方程的根为x=−4±√16+4c2,不符合题意;C.此方程的根为x=4±√16−4c2,不符合题意;D.此方程的根为x=−4±√16−4c2故选:A.小提示:本题主要考查解一元二次方程—公式法,解题的关键是掌握求根公式.2、若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2答案:B分析:根据根与系数的关系即可求出答案.设x2+x+m=0另一个根是α,∴﹣1+α=﹣1,∴α=0,故选:B.小提示:本题考查一元二次方程根与系数的关系,解题的关键是熟练运用一元二次方程根与系数的关系,本题属于基础题型.3、用配方法解方程x2−6x−8=0时,配方结果正确的是()A.(x−3)2=17B.(x−3)2=14C.(x−6)2=44D.(x−3)2=1答案:A分析:利用配方法把方程x2−6x−8=0变形即可.用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选A.小提示:本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.4、下列是关于x的一元二次方程的是()A.x2−1=2021B.x(x+6)=0C.a2x−5=0D.4x−x3=2x答案:B分析:根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.解:A.是分式方程,不是一元二次方程,不符合题意;B.是一元二次方程,符合题意;C.当a=0时,不是一元二次方程,不符合题意;D.是一元三次方程,不符合题意;故选:B.小提示:本题考查的是一元二次方程的概念,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.5、已知m为方程x2+3x−2022=0的根,那么m3+2m2−2025m+2022的值为()A.−2022B.0C.2022D.4044答案:B分析:根据题意有m2+3m−2022=0,即有m3+3m2−2022m=0,据此即可作答.∵m为x2+3x−2022=0的根据,∴m2+3m−2022=0,且m≠0,∴m3+3m2−2022m=0,则有原式=(m 3+3m 2−2022m)−(m 2+3m −2022)=0−0=0,故选:B .小提示:本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为x 2+3x −2022=0得到m 2+3m −2022=0是解答本题的关键.6、下列方程中,一元二次方程共有( )个.①x 2﹣2x ﹣1=0;②ax 2+bx +c =0;③2x 2+3x −5=0;④﹣x 2=0;⑤(x ﹣1)2+y 2=2;⑥(x ﹣1)(x ﹣3)=x 2A .1B .2C .3D .4答案:B分析:根据一元二次方程根的定义一一判定即可.解:①x 2﹣2x ﹣1=0,符合一元二次方程的定义,是一元二次方程;②ax 2+bx +c =0,没有二次项系数不为0这个条件,不符合一元二次方程的定义,不是一元二次方程; ③2x 2+3x −5=0不是整式方程,不符合一元二次方程的定义,不是一元二次方程;④﹣x 2=0,符合一元二次方程的定义,是一元二次方程;⑤(x ﹣1)2+y 2=2,方程含有两个未知数,不符合一元二次方程的定义,不是一元二次方程;⑥(x ﹣1)(x ﹣3)=x 2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义,不是一元二次方程.综上所述,一元二次方程共有2个.故选:B .小提示:本题考查了一元二次方程的定义,解题的关键在于判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.7、一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共共握66次手.若设这次会议到会的人数为x 人,依题意可列方程( )A .12x (x ﹣1)=66B .12(1+x)2=66C .x (1+x )=66D .x (x ﹣1)=66答案:A分析:利用参会人员共握手次数=参会人数×(参会人数﹣1)÷2,即可得出关于x的一元二次方程,此题得解.解:依题意得:12x(x−1)=66.故选:A.小提示:本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8、我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多.....x步.,则下列符合题意的方程是()A.(60 - x)x = 864B.60−x2×60+x2= 864C.(60 + x)x = 864D.(30 + x)(30 - x)= 864 答案:B分析:画图分析即可得,宽为60−x2步,长为60+x2步,根据面积关系即可得方程.画图如下:由图知:宽为60−x2步,长为60+x2步则可得方程为:60−x2×60+x2= 864故选:B小提示:本题考查了一元二次方程的实际应用,弄懂题意并画图分析得到宽与长是关键.9、已知x=−2是方程x2+ax+2=0的一个根,则a的值为()A.1B.-1C.3D.−3答案:C分析:将x=−2代入方程x2+ax+2=0即可解出.将x=−2代入x2+ax+2=0可得4−2a+2=0解得a=3,故答案为C.小提示:本题考查了一元二次方程,将一个根代入得到关于a的方程是本题的关键.10、我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是()A.3(x−1)x=6210B.3(x−1)=6210C.(3x−1)x=6210D.3x=6210答案:A分析:设这批椽的数量为x株,则一株椽的价钱为3(x−1)文,利用总价=单价×数量,即可得出关于x的一元二次方程,此题得解.解:∵这批椽的数量为x株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x−1)文,依题意得:3(x−1)x=6210,故选:A.