光电编码器原理课件
光电编码器原理课件
光电编码器原理课件光电编码器光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90&or dm;的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
(REP)1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
光电编码器基础知识培训-PPT
编码器基本工作原理 编码器的分类与应用 编码器的主要技术参数 编码器的命名方式
2
1 编码器的基本工作原理
光电编码器,又称光电角位置传感器。是集成光—机 —电为一体的数字测角装置,主要是以高精度计量光栅 为检测元件,通过光电转换,将轴的机械角位移信息转 换成相应的数字代码,用他可以实现角位移、角速度、 和角加速度及其他物理量的精确测量,输出信号与计算 机相连接,不仅能够实现数字测量与数字控制,而且与其 他同类用途的传感器相比,具有精度高、测量范围广、 使用可靠、易于维护等优点。因此已普遍应用在雷达、 光电经纬仪、地面指挥仪、机器人、数控机床和高精度 闭环调速系统等诸多领域,是自动化设备理想的角度传 感器。
启动力拒 径向跳动 轴向串动 端面跳动 时针方向 最大机械转速
23
合格的UVW信号
11
附录 :信号倍频的原理
12
附录 :模拟信号积分放大的原理
13
附录 :放大及驱动电路的原理
14
附录 :典型编码器PCB原理图(增量式)
15
附录 :典型编码器倍频电路原理图(增量式)
16
17
18
19
20
21
2 编码器的主要分类
•从工作原理分 •1光电式 2磁电式 3机械式
7
UVW ASIC ABZ ASIC
正在发光的LED、 Lens组合件 码盘
8
大家学习辛苦了,还是要坚持
继续保持安静
9
111870-0002 LED、Lens组合件
ABZ ASIC 整体放大图
ASIC的局部放大图
UVW ASIC 整体放大图
10
LED整体放大图
Disk 码道部分放大图
光电编码器基础知识培训 ppt课件
到的脉冲数就反应出了编码器运行 的速度,包括速率和方向。
磁极信号(UVW信号): 由U、V、W等信号组成可以代
替电机中的电刷切换电机的磁极电 流方向。用来控制电机的运行。
•相位阵技术 • 相位阵技术就是将光电池高度集成在ASIC芯片上,差动 信号(A或B)的接收部分是由数百个微小单元光电池集成 在一起,各单元光电池分布在不同的位置,其相位和波形 通过阵列运算的方式,把模糊信号处理成高灵敏度标准源 信号。相位阵ASIC芯片由多层电路组成,除表面的高灵敏 度光电池阵列外,下层还集成实时阵列运算电路、虚拟定 光栅、正弦信号生成电路、电压比较器、积分放大器、相 位稳定电路、倍频电路等,从而简化了编码器电路处理过 程。 • 丹纳赫采用的就是相位阵技术,ASIC是从美国ETIC (East Texas Integrated Circuits)购买的,它集成了指示 光栅、信号处理电路、倍频电路等,具有较高的耐温特性 和较高的响应频率还有很好的抗干扰特性。
UVW ASIC ABZ ASIC
正在发光的LED、 Lens组合件
码盘
111870-0002 LED、Lens组合件
ABZ ASIC 整体放大图
ASIC的局部放大图
UVW ASIC 整体放大图
LED整体放大图
Disk 码道部分放大图
合格的ABZ信号
合格的UVW信号
ቤተ መጻሕፍቲ ባይዱ 附录 :信号倍频的原理
附录 :模拟信号积分放大的原理
光电编码器信号产生流程 光源LED 透镜Lens 指示光栅 码盘Disk
接受器ASIC 整形电路 客户
信号的形式
发散的红外光 平行的红外光 编码后的平行红外光 能反应运动状态的编码平行红外光 能反应运动状态的电脉冲信号 有驱动能力且能反应运动状态的电脉
光电编码器
1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。
下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。
