数字信号处理FFT频谱分析
MATLAB中FFT函数的意义
MATLAB中FFT函数的意义FFT(Fast Fourier Transform)是一种高效的算法,用于计算离散傅里叶变换(Discrete Fourier Transform,DFT)的快速算法。
它在信号处理领域广泛应用,可以将时域上的信号转换为频域上的信号,从而更好地理解信号的频谱特性。
FFT在数字信号处理中的意义主要体现在以下几个方面:1.频谱分析:FFT可以将一个信号从时域转换到频域,即将信号分解为不同频率的分量。
这样可以更好地研究信号的频谱特性,例如信号的主要频率成分、频率分量的强度等。
基于FFT的频谱分析广泛应用于语音信号处理、音频处理、图像处理等领域,帮助人们理解和分析信号的频域特性。
2.滤波处理:FFT可以用于实现数字滤波器,通过选择性地去除或强调特定频率范围内的信号分量。
例如,在音频处理中,可以使用FFT来设计低通滤波器、高通滤波器或带通滤波器,以去除噪声或保留感兴趣的频域信息。
3.频谱平坦化:一些信号可能存在频率响应不均匀的问题,即不同频率分量的强度不平衡。
FFT可以用于频谱平坦化处理,即通过增益调整来使得不同频率分量的强度更加平均,提高信号质量。
4. 信号合成:FFT逆变换(Inverse FFT)可以将信号从频域重新回到时域。
这对于信号的合成与重构非常有用。
例如,在音频合成中,可以通过合成多个频率分量的信号来生成一个复杂的声音。
除了以上主要应用,FFT还用于信号压缩、图像处理、频率估计、谱峰检测、振动分析等领域。
它可以实现高效的计算,减少运算复杂度,提高信号分析与处理的速度和效率。
在MATLAB中,FFT函数被广泛应用于信号处理方面。
MATLAB提供了fft函数来计算FFT变换,ifft函数用于逆变换,fftshift函数用于调整FFT结果的频谱显示。
使用这些函数,用户可以方便地在MATLAB环境中进行频谱分析、信号合成、滤波处理等操作。
用户可以通过设置不同的参数和选项来实现各种不同的信号处理任务,并通过可视化工具(如MATLAB中的plot函数)来展示计算结果。
数字信号实验报告材料 (全)
数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。
2、熟悉 FFT 算法原理和 FFT 子程序的应用。
3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。
二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。
可以根据此时选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
实验四应用快速傅里叶变换对信号进行频谱分析
实验四应用快速傅里叶变换对信号进行频谱分析引言:频谱分析是信号处理领域中的重要技术之一,可以用于研究信号的频率特性和频域内的信号成分。
傅里叶变换是一种能将时域信号转换为频域信号的数学工具,通过将信号分解成一系列频率分量来分析信号。
快速傅里叶变换(FFT)是一种高效的计算傅里叶变换的方法,尤其适合实时信号处理。
实验目的:1.理解傅里叶变换在频谱分析中的应用;2.掌握使用FFT对信号进行频谱分析的方法;3.实现频谱分析并得出相应的频谱图。
实验器材和材料:1.信号源(例如信号发生器);2.电脑或数字信号处理器(DSP);3.音频线或数据线连接信号源和电脑或DSP。
实验步骤:1.确定实验所需信号源的类型和参数,例如正弦信号、方波信号或任意信号;2.连接信号源和电脑或DSP,确保信号源输出的信号能够被电脑或DSP接收;3. 在电脑或DSP上选择合适的软件或编程语言环境,例如MATLAB、Python或C;4.编写程序或命令以控制信号源产生相应的信号,并将信号输入到电脑或DSP中;5.读取信号,并使用FFT对信号进行傅里叶变换;6.分析得到的频谱数据,绘制频谱图;7.对得到的频谱图进行解读和分析。
实验注意事项:1.在选择信号源和连接电脑或DSP时,注意信号源的输出范围和电脑或DSP的输入范围,避免信号超出范围导致损坏设备;2.根据实际需要选择合适的采样率和采样点数,以保证能够对信号进行充分的频谱分析;3.在进行FFT计算时,注意选择适当的窗函数和重叠率,以克服频谱分析中的泄漏效应。
实验结果与讨论:通过对信号进行频谱分析,我们可以得到信号的频率特性和频域内的成分信息。
根据得到的频谱图,我们可以分析信号的主要频率分量、功率谱密度以及可能存在的干扰或噪声。
通过对频谱图的解读和分析,可以帮助我们理解信号的特征和变化规律,为后续的信号处理和应用提供有价值的信息。
结论:本实验通过应用快速傅里叶变换对信号进行频谱分析,从而得到信号在频域内的成分信息并绘制出频谱图。
实验二用DFT及FFT进行谱分析
实验二用DFT及FFT进行谱分析实验二将使用DFT(离散傅里叶变换)和FFT(快速傅里叶变换)进行谱分析。
在谱分析中,我们将探索如何将时域信号转换为频域信号,并观察信号的频谱特征。
首先,我们需要了解DFT和FFT的基本概念。
DFT是一种将时域信号分解为频域信号的数学方法。
它将一个离散时间序列的N个样本转换为具有N个频率点的频率谱。
DFT在信号处理和谱分析中被广泛应用,但它的计算复杂度为O(N^2)。
为了解决DFT的计算复杂度问题,Cooley和Tukey提出了FFT算法,它是一种使用分治策略的快速计算DFT的方法。
FFT算法的计算复杂度为O(NlogN),使得谱分析在实际应用中更加可行。
在实验中,我们将使用Python编程语言和NumPy库来实现DFT和FFT,并进行信号的谱分析。
首先,我们需要生成一个具有不同频率成分的合成信号。
我们可以使用NumPy的arange函数生成一组时间点,然后使用sin函数生成不同频率的正弦波信号。
接下来,我们将实现DFT函数。
DFT将时域信号作为输入,并返回频域信号。
