反比例函数复习课教案

合集下载

反比例函数复习教案

反比例函数复习教案

反比例函数复习优秀教案一、教学目标:1. 知识与技能:(1)理解反比例函数的定义及其性质;(2)掌握反比例函数图象的特点及应用;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过复习,加深对反比例函数知识的理解;(2)培养学生的数学思维能力,提高解决问题的能力。

3. 情感态度与价值观:二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其性质;(2)反比例函数图象的特点及应用。

2. 教学难点:(1)反比例函数图象的绘制;(2)反比例函数在实际问题中的应用。

三、教学过程:1. 导入:通过复习反比例函数的定义及性质,引导学生回顾已学知识,为新课的学习做好铺垫。

2. 课堂讲解:(1)讲解反比例函数的定义:y = k/x(k为常数,k≠0);(2)分析反比例函数的性质:as x changes, y changes in the opposite direction;(3)展示反比例函数图象的特点:经过原点,双曲线形状,两分支分别趋向于x轴和y轴;(4)讲解反比例函数在实际问题中的应用:通过实例分析,让学生掌握反比例函数在实际问题中的解题方法。

3. 课堂练习:布置一些有关反比例函数的练习题,让学生在课堂上完成,检测学生对反比例函数知识的掌握程度。

四、课后作业:2. 绘制一个反比例函数的图象,并描述其特点;3. 选择一道实际问题,运用反比例函数解决。

五、教学反思:本节课通过复习反比例函数的知识,使学生巩固了反比例函数的定义、性质及应用。

在课堂讲解过程中,注重培养学生的数学思维能力,提高解决问题的能力。

通过课堂练习和课后作业,检测学生对反比例函数知识的掌握程度。

在今后的教学中,要继续关注学生的学习情况,针对性地进行辅导,提高教学质量。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质;2. 通过多媒体演示反比例函数图象的特点,增强学生的直观感受;3. 利用实际例子,让学生学会将反比例函数应用于解决实际问题;4. 注重个体差异,给予学生充分的思考时间和空间,鼓励学生提出问题;5. 采用小组合作学习的方式,培养学生的团队合作意识。

反比例函数复习课教案

反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。

强调反比例函数中x 和y 成反比例关系,即xy = k。

1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。

探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。

讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。

第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。

引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。

2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。

引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。

第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。

3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。

引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。

第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。

4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。

引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。

反比例函数复习课教案

反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义与性质1.1 反比例函数的定义1.2 反比例函数的性质1.3 反比例函数的图像第二章:反比例函数的图像与性质2.1 反比例函数的图像特点2.2 反比例函数的性质解析2.3 反比例函数的图像与性质综合应用第三章:反比例函数的解法与应用3.1 反比例函数的解法3.2 反比例函数的应用案例3.3 反比例函数解法与应用的拓展第四章:反比例函数与一元二次方程4.1 反比例函数与一元二次方程的关系4.2 反比例函数在一元二次方程中的应用4.3 反比例函数与一元二次方程的综合问题第五章:反比例函数的综合练习5.1 反比例函数的基本概念练习5.2 反比例函数的图像与性质练习5.3 反比例函数的解法与应用练习第六章:反比例函数与几何图形6.1 反比例函数与圆的关系6.2 反比例函数与双曲线的联系6.3 反比例函数在其他几何图形中的应用第七章:反比例函数与实际问题7.1 反比例函数在实际问题中的应用概述7.2 反比例函数在面积问题中的应用7.3 反比例函数在其他实际问题中的应用第八章:反比例函数的变换与性质8.1 反比例函数的平移变换8.2 反比例函数的缩放变换8.3 反比例函数的性质在变换中的应用第九章:反比例函数的专题讨论9.1 反比例函数的奇偶性9.2 反比例函数的周期性9.3 反比例函数与指数函数、对数函数的关系第十章:反比例函数的综合训练与拓展10.1 反比例函数的综合训练题10.2 反比例函数的拓展问题10.3 反比例函数在不同学科领域的应用探讨重点和难点解析重点一:反比例函数的定义与性质解析:反比例函数的定义容易理解,但要让学生深刻理解其性质,特别是图像的特点,需要通过大量的示例和练习来巩固。

