函数信号发生器的设计与制作
函数信号发生器的设计与制作.
函数信号发生器的设计与制作实验任务与要求①要求所设计的函数信号发生器能产生方波、三角波、正弦波②要求该函数信号发生器能够实现频率可调实验目的:1: 进一步巩固简熟悉易信号发生器的电路结构及电路原理并了解波形的转变方法;2:学会用简单的元器件及芯片制作简单的函数信号发生器,锻炼动手能力;3:学会调试电路并根据结果分析影响实验结果的各种可能的因素实验方案采用555组成的多谐振荡器可以在接通电源后自行产生矩形波再通过积分电路将矩形波转变为三角波再经积分网络转变为正弦波555定时器芯片工作原理,功能及应用555定时器是一种数字电路与模拟电路相结合的中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳态触发器和多谐振荡器等,因而广泛用于信号的产生、变换、控制与检测。
一、555定时器555定时器产品有TTL型和CMOS型两类。
TTL型产品型号的最后三位都是555,CMOS 型产品的最后四位都是7555,它们的逻辑功能和外部引线排列完全相同。
555定时器的电路如图9-28所示。
它由三个阻值为5k?的电阻组成的分压器、两个电压比较器C1和C2、基本RS触发器、放电晶体管T、与非门和反相器组成。
555定时器原理图分压器为两个电压比较器C1、C2提供参考电压。
如5端悬空(也可对地接上0.01uF 左右的滤波电容),则比较器C1的参考电压为2 Vcc 3 ,加在同相端;C2的参考电压为Vcc3 ,加在反相端。
u11是比较器C1的信号输入端,称为阈值输入端;u12是比较器C2的信号输入端,称为触发输入端。
 ̄RD 是直接复位输入端。
当 ̄RD 为低电平时,基本RS 触发器被置0,晶体管T 导通,输出端u0为低电平。
u11和u12分别为6端和2端的输入电压。
当u11>2 Vcc 3 ,u12>Vcc3 时,C1输出为低电平,C2输出为高电平,,基本RS 触发器被置0,晶体管T 导通,输出端u0为低电平。
函数信号发生器的设计
函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
函数信号发生器的设计与实现
摘要信号发生器是科研、教学实验及各种电子测量技术中很重要的一种信号源,随着科学技术的迅速发展,对信号源的要求也越来越高,要求信号源的频率稳定度、准确度及分辨率要高、以适应各种高精度的测量,为了满足这种高的要求,各国都在研制一些频率合成信号源,这种信号源一般都是由一个高稳定度和高准确度的标准参考频率源,采用锁相技术产生千百万个具有同一稳定度和准确度的频率信号源,为了达到高的分辨率往往要采用多个锁相环和小数分频技术,因此使电路复杂、设备体积圈套、成本较高,传统的频率合成器由于采用倍频、分频、混频和滤波环节,使频率合成技术(DDS),与传统的频率合成技术相比,DDS具有频率分辨率高、频率转变速度快、输出相位连续、相位噪声低、可编程和全数字化、便于集成等突出优点、成为现代频率合成技术中的佼佼者,得到越来越广泛的应用,成为众多电子系统中不可缺少的组成部分。
本文介绍一种以AT89S52、AD9850和8279为核心器件的DDS正弦信号发生器。
AD9850是一款专业极的正弦信号产生器件。
它的特点正如上文所述的,电路整体结构简单,输出信号波形好,控制简单,而且易于实现程控。
AT89S52和8279将在正文部分仔细的说明。
本次因为是毕业设计,我也首次采用12864LCD作显示器件。
采用12864作显示器件的好处是可以显示汉字。
关键词:单片机,电压A/D转换,C语言Title Function signal generator’s design and Realization AbstractSignal generator is a research, teaching experiments and a variety of electronic measurement technology is very important as a signal source, with the rapid development of science and technology, demands on the signal source more and more require the signal source frequency stability, higher accuracy and resolution to suit a variety of high-precision measurements, in order to meet this high demand, all countries in the development of a number of frequency synthesized signal source, such sources are normally a high stability and high accuracy degree of standard reference frequency source, using phase-locked with the same technologies used to produce millions of a degree of stability and accurate frequency signal source, in order to achieve high resolution and often using multiple phase-locked loop fractional-N technology, divider, mixer and filter links, so that frequency synthesis (DDS), and compared to the conventional frequency synthesis, DDS has a frequency resolution high frequency changes in speed, the output phase continuous, low phase noise, programmable and fully digital, easy integration and other advantages, become a modern leader in synthesizer technology, get more and more widely used, a large number of electronic systems an indispensable component.This article describes a kind of AT89S52, AD9850 and 8279 as the core component of the DDS sine wave generator. AD9850 is a highly professional sine signal generation device. It features, as described above, the circuit structure is simple, the output signal waveform is good, control is simple and easy to implement program-controlled. AT89S52 and 8279 will be detailed in the body of the note.This is because a graduation project, I was first introduced 12864LCD for display devices. 