DFT的公式可以表示为:X(k) = Σ(x(n) * exp(-i*2πkn/N))其中,X(k)是频域信号的第k个频率点,x(n)是时域信号的第n个样本,N是信号的长度。
我们将使用循环计算DFT,但这种方法的计算复杂度为O(N^2)。
因此,我们将在实验过程中进行一些优化。
接下来,我们将实现FFT函数。
FFT函数将时域信号作为输入,并返回频域信号。
可以使用Cooley-Tukey的分治算法来快速计算FFT。
FFT的基本思想是将一个长度为N的信号分解为两个长度为N/2的子信号,然后逐步地将子信号分解为更小的子信号。
最后,将所有子信号重新组合以得到频域信号。
实验中,我们将使用递归的方式实现FFT算法。
首先,我们将信号分解为两个子信号,然后对每个子信号进行FFT计算。
最后,将两个子信号的FFT结果重新组合以得到频域信号。
数字信号处理实验:基于FFT谱分析中的误差分析及处理
学生实验报告2020 —— 2021 学年第 1学期实验课程数字信号处理实验地点主教414学院电子信息工程学院专业通信工程学号姓名实验项目基于FFT谱分析中的误差分析及处理实验时间10.20 实验台号预习成绩报告成绩一、实验目的1.在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT算法及其程序的编写2.熟悉应用FFT对典型信号进行频谱分析的方法。
3.了解应用FFT对非周期信号进行频谱分析所面临的问题并掌握其解决方法。
二、实验原理对非周期序列进行频谱分析应注意的问题1、混叠三、预习内容1.混叠,泄漏,栅栏效应的概念2.应用FFT对典型信号进行频谱分析的方法3.应用FFT对非周期信号进行频谱分析所面临的问题并掌握其解决方法4.傅里叶变换的相关性质四、实验内容(一)完成如下实验内容的学习和调试1. 对有限长序列进行谱分析(2)将上述有限长序列x(n)[1,2,3,2,1]末尾补零到N=1000点,使用FFT计算其频谱。
2. 对无限长序列进行谱分析用FFT进行无限长序列的频谱分析,首先要将无限长序列截断成一个有限长序列。
序列长度的取值对频谱有较大的影响,带来的问题是引起频谱的泄漏和波动。
已知一个无限长序列为, x(n)=0(n<0),采样频率Fs=20Hz,要求用FFT求其频谱。
3. 对模拟信号进行谱分析(一)用FFT计算下列连续时间信号的频谱,并观察选择不同的Ts和N值对频谱特性的影响。
(二)记录实验图形结果并结合基本原理,理解每一条语句的含义;(三)讨论有限长序列谱分析时增加分辨率的措施和方法;(四)谈论连续信号谱分析时不同时域采样频率及点数N不同时对频谱分析的影响;(五)对模拟信号进行谱分析,选择采样频率Fs=64Hz,变换区间长度N分别取8、32和64,用FFT分析其频谱。
记录结果并对比、分析和讨论。
五、实验步骤Fs=10;xn=[1,2,3,2,1];N=length(xn);D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(1,2,1);plot(k*D,abs(X),'o:');title('幅度频谱');xlabel('rad/s');subplot(1,2,2);plot(k*D,angle(X),'o:');title('相位频谱');xlabel('rad/s');Fs=10;N=1000;xn=[1,2,3,2,1];Nx=length(xn);xn=[1,2,3,2,1,zeros(1,N-Nx-1)];D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(1,2,1);plot(k*D,abs(X)); title('幅度频谱');xlabel('rad/s'); subplot(1,2,2);plot(k*D,angle(X)); title('相位频谱');xlabel('rad/s');Fs=20;C=[8,16,128];for r=0:2;N=C(r+1);n=0:N-1;xn=exp(-0.5*n);D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(3,2,2*r+1); plot(k*D,abs(X));axis([-80,80,0,3]);subplot(3,2,2*r+2);stairs(k*D,angle(X));axis([-80,80,-1,1]);endT0=[0.5,0.25,0.125,0.125];N0=[256,256,2048,2048];for r=1:4;Ts=T0(r);N=N0(r);n=0:N-1;xn=exp(-0.5*n);D=2*pi/(N*Ts);xa=exp(-0.01*n*Ts).*(sin(2*n*Ts)+sin(2.1*n*Ts)+sin(2.2*n*Ts)); k=floor(-(N-1)/2:(N-1)/2);Xa=Ts*fftshift(fft(xa,N));[r,Xa(1)]subplot(2,2,r);plot(k*D,abs(Xa));axis([1,3,1.1*min(abs(Xa)),1.1*max(abs(Xa))]);end六、总结分析1.离散时间信号的FFT变换,其频谱是以抽样点数N为周期的周期延拓2.当N2为N1的整数倍时,以为抽样点数的抽样的图形就是在以为抽样点数的抽样图形的每两个点之间插入N2/N1个点的谱图形。
数字信号处理实验三--用FFT作谱分析
数字信号处理实验报告一、实验目的(1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法,所以FFT 的运算结果必然满足DFT 的基本性质);(2) 熟悉FFT 算法的原理;(3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法分析误差及其原因,以便在实际中正确应用FFT 。