光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。
当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。
图1 光电编码器的内部电路图2 光电编码器的输出波形当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B 相滞后半个周期。
通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。
其具体的鉴相规则如下:①A为上升沿,B=0时,旋钮右旋;②B为上升沿,A=1时,旋钮右旋;③A为下降沿,B=1时,旋钮右旋;④B为下降沿,A=0时,旋钮右旋;⑤B为上升沿,A=0时,旋钮左旋;⑥A为上升沿,B=1时,旋钮左旋;⑦B为下降沿,A=1时,旋钮左旋;⑧A为下降沿,B=0时,旋钮左旋。
通过上述方法,可以很简单地判断旋钮的旋转方向。
在判断时添加适当的延时程序,以消除抖动干扰。
2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。
一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。
本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。
另一种是具有定制接口的流接口驱动程序。
它是一般类型的设备驱动程序。
流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。
《编码器的原理》课件
用于机器人的精确控制和定位。
自动化生产线
用于自动化生产线的精确控制和定位。
编码器的选型与使
04
用
编码器的选型原则
01
根据应用需求选择
根据具体的应用需求,如速度、 精度、环境条件等,选择适合的 编码器类型和规格。
02
考虑接口兼容性
03
成本效益分析
确保所选编码器与控制系统或设 备的接口相兼容,便于连接和数 据传输。
位置检测
02
在自动化生产线和机器人中,增量式编码器用于检测位置和角
度。
运动控制
03
在数控机床、印刷机械等设备中,增量式编码器用于实现精确
的运动控制。
绝对值编码器
03
绝对值编码器的结构
码盘
绝对值编码器的主要组成部分,通常为圆盘状,上面刻有二进制 码道。
光电检测元件
码盘上刻有码道,通过光电转换原理,将码盘上的二进制码转换为 电信号。
高精度是编码器技术的重 要发展方向之一。未来, 编码器将采用更先进的技 术和材料,提高测量精度 和分辨率,以满足高精度 测量的需求。
可靠性是编码器技术的重 要指标之一。未来,编码 器将采用更可靠的设计和 材料,提高设备的稳定性 和可靠性,减少故障率, 提高设备的可用性和寿命 。
易用性是编码器技术的另 一个重要发展方向之一。 未来,编码器将更加易于 安装、调试和使用,降低 使用难度和成本,提高设 备的可维护性和可操作性 。
高精度化
未来编码器将更加高精度化,采用更先进的技术和材料, 提高测量精度和分辨率,满足高精度测量的需求。
THANKS.
05
编码器技术的创 新发展
编码器技术的智 能化
编码器技术的高 精度
智能传感器技术之光电编码器课件
智能化与集成化
智能传感器技术将与光电编码器进一步融合,实现编码器的智能化 和集成化,提高其自适应和自我诊断能力。
无线连接与远程监控
通过无线通信技术,光电编码器将能够实现远程监控和数据传输, 提高设备管理和维护的便捷性。
光电转换原理的核心在于光敏元件的响应特性,即在不同光照条件下,光敏元件 能够产生相应的电信号。
信号处理原理
信号处理原理是指对获取的原始电信号进行处理,以提取出 所需的信息。在光电编码器中,信号处理电路负责对光电转 换电路输出的电信号进行处理。
信号处理电路通常包括放大器、滤波器、整形电路等,用于 对原始电信号进行放大、滤波和整形,以便后续的解码和计 数。
工作原理
光电编码器主要由光源、光敏元件、光电码盘和信号处理电路组成。当码盘转 动时,光敏元件接收到的光线会发生变化,从而产生电信号,经过信号处理电 路处理后输出相应的数字或脉冲信号。
光电编码器的分类与特点
分类
