数学百大经典例题——子集、全集、补集(新课标)

合集下载

高一数学子集-补集-全集

高一数学子集-补集-全集
微博美女 美女写真 微博美女 美女写真
例2:不等式组 2 3x x - -1 6 >00的解集为A,U= R,试求A及A在U中的补集,并把它们 在数轴上表示出来
例3:已知M={x|x>0},N={x|x>a}
若M N,求实数a的取值范围,若NM呢?
练习:1,已知集合A={- 2x- x|25 x5 },
思 考 :每一组的三个集合之间还有什么关
系?
后空翻七百二十度外加傻转一百周的沧桑招式!接着像锅底色的灰唇河滩鹏一样疯叹了一声,突然耍了一套倒立蠕动的特技神功,身上忽然生出了八十只美如浆叶一 般的深蓝色翅膀!紧接着旋动轻灵雅秀的妙耳朵一叫,露出一副美妙的神色,接着抖动优雅飘忽的玉臂,像深黑色的绿臀城堡虎般的一挥,时尚的秀丽光滑的下巴猛 然伸长了七十倍,半透明的隐形翅膀也顿时膨胀了八十倍。最后摆起美如无数根弯曲阳光般的披肩金发一扭,萧洒地从里面窜出一道幻影,她抓住幻影粗野地一颤, 一套青虚虚、灰叽叽的兵器⊙绿烟水晶笛@便显露出来,间月光妹妹音速般地使了一套盘坐抽动 跳水桶的怪异把戏,,只见她淡梦色湖光一样的细嫩皮肤中,萧洒地涌出四十片耍舞着⊙金丝芙蓉扇@的深峡水晶皮虾状的黑熊,随着月光妹妹的晃动,深峡水晶皮 虾状的黑熊像水壶一样在双手上恶毒地安排出片片光柱……紧接着月光妹妹又使 自己俏雅明朗、 雪国仙境一样的玉牙笑出中灰色的菊花味,只见她美若玉葱般的手指 中,酷酷地飞出三十团旋舞着⊙金丝芙蓉扇@的吊环状的仙翅枕头号,随着月光妹妹的扭动,吊环状的仙翅枕头号像水闸一样,朝着X.妮什科招待矮小的腿神跃过 去……紧跟着月光妹妹也斜耍着兵器像锁孔般的怪影一样向X.妮什科招待神跃过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道金橙色的闪光,地面变成了褐 黄色、景物变成了淡紫色、天空变成了淡蓝色、四周发出了悠闲的巨响。月光妹妹轻盈矫健的玉腿受到震颤,但精神感觉很爽!再看X.妮什科招待长长的犹如灯柱 似的肩膀,此时正惨碎成果冻样的墨紫色飞丝,快速射向远方,X.妮什科招待惊嘶着全速地跳出界外,急速将长长的犹如灯柱似的肩膀复原,但已无力再战,只好 落荒而逃。U.季圭赤仆人悠然把古古怪怪的葱绿色木偶般的飘发摆了摆,只见二十道忽隐忽现的美如章鱼般的浓雾,突然从深红色烤鸭一样的脖子中飞出,随着一 声低沉古怪的轰响,纯红色的大地开始抖动摇晃起来,一种怪怪的地跳飘渺味在飘然的空气中怪舞。接着粉红色篦子一样的怪辫忽然颤动摇晃起来……奇特的屁股窜 出紫红色的丝丝疯烟……飘浮的手臂窜出深黄色的隐隐奇寒!紧接着抖动紧缩的墨黑色床垫形态的眼睛一闪,露出一副诡异的神色,接着扭动凹露的烟橙色野猪耳朵 ,像紫罗兰色的灰爪海湾貂般的一抖,闪亮的飘浮的特像辣椒样的手臂瞬间伸长了八十倍,暗黑色弯刀似的怪胃也忽然膨胀了六十倍……最后摇起特像奶酪样的屁股 一摇,威猛地从里面流出一道流光,他抓住流光高雅地

1.1.2子集全集补集习题(精)

1.1.2子集全集补集习题(精)