二、实验内容 (1)x(n)={1 0≤n ≤50 其他构造DFT 函数计算x(n)的10点DFT ,20点DFT并画出图形;(2)利用FFT 对下列信号逐个进行谱分析并画出图形 a 、x 1(n)=R 4(n); b 、x 2(n)=cos π4n ; c 、x 3(n)=sin π8n以上3个序列的FFT 变换区间N=8,16(3)设一序列中含有两种频率成份,f1=2HZ,f2=2.05HZ,采样频率取为fs =10HZ ,即)/2sin()/2sin()(21s s f n f f n f n x ππ+=要区分出这两种频率成份,必须满足N>400,为什么? a.取x(n)(0≤n<128)时,计算x(n)的DFT X(k)b.将a 中的x (n )以补零方式使其加长到0≤n<512,计算X(k)c.取x(n)( 0≤n<512),计算X(k)(4)令)()()(32n x n x n x +=用FFT 计算16点离散傅立叶变换并画出图形,分析DFT 的对称性 (5))()()(32n jx n x n x +=用FFT 计算16点离散傅立叶变换并画出图形,分析DFT 的对称性 三、实验代码 (1)1、 代码function[Xk]=dft(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk; %离散傅立叶变换方法定义N=10; %10点DFTn1=[0:N-1];x1=[ones(1,6),zeros(1,N-6)]; %生成1行6列的单位矩阵和1行N-6列的0矩阵Xk1=dft(x1,N); %10点DFTfigure(1);subplot(2,1,1);stem(n1,x1); %画火柴图xlabel(‘n’);ylabel(‘x(n)’);subplot(2,1,2);stem(n1,abs(Xk1));xlabel(‘n’);ylabel(‘x(n)’);N=20;n2=[0:N-1];x2=[ones(1,6),zeros(1,14)];Xk2=dft(x2,N);figure(2);subplot(2,1,1);stem(n2,x2);xlabel(‘n’);ylabel(‘x(n)’);subplot(2,1,2);stem(n2,abs(Xk2));xlabel(‘n’);ylabel(‘x(n)’);2、运行结果图1 10点DFT图2 20点DFT3、结果分析定义x(n)的N 点DFT 为由定义知:DFT 具有隐含周期性,周期与DFT 的变换长度N 一致,这说明,变换长度不一样,DFT 的结果也不一样10)()(1-≤≤=∑-=N k W n x k X N n nkNNjN eW π2-=其中(2)1、代码N=64;n=[0:N-1];x1=[ones(1,4),zeros(1,N-4)];%定义x1(n)=R4(n)nx2=cos((pi/4)*n); %定义x2(n)=cosπ4nx3=sin((pi/8)*n); %定义x3(n)=sinπ8y1=fft(x1);y2=fft(x2);y3=fft(x3); %分别进行DFTfigure(1);m1=abs(y1);subplot(2,1,1); %绘制x1(n)的图形stem(n,x1);subplot(2,1,2); %绘制x1(n)的DFT图形stem(n,m1)figure(2);m2=abs(y2);subplot(2,1,1);stem(n,x2); %绘制x2(n)的图形subplot(2,1,2);stem(n,m2); %绘制x1(n)的DFT图形figure(3);m3=abs(y3);subplot(2,1,1);stem(n,x3); %绘制x3(n)的图形subplot(2,1,2);stem(n,m3); %绘制x1(n)的DFT图形2、运行结果图3 x1(n)的DFT前后图形图4 x2(n)的DFT前后图形图5 x3(n)的DFT前后图形3、结果分析由图可以看出,离散序列的DFT与对应连续函数的FT有对应关系,不同之处在于DFT的结果是离散的,而FT的结果是连续的,再者,DFT结果与DFT 的变换长度N有关。
FFT算法分析实验实验报告
FFT算法分析实验实验报告一、实验目的快速傅里叶变换(Fast Fourier Transform,FFT)是数字信号处理中一种非常重要的算法。
本次实验的目的在于深入理解 FFT 算法的基本原理、性能特点,并通过实际编程实现和实验数据分析,掌握 FFT 算法在频谱分析中的应用。
二、实验原理FFT 算法是离散傅里叶变换(Discrete Fourier Transform,DFT)的快速计算方法。
DFT 的定义为:对于长度为 N 的序列 x(n),其 DFT 为X(k) =∑n=0 到 N-1 x(n) e^(j 2π k n / N) ,其中 j 为虚数单位。
FFT 算法基于分治法的思想,将 N 点 DFT 分解为多个较小规模的DFT,从而大大减少了计算量。
常见的 FFT 算法有基 2 算法、基 4 算法等。
三、实验环境本次实验使用的编程语言为 Python,主要依赖 numpy 库来实现 FFT 计算和相关的数据处理。
四、实验步骤1、生成测试信号首先,生成一个包含不同频率成分的正弦波叠加信号,例如100Hz、200Hz 和 300Hz 的正弦波。
设定采样频率为 1000Hz,采样时间为 1 秒,以获取足够的采样点进行分析。
2、进行 FFT 计算使用 numpy 库中的 fft 函数对生成的测试信号进行 FFT 变换。
3、频谱分析计算 FFT 结果的幅度谱和相位谱。
通过幅度谱确定信号中各个频率成分的强度。
4、误差分析与理论上的频率成分进行对比,计算误差。
五、实验结果与分析1、幅度谱分析观察到在 100Hz、200Hz 和 300Hz 附近出现明显的峰值,对应于生成信号中的频率成分。
