机械振动 课后习题和答案 第二章 习题和答案
(完整版)机械振动课后习题和答案第二章习题和答案
2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩&&&00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-=V所以:7(/)n rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=&& 其中,初始条件:(0)0.2(0)0x x=-⎧⎨=⎩& (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=- 弹簧力为:()()cos ()k n mg F kx t x t t N ω===-V因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+& 212U kx =由()0T d E U +=可知:12()0m m x kx ++=&& 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩&2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+&) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩&200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
振动理论习题答案
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角2a=h 2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
大学物理-机械振动习题-含答案
大学物理-机械振动习题-含答案一、选择题1. 质点作简谐振动,距平衡位置 2。
0cm 时, ,则该质点从一端运动到 C )C:2.2s --- 加速度 a=4.0cm /s 另一端的时间为( A:1.2s B: 2.4sD:4.4sX ,22.2s.2上 2 42 •—个弹簧振子振幅为2 10 2m 当t 0时振子在x 1.0 10 2m 处,且向 正方向运动,则振子的振动方 程是:[A ]A : 1.2题图22 10 cos( t )m ;3’6)m; 3)m;2 10 2 cos( t2 10 2 cos( tD :2x 2 10 cos( t —)m;解:由旋转矢量可 以得出振动的出现初相为:?3 •用余弦函数描述一简谐振动,若其速度与时间 -1v (m.s )1.3题图t (s )—►o 1 —v 2 m vm如图示,则振动的初相位为: (v —t )关系曲线[A ]A: e ; B : 3 ; C : 2 ;D : 2- ;E :「3丁6解:振动速度为:V V max Si n( t 0)t 0时,sin 01,所以。
-或。
2 6由知1.3图,t 0时,速度的大小是在增加,由旋转矢量图知,旋转矢量在 第一象限内,对应质点的运动是由正最大 位移向平衡位置运动,速度是逐渐增加的, 旋转矢量在第二象限内,对应质点的运动 是由平衡位置向负最大位移运动,速度是 逐渐减小的,所以只有。
-是符合条件的。
64 •某人欲测钟摆摆长,将钟摆摆锤上移 1毫 米,测得此钟每分快0。
1秒,则此钟摆的 ) B:30cm C:45cm丄理丁 160mm 30cm2 dT 2 ( 0.1):、填空题1 •有一放置在水平 面上的弹簧振子。
振幅A = 2.0 X 0_2m 周期摆长为( A:15cm D:60cm 解:单摆周期 有: 他2 . g,两侧分别对「和l 求导,j*T = 0.50s ,根据所给初始条件,作出简谐振动的矢量图,并写出振动方程式或初位相。
机械振动课后习题答案
机械振动课后习题答案机械振动是力学中的一个重要分支,研究物体在受到外力作用后的振动特性。
在学习机械振动的过程中,课后习题是巩固知识、提高能力的重要途径。
本文将为大家提供一些机械振动课后习题的答案,希望能够帮助大家更好地理解和掌握这一知识。
1. 一个质量为m的弹簧振子在无阻尼情况下振动,其振动方程为mx'' + kx = 0,其中x为振子的位移,k为弹簧的劲度系数。
试求振动的周期。
解答:根据振动方程可知,振子的振动是简谐振动,其周期T与振子的质量m和弹簧的劲度系数k有关。
根据简谐振动的周期公式T = 2π√(m/k),可得振动的周期为T = 2π√(m/k)。
2. 一个质量为m的弹簧振子在受到外力F(t)的作用下振动,其振动方程为mx''+ kx = F(t),其中F(t) = F0cos(ωt)。
试求振动的解析解。
解答:根据振动方程可知,振子的振动是受迫振动,其解析解可以通过求解齐次方程和非齐次方程得到。