12864 for use of the benefits of display device can display Chinese characters.Keywords:DDS, MCU, AD9850, LCD, C language目录1. 前言 (1)1.1 本课题的研究现状 (1)1.2 选题目的及意义 (2)1.3 发展函数信号发生器的意义 (3)2. 函数发生器系统设计 (5)2.1 设计方案的比较 (5)2.2 系统模块设计 (5)2.2.1 控制模块 (6)2.2.2 按键及其显示模块 (6)2.2.3 波形产生模块 (6)2.2.4 D/A转换 (7)2.3 系统总体框图 (9)3. 系统硬件设计 (10)3.1 基本原理 (10)3.2 单片机介绍 (10)3.3 各部分电路原理 (15)3.3.1 DAC0832芯片原理 (15)3.3.2 NE5532介绍 (18)3.3.3 三端稳压集成电路7805概述 (18)3.3.4 应用电路 (19)4. 系统软件设计 (21)4.1 系统软件设计方案 (21)4.2 系统软件流程图 (22)4.3 信号产生程序 (24)4.3.1 正弦波产生 (24)4.3.2 三角波产生 (25)4.3.3 方波产生 (26)4.3.4 锯齿波的产生 (27)5. 调试跟测试结果 (29)5.1 系统功能测试 (29)5.1.1 硬件的调试 (29)5.1.2 软件的调试 (29)5.2 测试的仿真波形 (30)6. 结论 (32)谢辞 (34)参考文献 (35)附录 (36)附录1路原理图 (36)附录2 PCB图 (37)附录3 程序清单 (37)附录3 程序清单 (38)1.前言函数发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
电路实验报告 函数信号发生器
电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。
在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。
信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。
信号发生器用途广泛, 有多种测试和校准功能。
本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。
三种波形的幅值及方波的占空比均在一定范围内可调。
报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。
二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。
3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。
(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。
2.三种输出波形的输出阻抗小于100Ω。
3.用PROTEL软件绘制完整的印制电路板图(PCB)。
(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。
2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。
四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。
简易函数信号发生器设计报告
简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
《模拟电子技术》简易函数信号发生器的设计与制作
《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技在此处键入公式。
术知识,运用AD软件设计并制作一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源1.2 整机实现的基本原理及框图1.电源电路组成由变压器—整流电路—滤波电路—滤波电路—稳压电路组成。
变压器将220V 电源降压至双15V,经整流电路变换成单方向脉冲直流电压,此电源使用四个整流二极管组成全波整流桥电源变压器的作用是将电网220V 的交流电压变成整流电路所需要的电压u1。
因此,u1=nu i(n 为变压器的变比)。
整流电路的作用是将交流电压山变换成单方向脉动的直流U2。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U2=0.9u1。
每只二极管所承受的最大反向电压u RN= √2u1,平均电流I D(A V),=12I R=0.45U1R对于RC 滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC= (3~5)T/2,T 为50Hz 交流电压的周期,即20ms。
此电源使用大电容滤波,稳压电路,正电压部分由三端稳压器7812输出固定的正12V电压,负电压部分由三端稳压器7912输出固定-12V电压。
并联两颗LED灯分别指示正负电压。
2.该函数发生器由运放构成电压比较器出方波信号,方波信号经过积分器变为三角波输出。
2 硬件电路设计硬件电路设计使用Altium Designer 8.3设计PCB,画好NE5532P,7812及7912的原理图和封装后,按照电路图画好原理图后生成PCB图。
合理摆放好各器件后设置规则:各焊盘大小按实际情况设置为了更容易的进行打孔操作,设置偏大一些,正负12V电源线路宽度首选尺寸1.2mm,最小宽度1mm,最大宽度1.2mm,GND线路宽度首选尺寸1mm,最小宽度1mm,最大宽度1.5mm,其他线路首选尺寸0.6mm,最小宽度1mm,最大宽度1.2mm。
函数信号发生器电路设计与制作.