重点二:反比例函数的图像与性质解析:反比例函数的图像是一条通过原点的直线,但其性质在不同的象限中有所不同,需要学生通过绘制图像和分析性质来掌握。

重点三:反比例函数的解法与应用解析:反比例函数的解法涉及到的数学运算较为复杂,需要学生熟练掌握。

反比例函数复习教案

反比例函数复习教案

反比例函数复习【教学目标】1.知道反比例函数的定义、图像、性质及几何意义。

2.熟练使用反比例函数的性质和几何意义。

3.综合使用一次函数和反比例函数的知识解决相关问题。

【教学重点、难点】1.熟练使用反比例函数的性质和几何意义。

2.综合使用一次函数和反比例函数的知识解决相关问题。

【活动方案】活动一 知识回顾1、反比例函数的定义:一般地,形如k y x=(k 为常数,k ≠0)的函数称为反比例函数,另外,反比例函数的关系式也可写成:xy=k 或y =kx -1的形式。

2、画出反比例函数6y x =和6y x=-的图像并根据所画图像说出反比例函数k y x =k ≠0)的的图像的性质。

3、比较正比例函数和反比例函数的图像和性质4、练一练(自主完成后口头展示)(1)函数20y x=的图象在第________象限,在每一象限内,y 随x 的增大而_________. (2)函数10y x=-的图象在第________象限,在每一象限内,y 随x 的增大而_________. (3)函数21a y x+=- 的图象,当x>0时,图象在第____象限,y 随x 的增大而_________. (4)已知反比例函数的图象经过点A(4,5) ,则函数的解析式为 ______ __; 这个函数的图象分别在第________象限,在每一象限内,y 随x 的增大而_________.(5) 判断 点B (3,-10),是否在函数30y x=-的图象上. ;判断 点C (2,-5),是否在函数 20y x=-的图象上. 。

(6)函数 22k y x--=的图象上有三点(-3, 1y ), (-1, 2y ), (2, 3y ),则函数值1y 、2y 、3y 的大小关系是_______________;活动二 反比例函数的几何意义(自主探究并将得到的规律写出来)已知反比例函数9y x =,P 为函数图象上的一点,过P 做x 、y 轴的垂线段。

第26章 反比例函数复习教案

第26章 反比例函数复习教案

第26章反比例函数复习(2课时)一、教学目标1.能画出反比例函数的图象,并根据图象和解析式掌握反比例函数的主要性质.2.反思在具体问题中探索数量关系和变化规律的过程,理解反比例函数的概念,领会反比例函数作为一种教学模型的意义.3.培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题中的应用价值.二、重难点1.重点:掌握反比例函数概念、图象和主要性质.2.难点:应用反比例函数、结合几何、代数知识解决综合性问题.三、教学过程(一)学法解析1.认知起点:在学习了一次函数,反比例函数的基础上进行知识的重温,•回顾.2.知识线索:3.学习方式:采取综合学习,分类归纳的方式,借助投影仪,•结合数形思想进行深入探究.(二)回顾交流,反思提炼①问题提出:1.反比例函数有哪些概念?试举例说明. 2.谈谈函数y=3x与y=-3x的图象的联系和区别.学生活动:归纳反比例函数的概念,一般地,y=k x(k 为常数,k ≠0)•叫做反比例函数.教师引导:(1)反比例函数的等价形式为y= k x⇔y=kx -1(k ≠0) xy=k (k ≠0)⇔变量y 与x 成反比例,比例系数为k .(2)判断两个变量是否是反比例函数关系有两种方法: 方法1,按照反比例函数定义判断; 方法2,看两个变量的乘积是否为定值. 3.课堂演练:(1)矩形面积是60cm 2,这时底ycm 和高xcm 之间的关系是反比例函数吗?[是,y=60x] (2)在匀速直线运动中,路程s 、时间t 、速度v 三者之间当路程s 一定时,•时间t 与速度v 的关系是怎样的关系?[反比例函数关系,t=s v(s 是常数)](3)下列函数中,反比例函数是(B ). A .y=-9.34xB y x=-C .y=-x+7D .y=-x 2-1 (4)设菱形的面积为48cm 2,两条对角线分别为xcm 和ycm , ①求y 与x 之间的函数关系式;(y=96x) ②求当其中一条对角线x=6cm ,另一条对角线y 的长.②问题提出:1.观察上述反比例函数(y=-3x ,y=3x)的图象,回答下面问题:(1)反比例函数图象是怎样的曲线?(双曲线) (2)画反比例函数的图象应注意什么?[①反比例函数的图象不是直线,“两点法”是不能画的;•②点选的越多画图越精确;③画图注意对称性、无限延伸] (3)反比例函数具有哪些性质? 2.课堂演练.(1)在函数y=21m x--(m 为常数)的图象上有三点(-1,y 1),(-14,y 2),(12,y 3),则函数值y 1,y 2,y 3的大小关系是(D ). A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 1<y 3<y 2 D .y 3<y 1<y 2 (2)如图,A ,B 是函数y=1x的图象上交于原点O 对称的任意两点,AC ∥y 轴,BC•∥x 轴,△ABC 的面积S ,则选(C ). A .S=1 B .1<S<2 C .S=2 D .S>2 (三)综合应用,提升能力1.已知y=y 1+y 2,y 1与x+1成正比例,y 2与x 2成反比例,并且x=1时,y=1;x=3时,y 2=23+1,•求x=13时y 的值. (四)随堂练习,巩固深化2.如图,过双曲线y=2x上两点A 、B 分别作x 轴、y 轴的垂线,若矩形ADOC•与矩形BFOE 的面积分别为S 1、S 2,则S 1与S 2的关系是什么? (五)小结:谈谈你的收获(六)布置作业(七)板书设计四、教学反思:。