首先求解齐次方程mx'' + kx = 0的解xh(t),得到振子在无外力作用下的自由振动解。
然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。
将特解xp(t)代入非齐次方程,求解得到A和φ的值。
最后,振动的解析解为x(t) = xh(t) + xp(t)。
3. 一个质量为m的弹簧振子在受到阻尼力和外力的作用下振动,其振动方程为mx'' + bx' + kx = F(t),其中b为阻尼系数。
试求振动的稳定解。
解答:根据振动方程可知,振子的振动是受到阻尼力和外力的作用,其稳定解可以通过求解齐次方程和非齐次方程得到。
首先求解齐次方程mx'' + bx' + kx = 0的解xh(t),得到振子在无外力和阻尼作用下的自由振动解。
然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。
大学物理(第四版)课后习题及答案-机械振动
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为mm x 21007.7)25.040cos()10.0(-⨯=+=ππ)25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
机械振动基础课后习题解答_第2章习题
0.5
1
1
1
1 1/ 3
u1 (t ) u2 (t)
8 4
/ /
9 9
cos(
k 2m
)t
1/9 1/ 9
cos(
2k )t m
(3) 求结构的稳态响应
m1u1(t) k1(u1(t) u2 (t)) m2u2 (t) k1(u1(t) u2 (t)) k2 (u2 (t) v(t))
0 0
(K 2M)φ 0
1
1
2 2
k J
,
2
1
2k 2 J
1 1
φ1
1/
2
,
φ2
1/
2
P88,2-6: 不计刚杆质量,按图示坐标建立运动微分方程,并求出固有频率和固有振型。
系统动能:T
1 2
mu12
1 2
2mu22
系统势能:U
1 2
k (2u1
u2 )2
1 2
k (2u2
P87,2-1: 图示用于风洞试验的翼型剖面由拉伸弹簧k1和扭转弹簧k2支承着,剖面重心G到支承点 的距离为e, 剖面绕重心的转动惯量为J0,试建立系统运动微分方程。
动能:T
1 2
m(h e )2
1 2
J0 2
势能:U
1 2
k1h2
1 2
k2 2
m me
J0
me me2
h
k1
0
(e 0)
)
Re
2k k
k k
2
m
0
0 m
-1
i
f1
f2
eit
u* (t )
1
机械振动-张义民课后习题答案
单自由度系统的自由振动2.1求习题图2-l(a),(b),(c)所示系统的固有频率。
图Q)所示的系统悬怦梁的质量可以忽略不计,其等效弹赞刚度分别为码和居。
图(b)所示的系统为一质最m连接在刚性杆上,杆的质量忽略不计。
图(C)所示的系统中悬挂质帚为加,梁的质帚忽略不计,梁的挠度5由式5 = PL3ZASEJ 给出,梁的刚度为H °习题图2-1机械根动习題鮮答解:(a〉系统简化过程如习题图2-l(a)所示。
4和息串联MZ=H⅛;也和b并联:Z= ^eql + &3^«)2 和上4 串联:Hl =即■r _ (焦层+以3 +心3低)加S = d层十(怡1十层)(爲=G所以固有频率为(B)习题图2-1 (B)所示系统可能有下面两种运动帖况:①在机垂i⅛振动的整个过稈中•杆被约束保持水平位置(见图(b)■①);②在悬挂的铅垂面内,杆可以自由转动(见图(b"②)。
①在杆保持水平的情况下,弹簧d和屜并联,有怎q =血+缸所以固有频率为②当杆可以自由转动时•杆和质虽m的运动会出现非水平的一般状态。
设A点的位移为点的位移为H2,加的位移为工,则静力方程利静力矩方程为ZIlXl + k2X3 = Aa l HQJrILl = k2x z L2几何关系又LI 十L2 = L 由以匕方程解得=kλk z∖}eq ki L↑±k z Ll所以固有频率为ω,17 m第2幸单自由度糸统的自由振动(C)系统简化过程如习题图2-1(C)所示。
等效弹簧刚度为其中所以固有频率为2.2如习题图2・2所示的系统中均质刚杆AB的质帚为加,A端弹簧的刚度为仁求()点铃链支座放在何处时系统的固有频率最高。
解:设&坐标如习题图2-2所示。
系统的动能为=-ym(nZ)2^l — + + 右片=-I-^eq(WZ^)2 (I)等效质量加“可以表示为山于固有频率与质量的平方根成反比,即3严厲、欲得最高的固有频率,必须使〃G为最小,即d叫 _ 3”_2 _ dn 3n3得2n = T代入二阶导数•得d'/Meq _ 2(1 —”)、∩~ln r _ ~^√>是极小值•故饺链应放在距A端彳L处。
机械振动学习题答案
2受迫振动
杆、轴、弦的受迫振动微分方程分别为
?2u?2u
杆:?a2?ea2?f(x,t)
?t?x?2??2?
