初中数学反比例函数知识点整理
(完整版)初中数学反比例函数知识点及经典例
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
初三反比例函数知识点
初三反比例函数知识点反比例函数是数学中的一种特殊函数,也称为倒数函数。
初三学习反比例函数是为了帮助学生更好地理解函数关系及其图像,在解决实际问题中的应用也非常广泛。
本文将从反比例函数的定义、性质、图像及实际应用等方面进行详细介绍。
一、反比例函数的定义和性质反比例函数是指一个函数与其自变量的乘积为常数的函数。
通常用符号y=k/x表示,其中k为常数。
1. 定义:反比例函数可以定义为y=k/x,其中k为常数,x≠0。
2. 性质:反比例函数的一个重要性质是其定义域和值域都不包括0。
因为当x=0时,函数值无意义,除数不能为0。
此外,反比例函数的图像一般是一个双曲线,具有一个垂直渐近线x=0和一个水平渐近线y=0。
二、反比例函数的图像反比例函数的图像是一个双曲线,在以原点为中心的坐标平面上对称分布。
其图像的特点如下:1. x轴和y轴:反比例函数的图像与x轴和y轴有关,当x趋近于无穷大或无穷小,y趋近于0;当y趋近于无穷大或无穷小,x趋近于0。
2. 渐近线:反比例函数有两条渐近线,水平渐近线和垂直渐近线。
水平渐近线表示y=0,x轴就是一个水平渐近线;垂直渐近线表示x=0,y轴就是一个垂直渐近线。
3. 对称性:反比例函数图像具有关于原点的对称性,即当(x, y)在图像上时,则(-x, -y)也在图像上。
三、反比例函数的实际应用反比例函数在实际生活中具有广泛的应用,特别是与数量关系有关的问题中常会涉及到反比例函数的应用。
1. 比例尺:反比例函数可以用来解决比例尺相关的问题。
比如,当地图缩小为原来的1/1000时,比例尺变为原来的1000倍。
2. 工作时间与工作效率:工作时间和工作效率之间通常存在反比例关系。
如果一项工作需要的时间越长,那么单位时间内的工作效率就会越低。
比如,甲乙两个人共同完成一项任务,甲需要10小时完成,乙需要5小时完成,乙的工作效率就是甲的两倍。
3. 电阻和电流关系:在电路中,电阻和电流之间往往存在反比例关系。
初中数学反比例函数知识点及经典例题
初中数学反比例函数知识点及经典例题反比例函数是数学中常见的一类函数,它是由一元二次函数反过来得到的。
反比例函数的特点是,自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
本文将介绍反比例函数的定义、性质、图像、经典例题以及解题思路。
一、反比例函数的定义反比例函数是指当两个变量之间满足一个恒等关系时,这个关系可以用一个反比例关系式表示。
一般地,反比例关系式可以表示为:y=k/x,其中k为常数。
二、反比例函数的性质1.反比例函数的定义域是非零实数集。
2.反比例函数的值域是非零实数集。
3.反比例函数的图像是一个经过原点的开口向右下方的双曲线。
4.当自变量等于1时,反比例函数的值等于常数k。
5.反比例函数的平行于y轴的渐近线是x=0。
三、反比例函数的图像反比例函数的图像是一个经过原点的开口向右下方的双曲线。
当自变量趋于正无穷时,函数值趋近于0;当自变量趋于负无穷时,函数值趋近于无穷大。
反比例函数的图像与x轴和y轴均不相交,且在第一象限和第三象限上。
四、反比例函数的经典例题及解题思路解题思路:根据题意可得到等式3=k/2,解方程可得到k=6、因此,此反比例函数为y=6/x。
例题2:证明反比例函数y=3/x与y=4/x在坐标原点处相交。
解题思路:将两个函数分别带入坐标原点,可得到y1=3/0=0,y2=4/0=0,因此,两个函数在坐标原点处相交。
例题3:如果一个反比例函数的变量x增加了50%,那么函数值y会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将x增加了50%相当于原来的x增加了1.5倍,那么y就变成了原来的1.5倍。
例题4:如果一个反比例函数的函数值y减少了60%,那么自变量x会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将y减少了60%相当于原来的y减少了0.6倍,那么x就变成了原来的0.6倍。
总结:反比例函数是一类常见的函数,它的特点是自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
反比例函数知识点
反比例函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!反比例函数知识点反比例函数知识点_反比例函数知识考点数学函数知识点有什么?数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。
初中数学知识归纳反比例函数
初中数学知识归纳反比例函数反比例函数是初中数学中的重要内容,它指的是两个变量之间存在着反比关系的函数。
在学习反比例函数时,我们需要了解其定义、性质以及常见的应用。
本文将对初中数学中关于反比例函数的知识进行归纳总结,以帮助同学们更好地理解和掌握这一内容。
一、反比例函数的定义反比例函数又称为倒数函数,它的定义可以表示为:若两个变量x 和y满足x×y=k(k≠0),则称y是x的反比例函数。
根据反比例函数的定义可以看出,变量x和y之间的乘积是一个常数k。
当x增大时,y就会减小,反之亦然。
这种函数关系在数学中非常常见,例如时间与速度之间的关系、商品价格与需求量之间的关系等。
二、反比例函数的性质反比例函数具有一些特殊的性质,下面我们来一一介绍。
1. 定义域和值域:反比例函数的定义域为除去0以外的所有实数,即x≠0。
对于y=f(x)=k/x,其值域为除去0以外的所有实数,即y≠0。
2. 图像特点:通过观察反比例函数的图像,我们可以发现它具有以下特点:- 当x趋近于正无穷大或负无穷大时,函数值趋近于0。
- 函数的图像关于y轴对称。
3. 零点:反比例函数的零点即为使得函数值为0的解。
由于反比例函数除去x=0时,函数值始终不为零,所以它没有零点。
4. 单调性:反比例函数的单调性与x的取值有关。
当x>0时,函数单调递减;当x<0时,函数单调递增。
三、反比例函数的应用反比例函数在实际生活中具有广泛的应用,下面我们来介绍几个常见的应用。
1. 速度与时间的关系:当物体匀速运动时,速度和时间之间存在反比关系。
设物体的速度为v,时间为t,则速度和时间的关系可以表示为v×t=k(k为常数)。
这也是为什么我们常说“速度与时间成反比”。
2. 距离与时间的关系:在匀速直线运动中,距离和时间之间也存在反比关系。
设物体在t 时间内的位移为s,则位移和时间的关系可以表示为s×t=k(k为常数)。
3. 分数的倒数:在数学中,分数的倒数即为倒数。
反比例知识点总结