北师大版数学九年级上册第六章反比例函数复习教案

北师大版数学九年级上册第六章反比例函数复习教案
突破方法:引导学生通过观察坐标点,分步骤绘制图像,并强调曲线在第二、四象限的单调递增特点。
(2)反比例函数在实际问题中的应用:学生在将反比例函数应用于实际问题中时,往往难以正确设定变量和建立模型。
突破方法:通过典型例题的讲解和练习,引导学生如何从问题中抽象出反比例关系,并建立数学模型。
(3)反比例函数与其他函数的区分:学生容易混淆反比例函数与其他函数的性质和图像。
同学们,今天我们将要复习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程不变,速度与时间成反比的情况?”(如:固定距离,速度越快,所需时间越短)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
另外,学生在将反比例函数应用于实际问题中时,有时会感到困惑,不知道如何从问题中抽象出反比例关系。针对这个问题,我计划在接下来的教学中,设计更多具有实际背景的问题,引导学生逐步学会如何从问题中提炼出反比例函数模型,提高他们解决实际问题的能力。
在小组讨论环节,我发现学生们积极参与,讨论氛围浓厚,但部分小组在分享成果时,表达不够清晰。为了提高学生的表达能力,我打算在今后的教学中,多给予他们展示和表达的机会,并适时给予指导和鼓励,帮助他们更好地展示比例函数复习教案
一、教学内容
本节课为北师大版数学九年级上册第六章“反比例函数”的复习教案。教学内容主要包括以下几部分:
1.反比例函数的定义与性质:回顾反比例函数的定义,即y=k/x(k为常数,k≠0),以及其性质,如图像关于原点对称、在每个象限内的符号等。
2.反比例函数的图像:复习反比例函数图像的特点,如曲线在第一、三象限单调递减,在第二、四象限单调递增,以及图像与坐标轴无交点等。

九年级中考数学一轮复习教案:反比例函数复习精选全文

九年级中考数学一轮复习教案:反比例函数复习精选全文

精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

反比例函数复习课教案

反比例函数复习课教案
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化




二、知识巩固
1、已知反比例函数的图象经过点,则这个函数的图象位于()
A.第一、三象限B.第二、三象限
C.第二、四象限D.第三、四象限
2、已知反比例函数的图像经过(1,-2),则下列各点中,在反比例函数图象上的是()
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化
随堂
练习
课堂
小结
达标
检测
思考题:如图,一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则k的值和Q点的坐标分别为_________________________.
三、想一想:关于反比例函数,你还有哪些不清楚的地方?与同伴交流。
布置
作业
课堂作业课后作业
下节课预习内容
教后感
A.B.C.D.
3、已知反比例函数的图象经过点(m,2)和(-2,3)则m的值为 .
4、已知直线与双曲线的一个交点A的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.
5、如图8,若点在反比例函数的图象上,轴于点,的面积为3,则.
6、如图,A为双曲线上一点,过A作AC⊥x轴,垂足为C,且S△AOC=2.
尊重主体面向全体先学后教当堂训练科研兴教力求高效
教材第课(章)第节(单元)第课时,总课时2014年5月16日