轴:j2?gip2?f(x,t), j??ip
?t?x?2y?2y
弦:?2?t2?f(x,t)
?t?x
?n?1
(8)
(9)
下面以弦为例。令y(x,t)??yn(x)?n(t),其中振型函数yn(x)满足式(2)和式(3)。代入式(9)得
lll
2
?n??n?n?
llqn(t)
, qn(t)??ynf(x,t)dx, b??yn2dx
00?b
(12)
当f(x,t)?f(x)ei?t简谐激励时,式(12)的稳态响应解为
qn(t)1l11i?t
?n(t)?yf(x)dxe?n2222?0?b?n???n???b全响应解为
?n(t)?
?1l1??
?d1sinkl1?c2coskl1?d2sinkl1
② ③
du1(l1)du2(l1)
?ea2 ?ad④ 11coskl1?a2?d2coskl1?c2sinkl1? dxdx
②式代入③式得d1tankl1?c2?1?tankl1tank(l1?l2)?
②式代入④式得所以频率方程即
d1?c2?tank(l1?l2)?tankl1?a2/a1
q(x)?ccoskx?
dsinkx,其中k?① ②
c?0, gipdkcoskl?t0 q(x)?
t0
sinkx
gipkcoskl
t0
sinkxsin?t
gipkcoskl
机械振动 课后习题和答案 第二章 习题和答案
2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩ (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===-因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+ 212U kx =由()0T d E U +=可知:12()0m m x kx ++= 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
大学物理(第四版)课后习题及答案机械振动.docx
13机械振动解答13-1 有一弹簧振子,振幅A=2.0 X 10-2m,周期T=1.Os ,初相=3 π /4。
试写岀它的运动方程,并做岀x--t图、v--t图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相「、角频率•■是简谐运动方程X=ACoSlQt亠。
的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、「已知外,2 Tr-■ ■可通过关系式•=—确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解因.=Z ,则运动方程TX=ACOS讥=ACOS i2 t t : !■ I1W尸I T丿根据题中给出的数据得X =(2.0 10 ^m)cos[( 2":S A)t 0.75二]振子的速度和加速度分别为V =dχ∕dt - 10^m s1)sin[(2∏s')t 亠0.75二]a =d2χ∕dt2二2 10 2m S 丄)cos[(2二S 丄)t 0.75二x-t、v-t及a-t图如图13-1所示13-2 若简谐运动方程为X =(0.01m)cos(20:s」)t ',求:(1)振幅、频率、角频率、周期和- 4初相;(2) t=2s时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式X=ACOS ∙∙t ■作比较,即可求得各特征量。
运用与上题相同的处理方法,写岀位移、速度、加速度的表达式,代入t值后,即可求得结果。
解 (l )将X =(0.10m)cos[(20 7s ^)t • 0.25 二]与X=ACOS lU t w]比较后可得:振幅A= 0.10m 角频率• =20二S1,初相=0.25二,则周期T =2TJ=0∙1s ,频率=1∕T =10Hz。
(2) t= 2s时的位移、速度、加速度分别为X =(0.10m)cos(40 二0.25 二)=7.07 10i mV =dx∕dt - -(2~'m S^)Sin(40,亠0.25二)a =d2x∕dt2 = J40 二2m s?)cos(40 ;亠0.25二)13-3设地球是一个半径为R的均匀球体,密度P 5.5 X 103kg? m3。
新人教版高中物理选修一第二章《机械振动》检测(答案解析)
一、选择题1.(0分)[ID:127388]如图所示为一个单摆在地面上做受迫振动的共振曲线(振幅A与驱动力频率f的关系),则()A.此单摆的固有周期约为2sB.此单摆的摆长约为2mC.若摆长增大,单摆的固有频率增大D.若摆长增大,共振曲线的峰将右移2.(0分)[ID:127387]如图所示,曲轴上挂一个弹簧振子,转动摇把,曲轴可带动弹簧振子上下振动。
开始时不转动摇把,让振子自由振动,测得其频率为2Hz。
现匀速转摇把,转速为240r/min。