小提示:本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.填空题11、若关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,则m+n的值是___.答案:1分析:根据一元二次方程解的定义把x=1代入到mx2+nx−1=0(m≠0)进行求解即可.解:∵关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,∴m+n−1=0,∴m+n=1,所以答案是:1.小提示:本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.12、若a是方程x2+x−1=0的一个根,则代数式−3a2−3a+2022的值为________.答案:2019分析:根据a是方程x2+x−1=0一个根,可以得到a2+a−1=0,然后即可得到a2+a=1,再整体代入所求式子计算即可.解:∵a是方程x2+x−1=0一个根,∴a2+a−1=0,∴a2+a=1,∴−3a2−3a+2022=−3(a2+a)+2022=−3×1+2022=−3+2022=2019,所以答案是:2019.小提示:本题考查一元二次方程的解,解答本题的关键是明确题意,利用整体代入的思想解答.13、已知α,β是方程x2+2021x+1=0的两个根,则(α2+2022α+1)(β2+2022β+1)=_____.答案:1分析:利用一元二次方程解的定义得到α2+2021α+1=0,β2+2021β+1=0;根据根与系数的关系得到:αβ=1,然后将其代入(α2+2022α+1)(β2+2022β+1)进行求值即可.解:∵α,β是方程x2+2021x+1=0的两个根,∴α2+2021α+1=0,β2+2021β+1=0,αβ=1,∴(α2+2022α+1)(β2+2022β+1)=(α2+2021α+1+α)(β2+2021β+1+β)=(0+α)(0+β)=αβ=1.故答案是:1.小提示:本题主要考查了一元二次方程解和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14、近来房地产市场进入寒冬期,某楼盘原价为每平方米10000元,连续两次降价后售价为8100元,则平均每次降价的百分率是______.答案:10%分析:设平均每次降价的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.解:设平均每次降价的百分率为x,依题意得:10000(1-x)2=8100,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).所以答案是:10%.小提示:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15、小明在计算某数的平方时,将这个数的平方误看成它的2倍,使答案少了35,则这个数为_________.答案:7或-5##−5或7分析:设这个数为x,根据这个数的平方-2×这个数=35,列出方程,解方程即可.解:设这个数为x,根据题意得:x2−2x=35,解得:x=7或x=−5.所以答案是:7或-5.小提示:本题主要考查了一元二次方程的应用,根据题目中的等量关系列出方程,是解题的关键.解答题16、如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD 边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值:若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动_________秒时,四边形BCMP的周长最小,其最小值为_________.答案:(1)4(2)存在,t=3;2√89+30(3)52分析:(1)利用一组对边平行且相等的四边形是平行四边形的判定方法,得到PD=BQ=10,列出一元一次方程求解即可;(2)利用菱形的判定,由一组邻边相等的平行四边形是菱形,得到PB=PR=10,再利用勾股定理建立方程求解即可;(3)先确定四边形BCMP的周长等于30+QM+CM,再利用轴对称的知识和两点之间线段最短的知识确定QM+CM的最小值即可得到周长最小值,最后求出AP的长即可得到P点运动时间.(1)解:连接BP、DQ,∵BC=20,点Q为BC中点,∴BQ=CQ=10,要使四边形PBQD是平行四边形,则PD=BQ=10,∴18−2t=10,∴t=4,此时,PD=BQ且PD∥BQ,则四边形PBQD是平行四边形,∴当t为4时,四边形PBQD是平行四边形.(2)存在,t=3;假设R点在图中所示位置,则连接BP、QR,要使得B、Q、R、P四点为顶点的四边形是菱形,则有PB=PR=10,在Rt△ABP中,82+(2t)2=102,∴t=3,t=−3(舍去),此时AR=2×3+10=16,符合题意;∴在AD边上存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形,且t=3.(3)5;2√89+302如图,连接BP、QM,因为PM=10,∴PM=BQ且PM∥BQ,∴四边形PBQM是平行四边形,∴PB=QM,∵四边形BCMP的周长=PM+PB+BC+CM=10+QM+20+CM=30+QM+CM,∴当QM+CM的值最小时,四边形BCMP的周长最小,作Q点关于AD的对称点G,连接CG,则QG=2QE=16,四边形ABQE是矩形,∴AE=BQ=10,AB=EQ=8,当C、M、G三点共线时(即M点位于图中的F点处),QM+CM的值最小等于CG,∴Rt△GQC中,CG=√QG2+QC2=√162+102=2√89,此时,四边形BCMP的周长最小值为2√89+30,∵E点为QG中点,EF∥QC,∴EF=1QC=5,2∴AF=15,∴AP=15-10=5,∴t=5.2∴当点P从点A向右运动5秒时,四边形BCMP的周长最小,其最小值为2√89+30.2所以答案是:5;2√89+30.2小提示:本题考查了动点问题,涉及到了平行四边形的判定与性质、菱形的判定与性质、勾股定理解三角形、“将军饮马”问题、一元一次方程的应用、解一元二次方程等,解题关键是能正确建立方程,以及能确定最短路径.17、已知关于x的方程x2+(m−2)x−9=0.