17反比例函数复习共四节教案

17反比例函数复习共四节教案

是 ,分布在第 象限,在每个象限内, y 都随 x 的增大 而 ;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且 x1<x2 , 则 y1 y2。 y 2、 已知反比例
学生分成小组 讨论,选派代表回 答问题锻炼培养学 生创新能力
第 一 课 时
k 函数 y x 的图象经过 点 (1, 2) , 则
反比例函数的图像和性质在实际问题中的运用。
点 难 点 课 前 准 备
运用函数的性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运 用数学思想方法。
充分复习教材,掌握基础知识,为本节复习打好基础。
教 分 课 时 环 节 与时间 教 师
学 活 动

程 学 生 活 动 △设计意图 ◇资源准备 □评价○反思
2
(3,2)
第 二 课 时
O
3
R( Ω )
电流 I(A)与电阻 R(Ω )成反比例. 右 图表示的是该电路中电流 I 与电阻 R 之间 的图象, 则用电阻 R 表示电流 I 的函数解 析式为( ) 2 3 I I R R A. B. C.
△继续通过对实 际问题中数量关 系得探索, 掌握用 函数的思想去研 究其变化规律结 合具体情境体会 和理解反比例函 数的意义, 并解决 与它们有关的简 单的实际问题。 让 学生参与知识的 发现和形成过程, 强化数学的应用 与建模意识, 提高 分析问题和解决 问题的能力。
函 数 y kx 可确定为( A. y 2x B. y
1 -1 O x
) C.
1 x 2
y
1 x 2
D. y 2 1x
y
3、 如 图 是 三 个 反 比 例 函 数 y

《反比例函数》复习课教案

《反比例函数》复习课教案

反比例函数复习课教学设计一、教学目标1、知识与能力目标:〔1〕复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

〔2〕能够根据问题中的条件确定反比例函数的解析式,会画出它的图象并根据问题确定自变量的取值范围及增减性2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些根本策略,开展实践能力和创新精神。

3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

二、教学重点和难点重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

难点:反比例函数性质的灵活运用。

数形结合思想的应用。

三、教学方法:探究——讨论——交流——总结四、教学媒体:多媒体课件。

五、教学过程:导入:播放视频?悲伤的双曲线?,引出课题?反比例函数复习?一、知识梳理:同学们,通过刚刚的视频,大家肯定猜到了,今天我们来复习反比例函数。

通过今天的复习课,希望大家加深对反比例函数知识的理解和运用。

首先请同学们看一下本章知识构造图来回忆一下,对反比例函数你了解那知识考点?课件展示:1.反比例函数的考点一:反比例函数的定义。

2.反比例函数的考点二:反比例函数的图象与性质。

3.反比例函数的考点三:反比例函数图象中比例系数k的几何意义。

4.反比例函数的考点四:反比例函数解析式确实定。

5.反比例函数的考点五:反比例函数的实际应用。

二、合作交流、解读探究〔一〕与反比例函数的意义和图像与性质、比例系数K的几何意义有关的问题课件展示:稳固练习:课件展示:1〔二〕反比例函数解析式确实定问题方法:待定系数法由于解析式y=k/x(k≠0)因此只需一对对应值或一个点的坐标综合练习:中考闯关_________ .(三)反比例函数的实际应用〔课件展示〕解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围。

反比例函数复习教案

反比例函数复习教案

反比例函数复习教案【学习目标】1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式()0k y k x=≠,能判断一个给定函数是否为反比例函数;2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3.能根据图象数形结合地分析并掌握反比例函数()0k y k x=≠的性质以及k 的几何意义,能利用这些性质分析和解决一些简单的实际问题.一、反比例函数的概念 一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.特别说明:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y随x的增大而减小。