则()A.当振子稳定振动时,它的振动周期是0.5sB.当振子稳定振动时,它的振动频率是4HzC.当转速增大时,弹簧振子的振幅增大D.振幅增大的过程中,外界对弹簧振子做负功3.(0分)[ID:127378]弹簧振子的质量为M,弹簧劲度系数为k,在振子上放一质量为m 的木块,使两者一起振动,如图。
木块的回复力F是振子对木块的摩擦力,F也满足F k x=-',x是弹簧的伸长(或压缩)量,那么kk'为()A.mMB.mM m+C.MM m+D.Mm4.(0分)[ID:127369]如图所示,弹簧振子在A、B之间做简谐运动.以平衡位置O为原点,建立Ox轴.向右为x轴的正方向.若振子位于B点时开始计时,则其振动图像为( )A .B .C .D .5.(0分)[ID :127361]如图所示,质量为1m 的物体A 放置在质量为2m 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动,设弹簧劲度系数为k ,当物体离开平衡位置的位移为x 时,A 受到的回复力的大小等于( )A .0B .kxC .121m kx m m +D .12m kx m 6.(0分)[ID :127350]如图所示,在光滑水平面上,木块B 与劲度系数为k 的轻质弹簧连接构成弹簧振子,木块A 叠放在B 上表面,A 与B 之间的最大静摩擦力为f m ,A 、B 质量分别为m 和M ,为使A 和B 在振动过程中不发生相对滑动,则( )A .它们的振幅不能大于()m M m f kM+ B .滑块A 的回复力是由弹簧的弹力提供 C .它们的最大加速度不能大于m f m D .振子在平衡位置时能量最大 7.(0分)[ID :127336]在上海走时准确的摆钟,随考察队带到北极黄河站,则这个摆钟( )A .变慢了,重新校准应减小摆长B .变慢了,重新校准应增大摆长C.变快了,重新校准应减小摆长D.变快了,重新校准应增大摆长8.(0分)[ID:127318]弹簧振子作简谐运动,在平衡位置O两侧A、B间振动,当时间t=0时,振子位于B点,若规定向右的方向为正方向,则下图中哪个图象表示振子相对平衡位置的位移随时间变化的关系A.A B.B C.C D.D9.(0分)[ID:127314]一弹簧振子做简谐运动,其位移x与时间t的关系曲线如图所示,由图可知:()A.质点的振动频率是4HzB.t=2s时,质点的加速度最大C.质点的振幅为5cmD.t=3s时,质点所受合力为正向最大10.(0分)[ID:127312]关于简谐运动的位移、加速度和速度的关系,下列正确的是A.位移减小时,加速度增大,速度增大B.位移方向总和加速度方向相反,和速度方向总相同C.物体的速度增大时,加速度一定减小D.物体向平衡位置运动时,速度方向和位移方向相同11.(0分)[ID:127311]一洗衣机正常工作时非常平稳,当切断电源后,发现洗衣机先是振动越来越剧烈,然后振动再逐渐减弱,对这一现象,下列说法正确的是( )①正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率大②正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率小③正常工作时,洗衣机波轮的运转频率等于洗衣机的固有频率④当洗衣机振动最剧烈时,波轮的运转频率等于洗衣机的固有频率A.①④B.只有①C.只有③D.②④12.(0分)[ID:127294]如图,O点为弹簧振子的平衡位置,小球在B、C间做无摩擦的往复运动.若小球从C 点第一次运动到O 点历时0.1s ,则小球振动的周期为( )A .0.1sB .0.2sC .0.3sD .0.4s二、填空题13.(0分)[ID :127488]①一根轻弹簧下端固定在水平地面上,质量为m 的物块(视为质点)静止于弹簧上端,此时弹簧的压缩量为x 。
第二章 机械振动练习—— 高二上学期物理人教版(2019)选择性必修第一册
机械振动练习一、选择题1.如图所示,物体系在两弹簧之间,弹簧的劲度系数分别为1k 和2k ,且1k k =,22k k =,两弹簧均处于自然状态。
现在向右拉动物体,然后释放,物体在B 、C 间振动,O 为平衡位置(不计阻力),设向右为正方向,物体相对O 点的位移为x ,则下列判断正确的是( )A .物体做简谐运动,OC OB =B .物体做简谐运动,OC OB ≠ C .物体所受合力F kx =-D .物体所受合力3F kx =-2.一简谐振子沿x 轴振动,平衡位置在坐标原点,t=0时刻振子的位移x=-0.1m ;t=4/3 s 时刻x=0.1m ; t=4s 时刻x=0.1m.该振子的振幅和周期可能为( )A.0.1m,8/3sB.0.1m,8sC.0.2m,8sD.0.2m,8 sE.0.3m,10s3.如图1所示,弹簧振子以点O 为平衡位置,在A 、B 两点之间做简谐运动。