反比例是数学中一种重要的函数关系,主要出现在初中数学的学习内容中。
以下是反比例函数的相关知识点总结:1. 定义:两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么我们就称这两种量成反比例关系。
表达式为:y = k/x (k ≠0),其中,k 是常数,x 是自变量,y 是因变量。
2. 图像特征:反比例函数的图像是一条双曲线,分布在第一、三象限或第二、四象限,具体分布取决于k的正负。
函数图像关于原点成中心对称。
3. 性质:在每个象限内,从左到右,y随x的增大而减小;反之,y随x 的减小而增大。
图像永远不会与坐标轴相交。
如果点(x1, y1)在反比例函数图像上,那么点(-x1, -y1)、(y1, x1)也在该图像上。
4. 应用:反比例关系广泛存在于现实生活中的各种问题,如物理学中的功率与时间的关系,化学中的反应速率与反应物浓度的关系,经济学中的价格与需求量的关系等。
5. 解题方法:遇到求反比例函数解析式的问题,通常可以通过找出满足函数关系的两个对应值,代入公式求解k值。
对于图像和性质的分析,可以根据上述性质进行判断和解答。
反比例函数在数学中的意义主要体现在它描述了一种特殊的变量关系,这种关系是两个变量之间乘积恒定的规律。
具体来说:1. 定义与形式:如果两个变量x和y之间的关系可以表示为y = k/x(其中k是不为零的常数),那么我们称y是x的反比例函数。
这里的k是比例系数,决定了曲线的形状和位置。
2. 关系特征:反比例函数反映的是两个变量成反向变化的关系,即一个变量增大时,另一个变量会按相同的比例减小,以保持它们乘积的不变性。
3. 几何意义:反比例函数在坐标平面上的图像是一条双曲线,分布在第一、三象限或第二、四象限,取决于系数k的正负。
双曲线具有对称性,并且永远不会与坐标轴相交。
4. 实际应用:反比例函数关系广泛存在于现实生活中的多个领域,如物理学中的力矩和力臂的关系、电流强度与电阻的关系(欧姆定律)、经济学中的价格和需求量的关系等。
初中数学反比例函数知识点整理
初中数学反比例函数知识点整理反比例函数是初中数学中的一个重要知识点。
在初中阶段,学生通过学习反比例函数的相关特性、图像和应用,培养对数学的抽象思维和数学建模能力。
下面将对反比例函数的相关知识点进行整理。
一、概念反比例函数是指两个变量之间的关系呈现出一种反比例的关系,即:一个变大,另一个变小;一个变小,另一个变大。
一般来说,反比例函数的定义域为定义在非零实数集上的实函数。
反比例函数可以表示为y=k/x,其中k≠0。
x和y分别为自变量和因变量,k为比例常数。
反比例函数的图像通常为一个经过原点的拋物线,斜率随着x的变化而改变。
二、性质1.当x=0时,函数无定义。
因此,反比例函数的定义域为R*(非零实数集),值域为R*。
2.k的正负决定了反比例函数的开口方向。
-当k>0时,函数的图像开口向上。
-当k<0时,函数的图像开口向下。
3.当x不等于0时,反比例函数的图像经过第一象限和第三象限。
4.当x>0时,y>0;当x<0时,y<0。
反比例函数在第一象限和第三象限的值都是正数。
5.反比例函数在x轴和y轴上都不存在渐近线。
三、图像根据反比例函数的性质,可以绘制出函数的图像。
在第一象限和第三象限,我们可以选择几个不同的x值,利用函数的公式计算相应的y值,然后将两者连接起来,得到一系列点,最后将这些点连成一条曲线。
需要注意的是,由于反比例函数的性质,我们需要选择比例常数k的不同正负情况,从而确定图像的开口方向。
四、应用反比例函数在生活中有着广泛的应用。
1.比例尺:地图上通常有一个比例尺,用来表示地图上的距离与实际距离的比例关系。
比例尺就是一个反比例函数,地图上的距离和实际距离呈现反比例关系。
2.速度和时间:物体的速度与所用时间呈现反比例关系。
例如,当车辆速度增加时,所需时间减少;当车辆速度减慢时,所需时间增加。
3.工作时间和人数:一个任务所需的时间与人员数量呈现反比例关系。
当人员数量增加时,所需时间减少;当人员数量减少时,所需时间增加。
初中数学反比例函数知识点与题型总结大全
一、概述反比例函数是初中数学中的重要知识点之一。
掌握反比例函数的知识,对于学生理解数学规律和解决实际问题具有重要意义。
本文将系统总结反比例函数的相关知识点和常见题型,帮助学生更好地掌握这一部分内容。
二、反比例函数的定义1. 反比例函数的概念反比例函数是指两个变量之间的关系,当一个变量的值增加时,另一个变量的值减少。
通常用y=k/x(k≠0)来表示,其中k为比例系数。
2. 反比例函数的特点(1)反比例函数图像呈现出一条经过原点且斜率逐渐减小、趋近于x轴的曲线。
(2)当x增大时,y减小;当x减小时,y增大。
(3)反比例函数的图像经过点(1,k)和(k,1),其中k为比例系数。
三、反比例函数的性质1. 零点问题反比例函数y=k/x的零点为x≠0,y=0时的值。
2. 单调性问题当x1<x2时,y1>y2;当x1>x2时,y1<y2。
即当x增大时,y减小;当x减小时,y增大。
3. 渐近线问题反比例函数的图像有两个渐近线,分别为x轴和y轴。
四、反比例函数的图像与性质1. 反比例函数的图像(1)当k>0时,反比例函数图像位于第一象限和第三象限。
(2)当k<0时,反比例函数图像位于第二象限和第四象限。
2. 反比例函数图像的特点(1)当k>0时,图像呈现出y轴的镜像关系;当k<0时,图像呈现出x轴的镜像关系。
(2)当k的绝对值增大时,图像离x轴和y轴越远。
五、反比例函数的题型1. 反比例函数的应用题(1)水管填水:如何选择合适的水管来填满一个容器。
(2)工人齐心协力地工作,完成相同的工作需要的时间和工人数量。
(3)如何选择合适的空调功率。
2. 实际问题的数学抽象(1)根据实际问题找出反比例函数的表达式。
(2)利用反比例函数解决实际问题,如何做到最大效益。
3. 反比例函数的图像题(1)根据给定的k值绘制反比例函数的图像。
(2)根据图像判断k值的大小和符号。
六、结语反比例函数作为初中数学中的一个重要知识点,涉及到很多实际问题的解决。
专题20反比例函数(3个知识点4种题型1种中考考法)(解析版)-初中数学北师大版9年级上册
专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。