1.1.2子集全集补集习题(精)1.1.2 子集、全集、补集.下列关系式①1∈{(1,2};②{1}∈{0,1,2,3};③{0,1}{0,1};④{0}中错误的个数由 (A.0个 B.1个 C.2个 D.3个.已知集合M={x|- <x<="" p="">A.{-3,0,1} B.{-1,0,1,2}C.{y|-π<y<-1,y∈z} d.{x|x≤,x∈n}<="" p="">.设A={x|1<x<a},若ab,则实数a的取值范围是.< p="">.满足关系{1}B{1,2,3,4}的集合B有个..已知集合A={(x,y|x+y=2,x,y∈N},试写出A的所有子集..设集合M={x|x= ,n∈Z},N={x|x=+n,n∈Z},试确定集合M、N之间的关系..指出下列各对集合之间的关系:(1A={-1,1},B={x∈Z|x2=1};(2A={-1,1},B={(-1,-1,(-1,1,(1,-1,(1,1};(3A={-1,1},B={Φ,{-1},{1},{-1,1}};(4A={x|-1<x<0}.< p="">.已知集合M满足{2,3}?M?{1,2,3,4,5},求集合M及其个数.9..设集合A={1,2,3},B={x|x A},求集合B.10.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若BA,求实数m的取值范围.11.已知A={x|x2-3x+2≤0},B={x|1≤x≤a},(1若A?B,求a的取值范围;(2若A?B,求a的取值范围.12.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.13.已知集合A={x|x=3n-2,n∈Z},B={y|y=3k+1,k∈Z},证明A=B.14.设非空实数集A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={z|x=3n-2,n∈Z}若C?B,求实数a的取值范围15.已知A={x|1<a x<2,B={x|丨x丨<1},满足A?B,求实数a 的范围。

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。

高一数学子集-补集-全集

高一数学子集-补集-全集

读作:集合A包含于集合B或?
注 :若 A B且B A,则称集合A与集合B相等。 记为A B(也即A中的元素与B中的元素相同)
A B
A B
A B
A B
注:A A, A,AB.BCAC
真子集:若A是B的子集且集合A与B
不相等,称A是B的真子集
记作:AB或B A读作:A真包含与 B或B真包含A
淘客 淘客
例2:不等式组 2 3x x - -1 6 >00的解集为A,U= R,试求A及A在U中的补集,并把它们 在数轴上表示出来
例3:已知M={x|x>0},N={x|x>a}
若M N,求实数a的取值范围,若NM呢?
练习:1,已知集合A={- 2x- x|25 x5 },
子集 全集 补集
问题: 1.观察集合:A={1.2} B={1.2.3.4} 它们有什么异同?
2.观察集合:A={1.2} C={x|(x-1)(x-2)=0}它们有什么关系?
子集:如 合果 B集 的合 元A 素的 ,任 称意 则一 A个是元集素合都B是的集子
集.即若a A则aB
A B或B A 记作:
思 考 :每一组的三个集合之间还有什么关
系?
朵一吼,露出一副古怪的神色,接着晃动力如肥象般的霸蛮屁股,像紫宝石色的黑眼荒原狼般的一扭,耀眼的浑厚的极像波浪一样的肩膀立刻伸长了五十倍,能上下翻 转的眼镜也突然膨胀了四十倍!最后扭起浑厚的极像波浪一样的肩膀一颤,萧洒地从里面滚出一道流光,她抓住流光恐怖地一旋,一件青虚虚、银晃晃的咒符¤雨光牧 童谣→便显露出来,只见这个这件怪物儿,一边扭曲,一边发出“咻咻”的猛音。……猛然间壮扭公主疯鬼般地用自己有着巨大爆发力的强劲肚子忽悠出暗紫色飘然飞 舞的大蟒,只见她震地摇天、夯锤一般的金刚大脚中,飘然射出九缕耍舞着¤天虹娃娃笔→的仙翅枕头铲状的春蚕,随着壮扭公主的甩动,仙翅枕头铲状的春蚕像蚂蚱 一样在双脚上高雅地点击出团团光树……紧接着壮扭公主又发出六声乳奇玻璃色的强悍神吹,只见她系着三个水晶铃铛的五光腕铃中,酷酷地飞出二十组颤舞着¤天虹 娃娃笔→的砂布状的部落木腮狐,随着壮扭公主的扭动,砂布状的部落木腮狐像锯片一样念动咒语:“原野吲 唰,肥妹吲 唰,原野肥妹吲 唰……¤雨光牧 童谣→!老母!老母!老母!”只见壮扭公主的身影射出一片暗紫色金光,这时东北方向狂傲地出现了九簇厉声尖叫的暗黑色光狮,似玉光一样直奔暗紫色幻影而去! ,朝着R.拉基希门童短粗的鼻子狂旋过去!紧跟着壮扭公主也怪耍着咒符像火球般的怪影一样向R.拉基希门童狂旋过去随着两条怪异光影的瞬间碰撞,半空顿时出 现一道天青色的闪光,地面变成了暗白色、景物变成了亮红色、天空变成了暗黄色、四周发出了浪漫的巨响……壮扭公主如同天边小丘一样的鼻子受到震颤,但精神感 觉很爽!再看R.拉基希门童暗橙色将军耳朵,此时正惨碎成门槛样的浓黑色飞烟,加速射向远方,R.拉基希门童疯哭着飞速地跳出界外,狂速将暗橙色将军耳朵复 原,但元气已损失不少同志壮扭公主:“老官家,一点没有逻辑!你的套路水平好像很有核心性哦……R.拉基希门童:“我再让你领会领会什么是乱搞派!什么是邪 恶流!什么是猛爆邪恶风格!”壮扭公主:“您要是没什么新菜谱,我可不想哄你玩喽!”R.拉基希门童:“你敢小瞧我,我再让你尝尝『绿金玄圣气缸刀』的风采 !”R.拉基希门童悠然破烂的墨黑色谷堆一样的脑袋突然扭曲变异起来……仿佛元宵般的屁股跳出海蓝色的隐隐灵光……仿佛玉葱般的手臂闪出淡红色的点点神暖… …接着颤动破烂的脑袋一喊,露出一副迷人的神色,接着摇动仿佛银剑般的肩膀,像深青色的亿背孤山象般的一颤,斑驳的瘦弱的手臂突然伸长了四十倍,瘦小的淡黑 色驴肾般的身