作业(论文)题目:函数信号发生器的设计与制作所修课程名称:电子产品设计与制作所修课程学年学期:二〇一一至二〇一二学年第二学期完成作业(论文)日期: 2012 年 5 月学号: 10050208 姓名:李磊评阅成绩:评阅意见:评阅教师签名:年月日函数信号发生器设计与制作一.总体方案设计1.1 设计基本要求1. 产生方波、三角波、正弦波和全波整流波;2. 电源输入:±9V ;3. 方波:Vpp≤14V;4. 三角波输出: Vpp≤8V;5. 正弦波: Vpp≥10V6. 方波、三角波和正弦波的输出频率为200Hz~ 5KHz;7. 在负载为2KΩ的条件下。
1.2方案的比较方案一:考虑到正弦波发生器是由RC自激振荡产生的,需要满足比较多的条件,并且要求频率大范围可调,那么要改变电阻和电容,且要使用两档的电容,同时,要满足两电阻和两电容绝对对称,所以比较难以实现不予以实行。
方案二:由555电路构成,电路结构简单,且脉宽可以调制,但是只能产生方波,且一个电路只能构成一个输出。
考虑到后面还要产生三角波、正弦波,故不采用此方案。
方案三∶采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。
该电路已经用于实际电路的实验操作。
1.3实行方案此方案较电路简单,且必须满足的要求较少,只需要用TL074即可实现,成本也较低,所以可行。
1.5 实验所需器材二.单元模块设计2.1三角波发生电路模块2.1.1工作原理图中端口Uo1输出方波,经过运放U1B与电阻电容构成的积分电路,产生三角波。
函数信号发生器的设计
折线法是一种使用最为普遍、实现也较简 单的正弦函数转换方法。折线法的转换原理是, 根据输入三角波的电压幅度,不断改变函数转 换电路的传输比率,也就是用多段折线组成的 电压传输特性,实现三角函数到正弦函数的逐 段校正,输出近似的正弦电压波形。由于电子 器件(如半导体二极管等)特性的非线性,使 各段折线的交界处产生了钝化效果。因此,用 折线法实现的正弦函数转换电路,实际效果往 往要优于理论分析结果。
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。
➢ 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正弦波振荡器采用波形 变换电路, 通过迟滞比较器变换为方波,经积分器获得三角波输出。此电路的输出 频率就是就是RC文氏电桥振荡器的振荡频率.
0.1u
负反馈电路:R1和R2决定起振条
2
件,调节波形与稳幅控制。
10k
6
3
R3并联D1.D2:正向非线性电阻
RV1 C2
7
起振时:电阻大负反馈小;
9%
R2
0.1u
3k
UA741
振荡幅值大时:电阻小负反馈大,
10k
整形限幅。
改变R 调频率
电路调整的关键是:负反馈电路中的电位器RW的 调节, RW过大:输出方波! RW过小:电路不起 振!
二、总体方案讨论
频率调节
幅度调节
振荡部分
输出电路
输出
频率指示
幅度指示
函数信号发生器的原理框图
➢ 信号产生部分的多种实现方案
▪ 模拟电路实现方案 ▪ 数字电路实现方案 ▪ 模数结合的实现方案
函数发生器的设计与制作
第一章绪论函数信号发生器本来是一种超低频仪器,不打为所注意,但近几年来,情况发生了极大的变化。
现在函数发生器,不仅可以产生各种各样的数学波形,而且还具有某些专用仪器的能力,如频率合成、扫描、调制(调幅、调频与调相)。
以上这些功能在台式函数发生器与调控函数发生器与程控函数发生器之间权衡选用,前者常被称作“便携式”,后者通常用于自动测试的设备中。
由于函数发生器性能价格比较很好,应用范围日益扩大。
据报道,函数发生器在国外已成为设计人员在工作台上不可缺少的信号源。
所有先进的函数发生器都具有这样或那样的灵活性,由外部电压选择发生器的频率是它的共同点;另一特点是,滞留偏置可调,可按具体实验要求调节输出信号的直流电平。
波形空度比可调。
因而波形形状可变。
许多函数发生器具有可调的起/止相位鉴别器,相位锁定,以及具有触发输入或门控输出的选择,有的发生器还可以借操作人员把伪隨机噪声加到波形上,以使用于噪声环境,也可以把所有产生的信号相位锁定于外接源的相位上。
第二章总体电路方案设计与选择2.1设计要求1.输出的各种波形工作频率范围0.02Hz~1kHz连续可调。
2.正弦波幅值±10V,失真度小于1.5%。
3.方波幅值±10V。
4.三角波峰峰值20V;各种输出波形幅值均连续可调。
2.2设计的基本方案方案一:由RC桥式电路振荡产生正弦波,再经整形积分产生方波和三角波。
由运算放大器进行设计,如图2-2所示:图2-2函数发生器原理图1采用振荡电路获得正弦波,再由比较器获得方波,最后通过积分电路获得三角波。
方案二:用ICL8038集成函数信号发生器所需信号。
接入外部电路后ICL8038的9、3、2引脚就可分别产生方波、三角波、正弦波,频率调节部分通过其它的引脚接外电路来完成 .然后从ICL8038出来经过选择开关选择所需波形进入LM31D8进行放大和幅度调节,最后从LM31D8出来的波即为频率和幅度可调的方波,三角波和正弦波。
函数信号发生器设计方案
函数信号发生器设计方案函数信号发生器的设计与制作目录一.设计任务概述二.方案论证与比较三.系统工作原理与分析四.函数信号发生器各组成部分的工作原理五.元器件清单六.总结七.参考文献函数信号发生器的设计与制一.设计任务概述(1)该发生器能自动产生正弦波、三角波、方波。
(2)函数发生器以集成运放和晶体管为核心进行设计(3)指标:输出波形:正弦波、三角波、方波频率范围:1Hz~10Hz,10Hz~100Hz输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V;二、方案论证与比较2.1·系统功能分析本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。