2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k =,或表示为ky x=,其中k 是不等于零的常数.一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.注意:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式kx无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点.(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y 是x 的反比例函数的是()A .xy =1B .y =C .y =D .y =【答案】A【解答】解:A 、由原式得到y =,符合反比例函数的定义.故本选项正确;B 、该函数式表示y 与x 2成反比例关系,故本选项错误;C 、该函数式表示y 与x 成正比例关系,故本选项错误;D 、该函数不属于反比例函数,故本选项错误;故选:A .【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A .y =3x﹣1B .y =﹣C .xy =5D .y =【答案】B【解答】解:A 、y =3x ﹣1=是反比例函数,故本选项错误;B 、y =﹣是正比例函数,故本选项正确;C 、xy =5是反比例函数,故本选项错误;D 、y =是反比例函数,故本选项错误.故选:B .知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y =y 1-y 2,y 1与x 成反比例,y =5;当x =1时,y =-1;求当x =-1时,y 的值.【答案】3-【分析】设出解析式,利用待定系数法求得解析式,代入x 【详解】设1ay x=,()22y b x =-,(a 、b 不等于0)∵12y y y =-,a【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题解得62 km=⎧⎨=⎩,故选:B.【点睛】此题考查了反比例函数,熟练掌握反比例函数的性质是解题的关键.2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.0【答案】A【解答】解:由题意得,|m|﹣5=﹣1,且m+4≠0,解得:m=4.故选:A.3.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0【答案】D【解答】解:由题意得:k﹣1=﹣1,解得:k=0,故选:D.k6,104【答案】()【点睛】本题主要考查了坐标系的新定义问题,理解“雁点”的定义,是解题的关键.题型3.反比例函数关系的判断及应用48【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系【分析】列出V与t的关系式,根据反比例函数的定义可得答案.【解答】解:根据题意得:Vt=105,∴V=,V与t满足反比例函数关系;故选:A.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,掌握反比例函数的定义.2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:根据反比例函数解析式中k是常数,不能等于0,由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.【方法四】成果评定法一、单选题A.①②B.【答案】B【分析】分别求出三个问题中变量【详解】解:①∵正方形的周长为二、填空题【答案】2(答案不唯一)【分析】根据矩形写出B ,取值范围.【详解】解:∵矩形ABCD ∴()1,1B ,()3,4D ,三、解答题。
初中数学反比例函数知识点及经典例题
初中数学反比例函数知识点及经典例题一、反比例函数的定义反比例函数是指形如y=k/x的函数,其中k是一个非零常数,x和y 是实数。
二、反比例函数的图像特征1.当x=0时,反比例函数无定义;2.当x≠0时,随着x的增大,函数值y逐渐减小;3.反比例函数的图像通常是一条平面上的双曲线。
三、反比例函数的性质1. 对于反比例函数 y = k/x,k 是一个非零常数,任意给定的 x 和y,都有 xy = k 成立;2.如果反比例函数过点(x1,y1),则对于任意其它点(x2,y2),都有x1y1=x2y2成立;3.反比例函数的图像关于原点对称;4.反比例函数的导数为负。
四、反比例函数的应用反比例函数在实际生活中有很多应用,例如:1.工程中的消耗问题:项工程需要的材料数量与施工时间成反比;2.速度和时间的关系:当物体行驶的速度越快时,到达目的地所需时间越短;3.汽车的油耗问题:汽车行驶的路程与每升汽油的价格呈反比;4.人口增长与资源消耗:人口越多,资源消耗越快。
五、经典例题1.小明开车从A地到B地,全程360公里。
如果他保持每小时60公里的速度,需要多长时间到达目的地?解答:根据题意可知,小明的速度和到达目的地所需的时间成反比。
设到达目的地所需的时间为t,则有60t=360,解得t=6、所以小明需要6小时到达目的地。
2.水龙头4分钟可以装满一个水箱,水箱在3分钟内漏掉了60%的水,那么继续放水多少分钟可以装满这个水箱?解答:设继续放水的时间为t。
根据题意可知,放水的时间t和装满水箱的时间成反比。
所以有4×(1-60%)=(3+t)×100%,化简得到t=1.2、所以继续放水1.2分钟可以装满水箱。
3.假设一个圆的周长和面积的比值为k,如果圆的半径扩大3倍,求此时新圆的周长和面积的比值。
解答:设新圆的半径为r,则原圆的半径为(1/3)r。
原圆的周长和面积的比值为k,即2π(1/3)r/π((1/3)r)²=k。
初中数学:正比例函数和反比例函数知识点
初中数学:正比例函数和反比例函数知识点【考点剖析】一.函数定义:在某个变化过程中有两个变量x和y,在变量x的允许取值范围内,变量y随x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫x的函数.函数记号:()y f x =,()f a 表示x=a时的函数值.设()f x 为整式,则函数()y f x =的定义域:一切实数;函数1()y f x =的定义域:满足()0f x ≠的实数;函数y =的定义域:满足()0f x ≥的实数.二.正比例函数的概念(1)如果两个变量的每一组对应值的比值是一个常数(这个常数不等于零),那么就说这两个变量成正比例,用数学式子表示两个变量x 、y 成正比例,就是yk x =,或表示为y kx =(x 不等于0),k 是不等于零的常数.(2)解析式形如y kx =(k 是不等于零的常数)的函数叫做正比例函数,其中常数k 叫做比例系数.正比例函数y kx =的定义域是一切实数.确定了比例系数,就可以确定一个正比例函数的解析式三.正比例函数的图象(1)一般地,正比例函数y kx =(k 是常数,0k ≠)的图象是经过(00),,(1)k ,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;(2)图像画法:列表、描点、连线.四.正比例函数的性质(1)当0k>时,正比例函数的图像经过第一、三象限;自变量x的值逐渐增大时,y的值也随着逐渐增大.