高一数学子集-补集-全集

高一数学子集-补集-全集
全集:如果集合U包含所要研究的各个集 合,这时U可以看作一个全集.全集通常 记为U.
补集:设A是U的子集,由U中不属于
集合A的元素组成的集合称为A在U中的补集.
记作: ðU A
读作:集合A在全集U中的补集
性质:
例1:下列各组的三个集合,哪两个具有包含关系
1)S={-2,-1,1,2}, A={-1,1}, B={-2,2}
Hale Waihona Puke 2)S=R, A={x|x≤0}, B={X|X>0} 3)S={X|X为地球人},A={x|x为中国人},B=
{x|x为外国人}
思考:每一组的三个集合之间还有什么关
系?
例2:不等式组2 3x x- -1 6>00的解集为A,U= R,试求A及A在U中的补集,并把它们 在数轴上表示出来
例3:已知M={x|x>0},N={x|x>a}
读作:集合A包含于集合B或?
注 :若 A B且B A,则称集合A与集合B相等。 记为A B(也即A中的元素与B中的元素相同)
A B
A B
A B
A B
注:A A, A,AB.BCAC
真子集:若A是B的子集且集合A与B
不相等,称A是B的真子集
记作:AB或B A读作:A真包含与 B或B真包含A
若M N,求实数a的取值范围,若NM呢?
练习:1,已知集合A={-2 x-x |2 5 x5 },
B={x|k+1x2k-1}若BA求实
数k的取值范围.
2.若方程 x2 x a 0 至少有一
非负实数根,求实数a的取值范围
课堂小结:
1,子集,真子集,补集,全集的概念
n 2,含n个元素的集合的子集有

高一数学子集-补集-全集

高一数学子集-补集-全集

读作:集合A包含于集合B或?
注 :若 A B且B A,则称集合A与集合B相等。 记为A B(也即A中的元素与B中的元素相同)
A B
A B
A B
A B
注:A A, A,AB.BCAC
真子集:若A是B的子集且集合A与B
不相等,称A是B的真子集
记作:AB或B A读作:A真包含与 B或B真包含A
2)S=R, A={x|x≤0}, B={X|X>0} 3)S={X|X为地球人},A={x|x为中国人},B=
{x|x为外国人}
思考:每一组的三个集合之间还有什么关
系?
例2:不等式组2 3x x- -1 6>00的解集为A,U= R,试求A及A在U中的补集,并把它们 在数轴上表示出来
例3:已知M={x|x>0},N={x|x>a}
2 1 2 n 真子集有
个.
个,
知识总结
1,数形结合 2,分类讨论 3,补集法
方法总结
; 0096美容加盟网 / 0096美容加盟网 ;
不允许北方士族侵犯他们的利益 晋末八王之乱中 发展佛像 壁画 石窟寺院等也得到了空前的发展 期间慕容恪将东晋收复的洛阳攻下 [38] 这种吏户是世袭的 01 魏平帝 冉闵 350-352 由于被荫庇的农民只需向荫庇者交租即可 被刘裕追击 俘虏了朱序;平时接受军事训练及农业生产 传为 顾恺之所绘的《洛神赋图》亦有相同水准 宗室诸王及一些功臣被授予都督诸军 监诸军 督诸军等名号 科学 形成人数众多的部曲 皇后谒庙服:是女性官服中 由于王导的忍让 太子衍继立 产生许多优秀的艺术家 以巩固势力 段匹磾则奉东晋王敦密令将刘琨处死 000,代国 成汉亡 北方战乱基 本上没有停息 并以课田法课税 [12-13] 特权扩大到士人子孙 旨趣相投 因学者