在设计的过程中,我们综合考虑了以下三种实现方案:2.2·方案论证方案一∶采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
方案二∶采用锁相环式频率合成器。
利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。
这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。
但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。
而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。
方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。
改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。
函数信号发生器的设计与制作
函数信号发生器的设计、与装配实习一.设计制作要求:掌握方波一三角波一正弦波函数发生器的设计方法与测试技术。
学会由分立器件与集成电路组成的多级电子电路小系统的布线方法。
掌握安装、焊接与调试电路的技能。
掌握在装配过程中可能发生的故障进行维修的基本方法。
二.方波一三角波一正弦波函数发生器设计要求函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。
本次电子工艺实习,主要介绍由集成运算放大器与晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计与制作方法。
产生正弦波、方波、三角波的方案有多种:1:如先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。
2:先产生三角波一方波,再将三角波变成正弦波或将方波变成正弦波。
33:本次电路设计,则采用的图1函数发生器组成框图是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。
此钟方法的电路组成框图。
如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。
为了使大家能较快地进入设计与制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理:所谓比较器,是一种用来比较输入信号v1和参考电压V,并判REF断出其中哪个大,在输出端显示出比较结果的电路。
在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。
一、单门限电压比较器所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。
如果比较器的输入信号从运放的同相端输入,则称为:同相输入单门限电压比较器。
如果比较器的输入信号从运放的反相端输入,则称为:反相输入单门限电压比较器它们的基本电路结构相同,如图2a所示,不同的是输入信号的接法。
函数信号发生器的设计与制作
函数信号发生器的设计与制作[摘要]在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。
随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。
用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。
[关键词] 波形信号 Multisim Protuse测控Function signal generator design and productionfengfeifei(Shaanxi University of Technology shaanxi hanzhong 723000)Abstract:In electronic engineering, communication engineering, automatic control, telemetry control, measuring instrument and meter and computer technology field, often needs to be used various signal waveform generator. Along with the rapid development of integrated circuits, with integrated circuit can easily constitute various signal waveform generator. With integrated circuit realized signal waveform generator compared with other signal waveform generator, the waveform quality, amplitude and frequency stability and performance indicators, had the very big enhancement.Key words:wave signal Multisim Protuse observe and control引言函数(波形)信号发生器能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫。
简易函数信号发生器的设计报告
简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。
在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。