峰值的大小反映了相应频率成分的强度。
2、相位谱分析相位谱显示了各个频率成分的相位信息。
3、误差分析计算得到的频率与理论值相比,存在一定的误差,但在可接受范围内。
误差主要来源于采样过程中的量化误差以及 FFT 算法本身的近似处理。
数字信号处理实验报告_完整版
实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
数字信号处理FFT频谱分析
实验三:用FFT 对信号作频谱分析10.3.1 实验指导1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。
2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3.实验步骤及内容(1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
数字信号处理中的频谱分析算法
数字信号处理中的频谱分析算法数字信号处理(Digital Signal Processing,DSP)是一门将连续时间的信号转换为离散时间的信号,并在数字域中进行信号处理的技术。
频谱分析是DSP中的重要任务之一,它用来研究信号的频率特性,在通信、音频处理、图像处理等领域有着广泛的应用。
本文将介绍几种常见的频谱分析算法,它们分别是傅里叶变换、离散傅里叶变换、快速傅里叶变换和功率谱密度估计。
1. 傅里叶变换(Fourier Transform)傅里叶变换是频谱分析中最基本的工具之一。
它能将时域信号转换为频域信号,将信号表示为一系列正弦和余弦函数的和,从而揭示了信号的频率分量。
傅里叶变换的数学表达式为:F(w) = ∫[f(t)e^(-iwt)]dt其中,F(w)是信号在频域上的表示,f(t)是信号在时域上的表示,e^(-iwt)是复指数函数。
2. 离散傅里叶变换(Discrete Fourier Transform,DFT)离散傅里叶变换是傅里叶变换在离散时间域上的推广。
由于数字系统中信号是离散采样得到的,因此必须使用离散傅里叶变换进行频谱分析。
离散傅里叶变换的计算复杂度较高,通常采用快速傅里叶变换算法进行高效计算。
3. 快速傅里叶变换(Fast Fourier Transform,FFT)快速傅里叶变换是一种高效计算离散傅里叶变换的算法。
通过利用傅里叶变换的对称性和周期性,FFT算法将计算复杂度降低到O(NlogN),使得频谱分析在实时系统中具备了可能。
4. 功率谱密度估计(Power Spectrum Density Estimation)功率谱密度(Power Spectrum Density,PSD)是频谱分析的重要指标之一,它反映了信号各个频段的功率强度。
而在实际应用中,往往无法直接计算功率谱密度,需要通过估计算法得到近似值。
常见的功率谱密度估计算法有周期图谱法、自相关法、Burg方法、Yule-Walker 方法等。
利用FFT对信号进行频谱分析
∑-=--==101,....,0,)(1)(N k nk N N n W k X N n x (3.2) 离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。
因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。
2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。
幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan )(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。
按采样定理,采样频率s f 应大于2倍信号的最高频率,为了满足采样定理,一般在采样之前要设置一个抗混叠低通滤波器。
用FFT 对模拟信号进行谱分析的方框图如下所示。
3.在运用DFT 进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解。
在一般情况下,为了保证不出现频谱混叠,在采样前,先进行抗混叠滤波。
(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
抗混叠低通滤波器 采样T=1/f s N 点FFT泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。
数字信号处理实验——用FFT对连续信号和时域离散信号进行谱分析
课程名称:DSP 实验 实验项目:用FFT 作谱分析 指导教师: 王丽 专业班级:10电子本 姓名: 王海彪 学号:201000802119 成绩:一、实验目的:1、在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。
2、熟悉应用FFT 对典型信号进行频谱分析的方法。
熟悉FFT 算法原理和FFT 子程序的应用。
3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法。
了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。
二、实验原理:(一)、在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散傅里叶变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N 时,它的DFT 定义为:反变换为:有限长序列的DFT 是其Z 变换在单位圆上的等距采样,或者说是序列Fourier 变换的等距采样,因此可以用于序列的谱分析。
在信号处理中,DFT 的计算具有举足轻重的地位,,信号的相关、滤波、谱估计等都要通过DFT 来实现。