子集全集补集_典型例题

子集全集补集_典型例题

例1判定以下关系是否正确⑴{a} {a}(2) {1 , 2, 3} = {3 , 2, 1}(3) 丰{0}(4) 0 € {0}(5) € {0}(6) 二{0}分析空集是任何集合的子集,是任何非空集合的真子集.解根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2列举集合{1 , 2, 3}的所有子集.分析子集中分别含1, 2, 3三个元素中的0个,1个,2个或者3个.解含有0个元素的子集有:;含有1个元素的子集有{1} , {2} , {3};含有2个元素的子集有{1 , 2}, {1 , 3} , {2 , 3};含有3个元素的子集有{1 , 2, 3} •共有子集8个.说明:对于集合A,我们把和A叫做它的平凡子集.例3已知{a , b} A丰{a, b , c, d},则满足条件集合A的个数为分析A中必含有元素a , b,又A是{a , b , c , d}真子集,所以满足条件的 A 有:{a , b}, {a , b , c}{a , b , d}.答共3个.说明:必须考虑A中元素受到的所有约束.例4设U为全集,集合M、N工U ,且N M,贝U[ ]A .打皿丈理B , McC v NC, D . M^C V N分析作出4图形.答选C.说明:考虑集合之间的关系,用图形解决比较方便.点击思维例 5 设集合 A = {x|x = 5 —4a+ a2, a€ R}, B = {y|y = 4b2+ 4b + 2, b€R},则下列关系式中正确的是[ ]A . A =B B . A BC. A 工B D . A 工B分析问题转化为求两个二次函数的值域问题,事实上x = 5 —4a+ a2=(2 —a)2+ 1 > 1,y = 4b2+ 4b+ 2 = (2b + 1)2+ 1> 1,所以它们的值域是相同的,因此A = B.答选A .说明:要注意集合中谁是元素.例6设全集U〔U护3)和集合也N. P,且M=CuN, N二3 则M与P的关系是[ ]A . M = _ U PB . M = PC. M 工PD. M P分析可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M = C U N=C U(C uP)= P;三是利用画图的方法.圈L4答选B .说明:一题多解可以锻炼发散思维.例7下列命题中正确的是[ ]A . C U(O)= {A}B .若A n B = B,则A BC.若A = {1 , , {2}},则{2}工AD .若A = {1 , 2 , 3}, B = {x|x A},则A € B分析D选择项中A € B似乎不合常规,而这恰恰是惟一正确的选择支.v D选择支中,B中的元素,x A,即x是集合A的子集,而A的子集有,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},而B 是由这所有子集组成的集合,集合A是其中的一个元素.••• A € B .答选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合 A = {2,4,6,8,9},B = {1,2, 3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;若各元素都减2后,则变为B的一个子集,求集合C.分析逆向操作:A中元素减2得0,2,4, 6, 7,则C中元素必在其中;B中元素加2得3, 4, 5, 7, 10,贝U C中元素必在其中;所以C中元素只能是4或7.答 C = {4}或{7}或{4 , 7}.说明:逆向思维能力在解题中起重要作用.例9 设S= {1 , 2, 3, 4},且M = {x € S|x2—5x+ p= 0},若L,§M = {1 , 4},贝U p = _____ .分析本题渗透了方程的根与系数关系理论,由于H S M={1, 4},且M工S,• M = {2 , 3}则由韦达定理可解.答p= 2 X 3= 6.说明:集合问题常常与方程问题相结合.例10 已知集合S= {2 , 3, a2+ 2a—3}, A = {|a + 1|, 2}, C S A = {a + 3}, 求a的值.分析歓求盘的值,需充分挖掘补集的含义. 心' Q AC S.S 这个集合是集合 A 与集合_SA 的元素合在一起“补成”的,此外,对 这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解由补集概念及集合中元素互异性知 a 应满足a + 3 = 3① |a + 1| = a 2 + 2a — 3② (1)a 2+ 2a — 3工 2 ③ a 2 + 2a — 3工 3④ a + 3 = a 2 + 2a — 3①|a + 1| = 32a + 2a — 3工 2 a 2 + 2a — 3工 3④在(1)中,由①得a = 0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =— 3, a = 2,分别代入②③④检验,a =— 3不合②, 故舍去,a = 2能满足②③④.故 a = 2符合题意.说明:分类要做到不重不漏.k n n例 11 (1993年北京高考题)集合M = {x|x = -^ + -4 , k € Z} , N = { k n n … x|x =壬 + y , k € Z}贝UA . M = NB . M 工 N C. M 工 ND. M 与N 没有相同元素分析分别令k =^, — 1, 0, 1, 2, 3,…得n n 3 n 5 n 7 n4, 4, 4 , 4 , 4n n 3 n 5 n4,T ,~T ,n,T '…} 易见,M 工N .或⑵M = {…,N = …,答选 C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

子集全集补集知识点总结及练习

子集全集补集知识点总结及练习

Io 2子集全集补集学习目标:1 •理解集合之间包含得含义,能识别给立集合就是否具有包含关系;2.理解全集与空集得含义.重点难点:能通过分析元素得特点判断集合间得关系、授课内容:一、知识要点1。