在一个支上(每一个象限内),y随x的增大而增大。

对称性图像关于原点对称;关于y=x、y=-x对称四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.双反比例函数中运用k的几何意义S矩形ABCD=|k1|-|k2|, S△ABO=|k1|-|k2|2例1.下列函数中,y可以看作是x的反比例函数的是()A.y=B.y=C.y=﹣+1 D.y=﹣2x﹣1变式训练1、已知函数y=(k﹣2)x|k|﹣3(k为整数),当k为时,y是x的反比例函数.例2、若点A(1,3)在反比例函数y=的图象上,则k的值是()A.1 B.2 C.3 D.4例3、一次函数1=+与反比例函数ay ax=-在同一坐标系中的大致图yx象是()A.B.C.D.变式训练3、若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1例4、如图,P为反比例函数y=k的图象上的点,过P分别向x轴和xy轴引垂线,它们与两条坐标轴围成的矩形面积为2,这个反比例函数解析式为_____.例5、如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴于点B,C是OB的中点,连接AO,AC,若△AOC的面积为4,则k=?上的点,分别过点A、B作x轴和例6、如图,点A、B是双曲线y=6xy轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为__.变式训练1、如图,一次函数y=x﹣2的图象与反比例函数y=的图象交于A、B两点,求△OAB的面积.变式训练2、如图,在平面直角坐标系xOy 中,平行四边形ABCD 的顶点A 、D 在x 轴上,顶点B 在y 轴上,顶点C 在反比例函数y =12mx-(0)x >的第一象限的图象上.(1) m 的取值范围为 ; (2) 若平行四边形ABCD 的面积为6. ①求反比例函数的表达式; ②若4AD =时,求点B 的坐标.。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。

2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。

教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。

今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。

这两种量之间是反比例关系。

活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。

(2)三角形的面积肯定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积肯定,底面积和高。

反比例函数教案优秀3篇

反比例函数教案优秀3篇

反比例函数教案优秀3篇反比例函数教案篇一教学目标1、经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2、理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3、使学生会画出反比例函数的图象。

4、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1、什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。

假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。

因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1、路程一定时,时间t就是速度v的反比例函数。

即速度增大了,时间变小;速度减小了,时间增大。

2、自变量v的取值是v>0.问题2:学校课外→←生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。

设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知xy=24,即从这个关系中发现:1、当矩形的面积一定时,矩形的一边是另一边的反比例函数。

即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2、自变量的取值是x>0.反比例函数教案篇二一、教学设计思路1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

中考数学复习《反比例函数》教案

中考数学复习《反比例函数》教案

中考数学复习《反比例函数》教案教案:反比例函数教学目标:1.了解反比例函数的定义;2.掌握求解反比例函数的图像、性质和解题方法;3.能够在实际问题中应用反比例函数。

教学重点:1.反比例函数的定义和特点;2.求解反比例函数的图像和性质;3.实际问题中的反比例函数应用。

教学难点:1.反比例函数的图像和性质;2.运用反比例函数解决实际问题。

教学过程:一、导入与复习(10分钟)1.复习正比例函数的概念和性质,并给出例子进行讲解。

2.提问:什么是反比例函数?反比例函数有哪些特点?3.回答问题并讨论。

二、知识讲解(15分钟)1.介绍反比例函数的定义:若两个变量x和y满足x*y=k(k≠0),其中k为常数,则称y与x成反比例关系,并称y是x的反比例函数。

2.解释反比例函数的特点和图像特征。

3.讲解反比例函数的性质,如定义域、值域等。

三、图像与性质(20分钟)1.示例一:求解y=k/x图像和性质。

a.计算k=1时,给出图像,并讨论特点。

b.讨论k>1和k<1的情况,给出图像并比较。

c.得出结论:y=k/x的图像是一条过原点的双曲线。

2.示例二:求解y=k/x^2图像和性质。

a.计算k=1时,给出图像,并讨论特点。

b.讨论k>1和k<1的情况,给出图像并比较。

c.得出结论:y=k/x^2的图像是一条过原点的开口向上的双曲线。

d.引导学生思考:如何通过改变k的值来改变这条双曲线的形状?四、实际应用(25分钟)1.讲解实际问题的解题步骤。

2. 示例一:车辆行驶的速度和所用时间成反比例关系。

当速度为60km/h时,所用时间为5小时。

求当速度为120km/h时,所用的时间。

3.示例二:工厂生产一种产品,当原材料的数量为4000吨时,需要工作4个月完成。

求当原材料的数量为6000吨时,需要工作多长时间才能完成。

4.让学生自己选择一个实际问题,并运用反比例函数进行求解。

五、归纳总结(10分钟)1.整理反比例函数的定义、特点、图像和性质。

反比例函数复习课教案设计

反比例函数复习课教案设计

人教版九年级下册数字第二十六章复习课:反比例函数(一)教学设计人教版九年级下册数学第二十六章复习课:反比例函数(一)教学设计一.教学目标:(1)复习反比例函数的概念,会求反比例函数表达式并能画出图象.(2)巩固反比例函数图象的变化其及性质并能运用解决某些实际问题.二.教学重点、难点:重点:反比例函数的定义、图像性质及反比例函数增减性的理解。