取向右为正方向,振子的位移x 随时间t 的变化如图2所示,下列说法正确的是( )A .0t =时,振子经过O 点向左运动B .0.5s t =时,振子在O 点右侧2.5cm 处C . 1.5s t =和 3.5s t =时,振子的速度相同D .10s t =时,振子的动能最大4.如图所示,A 球振动后,通过水平细绳迫使B 、C 振动,振动达到稳定时,下列说法中正确的是A .只有A 、C 的振动周期相等B .C 的振幅比B 的振幅小C .C 的振幅比B 的振幅大D .B 球的固有周期等于A 球的固有周期5.一钩码和一轻弹簧构成弹簧振子,可用如图甲所示的装置研究该弹簧振子的受迫振动。
匀速转动把手时,曲杆给弹簧振子以驱动力,使振子做受迫振动。
若保持把手不动,给钩码一向下的初速度,钩码便做简谐运动,振动图像如图乙所示当把手以某一速度匀速转动,受迫振动达到稳定时,钩码的振动图像如图丙所示。
下列说法正确的是()A.弹簧振子的固有周期为8sB.驱动力的周期为4sC.减小驱动力的周期,弹簧振子的振幅一定减小D.增大驱动力的周期,弹簧振子的振幅一定减小6.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛,如图所示。
胡海岩主编机械振动基础课后习题解答第2章习题
胡海岩主编---机械振动基础课后习题解答_第2章习题第2章习题含答案习题2-1 定常力作用下的单自由度系统1. 一个单自由度系统的质量m=2kg,刚度k=1000N/m,阻尼系数c=10N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(1000/2) ≈ 22.36 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 10/(2√(2×1000)) ≈ 0.158振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
2. 一个单自由度系统的质量m=5kg,刚度k=500N/m,阻尼系数c=20N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(500/5) = 10 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 20/(2√(5×500)) ≈ 0.141振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
习题2-2 强迫振动的幅值和相位1. 一个单自由度系统的质量m=3kg,刚度k=2000N/m,阻尼系数c=30N·s/m。
给定的外力F(t) = 10sin(5t)N。
试求该系统在稳态时的振动幅值和相位。
解:首先求解系统的强迫响应,即对外力F(t)进行拉氏变换:F(s) = L{F(t)} = L{10sin(5t)} = 10L{sin(5t)} = 10×(5/(s^2+25))根据公式,系统的强迫响应可计算为:X(s) = F(s)/((s^2+ωn^2)+2ξωns)其中,ωn=√(k/m)为系统的固有频率,ξ=c/(2√(mk))为系统的阻尼比。
上海上海交通大学附属第二中学高中物理选修一第二章《机械振动》测试题(含答案解析)
一、选择题1.一个弹簧振子在水平方向做简谐运动,周期为T ,则( )A .若t 时刻和t t +∆时刻振子位移大小相等、方向相同,则t ∆一定等于T 整数倍B .若t 时刻和t t +∆时刻振子速度大小相等、方向相反,则t ∆一定等于2T 整数倍C .若2T t ∆=,则在t 时刻和t t +∆时刻振子的速度大小一定相等 D .若2T t ∆=,则在t 时刻和t t +∆时刻弹簧的长度一定相等 2.一质点做简谐运动,先后以相同的速度依次通过A 、B 两点,历时1s ,质点通过B 点后再经过1s 又第2次通过B 点,在这两秒钟内,质点通过的总路程为12cm ,则质点的振动周期和振幅分别为( )A .3s ,6cmB .4s ,6cmC .4s ,9cmD .2s ,8cm 3.“洗”是古代盥洗用的脸盆,多用青铜铸成,现代亦有许多仿制的工艺品。
倒些清水在其中,用手掌摩擦盆耳,盆就会发出嗡嗡声,还会溅起层层水花。
现某同学用双手摩擦盆耳,起初频率非常低,逐渐提高摩擦频率,则关于溅起水花强弱的描述正确的是( )A .溅起水花越来越弱B .溅起水花越来越强C .溅起水花先变弱后变强D .溅起水花先变强后变弱4.物体做简谐运动,其图像如图所示,在t 1和t 2两时刻,物体的( )A .回复力相同B .位移相同C .速度相同D .加速度相同5.如图所示,小球在光滑水平面上的B 、C 之间做简谐运动,O 为BC 间的中点,B 、C 间的距离为10cm ,则下列说法正确的是( )A.小球的最大位移是10cmB.只有在B、C两点时,小球的振幅是5cm,在O点时,小球的振幅是0C.无论小球在哪个位置,它的振幅都是10cmD.从任意时刻起,一个周期内小球经过的路程都是20cm6.