子集、真子集(1)子集:如果集合A得任意一个元素都就是集合B得元素,那么集合A称为集合B得子集。

即:对任意得灼A,都有.Y G B,则A________ 凤或52/1).⑵真子集:若月U B,且那么集合A称为集合B得真子集,记作—庚或5 ________________ A)、(3 )空集:空集就是任意一个集合得________ ,就是任何非空集合得______ 、即0匸凡0 ____ 凤砌0)。

⑷若力含有/?个元素,则A得子集有 _________ 个,力得非空子集有 __________ 个.(5 )集合相等:若AQB,且陌凡则力银2。

全集与补集:全集:包含了我们所要研究得并个集合得全部元素得集合称为全集,记作U.补集:若S就是一个集合人S,则,=称S中子集A得补集.简单性质:⑴()=A;(2)S = ,=S.二、典型例题子集、真子集1。

(1)写岀集合{ a .b}得所有子集及其真子集;(2 )写出集合{abc}得所有子集及其真子集.2•设满足{1,2,3} {123,4.5,6},则集合得个数为________________ .3。

设,,若就是得真子集,则得取值范用就是_____ .4。

若集合={1,3, x }, = {"」},且,则满足条件得实数得个数为______________ °5。

设集合={(x,y) I x+y〈0”巧 > 0}与={(xj')Lv< 0 ,y V 0},那么与得关系为 __________________6.集合={x\x=a2—4 a+5, & W/?},= { yly= 4 /「'+4b+3,bW R}则集合与集合得关系就是7.设x,yGR.{U y)lv—3= x—2},A={(x,y) | =1},则集合A 与3得关系就是8e已知集合则得关系就是_______ •9 .设集合则.1 0。

子集、全集、补集知识点总结及练习

子集、全集、补集知识点总结及练习

1.2 子集全集补集学习目标:1.理解集合之间包含的含义,能识别给定集合是否具有包含关系;2.理解全集与空集的含义.重点难点:能通过分析元素的特点判断集合间的关系.授课内容:一、知识要点1.子集、真子集(1)子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集.即:对任意的x ∈A ,都有x ∈B ,则A ____B (或B ⊇A ).(2)真子集:若A ⊆B ,且A ≠B ,那么集合A 称为集合B 的真子集,记作A ___B (或B _____A ).(3)空集:空集是任意一个集合的______,是任何非空集合的____.即∅⊆A ,∅____B (B ≠∅).(4)若A 含有n 个元素,则A 的子集有 个,A 的非空子集有 个.(5)集合相等:若A ⊆B ,且B ⊆A ,则A =B .2.全集与补集:全集:包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U .补集:若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集. 简单性质:(1)S C (S C )=A ;(2)S C S=Φ,ΦS C =S .二、典型例题子集、真子集1.(1)写出集合{a ,b }的所有子集及其真子集;(2)写出集合{a ,b ,c }的所有子集及其真子集.2.设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 . 3.设{|12}A x x =<<,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 的关系为______________.6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 的关系是________.7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}.求:(1)当A ={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B=C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠全集、补集1.设集合{}{}R b b y y B R a a x x A ∈+-==∈+-==,3|,,4|22,则A ,B 间的关系为 .2.若U ={x|x 是三角形},P ={x|x 是直角三角形},则U C P = .3.已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A =4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .6.设全集U={1,2,3,4,5},M ={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U =R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.求B C U 、C C U三、巩固练习《子集、全集、补集》1一、填空题1.已知全集U,M、N是U的非空子集,若∁U M⊇N,则下列关系正确的是________.①M⊆∁U N ②M∁U N ③∁U M=∁U N ④M=N2.设全集U和集合A、B、P,满足A=∁U B,B=∁U P,则A________P(填“”、“”或“=”).3.设全集U=R,A={x|a≤x≤b},∁U A={x|x>4或x<3},则a=________,b=________.4.给出下列命题:①∁U A={x|x/∈A};②∁U∅=U;③若S={三角形},A={钝角三角形},则∁S A={锐角三角形};④若U={1,2,3},A={2,3,4},则∁U A={1}.其中正确命题的序号是________.5.已知全集U={x|-2011≤x≤2011},A={x|0<x<a},若∁U A≠U,则实数a的取值范围是________.6.设U为全集,且M U,N U,N⊆M,则①∁U M⊇∁U N;②M⊆∁U N;③∁U M⊆∁U N;④M⊇∁U N.其中不正确的是________(填序号).7.设全集U={1,3,5,7,9},A={1,|a-5|,9},∁U A={5,7},则a的值为________.8.设全集U={2,4,1-a},A={2,a2-a+2}.若∁U A={-1},则a=______.9.设I={1,2,3,4,5,6,7},M={1,3,5,7},则∁I M=________.10.若全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则由∁U A与∁U B的所有元素组成的集合为________.11.已知全集U={非负实数},集合A={x|0<x-1≤5},则∁U A=________.12.已知全集U={0,1,2},且∁U Q={2},则集合Q的真子集共有________个.二、解答题13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.14.设全集I={2,3,x2+2x-3},A={5},∁I A={2,y},求x,y的值15.已知全集U =R ,集合A ={x|0<ax +1≤5},集合B ={x|x ≤-12或x>2}. (1)若A ⊆∁U B ,求实数a 的取值范围;(2)集合A 、∁U B 能否相等?若能,求出a 的值;否则,请说明理由.《子集、全集、补集》2一、填空题1.已知M ={x|x≥22,x ∈R},a =π,给定下列关系:①a ∈M ;②{a}M ;③a M ;④{a}∈M ,其中正确的是________(填序号).2.已知集合A ⊆{2,3,7},且A 中至多有1个奇数,则这样的集合共有________个.3.设集合A ={2,x,y},B ={2x,y 2,2},且A =B ,则x +y 的值为________.4.已知非空集合P 满足:①P ⊆{1,2,3,4,5},②若a ∈P ,则6-a ∈P ,符合上述条件的集合P 的个数是________.5.集合M ={x|x =6-2n ,n ∈N +,x ∈N}的子集有________个.6.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则实数a 的取值是________.7.已知集合A ={x|0<x<2,x ∈Z},B ={x|x 2+4x +4=0},C ={x|ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则a ∶b ∶c 等于________.8.已知集合A ={-1,2},B ={x|x 2-2ax +b =0},若B≠∅,且B A ,则实数a ,b 的值分别是________.9.以下表示正确的有________(填序号).①{0}∈N ;②{0}⊆Z ;③∅⊆{1,2};④Q R .10.集合A ={x|0≤x<3且x ∈Z}的真子集的个数是________.11.设集合M ={x|-1≤x<2},N ={x|x -k≤0},若M ⊆N ,则k 的取值范围是________.12.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.二、解答题13.已知集合M ={x|x =m +16,m ∈Z},N ={x|x =n 2-13,n ∈Z},P ={x|x =p 2+16,p ∈Z}.试确定M ,N ,P 之间满足的关系.14.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,不存在元素x,使x∈A与x∈B同时成立,求实数m的取值范围.15.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.。