(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根.(2)若这个方程的两个实根α,β,满足2α+β=m+1,求m的值.答案:(1)证明见解析(2)m1=2,m2=−12分析:(1)△=b2−4ac>0,无论m取什么实数,这个方程总有两个不相等的实数根;(2)根据根与系数关系可得:(2m−1)2+(m−2)(2m−1)−9=0,即可求解.(1)证明:∵b2−4ac=(m−2)2−4×1−(−9)=(m−2)2+36,无论m取何实数,b2−4ac的值都大于零.∴这个方程总有两个不相等的实数根.(2)解:∵α,β是方程的两个实数根,∴α+β=2−m.又∵2α+β=m+1,∴α+2−m=m+1.∴α=2m−1,代入原方程得:(2m−1)2+(m−2)(2m−1)−9=0,化简得:2m2−3m−2=0..解得:m1=2,m2=−12小提示:本题考查了根的判别式及根与系数的关系、解一元二次方程,解题的关键是熟知根与系数的关系及用根的判别式判定根的情况.18、2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?答案:(1)10%;(2)13.31万分析:(1)设这两个月参观人数的月平均增长率为x,根据题意列出等式解出x即可;(2)直接利用(1)中求出的月平均增长率计算即可.(1)解:设这两个月参观人数的月平均增长率为x,由题意得:10(1+x)2=12.1,解得:x1=10%,x2=−21(不合题意,舍去),10答:这两个月参观人数的月平均增长率为10%.(2)12.1×(1+10%)=13.31(万人),答:六月份的参观人数为13.31万人.小提示:本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.。

人教版-数学-九年级上册- 第二十一章 一元二次方程(1)含答案解析

人教版-数学-九年级上册- 第二十一章 一元二次方程(1)含答案解析

一元二次方程1一.选择题(共8小题)1.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣42.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为()A.2 B.0 C.0或2 D.0或﹣23.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=24.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣5.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=26.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤17.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=08.已知m,n是方程x2﹣x﹣1=0的两实数根,则+的值为()A.﹣1 B.﹣C.D.1二.填空题(共8小题)9.为了美化环境,某市加大对绿化的投资,2007年用于绿化的投资20万元,2009年用于绿化的投资是25万元,求这两年绿化投资的平均增长率,设这两年绿化投资的平均增长率为x,根据题意所列的方程为_________.10.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=_________.11.已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=_________.12关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为_________.13.方程x2﹣3x=0的根为_________.14.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程_________.15.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得_________.16某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是_________.三.解答题(共8小题)17.已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.18.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?19.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?20天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?21.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为_________万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.22.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?24某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?一元二次方程1参考答案与试题解析一.选择题(共8小题)1.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣4考点:一元二次方程的解.