(2)当0k<时,正比例函数的图像经过第二、四象限;自变量x的值逐渐增大时,y的值则随着逐渐减小.五、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,我们就说这两个变量成反比例.用数学式子表示两个变量x、y成反比例,就是xy k=,或表示为kyx=,其中k是不等于0的常数.2、解析式形如kyx=(k是常数,0k≠)的函数叫做反比例函数,其中k叫做比例系数.3、反比例函数kyx=的定义域是不等于零的一切实数.六、反比例函数的图像1、反比例函数kyx=(k是常数,0k≠)的图像叫做双曲线,它有两支.七、反比例函数的性质1、当0k>时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小.2、当0k<时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐增大.3、图像的两支都无限接近于x轴和y轴,但不会与x轴和y轴相交.八.正比例函数与反比例函数正比例函数反比例函数定义形如(0)y kx k=≠的常数的函数,其中k是比例系数形如(0)ky kx=≠的常数的函数,其中k是比例系数定义域一切实数不等于零的一切实数图像经过原点(0,0)和点(1,k)的一条直线;双曲线,它有两支性质当0k>时,正比例函数的图像经过第一、三象限;y的值随x的值增大而增大;当0k>时,反比例函数的图像经过第一、三象限;在每一个象限内,y的值随x的值增当0k<时,正比例函数的图像经过第二、四象限;y的值随x的值增大而减小。
初中反比例函数知识点
初中反比例函数知识点初中数学中,反比例函数是一种重要的函数关系。
在学习反比例函数的知识点时,我们需要了解其定义、性质以及相关的应用。
一、反比例函数的定义反比例函数是指两个变量之间的关系,其中一个变量的值与另一个变量的值的乘积恒定。
换句话说,当其中一个变量增大时,另一个变量会减小;反之亦然。
我们通常使用字母y表示反比例函数的因变量,使用字母x表示反比例函数的自变量。
反比例函数可以用以下形式表示:y=k/x,其中k是一个恒定的值。
二、反比例函数的性质1. 定义域和值域:反比例函数的自变量x的取值范围与因变量y的取值范围有关。
一般来说,自变量x可以取除0以外的任意实数,而因变量y可以取除0以外的任意实数。
2. 图像特征:反比例函数的图像通常是由一条双曲线组成。
当自变量x变得很大或很小,函数的图像会逼近于x轴和y轴。
当自变量x等于0时,因变量y的值趋向于无穷大(正无穷或负无穷)。
3. 对称性:反比例函数的图像以y=x轴与y轴为中心具有对称性。
即当自变量x的值变为其倒数时,因变量y的值也会变为其倒数。
三、反比例函数的应用反比例函数在现实生活中有许多应用。
以下是其中几个常见的例子:1. 速度和时间的关系:在物理学中,根据路程和时间的关系,我们知道速度和时间是成反比例关系。
即速度=路程/时间。
当速度增大时,所需时间会减小;反之亦然。
2. 任务完成时间与工人数量的关系:如果一项任务需要完成的时间与工人数量成反比例关系,那么当工人数量增加时,任务完成的时间会减少。
这种关系在实际的生产中很常见。
3. 电阻和电流的关系:根据欧姆定律,电阻和电流成反比例关系。
即电流=电压/电阻。
如果电阻增加,电流会减小;如果电阻减小,电流会增加。
总结起来,初中反比例函数是一种重要的函数关系。
通过了解反比例函数的定义、性质和应用,我们可以更好地理解数学中的变量关系。
反比例函数在解决实际问题中有广泛的应用,通过运用反比例函数的知识,我们可以更加准确地分析和解决问题。
反比例函数知识点知识点总结
反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
其中,x 是自变量,y 是因变量。
因为 x 在分母上,所以自变量 x 的取值范围是x≠0。
例如,y = 3/x,y =-5/x 等都是反比例函数。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0)2、 xy = k(k 为常数,k≠0)3、 y = kx^(-1)(k 为常数,k≠0)这三种形式在本质上是相同的,只是形式上有所不同,我们可以根据具体的题目条件灵活选择使用。
三、反比例函数的图象反比例函数的图象是双曲线。
当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小;当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。
需要注意的是,反比例函数的图象永远不会与坐标轴相交,因为自变量x≠0,函数值y≠0。
四、反比例函数图象的性质1、对称性反比例函数的图象既是轴对称图形,又是中心对称图形。
对称轴有两条,分别是直线 y = x 和直线 y = x。
对称中心是坐标原点(0,0)。
2、增减性在每个象限内,当 k>0 时,y 随 x 的增大而减小;当 k<0 时,y 随 x 的增大而增大。
3、渐近线双曲线无限接近于 x 轴和 y 轴,但永远不会与它们相交。
五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图象上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足为 M、N,则矩形 PMON 的面积 S = PM·PN =|y|·|x| =|xy| =|k|。
2、三角形面积若连接 PO,则三角形 POM 的面积 S = 1/2 |k| 。
六、反比例函数与一次函数的综合应用1、求交点坐标联立反比例函数和一次函数的解析式,组成方程组,解方程组即可得到交点坐标。
初中数学反比例函数
考点3 反比例函数的应用
利用待定系数法确定反比例函数:
求函数解析式的 ①根据两变量之间的反比例关系,设 y=kx;
方法步骤 ②代入图象上一个点的坐标,即 x,y 的一对对应值,
求出 k 的值;
③写出关系式
反比例函数与一 次函数的图象的
求直线 y=k1x+b(k≠0)和双曲线 y=kx2的交点坐标就是
反比例函数
解 (1)如图,过 B 点作 BD⊥x 轴,垂足为 D,∵B(n,-
2),∴BD=2. 在 Rt△OBD 中,tan∠BOC=25,即OBDD=25,解得 OD=5. 又∵B 点在第三象限,∴B(-5,-2).将 B(-5, -2)的坐标代入 y=kx中,得 k=xy=10,∴反比例 函数的解析式为 y=1x0.
A.y3<y1<y2 C.y2<y1<y3
B.y1<y2<y3 D.y3<y2<y1
┃ 反比例函数
解 析 方法一:分别把各点代入反比例函数求出y1,y2,y3的值, 再比较出其大小即可.方法二:根据反比例函数的图象和性质比较.