然而,当N 很大的时候,求一个N 点的DFT 要完成N N ⨯次复数乘法和)1(-N N 次复数加法,其计算量相当大。
1965年J.W.Cooley 和J.W.Tukey 巧妙地利用N W 因子的周期性和对称性,构造了一个DFT 快速算法,即快速傅立叶变换(FFT)。
(二)、在运用DFT 进行频谱分析的过程中可能的产生混叠误差序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
用FFT作谱分析实验报告
数字信号处理 实验报告FFT 的谱分解一、实验目的:1、在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。
2、熟悉应用FFT 对典型信号进行频谱分析的方法。
熟悉FFT 算法原理和FFT 子程序的应用。
3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法。
了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。
二、实验原理:1.快速傅立叶变换(FFT)算法长度为N 的序列)(n x 的离散傅立叶变换)(k X 为:∑-=-==101,....,0,)()(N n nkN N k W n x k XN 点的DFT 可以分解为两个N/2点的DFT ,每个N/2点的DFT 又可以分解为两个N/4点的DFT 。
依此类推,当N 为2的整数次幂时(M N 2=),由于每分解一次降低一阶幂次,所以通过M 次的分解,最后全部成为一系列2点DFT 运算。
以上就是按时间抽取的快速傅立叶变换(FFT)算法。
当需要进行变换的序列的长度不是2的整数次方的时候,为了使用以2为基的FFT ,可以用末尾补零的方法,使其长度延长至2的整数次方。
序列)(k X 的离散傅立叶反变换为x n NX k Wn N Nnk k N ()(),,....,==--=-∑10101离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。
因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。
2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。
幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan)(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。
实验3 用FFT对信号作频谱分析
选择 采样频率 ,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。
4(思考题
(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析, (2)如何选择FFT的变换区间,(包括非周期信号和周期信号) (3)当N=8时, 和 的幅频特性会相同吗,为什么,N=16 呢, 5(实验报告要求
%实验内容(1)===================================================
(1)完成各个实验任务和要求。附上程序清单和有关曲线。
(2)简要回答思考题。
=====================================================================
========Байду номын сангаас==
%第10章实验3程序exp3.m
% 用FFT对信号作频谱分析
clear all;close all
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3(实验步骤及内容
(1)对以下序列进行谱分析。
选择FFT的变换区间N为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。 并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
选择FFT的变换区间N为8和16 两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。
feel free to listen to their voices and help the masses solve problems, we were officially opened on May 10 "12345" Mayor calls, formulated rules and regulations, equipped with a full-time staff, a 24-hour on-duty system, people to call to receive, reply, action, reminders, feedback and so on. By year end, handled the crowd calls 1076, 94.7% feedback rate. By Mayor calls active coordination to solve a large number of bears on the immediate interests of the people and issues of great lives, but also for leadership research and decision to collect a lot of good ideas and suggestions, by all sectors of the community alike. Second, start