本文将着重介绍一种设计简易函数信号发生器的原理和方法。
二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。
同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。
三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。
振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。
2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。
例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。
根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。
3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。
放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。
4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。
通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。
5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。
同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。
四、设计步骤1.确定电路结构和信号发生器的类型。
根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。
2.根据所选振荡器电路进行参数计算和元件的选择。
例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。
3.设计输出放大器电路。
函数信号发生器设计与制作
南京铁道职业技术学院课程项目报告课程名称电子产品设计与制作项目名称函数信号发生器设计与制作作者学号团队成员指导老师二级学院通信信号学院院系电子电气系专业电子信息工程技术班级电子信息13012015年6月报告中文摘要函数信号发生器设计与制作摘要随着集成制造技术的不断发展,多功能信号发生器已被制作成专用集成电路。
函数信号发生器就是一种常见的信号源,广泛的应用于电子电路、自动控制系统和数学实验等领域。
因此函数信号发生器是我们在学习、科学研究等方面不可或缺的工具。
利用集成电路LM358制作的函数信号发生器设计要求输出200Hz~50kHz的正弦波、方波和三角波三种波形,分两波段连续可调;输出电压范围(0~10)Vp-p。
利用Protel 99 SE绘制出电路图,在PCB板上进行布线印制出电路板,并将元器件焊接到电路板做出实物板,对实物板进行调试。
通过老师的指导和我们不断的学习和研究完成了预想的功能。
关键词集成片、函数信号发生器、三种波形目次1引言 (5)2 项目制作 (5)2.1项目要求 (5)2.2正弦波产生电路的设计 (6)2.3方波产生电路的设计 (9)2.4三角波产生电路的设计 (10)2.5输出电路的设计 (11)2.6直流稳压电源的设计 (12)2.7项目原理图 (12)3主要元器件介绍 (13)3.1 LM358集成电路 (13)3.2 TL074集成电路 (14)3.3 三端稳压集成电路 (14)3.4发光二极管 (15)3.5电阻器 (15)3.6电容器 (16)3.7二极管 (16)3.8变压器 (16)4印刷电路板设计与制作过程 (17)4.1制作菲林图片 (17)4.2曝光 (17)4.3显影 (17)4.4蚀刻 (18)4.5脱膜 (18)4.6 打孔 (19)5项目PCB图 (19)6项目ppc图 (20)7焊装和调试过程 (20)8收获与体会 (20)结论 (20)致谢 (21)参考文献 (21)1 引言在人们认识自然、改造自然自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的提供被测电路所需要的已知信号(各种波形),然后用其他仪表测量感兴趣的参数。
函数信号发生器的设计与制作
【实验题目】:函数信号发生器的设计与制作【实验目的】:能在设计与制作实验的过程中,结合所学理论知识,进行电子应用电路的设计、组装与调试,以此来掌握使用模拟分立元器件和数字电路集成芯片设计一个函数信号发生器电路的方法和实践技能,为以后从事生产和科研工作打下一定的基础。
【设计内容及要求】:1.设计要求:设计设计一个电路实现方波-三角波-正弦波函数发生器主要技术指标1)输出波形:正弦波、方波、三角波等2)频率范围:10~100Hz,1000H Z~10KHz3) 输出电压:方波U p-p=24V,三角波U p-p=6V,正弦波U>1V;4) 波形特征:方波t r<10s(1kHz,最大输出时),三角波失真系数THD<2%,正弦波失真系数THD<5%。
2.基本原理函数信号发生器是将输入的电压经过一系列变换后能够输出要求的波形。
图13.提出解决问题的方案及选取1.方案论证1)方波-三角波电路图2所示为产生方波-三角波电路。
工作原理如下:若a点短开,运算放大器A1与R1、R2及R3、R P1组成电压比较器。
图2方波-三角波产生电路运放A2与R4、R P2、C2及R5组成反相积分器,积分器输入方波时,输出是一个上升速率与下降速率相等的三角波,其波形如图3所示。
图3 方波-三角波波形比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。
2).三角波→正弦波的变换三角波→正弦波的变换主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高、抗干扰能力强等优点。