[方法点析] 比较反比例函数值的大小,在同一个象限内根 据反比例函数的性质比较,在不同象限内,不能按其性质比较, 函数值的大小只能根据特征确定.
反比例函数
考点2 反比例函数的图象与性质
(1)反比例函数的图象:反比例函数 y=kx(k≠0)的图象是 _双__曲___线__,且关于___原__点___对称.
(2)反比例函数的性质:
函数
图象
所在象限
性质
k>0 y=kx
(k≠0) k<0
一、三象限 在每个象限内,y 随 x (x,y 同号) 增大而减小
二、四象限 在每个象限内,y 随 x (x,y 异号) 增大而增大
初中反比例函数知识点总结大全
初中反比例函数知识点总结大全反比例函数知识点总结1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k·1/xxy=ky=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k·1/xxy=ky=k·x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
数学反比例函数知识点归纳y=k/x(k≠0)的图象叫做双曲线.当k0时,双曲线在一、三象限(在每一象限内,从左向右降);当k0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.以上对反比例函数知识点的讲解,相信同学们能很好的掌握了,希望同学们能很好的学习知识点。
新人教版初中数学——反比例函数-知识点归纳及典型题解析
新人教版初中数学——反比例函数知识点归纳及典型题解析一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k值的符号来决定.①k值同号,两个函数必有两个交点;②k值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式.2.反比例函数的一般形式的结构特征:①k≠0;②以分式形式呈现;③在分母中x的指数为1.典例1 下列函数中,y与x之间是反比例函数关系的是A.xy2B.3x+2y=0C.y=kxD.y=21x【答案】A【解析】A、xy=2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),不属于反比例函数,故此选项错误;D 、y =21x +,是y 与x +1成反比例,故此选项错误. 故选A .1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一平面直角坐标系中,函数y =﹣x +k 与y =kx(k 为常数,且k ≠0)的图象大致是 A . B .C .D .【答案】C【解析】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0),∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =k x 经过第一、三象限,故选项D 错误,当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =3x D .y =–1x4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x = B .6y x =-C .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A.y=2xB.y=-2xC.y=12xD.y=-12x【答案】B【解析】设反比例函数表达式为y=kx,把M(2-,1)代入y=kx得,k=(-2)×1=-2,∴2yx=-,故选B.典例7 如图,C1是反比例函数y=kx在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为__________(x>0).【答案】y=–2 x【解析】∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,–1),∴C2对应的函数的表达式为y=–2x,故答案为y=–2x.5.已知反比例函数y=-6x,下列各点中,在其图象上的有A.(-2,-3)B.(2,3)C.(2,-3)D.(1,6)6.点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A在第二象限内,则这个函数的解析式为A.y=12xB.y=-12xC.y=112xD.y=-112x7.在平面直角坐标系中,点P(2,a)在反比例函数y=2x的图象上,把点P向上平移2个单位,再向右平移3个单位得到点Q,则经过点Q的反比例函数的表达式为__________.考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=kx(k≠0)的图象经过A、D两点,则k值为__________.163【解析】如图,过点D作DE⊥x轴于点E,∵点B 的坐标为(﹣2,0),∴AB =﹣2k ,∴OC =﹣2k , 由旋转性质知OD =OC =﹣2k,∠COD =60°,∴∠DOE =30°, ∴DE =12OD =﹣14k ,OE =OD ·cos30°=32×(﹣2k )=﹣34k , 即D (﹣34k ,﹣14k ),∵反比例函数y =kx(k ≠0)的图象经过D 点, ∴k =(﹣34k )(﹣14k )=316k 2,解得:k =0(舍)或k =﹣1633,故答案为:﹣1633. 典例9 如图,已知双曲线ky x经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若 △OBC 的面积为9,则k =__________.【答案】6【解析】如图,过点D 作x 轴的垂线交x 轴于点E ,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设点D的横坐标为x,纵坐标就为kx,∵D为OB的中点.∴EA=x,AB=2kx,∴四边形DEAB的面积可表示为:12(kx+2kx)x=9;k=6.故答案为:6.【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k|,结合函数图象所在的象限可以确定k的值,反过来,根据k的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k的几何意义,以简化运算.8.如图,A、B两点在双曲线4yx=的图象上,分别经过A、B两点向轴作垂线段,已知1S=阴影,则12S S+=A.8 B.6 C.5 D.49.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y=x的图象是过原点经过一、三象限,1yx=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A.典例11 已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是A.x<-1或0<x<3 B.-1<x<0或x>3 C.-1<x<0 D.x>3【答案】B【解析】根据图象知,一次函数y1=kx+b与反比例函数y2=kx的交点是(-1,3),(3,-1),∴当y1<y2时,-1<x<0或x>3,故选B.【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用.典例12 如图,已知直线y=–13x+10与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为A.910B.2710C 910D2710【答案】B【解析】如图,过A 作AE ⊥OD 于E ,∵直线解析式为y =–13x +10,∴C (0,10),D (310,0), ∴OC =10,OD =310,∴Rt △COD 中,CD =22 O C OD +=10, ∵OA ⊥AB ,∴12CO ×DO =12CD ×AO , ∴AO =3,∴AD =22OD OA -=9, ∵12OD ×AE =12AO ×AD ,∴AE =91010, ∴Rt △AOE 中,OE =22AO AE -=229103()10-=31010,∴A (31010,91010), ∴代入双曲线y =k x ,可得k =31010×91010=2710,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =mx的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.