Municipal Government Affairs Hall built. On May 11, we built and launched the city-government lobby, were settled in 12 departments, strict implementation of first asking duty system, service system, system of gratuitous, "receiving, internal coordination, head of the window handle, limited time concluded" one-stop service. By the end of today to accept various types of 3,273, originally of up to 100%. Running Government Affairs Hall, the convenience of the masses, promoting open Government, improve the investment environment and solve their practical problems, and so did a lot of work, masses, serve the community for the Government to play a very good "window, link, model". Third, create a city government public affairs network. We rely on theGovernment Web site, was completed on May 24, the province's first public affairs network. Over
数字信号处理实验:利用FFT分析连续信号频谱
数字信号处理课程实验实验报告实验一 利用FFT 分析连续信号频谱一、 实验目的1、 进一步加深离散傅里叶变换DFT 原理的理解;2、 应用离散傅里叶变换DFT (实际应用FFT 计算)分析连续信号的频谱;3、 深刻理解利用DFT 分析连续信号的频谱的原理,分析工程中常出现的现象及解决方法。
二、 实验原理1、 利用DFT 分析连续时间周期信号的频谱周期为Tp 的周期性连续时间信号)(t x p 的频谱(傅里叶级数的系数))(Ωjk x p 是非周期离散谱,定义为)(Ωjk x p =dt e t x p1tjk p p 0Ω-⎰)(T T 其中f 2p2ππ==ΩT 为信号的基频,Ωk 为信号的谐频,谱线间隔为Ω。
通过时域采样就可以利用DFT 分析连续周期信号的频谱。
其步骤为: ① 确定周期信号的基本周期Tp ;② 计算一个周期内的采样点数N ,若周期信号的最高频谱为Ωp ,则频谱中有2p+1 根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据实际需要)能量的前p+1 个谐波为近似的频谱范围,其余的谐波忽略不计。
取N ≥2p+1; ③ 对连续周期信号以采样间隔NT T p=进行采样 ; ④ 利用FFT 计算采样信号的N 点DFT ,得到()k X ; ⑤ 最后求出连续周期信号的频谱为)(Ωjk x p =N1()k X 。
因为对连续周期信号按采样间隔NT T p=进行采样,每个周期抽取N 点时,则有 t=nT ,Tp=NT那么 )(Ωjk x p =dt et x p 1tjk p p 0Ω-⎰)(T T =∑-=-10n n p 2jk e n x p N T T T T T π)( =∑-=-1n n N 2jk e n x N 1N T π)(=)(k N 1X若能按照满足采样定理的采样间隔进行抽样,并且采取整周期为信号分析的长度,则利用FFT 计算得到的离散频谱值等于连续周期信号频谱)(Ωjk x p 的准确值。
数字信号处理实验五用DFT(FFT)对信号进行频谱分析
开课学院及实验室:电子楼3172018年 4月 29 日3()x n :用14()()x n R n =以8为周期进行周期性延拓形成地周期序列.(1> 分别以变换区间N =8,16,32,对14()()x n R n =进行DFT(FFT>,画出相应地幅频特性曲线;(2> 分别以变换区间N =4,8,16,对x 2(n >分别进行DFT(FFT>,画出相应地幅频特性曲线; (3> 对x 3(n >进行频谱分析,并选择变换区间,画出幅频特性曲线.<二)连续信号 1. 实验信号:1()()x t R t τ=选择 1.5ms τ=,式中()R t τ地波形以及幅度特性如图7.1所示.2()sin(2/8)x t ft ππ=+式中频率f 自己选择.3()cos8cos16cos 20x t t t t πππ=++2. 分别对三种模拟信号选择采样频率和采样点数.对1()x t ()R t τ=,选择采样频率4s f kHz =,8kHz ,16kHz ,采样点数用τ.s f 计算.对2()sin(2/8)x t ft ππ=+,周期1/T f =,频率f 自己选择,采样频率4s f f =,观测时间0.5p T T =,T ,2T ,采样点数用p s T f 计算.图5.1 R(t>地波形及其幅度特性对3()cos8cos16cos 20x t t t t πππ=++,选择采用频率64s f Hz =,采样点数为16,32,64. 3. 分别对它们转换成序列,按顺序用123(),(),()x n x n x n 表示.4. 分别对它们进行FFT.如果采样点数不满足2地整数幂,可以通过序列尾部加0满足.5. 计算幅度特性并进行打印.五、实验过程原始记录<数据、图表、计算等)(一> 离散信号%14()()x n R n = n=0:1:10。