根据码盘的不同,光电编码器可分为 绝对式和增量式两种。绝对式编码器 具有唯一对应的输出码,而增量式编 码器则输出脉冲信号。
CHAPTER 03
光电编码器的性能指标
分辨率与精度
分辨率
光电编码器能够检测到的最小角度变 化量,通常以度(°)或弧度(rad) 为单位。分辨率越高,检测角度变化 的能力越强。
精度
光电编码器实际测量的角度值与真实 角度值的偏差程度。精度越高,测量 结果越准确。
工作环境要求
工作温度
光电编码器正常工作的环 境温度范围,通常为20°C至70°C。
采用屏蔽电缆、远离干扰源等措施,减少信 号干扰。
光电编码器的原理与应用
光电编码器的原理与应用0引言光电编码器是一种旋转式位置传感器,在现代伺服系统中广泛应用于角位移或角速率的测量,它的转轴通常与被测旋转轴连接,随被测轴一起转动。
它能将被测轴的角位移转换成二进制编码或一串脉冲。
光电编码器分为绝对式和增量式两种类型。
增量式光电编码器具有结构简单、体积小、价格低、精度高、响应速度快、性能稳定等优点,应用更为广泛。
在高分辨率和大量程角速率/位移测量系统中,增量式光电编码器更具优越性。
绝对式编码器能直接给出对应于每个转角的数字信息,便于计算机处理,但当进给数大于一转时,须作特别处理,而且必须用减速齿轮将两个以上的编码器连接起来,组成多级检测装置,使其结构复杂、成本高。
1增量式编码器1.1增量式光电编码器的结构增量式编码器是指随转轴旋转的码盘给出一系列脉冲,然后根据旋转方向用计数器对这些脉冲进行加减计数,以此来表示转过的角位移量。
增量式光电编码器结构示意图如图1所示。
图1增量式光电码盘结构示意图光电码盘与转轴连在一起。
码盘可用玻璃材料制成,表面镀上一层不透光的金属铬,然后在边缘制成向心的透光狭缝。
透光狭缝在码盘圆周上等分,数量从几百条到几千条不等。
这样,整个码盘圆周上就被等分成n个透光的槽。
增量式光电码盘也可用不锈钢薄板制成,然后在圆周边缘切割出均匀分布的透光槽。
1.2增量式编码器的工作原理增量式编码器的工作原理如图2所示。
它由主码盘、鉴向盘、光学系统和光电变换器组成。
在图形的主码盘(光电盘)周边上刻有节距相等的辐射状窄缝,形成均匀分布的透明区和不透明区。
鉴向盘与主码盘平行,并刻有a、b两组透明检测窄缝,它们彼此错开1/4节距,以使A、B两个光电变换器的输出信号在相位上相差90°。
工作时,鉴向盘静止不动,主码盘与转轴一起转动,光源发出的光投射到主码盘与鉴向盘上。
当主码盘上的不透明区正好与鉴向盘上的透明窄缝对齐时,光线被全部遮住,光电变换器输出电压为最小;当主码盘上的透明区正好与鉴向盘上的透明窄缝对齐时,光线全部通过,光电变换器输出电压为最大。
第二十一讲光电编码器种类及其工作原理
自整角机放大系数Kbs= 1.25V/(º),BSR输
出交流电压Ubs是角差的正弦函数,当角差
很 小 时 , 近 似 与 角 差 成 正 比 , 即 Ubs =
KbsΔθm (当
m)。10
• 将Ubs整流成直流电压时须反映Δθm的极性。
因此采用相敏整流器URP,URP、电压放大 器 A 、 电 力 电 子 变 换 器 UPE 的 总 增 益 KrpKaKs=200 , 自 整 角 机 本 身 的 检 测 误 差 ed=0.5º,当输入轴以最高转速 m 200 /旋s 转, 负载转矩为20Nm,求该系统的稳态误差。
表4-2 绝对值式码盘轴位置与数码对照表
轴的位置 二进制码 循环码 轴的位置 二进制码 循环码
0
0000
0000
8
1000 1100
1
0001
0001
9
1001 1101
2
0010
0011
10
1010 1111
3
0011
0010
11
1011 1110
4
0100
0110
12
1100 1010
5
0101
第二十一讲
要求:1.了解光电编码器种类及其工作原理
2.了解位置随动系统误差种类,掌握不同 类型系统在给定输入信号下误差;
3.了解三闭环系统的构成及其调节器设计 原则;
4.理解位置调节和转速计算中断服务子程 序;
• ③光电编码器
• 由光源、光栅码盘和光敏元件组成,直接
输出数字式电脉冲信号,是主要使用的数 字式位置传感器,结构见图3-10
0.837A