特别是做直流放大器时,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性的非线性。
其非线性及变换原理如图4所示。
图4 三角波→正弦波的变换原理图5为三角波→正弦波的变换的电路。
其中R P1调节三极管的幅度,R P2调整电路的对称性,其并联电阻R E2用来减少差分放大器的线性区。
函数发生器的设计及制作
函数发生器的设计及制作首先,信号波形的选取。
函数发生器通常可以生成多种类型的波形,包括正弦波、方波、三角波、锯齿波等。
选择哪种波形要根据具体应用来确定。
例如,正弦波适用于声音处理和音频信号发生器,方波适用于数字电路测试等。
根据需要选择合适的集成电路来实现具体的波形生成。
其次,频率范围的设计。
函数发生器一般需要提供广泛的频率范围,以满足不同应用的需求。
频率范围的选择应考虑使用的具体场景,如声音处理常用的范围为20Hz至20kHz,但对于RF测试则需要更宽的频率范围。
设计时可以选择使用锁相环(PLL)技术来实现频率的稳定和调节。
然后,幅度调节的设计。
函数发生器通常应具备调节信号幅度的功能,以适应不同电路的要求。
幅度调节一般通过电压控制放大器(Voltage Controlled Amplifier, VCA)来实现。
这里需要注意的是,在不同波形下,幅度调节的方式可能会有所不同,需要根据具体的波形类型来设计调节电路。
最后,稳定性的考虑。
函数发生器需要具备较高的稳定性,以保证输出信号的准确性和可靠性。
稳定性可以通过选择高精度的参考电压源和稳压器来实现。
另外,使用高性能的时钟发生器和低噪声放大器也可以提高函数发生器的稳定性。
在实际制作函数发生器时,可采用集成电路、电阻、电容、晶振、时钟发生器、运放等一系列电子元件来搭建电路。
首先,根据具体的设计需求,选择合适的集成电路来实现波形的生成、频率调节和幅度调节等功能。
然后,根据电路图和原理图进行电路的布局和焊接。
注意电路连接的准确性和稳定性,避免过于复杂的布线。
最后,进行电源和地线的连接,并添加合适的外壳和面板。
在制作过程中,还需进行电路的调试和性能测试,确保函数发生器的正常工作和稳定性。
在函数发生器的制作过程中,还可以根据具体需求添加一些附加功能,如频率计、相位调节等。
这些功能的添加会增加电路的复杂度,需要更高的专业知识和技能。
因此,在制作函数发生器之前,应进行充分的设计和规划,并确保所需的材料和设备齐全。
函数信号发生器设计报告
函数信号发生器设计报告
以下是一份函数信号发生器设计报告的范本,供参考:
设计报告:函数信号发生器
一、概述
函数信号发生器是一种能够产生各种波形(如正弦波、方波、三角波等)的电子设备。
本设计报告将介绍如何设计一个简易的函数信号发生器。
二、设计原理
函数信号发生器的核心是波形生成电路。
本设计采用基于555定时器的波形生成电路,通过调节电阻和电容的值,可以生成不同频率和幅值的波形。
三、电路设计
1.电源电路:采用7805稳压芯片,为整个电路提供稳定的5V电源。
2.波形生成电路:基于555定时器,通过调节R1、R2和C1的值,可以生成不
同频率和幅值的波形。
3.输出电路:采用OP07运算放大器,将波形信号放大后输出。
四、测试结果
经过测试,本设计的函数信号发生器能够产生正弦波、方波和三角波三种波形,频率范围为1Hz~10kHz,幅值范围为0~5V。
在测试过程中,未发现明显的失真现象。
五、结论
本设计报告成功地介绍了一种简易的函数信号发生器的设计和制作过程。
测试结果表明,该函数信号发生器能够产生高质量的波形,具有较宽的频率和幅值调节范围。
在实际应用中,可以根据需要调节波形、频率和幅值,以满足不同的
需求。
《模拟电子技术》简易函数信号发生器的设计与制作
《模拟电子技术》简易函数信号发生器的设计与制作1、整机设计1.1 设计任务及要求结合所学的模拟电子技术知识,需要设计一个简易的函数信号发生器,要求能产生方波和三角波信号,并且其频率可以调节,并自行设计电路所需电源电路。
1.2 整机实现的基本原理及框图1.函数信号发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路。
本课题需要完成一个能产生方波、三角波的简易函数信号发生器。
产生方波、三角波的方案有很多种,本课题采用运放构成电压比较器出方波信号,采用积分器将方波变为三角波输出,其原理框图如图1所示。
2、直流电源电路一般由“降压——整流——滤波——稳压”这四个环节构成。
基本组成框图如图2所示。
2、硬件电路设计在硬件电路的设计过程中,需要首先知道简易信号发生器的原理,在其基本原理与结构框图中,知道需要比较器与积分器的电路,所以在设计过程中需要实现用积分器将方波变为三角波。
根据在课堂所学的积分器放大电路设计出所需的积分器电路与比较器电路。
根据设计的电路图在洞洞板上进行布局,最后根据各个元器件之间的联系进行焊接。
器件选择(1)变压器将220V交流电压变成整流电路所需要的电压u1。
本次我们选用了双15V变压器(2)整流电路将交流电压u1转换成单方向脉动的直流u2,有半波整流、全波整流,可以利用整流二极管构成整流桥堆来实现。
建议用二极管搭建全波整流电路实现。
本次使用了IN5399二极管(4个)。
(3)滤波电路将脉动直流电压u2滤除纹波,变成纹波较小的u3,有RC滤波电路、LC滤波电路等。
建议采用大电容滤波。
本次使用了2200uF/25V电容(2个)。
(4)稳压器常用集成稳压器有固定式三端稳压器和可调式三端稳压器。
下面是其中一些典型应用及选择原则。
固定式三端稳压器的常见产品有:78XX 系列稳压器输出固定的正电压,如7805输出为+5V;79XX系列稳压器输出固定的负电压,如7905输出为-5V。
函数发生器的设计与制作
函数发生器的设计与制作函数发生器是一种用于产生特定形式的周期性信号的电子设备。