有一摆长为l的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部被小钉挡住,使摆长发生变化.现使摆球做小幅度摆动,摆球从右边最高点M至左边最高点N运动过程的闪光照片如图所示(悬点和小钉未被拍入).P为摆动中的最低点,已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点间的距离为().A.34l B.12l C.14l D.无法确定7.甲、乙两人观察同一单摆的振动,甲每经过 3.0s 观察一次摆球的位置,发现摆球都在其平衡位置处;乙每经过 4.0s 观察一次摆球的位置,发现摆球都在平衡位置右侧的最高处,由此可知该单摆的周期不可能的是A.0.5s B.1.0s C.1.5s D.2.0s8.有一星球其半径为地球半径的2倍,平均密度与地球相同,今把一台在地球表面走时准确的摆钟移到该星球表面,摆钟的秒针走一圈的实际时间变为A.0.5min B.0.7min C.1.4min D.2min9.某同学在研究单摆的受迫振动时,得到如图所示的共振曲线.横轴表示驱动力的频率,纵轴表示稳定时单摆振动的振幅.已知重力加速度为g,下列说法中正确的是A.由图中数据可以估算出摆球的摆长B.由图中数据可以估算出摆球的质量C.由图中数据可以估算出摆球的最大动能D.如果增大该单摆的摆长,则曲线的峰值将向右移动10.甲、乙两个单摆在同一地点做简谐振动,在相等的时间内,甲完成10次全振动,乙完成20次全振动.已知甲摆摆长为1 m,则乙摆的摆长为( )A.2 m B.4 mC.0.5 m D.0.25 m11.一个做简谐运动的质点,它的振幅是5 cm,频率是2.5 Hz,该质点从平衡位置开始经过2.5 s后,位移的大小和经过的路程为( )A.5 cm、12.5 cmB.5 cm、125cmC.0、30cmD.0、125 cm12.一单摆做小角度摆动,其振动图象如图,以下说法正确的是()A.1t时刻摆球速度为零,悬线对它的拉力为零B.2t时刻摆球速度最大,悬线对它的拉力最大C.3t时刻摆球速度最大,悬线对它的拉力最小D.4t时刻摆球速度最小,悬线对它的拉力最大13.如图,O点为弹簧振子的平衡位置,小球在B、C间做无摩擦的往复运动.若小球从C 点第一次运动到O点历时0.1s,则小球振动的周期为()A.0.1s B.0.2s C.0.3s D.0.4s14.右图为同一实验中甲、乙两个单摆的振动图象,从图象可知 ()A.两摆球质量相等B.两单摆的摆长相等C.两单摆相位相差πD.在相同的时间内,两摆球通过的路程总有s甲=2s乙15.如图所示为某弹簧振子在0~5 s内的振动图象,由图可知,下列说法中正确的是()A .振动周期为5 s ,振幅为8 cmB .第2 s 末振子的速度为零,加速度为负向的最大值C .第3 s 末振子的速度为正向的最大值D .从第1 s 末到第2 s 末振子在做加速运动二、填空题16.①一根轻弹簧下端固定在水平地面上,质量为m 的物块(视为质点)静止于弹簧上端,此时弹簧的压缩量为x 。
高中物理选修一第二章《机械振动》测试卷(有答案解析)
一、选择题1.(0分)[ID :127376]如图甲所示,弹簧振子以O 点为平衡位置,在光滑水平面上的A 、B 两点之间做简谐运动,A 、B 分居O 点的左右两侧的对称点。
取水平向右为正方向,振子的位移x 随时间t 的变化如图乙所示的正弦曲线,下列说法正确的是( )A .0.6s t =时,振子在O 点右侧6cm 处B .振子0.2s t =和 1.0s t =时的速度相同C . 1.2s t =时,振子的加速度大小为223πm/s 16,方向水平向右D . 1.0s t =到 1.4s t =的时间内,振子的加速度和速度都逐渐增大2.(0分)[ID :127369]如图所示,弹簧振子在A 、B 之间做简谐运动.以平衡位置O 为原点,建立Ox 轴.向右为x 轴的正方向.若振子位于B 点时开始计时,则其振动图像为( )A .B .C .D .3.(0分)[ID :127367]在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2GMlB .T =2l GMC .T 2πGMr lD .T =2r GM4.(0分)[ID :127361]如图所示,质量为1m 的物体A 放置在质量为2m 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动,设弹簧劲度系数为k ,当物体离开平衡位置的位移为x 时,A 受到的回复力的大小等于( )A .0B .kxC .121m kx m m + D .12m kx m 5.(0分)[ID :127357]如图所示为单摆在两次受迫振动中的共振曲线,下列说法正确的是( )A .若两次受迫振动分别在月球上和地球上进行,且摆长相等,则图线II 是月球上的单摆共振曲线B .图线II 若是在地球表面上完成的,则该摆摆长约为2mC .