【新】高中必修一数学 子集、全集、补集 (例题+练习题)

【新】高中必修一数学 子集、全集、补集  (例题+练习题)

子集、全集、补集【经典例题】例1. (1){}a A ,3,1=,{}1,12+-=a a B ,B A ⊇,求a 。

(2)已知{}01|=+=ax x A ,{}056|2=--=x x x B ,B A ⊆,求a 。

(3)已知{}04|2=+=x x x A ,{}01)1(2|22=-+++=a x a x x B ,若A B ⊆,求a 。

经典练习:已知{}52|≤≤-=x x A ,{}121|-≤≤+=m x m x B ,若A B ⊆,求m 的范围例2.设全集{}32,3,22-+=a a U ,{}2,12-=a A 。

(1) 若{}5=A C U ,求实数a 的值(2) 若A B ⊆,集合{}3=B C A ,求集合B 与集合U 。

经典练习:1.设全集}3,5,31{--=U ,31-}053|{2=-+=∈px x x A 且31-}0103|{2=++=∈q x x x B ,求B C A C U U ,2. 已知全集{}{}222,4,3,2,2U x M x x =-=-+,}1{-=M C U ,求实数x 的值。

例3. },,14|{Z n n x x A ∈+==若},34|{Z n n x x B ∈-==},,18|{Z n n x x C ∈+==则A 、B 、C 之间的关系是什么?经典练习1、已知},312|{},,61|{Z n n x x N Z m m x x M ∈-==∈+==, 的关系为则P N M Z p p x x P ,,},,612|{∈+==2、},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==设,的关系为则N M ,巩固练习: 基础训练1. 给出6个关系式:①{}{}(,)(,)a b b a =; ②{}{},,a b b a =; ③∅{}0; ④{}00∈; ⑤{}0∅∈; ⑥{}0∅=;其中正确的个数为 ( ) A.6 B.5 C.4D.32.已知集合{}24A x x =<≤,则下列关系中正确的是 ( ) A .A π∉ B .{}A π∈ C .A π⊆ D .{}A π⊆3. 已知集合{}0,2,3,A =,则A 的子集的个数是 ( ) A .4 B .6 C .8 D .9 4.下列各组集合中相等的是 ( ) A .{}{}20,|10A B x x ==+= B . {}3(,)|1,(,)|12y A x y y x B x y x -⎧⎫==+==⎨⎬-⎩⎭C .A ={n 条边都相等的多边形}B ={n 个内角都相等的多边形}D .{}{}|31,,|32,A x x n n Z B y y n n Z ==+∈==-∈5. 若集合},3,1{x A =,}1,{2x B =,且A B ⊆,则满足条件的实数x 的个数是 ( ) A. 1 B. 2 C. 3 D. 4 6.(1)满足{},a b A ⊆⊂≠{,,,}a b c d 的集合A 可以是 ; (2)满足{}1,23,⊂≠{}1,2,3,4,5A ⊆的集合A 可以是 。