专题:计算题.分析:将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选:B.点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.2.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为()A. 2 B.0 C0或2 D.0或﹣2考点:一元二次方程的解.分析:直接把x=2代入已知方程就得到关于m的方程,再解此方程即可.解答:解:∵x=2是一元二次方程x2﹣2mx+4=0的一个解,∴4﹣4m+4=0,∴m=2.故选:A.点评:本题考查的是一元二次方程的根即方程的解的定义.把求未知系数的问题转化为方程求解的问题.3.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D. x1=﹣6,x2=2考点:解一元二次方程-直接开平方法.专题:计算题.分析:利用直接开平方法得方程m(x+h)2+k=0的解x=﹣h±,则﹣h﹣=﹣3,﹣h+=2,再解方程m(x+h﹣3)2+k=0得x=3﹣h±,所以x1=0,x2=5.解答:解:解方程m(x+h)2+k=0(m,h,k均为常数,m≠0)得x=﹣h±,而关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,所以﹣h﹣=﹣3,﹣h+=2,方程m(x+h﹣3)2+k=0的解为x=3﹣h±,所以x1=3﹣3=0,x2=3+2=5.故选:B.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.4.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D. x1=﹣1+,x2=﹣1﹣考点:解一元二次方程-配方法.专题:计算题.分析:方程变形后,配方得到结果,开方即可求出值.解答:解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选:C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D. x1=﹣1,x2=2考点:解一元二次方程-因式分解法.专题:因式分解.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1考点:根的判别式.分析:根据根的判别式,令△≥0,建立关于m的不等式,解答即可.解答:解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x1=1,x2=2则两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选:B.点评:验算时要注意方程中各项系数的正负.8.已知m,n是方程x2﹣x﹣1=0的两实数根,则+的值为()A.﹣1 B﹣C.D. 1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到m+n=1,mn=﹣1,再利用通分把+变形为,然后利用整体代入的方法计算.解答:解:根据题意得m+n=1,mn=﹣1,所以+===﹣1.故选:A.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.二.填空题(共8小题)9.为了美化环境,某市加大对绿化的投资,2007年用于绿化的投资20万元,2009年用于绿化的投资是25万元,求这两年绿化投资的平均增长率,设这两年绿化投资的平均增长率为x,根据题意所列的方程为20×(1+x)2=25.考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:2009年绿化投资=2007年的绿化投资×(1+两年绿化投资的平均增长率)2,把相关数值代入即可求解.解答:解:∵2007年用于绿化的投资20万元,这两年绿化投资的平均增长率为x,∴2008年的绿化投资为20×(1+x),∴2009年的绿化投资为20×(1+x)×(1+x)=20×(1+x)2,∴可列方程为20×(1+x)2=25,故答案为:20×(1+x)2=25.点评:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b,得到2009年绿化投资的等量关系是解决本题的关键.10一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=1.考点:一元二次方程的定义.专题:计算题;待定系数法.分析:根据一元二次方程的定义和一元二次方程的解的定义得到a+1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.解答:解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.点评:本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.11.已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=2.考点:一元二次方程的解.专题:待定系数法.分析:把x=1代入已知方程列出关于k的一元一次方程,通过解方程求得k的值.解答:解:依题意,得2×12﹣3k×1+4=0,即2﹣3k+4=0,解得,k=2.故答案是:2.点评:本题考查了一元二次方程的解的定义.此题是通过代入法列出关于k的新方程,通过解新方程可以求得k的值.12关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为6.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣5)2﹣4k>0,解不等式得k<,然后在此范围内找出最大整数即可.