• ④系统的静态结构框图:
《编码器的原理》PPT课件
整理ppt
37
编码器屏蔽线的安装
Connect the shield in the
Sub D on the encoder 用屏蔽的D型接口连接编码器
Connect the shield to the electronics shield
clamp of the inverter 在变换器的电路板上用线卡连接
整理ppt
2
编码器的分类
编码器
模拟量编码器
数字编码器
增量编码器
绝对值编码器
旋转变压器
Sin/Cos 编码器
___ A, A, B, B, C, C
格雷码
二进制码
整理ppt
3
数字型编码器原理
1) 利用光电耦合器扫描安装在机械轴上的分割成断的圆盘。 机械代码被转换为成比例的电气脉冲信号。
整理ppt
4
整理ppt
34
编码器的安装注意事项
机械方面:
▪ 安装时注意允许的轴负载 ▪ 应保证编码器轴与用户输出轴的不同轴度<
0.20mm,与轴线的偏角<1.5° ▪ 安装时严禁敲击和摔打碰撞,以免损坏轴系
和码盘 ▪ 长期使用时,定期检查固定编码器的螺钉是
否松动 (每季度一次)
整理ppt
35
编码器安装方式
编码器在扩展轴上
原理通俗的讲就是将旋转编码器的码 盘拉成一条直线
整理ppt
29
光栅尺编码器
▪ 光栅位移传感器的工作原理,是由一对光栅副中 的主光栅(即标尺光栅)和副光栅(即指示光栅) 进行相对位移时,在光的干涉与衍射共同作用下产 生黑白相间(或明暗相间)的规则条纹图形,称之 为莫尔条纹。经过光电器件转换使黑白(或明暗) 相同的条纹转换成正弦波变化的电信号,再经过放 大器放大,整形电路整形后,得到两路相差为90o 的正弦波或方波,送入光栅数显表计数显示。
光电编码器原理结构图
光电编码器原理结构图增量式光电旋转编码器所谓编码器即是将某种物理量转换为数字格式的装置。
运动控制系统中的编码器的作用是将位置和角度等参数转换为数字量。
可采用电接触、磁效应、电容效应和光电转换等机理,形成各种类型的编码器。
运动控制系统中最常见的编码器是光电编码器。
光电编码器根据其用途的不同分为旋转光电编码器和直线光电编码器,分别用于测量旋转角度和直线尺寸。
光电编码器的关键部件是光电编码装置,在旋转光电编码器中是圆形的码盘(codewheel或codedisk),而在直线光电编码器中则是直尺形的码尺(codestrip)。
码盘和码尺根据用途和成本的需要,可由金属、玻璃和聚合物等材料制作,其原理都是在运动过程中产生代表运动位置的数字化的光学信号。
图12.1可用于说明透射式旋转光电编码器的原理。
在与被测轴同心的码盘上刻制了按一定编码规则形成的遮光和透光部分的组合。
在码环的一边是发光二极管或白炽灯光源,另一边则是接收光线的光电器件。
码盘随着被测轴的转动使得透过码盘的光束产生间断,通过光电器件的接收和电子线路的处理,产生特定电信号的输出,再经过数字处理可计算出位置和速度信息。
上面所说的是透射式光电编码器的原理。
显然利用光反射原理也可制作光电编码器。
增量编码器的码盘如图12.2所示。
在现代高分辨率码盘上,透光和遮光部分都是很细的窄缝和线条,因此也被称为圆光栅。
相邻的窄缝之间的夹角称为栅距角,透光窄缝和遮光部分大约各占栅距角的1/2。
码盘的分辨率以每转计数(CPR-counts per revolution)表示,亦即码盘旋转一周在光电检测部分可产生的脉冲数。
例如某码盘的CPR为2048,则可以分辨的角度为10,311.8”。
在码盘上,往往还另外安排一个(或一组)特殊的窄缝,用于产生定位(index)或零位(zero)信号。
测量装置或运动控制系统可利用这个信号产生回零或复位操作。
从原理分析,光电器件输出的电信号应该是三角波。
光电编码器原理、接线与安装知识培训讲义(PPT46页)
光电编码器培训讲义
• 绝对型编码器的每一个位置是唯一的(即绝对的),与增量型编码器不 同。 增量型编码器的位置是由原位基准的计数脉冲累计来决定位置,
读数状态要始终连续,不可间断,抗干扰能力差,主要用于短时的 相对位移或速度测量; 绝对型编码器是以即时读出数据码系统,以建 立信息,没有两个位置是相同的。