考向六反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=kx对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是__________;(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【解析】(1)当0≤x ≤40时,设y 与x 之间的函数关系式为y =ax +b , (10,35)和(30,65)在y =ax +b 的图象上, 把(10,35)和(30,65)代入y =ax +b ,得10353065a b a b +=+=⎧⎨⎩,得 1.520a b ==⎧⎨⎩, ∴y =1.5x +20,当x =0时,y =1.5×0+20=20, 故答案为:20;(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y =kx的图象上, ∴80=40k,得k =3200, 即反比例函数y =3200x ,当y =20时,20=3200x,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2的值为A .2B .3C .4D .-44.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系是 A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1D .y 1<y 2<y 35.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <26.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是 A . B .C.D.7.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B.当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B 是MD的中点.其中正确结论的个数是A.0个B.1个C.2个D.3个8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=6x的图象与AB边交于点D,与BC边交于点E,连接DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是A.-25B.-121C.-15D.-1249.已知(),3A m、()2,B n-在同一个反比例函数图像上,则mn=__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是__________.13.如图,已知反比例函数kyx=与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.14.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-<的解集(请直接写出答案).15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x (分钟)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)分别求出线段AB 和双曲线CD 的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.已知点A (1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 32.若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1 C.y1>y3>y2D.y2>y3>y13.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是A.B.C.D.4.如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q5.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .66.在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 7.如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =k x(x >0)的图象恰好经过点C ,则k 的值为__________.8.如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =__________.9.已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.10.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C . 2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意;变式拓展D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.4.【答案】B【解析】由图知,y y y k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1,故选B.5.【答案】C【解析】∵反比例函数y=-6x中,k=-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C选项符合,故选C.6.【答案】B【解析】设A点坐标为(x,y).∵A点到x轴的距离为3,∴|y|=3,y=±3.∵A点到原点的距离为5,∴x2+y2=52,解得x=±4,∵点A在第二象限,∴x=-4,y=3,∴点A的坐标为(-4,3),设反比例函数的解析式为y=kx,∴k=-4×3=-12,∴反比例函数的解析式为y=12x,故选B.7.【答案】y=15 x【解析】∵点P(2,a)在反比例函数y=2x的图象上,∴代入得:a=22=1,即P点的坐标为(2,1),∵把点P向上平移2个单位,再向右平移3个单位得到点Q,∴Q的坐标是(5,3),设经过点Q的反比例函数的解析式是y=cx,把Q点的坐标代入得:c=15,即y=15x,故答案为:y=15x.8.【答案】B【解析】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6,故选B.9.【答案】D【解析】在Rt △BCD 中, ∵12×CD ×BD =3,∴12×CD ×3=3,∴CD =2, ∵C (2,0),∴OC =2,∴OD =4,∴B (4,3), ∵点B 是反比例函数y =kx(x >0)图象上的点,∴k =12, ∵AC ⊥x 轴,∴S △AOC =2k=6,故选D . 10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =2k,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×2k =k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数ky x=(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =mx图象上, ∴m =–8.∴反比例函数的解析式为y =–8x. ∵点A (–4,n )在y =–8x图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴4224k b k b -+=+=-⎧⎨⎩,解得12k b =-=-⎧⎨⎩.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,当x=0时,y=–2,∴点C(0,–2).∴OC=2,∴S△AOB=S△ACO+S△BCO=12×2×4+12×2×2=6.13.【解析】(1)当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以15560bk b=+=⎧⎨⎩,解得:159bk==⎧⎨⎩,所以y=9x+15,当x≥15时,为反比例函数,设函数关系式为:y=mx,由于图象过点(5,60),所以m=300.则y=300x;(2)当0≤x<5时,y=9x+15=30,得x=53,因为y随x的增大而增大,所以x>53,当x≥5时,y=300x=30,得x=10,因为y随x的增大而减小,所以x<10,10–53=253.答:可加工253min.1.【答案】C考点冲关【解析】由反比例函数的定义知,13y x=是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =8k x-的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k, ∴△AOB 的面积为12k −22k , ∴12k −22k =2,∴k 1–k 2=4,故选C . 4.【答案】B【解析】∵点(–5,y 1)、(–3,y 2)、(2,y 3)都在反比例函数y =3x上, ∴y 1=–35,y 2=–1,y 3=32. ∵–35<–1<32,∴y 2<y 1<y 3,故选B .5.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点, ∴不等式y 1>y 2的解集是-3<x <0或x >2, 故选C . 