难点:会运用反比例函数知识解决某些实际问题.三.教学过程:(1)创设情景(欣赏图片)情景1 :一个周末,小迪正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小迪立即告诉同伴分散趴在冰面上,匍匐的离开了危险区.情景2 :某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木板,构筑了一条临时通道,从而顺利完成了任务.师:以上两个类似的情景用到我们学过的什么数学知识来加以解释呢?(2)探 究新知例:如果人和木板对湿地地面的压力合计为600 N,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化呢? 解:先求p 与S 的函数关系式, 画出函数的图象.P 是S 的反比例函数.师:事实上生活中应用反比例函数的知识还很多 (3)知识梳理、合作交流 考点一:反比例函数的基本概念 1、什么是反比例函数?一般地,形如y =k x( k 是常数,k ≠0 )的函数叫反比例函数2、反比例函数常见的表达式有:y =kx( k ≠0 ))0(600>=s spxy=k ( k ≠0 ) y=kx-1( k ≠0 ) 3、自变量的取值范围是x ≠0 4.热身反馈(1).下列函数中哪些是y 与x 反比例函数?哪些是y 与x 的一次函数?把它们放进各自的小房子吧!y = 6x-7 y = 5x y = 3x2+2 y = 3x112y x=275y x =25x y =618xy -=(2).已知函数 y=(m-3)x2-|m|是反比例函数,则m = -3解:(1)由题意得 m-3 ≠0 2 -︱m ︱= -1解之得 m=-3注意:反比例函数的两个条件:(1)自变量的指数为-1; (2)自变量系数不为0.解:只要k=xy=6即可友情提示:点(x,y )在 y =k x图像上,则xy=k.考点二:反比例函数的图像和性质 反 比 例 函 数图 象图象的 位置 增 减 性(k > 0)在第一、三象限内在每一象限内,函数值y 随x 的 增大而减小。

反比例函数复习课教案

反比例函数复习课教案

反比例函数复习课教案一.教学目标㈠知识与技能目标1.了解反比例函数的概念。

2.进一步理解和掌握反比例函数的图像和性质并能灵活运用。

3.能灵活运用反比例函数解决实际问题。

㈡过程与方法目标通过对反比例函数知识的回顾、考点自测和例题讲解培养学生对知识的交流归纳能力和综合运用的能力感㈢情感态度目标培养学生数形结合思想,增强学生的自信心和战胜困难的勇气二.教学重点,难点.1反比例函数的图像和性质.2.灵活运用的反比例函数解决问题三.教学过程.【知识回顾】1.形如的函数叫做反比例函数,自变量的取值范围是,的一切实数,自变量的次数是,其中叫做比例系数。

2.反比例函数的表示形式:①②3.反比例函数的图像和性质。

①K>0双曲线的两个分支分布在象限,在每个象限内Y随X的增大而②K<0双曲线的两个分支分布在象限,在每个象限内Y随X的增大而4.反比例函数Y= 中K的意义反比例函数Y=(K≠0)中比例系数K的几何意义:即过双曲线Y= (K≠0)上任意一点引X轴、Y轴的垂线,所得矩形面积为【考点自测】1、填空题①y=2X-3m+2是反比例函数则m=②反比例函数Y= 的图像过点P(-,2 )则K=③已知反比例函数Y= 的图像在第二.四象限,则n的取值范围是④已知反比例函数Y= 的图像每一支曲线上Y都随X的增大而减小,则K的取值范围是2.选择题:①若反比例函数Y= 经过点(-1,2 ),则它的解析式为()A.Y= -B.y=C.y=D.y=②反比例函数Y= -的图像大致是()A. B C. D.③对于反比例函数Y=下列说法正确的是()A.点(-2,1)在它的图像上。

B.它的图像经过原点。

C.它的图像在第一.三象限。

D.当X>0时,Y随X的增大而增大。

3.已知反比例函数Y=的图像与一次函数Y=3X+m的图像交与点(1,5)⑴求这两个函数的解析式;⑵求这两个函数图像的另一个交点坐标。

【典型例题】例1 若A(a1,b1)B(a2 ,b2)是反比例函数Y=- 图像上的两个点且a1<a2,则b1与b2的关系()A.b1<b2 B. b1=b2.C. b1>b2.D大小不确定例2 已知Y与X2成反比例并且X=-1时Y=2.①求Y与X之间的函数关系式;②X=4时Y的值。