• 目前世界上著名的编码器生产厂家生产的绝对型单转编码器可达25位,多 转的绝对型编码器每转8192线,转数可达8192转(13位加13位)。为保证高 位数绝对型编码器的数据传输可靠性,目前世界上高位数的绝对型编码器 通常采用先进的通讯串行输出技术(RS 485 or RS 422),信号传输只需2根时 钟线,2根数据线,另外配以2根电源线,仅需6根线即可达到工作及s传输 的目的,并具有检错功能,传输可靠性高。通过转换模块,编码器输出的 信号就可进行计算。 用于高精度。
编码器接线方法2
• 所需工具:DP线剥线刀、开口2mm一字改锥、内六花一套、偏口钳一把,开口3mm十字螺丝 刀一把。 操作步骤:
• 1)设定地址,接线口朝下拿编码器,左边拨码是十位,右边拨码是个位。 • 2)设定终端:只接入线时,此编码器是终端,两个终端都打到ON;入线和出线都接时两个
拨码都拨到1位。 • 3)接线: • a)用专业DP线剥线刀剥线,按图8按顺序穿上附件,并做好屏蔽; • b)接线,A接绿线,B接红线, • 此方法优、缺点: • 优点:接线方法简单,易于操作; • 缺点:屏蔽层容易接触不良。 • 5根线的编码器接线方法: • 1、程序用的是单向计数器接DC24V电源和一个A即可; • 2、 如果用的是双向计数器接DC24V电源和A ,B 即可。 需要注意的是 A,B需接到PLC的有高
接时两个拨码都拨到1位。 • 3)接线: • a)把接线端子的附件按顺序套在DP线上, • b)剥除DP线外层的橡胶层10cm左右, • c)把内层的金属屏蔽层屡开,并拧成一股,d)剥开线内部白色保护层,把屏蔽层
《光电编码器》课件
应用案例二
工业自动化:用于控制机械臂、机器人等设备的运动 医疗设备:用于控制医疗设备的精确定位和运动 航空航天:用于控制航天器的姿态和运动 汽车电子:用于控制汽车电子设备的运动和定位
应用案例三
工业自动化:用于 控制机械臂、机器 人等设备的运动
医疗设备:用于 医疗设备的精确 定位和运动控制
航空航天:用于 航天器的姿态控 制和导航系统
光电编码器的市 场分析
市场需求
光电编码器广泛 应用于工业自动 化、机器人、医 疗设备等领域
随着工业4.0和 智能制造的发展, 光电编码器的市 场需求不断增长
光电编码器在精 度、稳定性、可 靠性等方面具有 优势,受到市场 青睐
光电编码器市场 竞争激烈,需要 不断创新和优化 产品性能,提高 市场竞争力
额
竞争策略:价 格战、技术战、
品牌战等
发展趋势:智 能化、小型化、
高精度等
市场规模和增长率
光电编码器市场 规模:全球市场 规模约100亿美 元
增长率:预计未 来五年内,光电 编码器市场将以 5%的复合增长 率增长
应用领域:主要 应用于工业自动 化、机器人、医 疗设备等领域
竞争格局:市场 竞争激烈,主要 厂商包括SICK、 Balluff、 Omron等
市场拓展:扩大 光电编码器的应 用领域,如工业 自动化、机器人、 医疗设备等
合作共赢:加强 与上下游企业的 合作,共同推动 光电编码器的发 展
环保节能:注重 光电编码器的环 保性能,降低能 耗,提高能源利 用率
光电编码器的案 例分析
应用案例一
案例名称:智能机器人 应用领域:工业自动化 应用原理:光电编码器用于机器人关节角度测量 应用效果:提高机器人定位精度和稳定性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电编码器原理课件光电编码器 光电编码器,是一种通过光电转换将输出轴上 的机械几何位移量转换成脉冲或数字量的传 感器。
这是目前应用最多的传感器,光电编码 器是由光栅盘和光电检测装置组成。
光栅盘是 在一定直径的圆板上等分地开通若干个长方 形孔。
由于光电码盘与电动机同轴,电动机旋 转时,光栅盘与电动机同速旋转,经发光二极 管等电子元件组成的检测装置检测输出若干 脉冲信号,通过计算每秒光电编码器输出脉冲 的个数就能反映当前电动机的转速。
此外,为 判断旋转方向,码盘还可提供相位相差90&or dm;的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁 式、感应式和电容式。