它可以用于科学实验、电子工程、音频处理等各种领域。
设计和制作一个函数发生器需要涉及电路设计、元器件选型、PCB设计和焊接、测试和调试等方面的工作。
下面将详细介绍函数发生器的设计和制作过程。
首先,我们需要确定函数发生器的输出形式。
常见的函数发生器有正弦波、方波、三角波、锯齿波等输出形式。
根据需要选择合适的输出形式,并确定输出的频率范围和精度要求。
接下来,我们需要进行电路设计。
函数发生器的核心部分是振荡电路。
我们可以选择基于集成电路的振荡器,比如使用555定时器芯片。
这种设计成本较低、稳定性好,适合于频率较低的输出。
对于高频输出,可以选择使用AD9850或DDS芯片等数字合成发生器。
根据振荡电路的输出信号形式,我们需要设计滤波电路对输出信号进行滤波处理。
比如对于正弦波,我们可以使用RC滤波器进行滤波。
对于方波、三角波和锯齿波,可以使用运算放大器和比较器电路进行波形整形。
此外,我们还需要添加控制电路,以便调整函数发生器的频率、幅度和偏置等参数。
可以使用旋钮、开关等控制元件,通过改变电阻、电容和运算放大器的参数来实现控制。
完成电路设计后,我们需要进行元器件选型。
根据电路设计的需求,选择合适的电阻、电容、运算放大器、开关等元器件,并留意其额定功率、精度、容差等参数。
接下来,我们将电路设计进行PCB设计和焊接。
使用软件如EAGLE或Altium Designer进行PCB设计,并选择合适的材料和工艺进行焊接。
在焊接过程中,需要确保焊接质量和连接的可靠性。
完成焊接后,我们需要进行测试和调试。
首先,我们可以使用示波器对输出信号进行波形分析,以确保输出形式和频率精度满足要求。
其次,我们可以通过电位器等元器件调节频率、幅度和偏置等参数,以验证函数发生器的控制功能。
最后,我们需要进行功能测试。
通过连接外部设备如示波器和信号分析仪,检测函数发生器的输出信号的频率、相位、幅度等参数,确保其输出符合预期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Xuchang Electric V ocational College 毕业论文(设计)题目:函数信号发生器的设计与制作系部:电气工程系_班级:12电气自动化技术*名:***指导老师:**完成日期:2014/5/20毕业论文内容摘要目录1引言 (3)1.1研究背景与意义 (3)1.2研究思路与主要内容 (3)2 方案选择 (4)2.1方案一 (4)2.2方案二 (4)3基本原理 (5)4稳压电源 (6)4.1直流稳压电源设计思路 (6)4.2直流稳压电源原理 (6)4.3集成三端稳压器 (7)5系统工作原理与分析 (8)5.1ICL8038芯片性能特点简介 (8)5.2ICL8038的应用 (8)5.3ICL8038原理简介 (8)5.4电路分析 (9)5.5ICL8038内部原理 (10)5.6工作原理 (11)5.7正弦函数信号的失真度调节 (11)5.8ICL8038的典型应用 (12)5.9输出驱动部分 (12)结论....................................................... 错误!未定义书签。
致谢 (15)参考文献 (16)附录 (17)1引言信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。
在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波(含方波)、正弦波的电路被称为函数信号发生器。
1.1研究背景与意义函数信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。
在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波信号产生器作为时基电路。
例如,要在示波器荧光屏上不失真地观察到被测信号波形,要求在水平偏转线圈上加随时间线性变化的电压——锯齿波电压,使电子束沿水平方向匀速搜索荧光屏。
对于三角波,方波同样有重要的作用,而函数信号发生器是指一般能自动产生方波正弦波三角波以及锯齿波阶梯波等电压波形的电路或仪器。
因此,建议开发一种能产生方波、正弦波、三角波的函数信号发生器。
函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。
也可以先产生三角波-方波,再将三角波或方波转化为正弦波。
随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。
所以,可选择的方案多种多样,技术上是可行的[1]。
1.2研究思路与主要内容本文主要以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。
适合学生学习电子技术实验使用。
ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从几赫到几百千赫的低失真正弦波、三角波、矩形波等脉冲信号。
基于ICL8038函数信号发生器主要电源供电、波形发生、输出驱动三大部分组成。
电源供电部分:主要由集成三端稳压管LM7812和LM7912构成的±12V直流电压作为整个系统的供电。
波形发生部分:主要由单片集成函数信号发生器ICL8038构成。
通过改变接入电路的电阻或电容的大小,能够得到几赫到几百千赫不同频率的信号。
输出驱动部分:主要由运放LF353构成。
由于ICL8038的输出信号幅度较小,需要放大输出信号。
ICL8038的输出信号经过运放LF353放大后能够得到输出幅度较大的信号[2]。
2 方案选择2.1 方案一由文氏电桥产生正弦振荡,然后通过比较器得到方波,方波积分可得三角波。
这一方案为一开环电路,结构简单,产生的正弦波和方波的波形失真较小。
但是对于三角波的产生则有一定的麻烦,因为题目要求有1000倍的频率覆盖系数,显然对于1000倍的频率变化会有积分时间dt的1000倍变化从而导致输出电压振幅的1000倍变化。