解答:解:根据题意得△=(﹣5)2﹣4k>0,解得k<,所以k可取的最大整数为6.故答案为6.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.方程x2﹣3x=0的根为x1=0,x2=3.考点:解一元二次方程-因式分解法.分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.14.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程(30﹣2x)(20﹣x)=6×78.考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.解答:解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,故答案为:(30﹣2x)(20﹣x)=6×78.点评:此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.15.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0.考点:由实际问题抽象出一元二次方程.专题:方程思想.分析:本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.解答:解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.点评:本题考查了由实际问题抽象出一元二次方程的知识,对于面积问题应熟记各种图形的面积公式.另外,要学会通过图形求出面积.16.某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是20%.考点:一元二次方程的应用.专题:增长率问题.分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解答:解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=﹣220%(舍去)故答案为:20%.点评:本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.三.解答题(共8小题)17.已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义.分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴2﹣4(k﹣1)=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?考点:一元二次方程的应用.专题:应用题.分析:设AB的长度为x,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.解答:解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.19.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.解答:解:(1)设该品牌电动自行车销售量的月均增长率为x,根据题意列方程:150(1+x)2=216,解得x1=﹣220%(不合题意,舍去),x2=20%.答:求该品牌电动自行车销售量的月均增长率20%.(2)二月份的销量是:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800﹣2300)×(150+180+216)=500×546=273000(元).点评:本题考主要查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.20天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?考点:一元二次方程的应用.专题:应用题.分析:首先根据共支付给旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去黄果树风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了元,列出方程求解.解答:解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去具有喀斯特地貌特征的黄果树风景区旅游.点评:考查了一元二次方程的应用.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.考点:一元二次方程的应用.专题:增长率问题.分析:(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解答:解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.22.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?考点:一元二次方程的应用;分式方程的应用.专题:行程问题.分析:(1)利用原工作时间﹣现工作时间=4这一等量关系列出分式方程求解即可;(2)根据矩形的面积和为56平方米列出一元二次方程求解即可.解答:解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合题意,舍去).答:人行道的宽为2米.点评:本题考查了分式方程及一元二次方程的应用,解分式方程时一定要检验.23.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?考点:一元二次方程的应用.专题:销售问题.分析:利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.