根据其刻度方法及信号 输出形式,可分为增量式、绝对式以及混合式 三种。
(REP)1.1增量式编码器111 l=J 1=增量式编码器是直接利用光电转换原理输出三组方波脉冲A、和Z相;A、B两组脉冲相位差9Oº,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高, 对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
编码的设计可采用二进制码、循环码、二进制补码等。
它的特点是:1.2.1可以直接读出角度坐标的绝对值; 1.2.2没有累积误差;1.2.3电源切除后位置信息不会丢失。
但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。
1.3混合式绝对值编码器混合式绝对值编码器, 它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
光电编码器是一种角度(角速度)检测装置,它将输入给轴的角度量,利用光电转换原理转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。
它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。
2009年06月12日星期五08:48本文主要介绍高精度的光电编码器的内部结构、工作原理与位置检测的方法。
一、光电编码器的介绍:光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的。
根据光电编码器的工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器,下面我就这两种光电编码器的结构与工作原理做介绍。
(一)、绝对式光电编码器绝对式光电编码器如图所示,他是通过读取编码盘上的二进制的编码信息来表示绝对位置信息的。
编码盘是按照一定的编码形式制成的圆盘。
图1是二进制的编码盘,图中空白部分是透光的,用“0搭来表示;涂黑的部分是不透光的,用“1”来表示。
通常将组成编码的圈称为码道,每个码道表示二进制数的一位,其中最外侧的是最低位,最里侧的是最高位。
如果编码盘有4个码道,则由里向外的码道分别表示为二进制的23. 22、21和20, 4位二进制可形成16个二进制数,因此就将圆盘划分16个扇区,每个扇区对应一个4位二进制数,如0000、0001、…、llllob)按照码盘上形成的码道配置相应的光电传感器,包括光源、透镜.码盘、光敏二极管和驱动电壬线路。
当码盘转到一定的角度时,扇区中透光的码道对应的光敏二极管导通,输出低电平“0” ,遮光的码道对应的光敏二极管不导通, 输出高电平“1” ,这样形成与编码方式一致的高.低电平输出,从而获得扇区的位置脚。
(二)、增量式光电编码器Increamental Optical-electrical Encoder增量式光电编码器是码盘随位置的变化输出一系列的脉冲信号,然后根据位置变化的方向用计数器对脉冲进行加/减计数,以此达到位置检测的目的。
它是由光源、透镜、主光栅码盘、鉴向盘、光敏元件和电子线路组成。
增量式光电编码器的工作原理是是由旋转轴转动带动在径向有均匀窄缝的主光栅码盘旋转,在主光栅码盘的上面有与其平行的鉴向盘,在鉴向盘上有两条彼此错开90o相位的窄缝,并分别有光敏二极管接收主光栅码盘透过来的信号。
工作时,鉴向盘不动,主光栅码盘随转子旋转,光源经透镜平行射向主光栅码盘,通过主光栅码盘和鉴向盘后由光敏二极管接收相位差90o的近似正弦信号,再由逻辑电路形成转向信号和计数脉冲信号。
为了获得绝对位置角,在增量式光电编码器有零位脉冲,即主光栅每旋转一周,输出一个零位脉冲,使位置角清零。
利用增量式光电编码器可以检测电机的位置和速度。
二、光电编码器的测量方法:光电编码器在电机控制中可以用来测量电机转子的磁场位置和机械位置以及转子的磁场和机械位置的变化速度与变化方向。
下面就我就光电编码器在这几方面的应用方法做一下介绍。
(一)、使用光电编码器来测量电机的转速可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。