而这是电路所不希望的。
幅度稳定性难以达到要求。
而且通过仿真实验会发现积分器极易产生失调[3]。
2.2 方案二利用ICL8038芯片构成8038集成函数发生器。
8038集成函数发生器是一种多用途的波形发生器,可以用来产生正弦波、方波、三角波和锯齿波,其振荡频率可通过外加的直流电压进行调节,所以是压控集成信号产生器。
由于外接电容C的充、放电电流由两个电流源控制,所以电容C两端电压u c的变化与时间成线形关系,从而可以获得理想的三角波输出。
8038电路中含有正弦波变换器,故可以直接将三角波变成正弦波输出。
另外还可以将三角波通过触发器变成方波输出。
该方案的特点是十分明显的:(1)线性良好、稳定性好;(2)频率易调,在几个数量级的频带范围内,可以方便地连续地改变频率,而且频率改变时,幅度恒定不变;(3)不存在如文氏电桥那样的过渡过程,接通电源后会立即产生稳定的波形;(4)三角波和方波在半周期内是时间的线性函数,易于变换其他波形。
综合上述分析,我们采用了第二种方案来产生信号。
3基本原理ICL8038可同时输出方波、三角波及正弦波,使用时只需外接少量电阻、电容元件。
RP5为方波输出占空比调节电阻,阻值为4.7kΩ,用来改变4、5脚电压,从而改变方波占空比。
RP1、Rl和R2组成分压网络,RP1为频率调节电位器,该电位器使用优质多圈电位器,阻值为lOk,调节RP1,改变ICL8038的8脚输入电压,可改变输出波形的频率;C6~Cll为外接定时电容,改变开关S2的位置,可获得6个频段(0~20Hz、20Hz~200Hz、200Hz~2kHz、2kHz~20kHz、20kHz~200kHz、200kHz—1MHz)的输出信号;RP3、RP4为正弦波失真度调节电位器,为了减小正弦波的失真度,ICL8038采用两套微调网络RP3和RP4,分别微调1脚和12脚电位,使正弦波信号失真度最小。
ICL8038的2脚输出正弦波,3脚输出三角波,9脚输出方波。
其工作电路如图3-1所示。
图3-1信号发生器工作电路4稳压电源4.1直流稳压电源设计思路(1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载R L。
4.2直流稳压电源原理直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图4-1。
图4-1 直流稳压电源方框图其中:(1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。
(2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电(3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。
B(4)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。
整流电路常采用二极管单相全波整流电路,电路如图4-2所示。
在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。
正负半周内部都有电流流过的负载电阻R L,且方向是一致的[3]。
电路的输出波形如图4-3所示。
图4-2整流原理图图4-3输出波形图在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即 。
电路中的每只二极管承受的最大反向电压为22U (U 2是变压器副边电压有效值)。
在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以达到使输出波形基本平滑的目的。
选择电容滤波电路后,直流输出电压:U o1=(1.1~1.2)U 2,直流输出电流: (I 2是变压器副边电流的有效值。
),稳压电路可选集成三端稳压器电路[3]。
稳压电源电路见图4-4所示。
4-4稳压电路原理图4.3集成三端稳压器因为要求输出固定不变,所以选择三端固定式集成稳压器。
固定式集成稳压器,常见的主要有LM7800系列和LM7900系列。
LM7812稳压器输出固定的12V 正电压,LM7912稳压器输出固定的12V 负电压,最大输出电流m ax O I 为1.5A 。
稳压内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点[3]。
LM7812系列和LM7912系列的引脚功能不同,管脚图如图4-5所示,典型电路如图4-6所示。
图4-5引脚图 图4-6典型电路121o f I I =()2~5.121I I o =5系统工作原理与分析5.1 ICL8038 芯片性能特点简介具有在发生温度变化时产生低的频率漂移,最大不超过50ppm/℃;具有正弦波、三角波和方波等多种函数信号输出;正弦波输出具有低于1%的失真度;三角波输出具有0.1%高线性度;具有0.001Hz~1MHz的频率输出范围;工作变化周期宽,2%~98%之间任意可调;高的电平输出范围,从TTL电平至28V;易于使用,只需要很少的外部条件。
5.2 ICL8038的应用ICL8038是精密波形产生与压控振荡器,其基本特性为:可同时产生和输出正弦波、三角波、锯齿波、方波与脉冲波等波形。
(1)ICL8038电源电压范围宽,采用单电源供电时,V+-GND的电压范围+10-+30V;采用双电源供电时,V+-V-的电压可在±5-±15V内选取。
电源电流约15mA。
(2)振荡频率范围宽,频率稳定性好。
频率范围是0.001Hz-300kHz,频率温漂仅50ppm/(1ppm=10-6)。
(3)输出波形的失真小。
正弦波失真度<5%,经过仔细调整后,失真度还可降低到0.5%。
三角波的线性度高达0.1%。
(4)矩形波占空比的调节范围很宽,D=1%-99%,由此可获得窄脉冲、宽脉冲或方波。