数字信号处理--实验五-用DFT(FFT)对信号进行频谱分析
学生实验报告开课学院及实验室:电子楼3172013年4月29日、实验目的学习DFT 的基本性质及对时域离散信号进行频谱分析的方法,进一步加深对频域概念和数字频率的理解,掌握 MATLAB 函数中FFT 函数的应用。
二、实验原理离散傅里叶变换(DFT)对有限长时域离散信号的频谱进行等间隔采样,频域函数被离散化了, 便于信号的计算机处理。
设x(n)是一个长度为 M 的有限长序列,x(n)的N 点傅立叶变换:X(k)N 1j 三 knDFT[x(n)]N x(n)e N0 k N 1n 0其中WNe.2 jN,它的反变换定义为:1X(n)NkN 1nkX(k)W N0 令z W N k,X(zz WN k则有:N 1x( n)Wj kn 0可以得到,X(k)X(Z)Z WN kZ W N*是Z 平面单位圆上幅角为2kN 的点,就是将单位圆进行N 等分以后第 K 个点。
所以, X(K)是Z 变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。
时域采样在满足Nyquist 定理时,就不会发生频谱混叠。
DFT 是对序列傅立叶变换的等距采样,因此可以用于序列的频谱分析。
如果用FFT 对模拟信号进行谱分析,首先要把模拟信号转换成数字信号,转换时要求知道模拟 信号的最高截至频率,以便选择满足采样定理的采样频率。
般选择采样频率是模拟信号中最高频率的3~4倍。
另外要选择对模拟信号的观测时间,如果采样频率和观测时间确定,则采样点数也确定 了。
这里观测时间和对模拟信号进行谱分析的分辨率有关,最小的观测时间和分辨率成倒数关系。
最小的采样点数用教材相关公式确定。
要求选择的采样点数和观测时间大于它的最小值。
如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍。
如果不知道■ 厂1*1IE向i1A I1f Ii i 0r 1 疋0Jfb-4W0 70000图5.1 R(t)的波形及其幅度特性xn=[on es(1,4),zeros(1,7)];%输入时域序列向量 xn=R4( n)%计算xn 的8点DFTXk16=fft(x n,16);%计算xn 的16点DFTXk32=fft(x n,32); %计算xn 的32点DFTk=0:7;wk=2*k/8;对 x 3(t) cos8 t cos16 t cos20 t ,选择采用频率 f s 64Hz ,采样点数为 16 , 32 , 64。
实验二 应用 FFT 对信号进行频谱分析
实验二 应用 FFT 对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉 FFT 算法及其程序的编写。
2、熟悉应用 FFT 对典型信号进行频谱分析的方法。
3、了解应用 FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用 FFT 。
二、实验原理与方法一个连续信号 )(t x a 的频谱可以用它的傅立叶变换表示为⎰+∞∞-Ω-=Ωdt e t x j X t j a a )()( (2-1)如果对该信号进行理想采样,可以得到采样序列)()(nT x n x a = (2-2)同样可以对该序列进行z 变换,其中T 为采样周期∑+∞-∞=-=n n z n x z X )()( (2-3) 当 ωj ez =的时候,我们就得到了序列的傅立叶变换 ∑+∞-∞=-=n n j j e n x e X ωω)()( (2-4)其中ω称为数字频率,它和模拟域频率的关系为s f T Ω=Ω=ω(2-5)式中的s f 是采样频率。
上式说明数字频率是模拟频率对采样率s f 的归一化。
同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。
序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系∑-=)2(1)(Tm j X T e X a j πωω (2-6) 即序列的频谱是采样信号频谱的周期延拓。
从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。
注意:这里的信号必须是带限信号,采样也必须满足 Nyquist 定理。
在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。
无限长的序列也往往可以用有限长序列来逼近。
对于有限长的序列我们可以使用离散傅立叶变换(DFT ),这一变换可以很好地反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是 N 时,我们定义离散傅立叶变换为:∑-===10)()]([)(N n kn NW n x n x DFT K X (2-7) 其中,N j N e W π2-=它的反变换定义为:∑-=-==10)(1)]([)(N k kn N W k X N k X IDFT n x (2-8) 根据式(2-3)和(2-7)令 k N W z -=,则有)]([)()(10n x DFT W n x z X N n kn N W z k N ==∑-==- (2-9)可以得到 k N k N j W z W e z X k X k N -===-,)()(2π是 z 平面单位圆上幅角为k Nπω2=的点,就是将单位圆进行 N 等分以后第 k 个点。
数字信号处理中的频谱分析方法
数字信号处理中的频谱分析方法数字信号处理(Digital Signal Processing,简称DSP)是指通过在计算机或其他数字设备上对采样信号进行数字运算,实现对信号的处理、改变和分析的一种技术。