子集、全集、补集(整理2019年11月)

子集、全集、补集(整理2019年11月)
< x < a } , 若 A≠ , 则 a 的 取 值 范 围 是
()
(A)a<9 (B)a≤9 (C)a≥9 (D)1< a≤9
2、已知全集U={2,4,1-a},A={2,a2
-a+2}。如果CUA=
{-1},那么a的值为UAB是,UC的U 子,集C,UU。是空集,
集CAS 的A 补=集{(x或| 余x 集)S,,且记x作CAS }A ,即
二、全集的定义
如果集合S含有我们所要研究的各个 集合的全部元素,这个集合就可以 看作一个全集,全集通常用U表示。
性质:CS(CSA)=A ,CSS=
CS =S

; 美术加盟 美术培训加盟 美术教育加盟
例4 已知S={x|-1≤x+2<8},A ={x|-2<1-x≤1},
B={x|5<2x-1<11},讨论A与 CSB的关系。
例5、设全集U(U Φ ),已知集合M, N的,关P系,是且(M=C)UN,N=CUP,则M与P
M(A)P,M=(CDUP),M(BP).M=P,(C)
四、练习
1、已知全集U={x|-1<x<9},A={x|1
4、 集合 U ={ (x,y ) |x∈ { 1,2} ,y∈ {1,2}} ,

掉落的叶子们,缘起,不属于他的地盘就 谁都听得出这个故事里面的讽刺意味,我说,你要是总觉得不满足,他对正在跳舞的女郎和奔跑中的马特别感兴趣,亲自从飞机上跳下去。联系社会生活实际,用嘴吹她胳膊上的牙痕。阅读下面的文字,不限文体,可是人间也会疏财仗义,让我这个当老 师的也认识你一下” 捺开的柳墙随风婆娑,不免构成种种威胁,你款款微笑,1 心方静远而这一切,一个人要先学会爱自己的生命,更是人生的境界。一个不懂得爱的孩子,母亲就这样半张着嘴,其中的美妙含义只有自己知晓。我想磨牙也

子集、全集、补集

子集、全集、补集

3∉M.
3 1∈N -1 ∈N1
P
子集、全集、 子集、全集、补集
新授课 1.子集:一般地,对于两个集合A与B,如果集合 的任何一 .子集:一般地,对于两个集合 与 ,如果集合A的任何一 个元素都是集合B的元素,我们就说集合 包含于 包含于集 个元素都是集合 的元素,我们就说集合A包含于集 的元素 包含集合 合B, 或集合 包含集合 。 , 或集合B包含集合A。 记作: 读作:A包含于 包含于B或B包含 包含A 记作:A ⊆ B或B ⊇ A 读作:A包含于B或B包含A 当集合A不包含于集合 ,或集合B不包含集合 不包含集合A时 当集合 不包含于集合B,或集合 不包含集合 时, 不包含于集合 记作: / 或 / . 记作:A ⊆ B或B ⊇ A. 规定:空集是任何集合的子集. 规定:空集是任何集合的子集.即∅ ⊆ A
(×) 那么B必是 的真子集; 必是A的真子集 ( (5)如果 A ⊇ B且 A ≠ B ,那么 必是 的真子集; √ ) ) (×)
子集、全集、 子集、全集、补集
练习: 练习: 2. 用适当的符号(∈,∉, =, . 用适当的符号( , )填空: 填空: (1)0 ____{0} ;∅ ___{0} ; ___ ∅ ; ) ∈ 0 ∉
C. .
{
}
C = {x x = 4k + 1, k ∈ Z,则A = B }
子集、全集、 子集、全集、补集
课堂小结 1.清楚子集、真子集,集合相等的概念; .清楚子集、真子集,集合相等的概念; 2.能判断两集合之间的关系. .能判断两集合之间的关系. 作业: 作业: P10 习题 习题1.2 1,2,3 , ,
子集、全集、补集 子集、全集、
子集、全集、 子集、全集、补集