十七章_反比例函数复习教案

十七章_反比例函数复习教案

反比例函数复习教案复习目标 知识目标:1、理解反比例函数概念,掌握反比例函数的主要性质。

2、会从函数图象中获取信息,解决问题。

能力目标:1、逐步提高从函数图象中获取信息的能力和感知水平。

2、形成用函数观点处理问题的意识,体验数形结合的思想方法,发展学生形象思维能力。

情感目标:培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题的应用价值。

重点:掌握反比例函数的概念、图象、性质、应用。

难点:运用反比例函数的性质和图象解答综合题,要善于识别图形,获取有用的信息,灵活的运用数学思想方法。

复 习 过 程 一、基础知识归纳1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

x k y =还可以写成kx y =1-2. 反比例函数图像的特点:双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

反比例函数的图像即是中心对称图形(对称中心是原点),也是轴对称图形(对称轴是x y =或x y -=)。

34、反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

二、基础知识训练(一)定义与解析式1.下列函数中哪些是反比例函数?① y=3x; ② y=2x 2; ③ xy=-2; ④ y=2x -1; ⑤ 2y 3x =; ⑥3y 2x = .2.已知y 与x 成反比例,当x=2时,y=3,则 y 与x 的关系式为________.3.若双曲线经过点(-3 ,2),则其解析式是______. 4. 反比例函数x ky =的图像经过点(-3,5)、点(a ,-3),则k = ,a = .(二)图像及性质1. 函数5y x =-的图象位于 象限,在每一象限内,函数y 随着x 的增大而 . 2. 若函数ky x =的图象经过(3,-4),则k = ,此图象位于 象限,在每一个象限内y 随x 的减小而 .3、反比例函数 图像在第二、四象限,则m 取值范围为 4.已知点A(x 1,y 1),B(x 2,y 2)(x 1<0<x 2 )都在反比例函数的图象上,则y 1与y 2的大小关系(从大到小)为 .5、若()11,A x y ()22,B x y ()33,C x y 都在双曲线6y x=-上,且1230x x x <<<则1y 、2y 、3y 间的大小关系为(三)K 的几何意义1、点A 是反比例函数图象上的一点,过A 作AB ⊥y 轴于B 点,若△ABO 面积为2,则反比例函数解析式为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习第三单元函数及其图像
第四讲反比例函数(教案)
水月寺中心学校黄波
一、教学目标
1、知识和技能目标:经历回顾与思考,建立本章的知识框架,强化反比例函数的概念、图像的性质
等基本知识点的学习。

2、过程和方法目标:体会数形结合思想的意义,逐步学会利用数形结合思想分析问题解决问题;进
一步体会反比例函数在现实生活中应用,增强应用数学意识
3、情感态度和价值观目标:在独立思考的基础上,积极参与讨论,敢于发表观点,尊重理解他人见
解,在交流中获益;认识到数学是解决现实问题的重要工具,提高学习数学的自信心。

二、教学重难点
教学重点:1.建立本章知识框架图;理解反比例函数的概念、性质,会画它们的图像;
2.会用待定系数法确定反比例函数的解析式。

教学难点:1.应用反比例函数知识解决现实生活中的实际问题,进一步体会数形结合思想。

2.结合中考出题特点,对反比例函数拔高题的解题规律、技巧的训练。

三、教学与学法
教法:对本章知识点的梳理主要采用归纳、注入式教学法,对习题的探究主要采用点对点教学法、点拨
指导和直观演示法,充分体现“以生为本”的教育理念,发挥学生的主体作用,教师扮好导演和引路人的角色。

学法:主要采用练习、演示、小组合作探究以及类比归纳法。

四、教学过程
1、课前热身,问题引入
2、考点互动探究,基础训练
3、考点互动探究,典例剖析
4、考点互动探究,综合训练
5、能力提升,综合训练
6、展示知识框架,理清知识脉络(小结)
7、作业布置
(一)课前热身,问题引入
1、一个游泳池的容积为2000m ³,游泳池注满水所用时间t(单位:h)随注水速度v 的变化而变化。