若摆长约为1m ,则图线I 是在地球表面上完成的D .若两次受迫振动均在地球上同一地点进行的,则两次摆长之比为l 1:l 2= 25:4 6.(0分)[ID :127352]两个弹簧振子甲的固有频率为f ,乙的固有频率为10f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选范本2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω== 取系统静平衡位置为原点0x =,系统运动方程为:δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t精选范本2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩(参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===-因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
精选范本2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有:2121()2T E m m x =+212U kx =由()0T d E U +=可知:12()0m m x kx ++= 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m精选范本即:ωω=-2()(cos )n n m g x t t t k精选范本2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
解:取圆柱体的转角θ为坐标,逆时针为正,静平衡位置时0θ=,则当m 有θ转角时,系统有:2222111()()222T E I m r I mr θθθ=+=+21()2U k r θ=由()0T d E U +=可知:22()0I mr kr θθ++= 即:22/()n kr I mr ω=+ (rad/s )2.5 均质杆长L、重G,用两根长h的铅垂线挂成水平位置,如图所示,试求此杆相对铅垂轴OO微幅振动的周期。
精选范本精选范本2.6 求如图所示系统的周期,三个弹簧都成铅垂,且21312,k k k k ==。
解:取m 的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有:212T E mx =22211115226U kx k x k x =+= (其中:1212k k k k k =+)由()0T d E U +=可知:1503mx k x +=即:153n k m ω=rad/s ),1325m T k π=(s )精选范本 2.7 如图所示,半径为r 的均质圆柱可在半径为R 的圆轨面内无滑动地、以圆轨面最低位置O 为平衡位置左右微摆,试导出柱体的摆动方程,求其固有频率。
解:设物体重量W ,摆角坐标θ如图所示,逆时针为正,当系统有θ摆角时,则:θθ=--≈-2()(1cos )()2U W R r W R r 设ϕ为圆柱体转角速度,质心的瞬时速度:()c R r r υθϕ=-=,即:()R r rϕθ-= 记圆柱体绕瞬时接触点A 的转动惯量为A I ,则:=+=+22212A C W W W I I r r r g g g ϕθθ-===-222221133()()()2224T A W R r W E I r R r g r g (或者理解为:ϕθ=+-22211()22T c W E I R r g,转动和平动的动能)精选范本由()0T d E U +=可知:θθ-+-=23()()02W R r W R r g即:ω=n rad/s )精选范本 2.8 横截面面积为A ,质量为m 的圆柱形浮子静止在比重为γ的液体中。
设从平衡位置压低距离x (见图),然后无初速度地释放,若不计阻尼,求浮子其后的运动。
解:建立如图所示坐标系,系统平衡时0x =,由牛顿第二定律得: ()0mx Ax g γ+=,即:n Ag m γω=有初始条件为:{==000x x x 所以浮子的响应为:()sin()2Ag x t x m γπ=精选范本2.9 求如图所示系统微幅扭振的周期。
图中两个摩擦轮可分别绕水平轴O 1,O 2转动,它们相互啮合,不能相对滑动,在图示位置(半径O 1A 与O 2B 在同一水平线上),弹簧不受力。
摩擦轮可以看做等厚均质圆盘,质量分别为m 1,m 2。