频谱分析是数字信号处理中一项重要的技术,它可以用来研究信号的频率成分以及频谱特性。
本文将介绍数字信号处理中常用的频谱分析方法。
一、离散傅里叶变换(Discrete Fourier Transform,DFT)离散傅里叶变换是频谱分析中最为基础和常用的方法之一。
它将时域信号变换为频域信号,可以将信号分解成一系列的正弦波分量。
DFT可以通过计算公式进行离散运算,也可以通过基于快速傅里叶变换(Fast Fourier Transform,FFT)的算法实现高效的计算。
二、功率谱密度估计(Power Spectral Density Estimation)功率谱密度估计是一种常用的频谱分析方法,用于研究信号的功率特性。
它可以通过对信号的傅里叶变换以及信号的自相关函数的计算,得到信号的功率谱密度。
功率谱密度估计可以通过多种算法实现,如周期图法、自相关法和Welch法等。
三、窗函数法(Windowing Method)窗函数法是一种常用的频谱分析方法,用于解决信号频谱泄露和分辨率不足的问题。
它通过将信号进行窗函数处理,将信号分成多个窗口,再对每个窗口进行频谱分析,最后将结果进行加权平均得到最终的频谱。
常用的窗函数有矩形窗、汉明窗和高斯窗等。
四、自适应滤波法(Adaptive Filtering)自适应滤波法是一种基于自适应信号处理的频谱分析方法,主要用于信号降噪和信号分析。
它根据信号的自相关特性调整滤波器的参数,以实现对信号的精确分析。
自适应滤波法常用的算法有最小均方误差算法(Least Mean Square,LMS)、最小二乘算法(Least Square,LS)和递归最小二乘算法(Recursive Least Square,RLS)等。
数字信号处理中频谱分析的使用教程
数字信号处理中频谱分析的使用教程数字信号处理(Digital Signal Processing,DSP)是一种将模拟信号转换为数字形式进行处理的技术,广泛应用于音频处理、图像处理、通信系统等领域。
而频谱分析是数字信号处理中一项重要的技术,用于研究信号的频率特性。
本文将为您介绍数字信号处理中频谱分析的使用教程。
一、频谱分析的基本概念频谱分析是指将信号在频域上进行分解和描述的过程,用于研究信号的频率分布和频率成分。
频谱分析的目的是提取信号的频域信息,例如信号的频率、幅值、相位等,并对信号进行滤波、噪声分析、频谱展示等操作。
在数字信号处理中,常用的频谱分析方法包括傅里叶变换(Fourier Transform)、快速傅里叶变换(Fast Fourier Transform,FFT)、功率谱密度估计(Power Spectral Density Estimation)等。
二、频谱分析的步骤与方法1. 信号采样与预处理:首先,需要对原始信号进行采样,将模拟信号转换为数字信号。
采样频率的选择应根据信号的最高频率成分来确定,根据奈奎斯特采样定理,采样频率应大于信号最高频率的两倍。
之后,可以对采样得到的数字信号进行预处理,包括去除直流分量、去噪处理等。
2. 傅里叶变换(Fourier Transform):傅里叶变换是频谱分析中最基本的方法,它能将信号从时域转换到频域。
傅里叶变换将信号分解成一系列复指数函数的叠加,得到信号在不同频率上的幅度和相位分布。
傅里叶变换的运算量较大,因此使用快速傅里叶变换(FFT)算法进行高效计算。
3. 功率谱密度估计(Power Spectral Density Estimation):功率谱密度估计是一种通过有限样本数据对信号的频率特性进行估计的方法。
常用的功率谱密度估计方法包括周期图法、自相关法、Welch法等。
在实际应用中,功率谱密度估计可以通过窗函数来对信号进行分段加权计算,进一步提高估计的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
(1)在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉FFT 子程序。
(2)熟悉应用FFT 对典型信号进行频谱分析的方法。
(3)了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。
(4)熟悉应用FFT 实现两个序列的线性卷积的方法。
(5) 初步了解用周期图法做随机信号谱分析的方法。
二、实验原理
1、对有限长序列,可以用离散傅里叶变换DFT 。
不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N 时,它的DFT 定义为 N j N N n kn
N
e W W n x k π210,)(X --===∑)(
逆变换为: ∑-=-=10)(1)(N k kn N W
k X N n x
有限长序列的DFT 使其z 变换在单位圆上的等距采样。
因此可用于序列的谱分析。
2、用FFT 计算线性卷积
用FFT 可以实现两个序列的圆周卷积。
在一定的条件下,可以使圆周卷积等于线性卷积,一般情况,设两个序列的长度分别为N1和N2,要使圆周卷积等于线性卷积的充要条件是FFT 的长度N 大于等于N1加N2.对于长度不足N 的序列,分别用FFT 对它们补零延长到N 。
三、实验内容
1、已知有限长序列x(n)=[1,0.5,0,0.5,1,1,0.5,0],要求:
①用FFT 求该序列的DFT 、IDFT 图形
②假设采样频率F=20Hz,序列长度N 分别取8、32和64,用FFT 计算其幅度频谱和相位频谱。
①程序
实验截图:
DFT、IDFT图形
实验截图:
幅度频谱和相位频谱。
2、用FFT计算下面连续信号的频谱,并观察不同的采样周期T和序列长度N值对频谱特性的影响。
程序:
实验截图:
3、已知序列x(n)=sin(0.4n),1<n<15;y=0.9^n,1<n<20,用FFT实现快速卷积,并测试直接卷积和快速卷积的时间。
程序:
实验截图:。