2、一个物体重100N,物体对地面的压强(单位:pa)随接触面积S 的变化而变化。

以上两个函数都是什么函数?你还记得这类函数的定义吗?它的函数图像有哪些性质特征,你能说出来吗?今天我们就来复习这类函数。

(二)考点互动探究,基础训练
考点1 反比例函数的定义
1.下面的函数是反比例函数的是( )
A .y =3x +1
B .y =x 2
+2x C .y =x 2 D .y =2x
2.已知y 与x 成反比例函数,且x =2时,y =3,则该函数的解析式是( ) A .y =6x B .y =16x C .y =6x D .y =6
x -1
3.如果函数y =x
2m -1
为反比例函数,则m 的值是( )
A .-1
B .0 C.1
2
D .1
4.红星中学冬季储煤120吨,若每天用煤x 吨,则使用天数y 与x 的函数关系的大致图象是( )
反比例函数的定义
形如 ( )的函数叫做反比例函数,其它形式为
考点2 反比例函数的图象及其性质
5.对于反比例函数y =1
x
,下列说法正确的是( )
A .图象经过点(1,-1)
B .图象位于第二、四象限
C .图象是中心对称图形
D .当x <0时,y 随x 的增大而增大 6.若函数y =
m +2
x
的图象在其象限内y 的值随x 值的增大而增大,则m 的取值( ) A .m >-2 B .m <-2 C .m >2 D .m <2
7.反比例函数y =k x
和一次函数y =kx -k 在同一直角坐标系中的图象大致是( )
8.如图所示,P1、P2、P3是双曲线上的三个点,过这三点分别作y 轴的垂线,得三个三角形 OP1A1、OP2A2、OP3A3,设它们的面积分别为S1、S2、S3,则( ) A.S1<S2<S3 B. S2 <S1< S3
图象
反比例函数y =k
x
的图象是双曲线
性质
k >0
图象在第________象限
在每个分支上,y 随x 的增大而________
k <0
图象在第________象限
在每个分支上,y 随x 的增大而________
k 的意义
过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数________
C.S1< S3< S2
D. S1=S2=S3
9.反比例函数y =k x
(k ≠0)的图象如图12-3所示,若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是这个图象上的三点,且x 1>x 2>0>x 3,则y 1,y 2,y 3的大小关系是( )
A .y 3<y 1<y 2
B .y 2<y 1<y 3
C .y 3<y 2<y 1
D .y 1<y 2<y 3
10.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V (m 3
)的反比例函数,其图象如图12-5所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )
A .不小于54 m 3
B .小于54 m 3
C .不小于45 m 3
D .小于45 m
3
三、考点互动探究,典例剖析
考点3 反比例函数的综合应用
反比例函数图像与性质的综合应用
利用图象上点的坐标的实际意义和几何意义解决实际问题
将反比例函数与一次函数、不等式、方程组知识结合起来解决实际问题
典例.为预防“诺如病毒”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中
的含药量y (mg)与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图12-6所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为8 mg.根据以上信息,解答下列问题:
(1)求药物燃烧时y 与x 的函数解析式; (2)求药物燃烧后y 与x 的函数解析式;
(3)当每立方米空气中含药量低于1.6 mg 时,对人体无毒害作用.那
么从消毒开始,经多长时间学生才可以返回教室?
四、考点互动探究,综合训练
综合训练1. 已知图12-7中的曲线是反比例函数y =
m -5
x
(m 为常数)图象的一支.若该函数的图象与正比例函数y =2x 的图象在第一象限内的交点为A ,过A 点作x 轴的垂线,垂足为B ,当△OAB 的面积 为4时,求点A 的坐标及反比例函数的解析式.
综合训练2.如图,Rt △ABO 的顶点A 是双曲线 y=
x
k
与直线 y=-x+(k+1) 在第四象限的交点,AB ⊥x 轴于B ,且 . (1)求这两个函数的表达式.
(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积.
五、能力提升,综合训练
如图,已知反比例函数 的图象经过点(2,3),矩形ABCD 的
()0>=
x k
y ()0>=
x x
k
y 2
3
=
∆ABO S
边BC在x轴上,E是对角线BD的中点,函数的图象又经过点两点A、E,点E的横坐标为m. 解答下列问题:
(1)求k的值;
(2)求点C的坐标(用m表示);
(3)当∠ABD=45°时,求m的值.
六、展示知识框架,理清知识脉络(小结)
七、布置作业。

相关文档
最新文档