解答:解:设每个商品的定价是x元,由题意,得(x﹣40)=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=60时,进货180﹣10(60﹣52)=100个<180个,符合题意.答:当该商品每个定价为60元时,进货100个.点评:此题主要考查了一元二次方程的应用;找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.24.某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?考点:一元二次方程的应用.专题:增长率问题.分析:(1)根据提高后的产量=提高前的产量(1+增长率),设年平均增长率为x,则第一年的常量是100(1+x),第二年的产量是100(1+x)2,即可列方程求得增长率,然后再求第4年该工厂的年产量.(2)2014年的产量是100(1+x).解答:解:(1)2013年到2015年这种产品产量的年增长率x,则100(1+x)2=121,解得x1=0.1=10%,x2=﹣2.1(舍去),答:2013年到2015年这种产品产量的年增长率10%.(2)2014年这种产品的产量为:100(1+0.1)=110(万件).答:2014年这种产品的产量应达到110万件.点评:考查了一元二次方程的应用,本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出方程是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勤学早九年级数学(上)第21章
《一元二次方程》月考(一)
欧阳光明(2021.03.07)
考试范围:全章综合测试
解答参考时间:90分钟满分120分
一、选择题(共10小题,每小题3分,共30分)
1.(2015·天津)关于x的方程(a2-1)x2+x-2=0是一元二次方程,则a满足()
A.a≠1B.a≠-1C.a≠1且a≠-1D.为任意实数
2.(2015·武汉模拟)用公式法解一元二次方程3x2-2x+3=0时,首先要确定a、b、c的值,下列叙述正确的是()
A.a=3,b=2,c=3B.a=-3,b=2,c=3
C.a=3,b=2,c=-3D.a=3,b=-2,c=3
3.(2015·沈阳)一元二次方程x2-4=0的根为()
A.x=2B.x=-2C.x1=2,x2=-2D.x=4
4.(2015·东光)关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为()
1
A.1B.-1C.1或-1D.2
5.(2016·安定)安定区某企业2014年的产值是360万元,要使2016年的产值达到490万元,设该企业这两年的平均增长率为x,根据题意列方程,则下列方程正确的是()
A .360x 2=490
B .360(1-x )2=490
C .490(1+x )2=360
D .360(1+x )2=490
6.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()
A .5个
B .6个
C .7个
D .8个
7.一个面积为120 m 2的矩形苗圃,它的长比宽多 2 m ,苗圃的长是()
A .10 m
B .12 m
C .13 m
D .14 m
8.(2015·张家港)若M =2x 2-12x +15,N =x 2-8x +11,则M 与N 的大小关系为()
A .M ≥N
B .M >N
C .M ≤N
D .M <N
9.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为()
A .8人
B .9人
C .10人
D .11人
10.定义[a ,b ,c ]为方程ax 2+bx +c =0的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的方程的一些结论:①m =1时,方程的根为±1;② 若方程的两根互为倒数,则m =31
;③ 无论m 为何
值,方程总有两个实数根;④ 无论m 为何值,方程总有一个根等于1,其中正确有()
A .①②③
B .①②④
C .①③④
D .②③④
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一元二次方程x 2=16的解是___________
12.若方程3x 2-5x -2=0有一根是a ,则6a 2-10a 的值是__________
13.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__________
14.现有一块长80cm 、宽60cm 的矩形钢片,将它的四个角各剪去一个边长为xcm 的小正方形,做成一个底面积为1500cm 2的无盖的长方体盒子,根据题意列方程,化简可得___________
15.读诗词解题:大江东去浪淘尽,千古风流人物.而立之年督东吴,早逝英才两位数.十位恰小个位三,个位平方与寿符.哪位学子算得快,多少年华属周瑜.周瑜去世时___________岁
16.如图,矩形ABCD 是由三个矩形拼接成的.如果AB =8,阴影部分的面积是24,另外两个小矩形全等,则小矩形的长为___________
三、解答题(共8题,共72分)
17.(本题8分)解方程:x 2-2x =0
18.(本题8分)已知x 1、x 2是方程2x 2+3x -4=0的两个根,不解方程求:
(1)x 1+x 2+x 1x 2的值 (2) 2111x x 的值
19.(本题8分)已知关于x 的一元二次方程(x -3)(x -2)=|m |
(1) 求证:对于任意实数m ,方程总有两个不相等的实数根
(2) 若方程的一个根是1,求m 的值及方程的另一个根
20.(本题8分)有两人患了流感,经过两轮传染后共有242人患了流感,每轮传染中平均一个人传染几个人?
21.(本题8分)如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问P、Q两点从出发经过几秒时,点P、Q间的距离是10cm?