具体的测速方法有M法、T法和M/T法3种。
M法又称之为测频法,其测速原理是在规定的检测时间Tc内,对光电编码器输出的脉冲信号计数的测速方法,如图2所示,例如光电编码器是N线的,则每旋转一周可以有4N个脉冲,因为两路脉冲的上升沿与下降沿正好使编码器信号4倍频。
现在假设检测时间是Tc,计数器的记录的脉冲数是Ml,则电机的每分钟的转速为■ •* —• •- ■ •—」■ _ . <—■ ―• J .-图2 \I法测速原理编码器脉沖信号_FLn_n_n _______ n_n_n_n时钟脉冲信号图3 T法测速原理在实际的测量中,时间Tc内的脉冲个数不一定正好是整数,而且存在最大半个脉冲的误差。
如果要求测量的误差小于规定的范围,比如说是小于百分之一,那么Ml就应该大于50。
在一定的转速下要增大检测脉冲数Ml以减小误差, 可以增大检测时间Tc单考虑到实际的应用检测时间很短,例如伺服系统中的测量速度用于反馈控制,一般应在0.01秒以下。
由此可见,减小测量误差的方法是采用高线数的光电编码器。
M法测速适用于测量髙转速,因为对于给定的光电编码器线数N机测量时间Tc条件下,转速越高,计数脉冲Ml越大,误差也就越小。
T法也称之为测周法,该测速方法是在一个脉冲周期内对时钟信号脉冲进行计数的方法,如图3所示。
例如时钟频率为fclk,计数器记录的脉冲数为M2, 光电编码器是N线的,每线输出4N个脉冲,那么电机的每分钟的转速为为了减小误差,希望尽可能记录较多的脉冲数,因此T法测速适用于低速运行的场合。
但转速太低,一个编码器输出脉冲的时间太长,时钟脉冲数会超过计数器最大计数值而产生溢出;另外,时间太长也会影响控制的快速性。
与M 法测速一样,选用线数较多的光电编码器可以提高对电机转速测量的快速性与精度。
M/T法测速是将M法和T法两种方法结合在一起使用,在一定的时间范围内, 同时对光电编码器输出的脉冲个数Ml和M2进行计数,则电机每分钟的转速为实际工作时,在固定的Tc时间内对光电编码器的脉冲计数,在第一个光电编码器上升沿定时器开始定时,同时开始记录光电编码器和时钟脉冲数,定时器定时Tc时间到,对光电编码器的脉冲停止计数,而在下一个光电编码器的上升沿到来时刻,时钟脉冲才停止记录。
采用M/T法既具有M法测速的高速优点, 又具有T法测速的低速的优点,能够覆盖较广的转速范围,测量的精度也较高, 在电机的控制中有着十分广泛的应用。
(二)使用增量式光电编码器来判别电机转速方向的原理增量式光电编码器输出两路相位相差90o的脉冲信号A和B,当电机正转时, 脉冲信号A的相位超前脉冲信号B的相位90o,此时逻辑电路处理后可形成高电平的方向信号Die当电机反转时,脉冲信号A的相位滞后脉冲信号B的相位90。
,此时逻辑电路处理后的方向信号D迁为低电平。
因此根据超前与滞后的关系可以确定电机的转向。
其转速辩相的原理如图4所示图4转向判别原理图(三)、增量式光电编码器的反馈脉冲的四倍频原理在使用增量式编码器时,通过计相位相差90。
的两路正交脉冲信号A和B 的上升沿与下降沿已达到将增量式编码器的反馈脉冲四倍频的目的。
这样在不增加增量式光电编码器的线数的情况下,就可以获得更精度高的位置脉冲信息, 以实现对电机位置的精确控制。
其工作原理与脉冲的相位关系如图5所示」图5脉冲四倍频相位关系图一.光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90。
的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
(一)增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90°,从而可方便地判断出旋转方向,而Z相为每转一个脉冲, 用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上, 抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
(二)绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相対应的数字码。