解:两轮的质量分别为12,m m ,因此轮的半径比为: 1122r m r m = 由于两轮无相对滑动,因此其转角比为:121212r r θθθθ== 取系统静平衡时10θ=,则有:222222111222121111111()()()22224T E m r m r m m r θθθ=+=+2221112221211111()()()()222U k r k r k k r θθθ=+=+由()0T d E U +=可知:222121112111()()02m m r k k r θθ+++=精选范本即:n ω=rad/s ),=2T (s )精选范本2.10 如图所示,轮子可绕水平轴转动,对转轴的转动惯量为I ,轮缘绕有软绳,下端挂有重量为P 的物体,绳与轮缘之间无滑动。
在图示位置,由水平弹簧维持平衡。
半径R 与a 均已知,求微振动的周期。
解:取轮的转角θ为坐标,顺时针为正,系统平衡时0θ=,则当轮子有θ转角时,系统有: θθθ=+=+2222111()()222T P P E I R I R g gθ=21()2U k a由()0T d E U +=可知:θθ++=222()0P I R ka g即:ω=+22n ka P I R g(rad/s ),故 πω+==2222n P I R gT ka (s )精选范本2.11 弹簧悬挂一质量为m 的物体,自由振动的周期为T ,如果在m 上附加一个质量m 1,则弹簧的静伸长增加l ,求当地的重力加速度。
解:224T m k T ππ=∴=12114m g k lk l m l g m T m π=∴==精选范本2.12 用能量法求图所示三个摆的微振动的固有频率。
摆锤重P ,(b )与(c )中每个弹簧的弹性系数为k /2。
(1)杆重不计;(2)若杆质量均匀,计入杆重。
解:取系统的摆角θ为坐标,静平衡时0θ= (a )若不计杆重,系统作微振动,则有: θ=221()2T P E L gθθ=-≈21(1cos )2U PgL PgL 由()0T d E U +=可知:θθ+=20P L PL g即:ω=n gLrad/s )如果考虑杆重,系统作微振动,则有:精选范本θθθ=+=+2222221111()()()22323L T L P P mE L m L L g gθθθ=-+-≈+2(1cos )(1cos )()222L L L P m U PgL m g gL g由()0T d E U +=可知:θθ+++=2()()032L L P m P m L gL g g即:ω=n rad/s )(b )如果考虑杆重,系统作微振动,则有:θθθ=+=+2222221111()()()22323L T L P P mE L m L L g gθθ≈++⨯221()()()222222L P m k L U gL g即:ω=n (rad/s )(c )如果考虑杆重,系统作微振动,则有:精选范本θθθ=+=+2222221111()()()22323L T L P P mE L m L L g gθθ≈-++⨯221()()()222222L P m k L U gL g即:ω=n (rad/s )精选范本2.13 求如图所示系统的等效刚度,并把它写成与x 的关系式。
答案:系统的运动微分方程2220a b mx kx a ++=2.14 一台电机重470N,转速为1430r/min,固定在两根5号槽钢组成的简支梁的中点,如图所示。
每根槽钢长1.2m,重65.28N,弯曲刚度EI=1.66 105N·m2。
(a)不考虑槽钢质量,求系统的固有频率;(b)设槽钢质量均布,考虑分布质量的影响,求系统的固有频率;(c)计算说明如何避开电机和系统的共振区。
2.15 一质量m固定于长L,弯曲刚度为EI,密度为的弹性梁的一端,如图所示,试以有效质量的概念计算其固有频率。
wL3/(3EI)精选范本精选范本2.16 求等截面U 形管内液体振动的周期,阻力不计,假定液柱总长度为L 。
解:假设U 形管内液柱长l ,截面积为A ,密度为ρ,取系统静平衡时势能为0,左边液面下降x 时,有: ρ=212T E Alx ρ=⨯⨯⨯U A x g x由()0T d E U +=可知:ρρ+=20Alx g Ax即:ω=2n g l (rad/s ),=2l T gs )精选范本2.17 水箱l 与2的水平截面面积分别为A 1、A 2,底部用截面为A 0的细管连接。
求液面上下振动的固有频率。
解:设液体密度为ρ,取系统静平衡时势能为0,当左边液面下降1x 时,右边液面上升2x ,液体在水箱l 与2和细管中的速度分别为123,,x x x ,则有:22211133222111[()][][()]222T E A h x x A L x A h x x ρρρ=-+++ 22211132132[()()]2A A Ah A L A h x A A ρ≈++ (由于:1;h x h -≈2;h x h +≈112233;Ax A x A x ==1122Ax A x =)1212x x U Ax g ρ+= 由()0T d E U +=可知:11111232[(1)()](1)0A A A h L x g x A A A ++++=即:ω=(rad/s)n精选范本精选范本2.18 如图所示,一个重W 、面积为A 的薄板悬挂在弹簧上,使之在粘性液体中振动。