6.【答案】C【解析】A .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项不正确; B .由一次函数图象过二、四象限,得a <0,交y 轴正半轴,则b >0,满足ab <0, ∴a −b <0,∴反比例函数y =a bx-的图象过二、四象限,所以此选项不正确; C .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项正确; D .由一次函数图象过二、四象限,得a <0,交y 轴负半轴,则b <0,满足ab >0,与已知相矛盾,所以此选项不正确,故选C . 7.【答案】D【解析】根据反比例函数的图象与系数k 的意义,设A (x 1,y 1),B (x 2,y 2),则有x 1y 1=x 2y 2=2可知S △ODB =S △OCA =1,故①正确;同样可知四边形OCMD 的面积为a ,因此四边形OAMB 的面积为a –2,故不会发生变化,故②正确;当点A 是MC 的中点时,y 2=2y 1,代入x 1y 2=a 中,得2x 1y 1=a ,a =4,由题得1242x x =,整理得x 1=2x 2,因此B 为MD 的中点,故③正确,故选D . 8.【答案】B【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =6x 的图象上,∴D (6,1),E (32,4),∴BE =6-32=92,BD =4-1=3,∴ED =22BE BD +=3213,连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即3213BF =3×92,∴BF =913,∴BB ′=1813,设EG =x ,则BG =92-x ,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴(1813)2-(92-x )2=(92)2-x 2,∴x =4526,∴EG =4526,∴CG =4213,∴B ′G =5413,∴B ′(4213,-213),∴k =-121,故选B .9.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠,将(),3A m 、()2,B n -分别代入,得 3k m =,2k n =-,∴2332k m k n ==--, 故答案为:23-. 10.【答案】5【解析】如图,过点A 作AF y ⊥轴,垂足于点F ;过点B 作BE y ⊥轴,垂足为点E .∵点P 是AB 中点,∴PA PB =.易得△APF ≌△BPE , ∴APFBPESS=,∴ABCDACOFEODBSSS=+23=-+5=,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (2k ,2),∵E 是CD 边中点,∴E (2k-2,1),∴2k-2=k ,解得k =-4,故答案为:-4. 12.【答案】372【解析】如图,过点B 作直线AC 的垂线交直线AC 于点F ,∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC =2BD ,∴OD =2O C . ∵CD =k , ∴点A 的坐标为(3k ,3),点B 的坐标为(–23k ,–32), ∴AC =3,BD =32, ∴AB =2AC =6,AF =AC +BD =92, ∴CD =k2==13.【解析】(1)∵已知反比例函数ky x=经过点A (1,-k +4), ∴41kk -+=,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2), ∴2=1+b ,∴b =1,∴反比例函数的表达式为2y x=, 一次函数的表达式为y =x +1.(2)由12y x y x ⎧=+⎪⎨=⎪⎩,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0, ∴x =-2或x =1. ∴y =-1或y =2. ∴21x y ⎧=-⎨=-⎩或12x y ⎧=⎨=⎩.∵点B 在第三象限, ∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)∵B (2,-4)在y =mx上, ∴m =-8.∴反比例函数的解析式为y =-8x. ∵点A (-4,n )在y =-8x上, ∴n =2. ∴A (-4,2).∵y =kx +b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩.∴一次函数的解析式为y =-x -2. (2)∵C 是直线AB 与x 轴的交点, ∴当y =0时,x =-2. ∴点C (-2,0).∴OC =2. ∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=6. (3)不等式0mkx b x+-<的解集为:-4<x <0或x >2. 15.【解析】(1)设线段AB 所在的直线的解析式为y 1=k 1x +30,把B (10,50)代入得,k 1=2, ∴AB 解析式为:y 1=2x +30(0≤x ≤10). 设C 、D 所在双曲线的解析式为22k y x=, 把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=2200x(x ≥44); (2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y=40代入y2=2200x得:x=55.55-5=50.所以完成一份数学家庭作业的高效时间是50分钟.1.【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.2.【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.3.【答案】C【解析】∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项A、B错误,故选C.4.【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点,故选A.5.【答案】C【解析】如图,过点B作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),直通中考。
人教版初中数学复习-反比例函数知识点
⼈教版初中数学复习-反⽐例函数知识点⼈教版九年级——反⽐例函数⼀.【知识要点】知识点1反⽐例函数的定义重点;理解⼀般地,形如kyx=(k为常数,k≠0)的函数称为反⽐例函数,其中x是⾃变量,y是函数,⾃变量x的取值范围是不等于0的⼀切实数,y的取值范围也是不等于0的⼀切实数,k叫做⽐例系数,另外,反⽐例函数的关系式也可写成y=kx-1的形式.y是x的反⽐例函数?kyx=(k≠0)?xy=k(k≠0) ?变量y与x成反⽐例,⽐例系数为k.注意: (1)在反⽐例函数kyx=(k≠0)的左边是函数y,右边是分母为⾃变量x的分式,也就是说,分母不能是多项式,只能是x的⼀次单项式,如1yx=,312yx=等都是反⽐例函数,但2yx=+就不是关于x的反⽐例函数.(2)反⽐例函数可以理解为两个变量的乘积是⼀个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反⽐例函数中,两个变量成反⽐例关系.知识点2⽤待定系数法确定反⽐例函数的表达式难点:运⽤由于反⽐例函数kyx=中只有⼀个待定系数,因此只要有⼀对对应的x,y值,或已知其图象上⼀点坐标,即可求出k,从⽽确定反⽐例函数的表达式.其⼀般步骤:(1)设反⽐例函数关系式kyx=(k≠0).(2)把已知条件(⾃变量和函数的对应值)代⼊关系式,得出关于k的⽅程.(3)解⽅程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反⽐例函数关系式.知识点3反⽐例函数图象的画法难点;运⽤反⽐例函数图象的画法是描点法,其步骤如下:(1)列表:⾃变量的限值应以0为中⼼点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出⼀侧,另⼀侧可根据中⼼对称的性质去找.(3)连线:按从左到右的顺序⽤平滑的曲线连接各点,双曲线的两个分⽀是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反⽐例函数的图象是双曲线,它有两个分⽀,它的两个分⽀是断开的.(2)当k>0时,两个分⽀位于第⼀、三象限;当k﹤0时,两个分⽀位于第⼆、四象限.(3)反⽐例函数ky=(k≠0)的图象的两个分⽀关于原点对称.(4)反⽐例函数的图象与x轴、y轴都没有交点,即双曲线的两个分⽀⽆限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反⽐例函数kyx=(k≠0)的性质难点;灵活应⽤(1)如图17-2所⽰,反⽐例函数的图象是双曲线,反⽐例函数kyx=的图象是由两⽀曲线组成的.