22.(本题10分)如图1,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15 m,一面利用旧墙,其余三面用篱笆围,篱笆长为24 m,设平行于墙的BC边长为xm
(1) 若围成的花圃面积为40 m2时,求BC的长
(2) 如图2,若计划在花圃中间用一道篱笆隔成两个小矩形,且花圃面积为50 m2,请你判断能否围成花圃?如果能,求BC的长;如果不能,请说明理由
23.(本题10分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时
(1) 渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2) 专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的
实际运行时间将增加10m
小时,求m 的值
24.(本题12分)在平面直角坐标系中,已知A (a ,a 2)、B (b ,b 2)两点,其中a <b ,P 、A 、B 三点共线
(1) 若点A 、B 在直线y =5x -6上,求A 、B 的坐标
(2) 若点P 的坐标为(-2,2),且PA =AB ,求点A 的坐标
(3) 求证:对于直线y =-2x -2上任意给定的一点P ,总能找到点A ,使PA =AB 成立
勤学早九年级数学(上)第21章《一元二次方程》月考(一)
参考答案
一、选择题(共10小题,每小题3分,共30分)
10.提示:③m =0时,方程为一元一次方程,只有一个根
二、填空题(共6小题,每小题3分,共18分)
11.x 1=4,x 2=-4 12.4 13.2
14.x 2-70x +825=015.36 16.6
15.提示:三十而立
三、解答题(共8题,共72分)
17.解:x 1=0,x 2=2
18.解:(1) 27 ;(2) 43
19.解:(1) 方程可化简为x 2-5x +6-|m |=0
∵△=(-5)2-4(6-|m |)=4|m |+1>0
∴对于任意实数m ,方程总有两个不相等的实数根
(2) 将x =1代入方程中,得
|m |=2,m =±2
∵x 1+x 2=5
∴方程的另一个根为4
20.解:设平均一个人传染x 个人
2+2x +(2+2x )x =242,解得x 1=10,x 2=-12(舍去)
答:每轮传染中平均一个人传染10个人
21.解:过点Q 作QN ⊥AB 于N
设经过时间t
则QC =2t ,PN =16-5t
在Rt △PQN 中,62+(16-5t )2=102,解得5245
821==t t , 22.解:(1) 依题意得,
224x
AB -= 40224=-⨯x x ,解得x 1=20,x 2=4
∵x ≤15
∴x =4
答:BC 的长为4 m
(2) ∵BC =x ∴
324x AB -= ∴50324=-⨯x x ,整理得x 2-24x +150=0
∵△=242-4×150=-24<0
∴不能围成
23.解:(1) 设原时速为xkm /h ,通车后里程为ykm
⎩⎨⎧+=+=+y x y x 320)168(120(8,解得⎩⎨⎧==160080y x
答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米 (2) 1600)1018%)(1)(12080(=+-+m m ,解得m 1=20,m 2=0(舍去)
24.解:(1) 令y =x 2,则x 2=5x -6,解得x 1=2,x 2=3
∵a <b
∴a =2,b =3
∴A (2,4)、B (3,9)
(2) A 、B 两点均在函数y =x 2上
设B (m ,m 2)
∵PA =AB
∴A 为PB 的中点
∴A (
22222+-m m ,) 将A (22222+-m m ,)代入y =x 2中,得4442222+-=+m m m ,解得m 1=
0,m 2=-4
∴A (-1,1)或(-3,9)
(3) ∵点P 在直线y =-2x -2上
设P (m ,-2m -2)
∵A (a ,a 2),PA =AB
∴B (2a -m ,2a 2+2m +2)(利用中点来表示)
将B(2a-m,2a2+2m+2)代入y=x2中,得(2a-m)2=2a2+2m +2
整理得,2a2-4ma+m2-2m-2=0
关于a的一元二次方程,△=(-4m)2-4×2(m2-2m-2)=8m2+16n+16
=8(m+1)2+8>0
∴无论m为何值,方程总有实数根
即直线y=-2x-2上任意给定的一点P,总能找到点A,使PA=AB成立。

相关文档
最新文档