当k>0时,两⽀曲线分别位于第⼀、三象限内;当k<0时,两⽀曲线分别位于第⼆、四象限内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点整理一、反比例函数的概念1、解析式:y = -(k ≠ 0)其他形式:①xy = k②y = kx~1X例1.下列等式中,哪些是反比例函数(1) y - —(2) y = (3) xy = 21 (4) y = —-— (5~) y =(6)尹二丄+ 33 X X + 2 IX X例2.当m取什么值时,函数尹=(m-2)√^m2是反比例函数?例3.函数y = (2m-l)x m2~2是反比例函数,且它的图像在第二、四象限,加的值是 ________ 例4.已知函数y =y1+y2, yι与X成正比例,y2与X成反比例,且当x=l时,y=4;当x=2 时,y = 5(1) 求y与X的函数关系式(2)当x=-2时,求函数y的值2.反比例函数图像上的点的坐标满足:xy = k例1.已知反比例函数的图象经过点(m, 2)和(-2, 3)则加的值为______________________例2.下列函数中,图像过点M (-2, 1)的反比例函数解析式是( ). 2 D 2 厂 1 八1ΛX 2x 2x例3.如果点(3, -4)在反比例函数y =-的图象上,那么下列各点中,在此图象上的X是( )A. (3,4) B. (一2, —6) C. (一2, 6) D. (—3, —4)例4.如果反比例函数y =-的图象经过点(3, —1),那么函数的图象应在( )XA.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限二、反比例函数的图像与性质1、基础知识幺>0时,图像在一、三象限,在每一个象限内,y随着X的增大而减小;幺<0时,图像在二、四象限,在每一个象限内,y随着X的增大而增大;例1.己知反比例函数y = {a-2)x a -6当χ>0时,y随X的增大而增大,求函数关系式9⅛ +1例2.已知反比例函数尹= -------- 的图象在每个象限内函数值y随自变量X的增大而减Λ小,且k的值还满足9-2(2^-1) ≥2k-b若k为整数,求反比例函数的解析式2、面积问题(1)三角形面积:SZe =^∖k∖例1・如图,过反比例函数y = - (x>0)的图象上任意两点A、B分别X作X轴的垂线,垂足分别为C、D,连接OA、OB,设AAOC和ABOD的面积分别是Si、S2,比较它们的大小,可得( )(B) Si = S2(C) Sι<S2 (D)大小关系不能确定(A) Sι>S2例2.如图,点P是反比例函数丿=丄的图象上任一点,PA垂直在X轴,垂足为A,设X△Q4P的面积为S,则S的值为________________例3.直线OA与反比例函数y = -(k≠O')的图象在第一象限交于A点,AB丄X轴于点E,若ZxOAB的面积为2,则£= ____________________ .例4.如图,若点/在反比例函数y = -(k≠O)的图象上,AM丄X轴于点M, AAMO X74、&、&、A4> 4分别作X轴的垂线与反比例函数的J = -(X≠o)的图象相交于点P\、马、PyP4、匕,得直角三角形0/4、A p2A2> A2p3A&阳4、并设其面积分别为&、S2、S3、S4、⅛≡55的值为___________ .2例6.如图,A. B是函数丿=—的图象上关于原点对称的任意两点,BC//X轴,AC// y X 轴,MBC的面积记为S,则()A. S = I B. S = 4 C. 2<5<4 D. S>4(2)矩形面积:S矩形如C = I k l例1.如图,P是反比例函数y = -Qk < 0)图象上的一点,由P分别向X轴和y轴引垂线,阴影部分面积为3,则P ___________ O例2.如图,已知点C为反比例函数y = --h的一点,过点C向坐标轴引垂线,垂足X分别为B,那么四边形AOBC的面积为 __________________ .3 例3.如图,点/、占是双曲线y =-上的点,分别经过/、占两点向兀轴、尹轴作X垂线段,若S阴影=1,则S1+ S2= _________ .20 例4、如图,矩形AOCB的两边OC, OA分别位于X轴,y轴上,点B的坐标为E( —— ,3 5), D是AE边上的一点,将AADO沿直线OD翻折,使A点恰好落在对角线OE上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是________ •例5.两个反比例函数y二土和y二丄在第一象限内的图像如图3所示,点P在y=-的图像上,PC丄X轴于点C,交y=丄的图像于点A, PD丄y轴于点D,交y=丄的图像于点B,当点P在y=±的图像上运动时,以下结论:X①AODB与AOCA的面积相等;②②四边形PAoB的面积不会发生变化;③PA与PB始终相等④当点A是PC的中点时,点B—定是PD的中点.其中一定正确的是________ (把你认为正确结论的序号都填上,•少填或错填不给分)•3.利用图像比较大小问题(1)比较点的坐标大小Ar? + ] 例1.已知点(一1, yi)、(2, y2)、(兀,y3)在双曲线丿二 --------------------------------- 上,则下列关系式X 正确的是()(A) y1>y2>y3 (B) yι>y3>y2 (C) y2>y1>y3 (D) y3>y1>y2 k 例2.己知三点£(勺H), PEΛ),目⑴―2)都在反比例函数V X的图象上,若西<0,吃>°,则下列式子正确的是( )A. Ji<Λ<0b. Ji<θ<Λ c. ∙¾>%>°D. y1>0>y22例3.反比例函数丿二——,当x=—2时,y= ___________ ;当x<—2时;y的取值范围X是____ ; ____ 当x>-2时;y的取值范围是 _______例4.点A(2, 1)在反比例函数y =夕的图像上,l<x< 4时,y的取值范围是_____________ .例5. A(X l , y l )> 5( x2,必)在函数y = ~~的图象上,旺、£满足___________ 时,必>必.^ 「2x^ 「例6.在反比例函数J=I 2m的图象上有两点A(x1,J∕1) ,B(X2,J∕2),当X] < O < X2 Bt, X有∙¾<J72 ,则加的取值范围是()A> m < 0 >0 C、加D、加>£例7、己知反比例函数y = -(k<O)的图像上有两点A(x1, J∕1),B(X2 ,J2),且XlVX2,X则y i-y2的值是( )A、正数氏负数c、非正数D、不能确定(2)比较函数值大小例1.如图是一次函数yι=kx+b和反比例函数y2=-的图象,观察图象写出yι>y2时, X兀的取值范围.9—的图像交于点水2, 1),M-1, -2),XA. X >2B. X >2 或一1 VXVOC. —K X<2 D. X >2 或XV三、反比例函数与一次函数的综合题(1) 在同一坐标系中的图像问题)-1第19题I例2.如图,一次函数y I=X —1与反比例函数y 则使y 1〉y 2的X的取值范围是((2)其他类型O例1.如图,已知一次函数y = kx-^b 的图象与反比例函数J/ = --的图象交于A 、E 两点,且点A 的横坐标和点B 的纵坐标都是-2,求: (1) 一次函数的解析式; (2) ZXAOB 的面积.4例2.如图,在直角坐标系中,直线y=6-χ与函数y=- (x>0)的图象相交于点A 、B, X 设点A 的坐标为(X 】,,y 1),那么长为X 】,宽为y 】的矩形面积和周长分别为()A. 4, 12B. 8, 12C. 4, 6D. & 6例3.如图:已知一次函数y = kx + b(k≠O)的图象与兀轴、尹轴分别交于/、占两点, 且与反比例函数y = -(m≠O)的图象在第一象限交于C 点,CZ)丄工轴,垂足为D,JC 若 OA = OB = OD — 1(1)求点/、B 、Q 的坐标;(2)求一次函数与反比例函数的解析式;;XB(n,-1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当工取何值时,反比例函数的值大于一次函数的值例4:如图,反比例函数y =-的图象与一次函数y = mx + b 的图象交于A(1,3) 例1. 一次函数y = kx-k 与反比例函数y =-在同一直角坐标系内的大致图象是(2例5.如图,A、B是反比例函数y=—的图象上的两点。
AC、BD都垂直于X轴,垂足分X 别为C、D o AB的延长线交X轴于点E。
若C、D的坐标分别为(1, 0)、(4, 0),则厶例1.己知甲、乙两地相s(千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度V (千米/时)的函数图象大致是()(C)升)I『千米/时(D)例2. —张正方形的纸片,剪去两个一样的小矩形得到一个图案,如图所示,设小矩形的长和宽分别为兀、y,剪去部分的面积为20,若2≤x≤10,则尹与工的函BDE的面积与Δ ACE的面积的比值是()1 1 1A. 2B. 4C. 8D. 16四、反比例函数的应用。