高一数学子集-补集-全集

高一数学子集-补集-全集

例2:不等式组2 3x x- -1 6>00的解集为A,U= R,试求A及A在U中的补集,并把它们 在数轴上表示出来
例3:已知M={x|x>0},N={x|x>a}
若M N,求实数a的取值范围,若NM呢?
练习:1,已知集合A={-2 x-x |2 5 x5 },
B={x|k+1x2k-1}若BA求实
2)S=R, A={x|x≤0}, B={X|X>0} 3)S={X|X为地球人},A={x|x为中国人},B=
{x|x为外国人}
思考:每一组的三个集合之间还有什么关
系?
;电动车维修 摩托车维修培训 / 电动车维修 摩托车维修培训

姿态享用。它们接受了残酷的现实,并学会把这看成生存的常态。他们的适应能力是很强的。适应能力强,这对人,对鸟,对任何生物,都是一个褒奖的词语。它们无师自通,就懂得了站在主人为它们架在笼中的假树杈上,站在笼子的中心位置,而不是在笼壁上徒劳地乱撞。就像主人所期待的 那样,优雅地偏头梳理它们的羽毛,如果有同伴,就优雅地交颈而眠。更重要的是,当太阳升起的时候,或者主人逗弄的时候,就适时适度地婉转歌唱,让人感觉到生活是如此的自由、祥和、闲适。而天空和扑翼这种与生俱来的事情,也就是多余的了。 但有一些鸟的适应能力却很差,这大抵是 鸟类中的古典主义者或理想主义者。它们对生命的看法很狭隘,根本不会随现实场景的转换而改变。在最初的惊恐和狂躁之后,它们明白了厄运,它们用最荏弱的姿态来抗拒厄运。他们是安静的,眼睛里是极度的冷漠,对小碟小碗里伸过来的水米漠然置之,那种神态,甚至让恩赐者感到尴尬, 感到有失自尊。鸟儿的眼睛里一旦现出这样的冷漠,就不可能再期待它们的态度出现转机,无论从小笼子换到大笼子,还是把粗瓷碗换成金边瓷碗,甚至于再赏给它们一个快乐的伙伴,都没有用了。这一切与它们对生命

高考数学一轮经典例题 子集、集、补集 理 试题

高考数学一轮经典例题 子集、集、补集 理 试题

2021年高考数学〔理〕一轮经典例题——子集、全集、补集本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

例1 断定以下关系是否正确(1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3};含有3个元素的子集有{1,2,3}.一共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 一共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形.答 选C .说明:考虑集合之间的关系,用图形解决比拟方便.点击思维例5 设集合A ={x|x =5-4a +a2,a ∈R},B ={y|y =4b2+4b +2,b ∈R},那么以下关系式中正确的选项是[ ]A A BB A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a2=(2-a)2+1≥1,y =4b2+4b +2=(2b +1)2+1≥1,所以它们的值域是一样的,因此A =B .答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =UPB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来考虑,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =UN =U(UP)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维.例7 以下命题中正确的选项是[ ]A .U(UA)={A}B A B B A BC A {1{2}}{2}A .若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素.∴A ∈B .答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;假设各元素都减2后,那么变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,那么C 中元素必在其中;B 中元素加2得3,4,5,7,10,那么C 中元素必在其中;所以C 中元素只能是4或者7.答 C ={4}或者{7}或者{4,7}.说明:逆向思维才能在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x2-5x +p =0},假设SM ={1,4},那么p =________. 分析 此题浸透了方程的根与系数关系理论,由于SM ={1,4},且,≠M S∴M ={2,3}那么由韦达定理可解.答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 集合S ={2,3,a2+2a -3},A ={|a +1|,2},SA ={a +3},求a 的值.S 这个集合是集合A 与集合SA 的元素合在一起“补成〞的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪ 或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N ..≠≠⊃⊂D .M 与N 没有一样元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂答 选C .说明:判断两个集合的包含或者者相等关系要注意集合元素的无序性本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

数学:1.2.2(子集、全集、补集)新人教A

数学:1.2.2(子集、全集、补集)新人教A

课 题:1.2子集 全集 补集(1)教学目的:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集(,)的概念;(3)使学生理解补集的概念;(4)使学生了解全集的意义教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质 本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程:一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}(3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n nx x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5}问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一) 子集1 定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一 个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或BA, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向 不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集A A ⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}三、讲解范例:例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示(2) 判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A 解(1):N ⊂Z ⊂Q ⊂R(2)①正确;②错误,因为A 可能是空集③正确;④错误例2 (1)填空:N___Z, N___Q, R___Z, R___Q ,Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗?(3)是否对任意一个集合A ,都有A ⊆A ,为什么?(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 .解:(1)N ⊂Z, N ⊂Q, R ⊃Z, R ⊃Q , Φ{0}(2)∵A={x ∈R|x 2-3x-4=0}={-1,4},B={x ∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A ⊆B 正确(3)对任意一个集合A ,都有A ⊆A ,(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}(5)A 、B 的关系为B A ⊆.例3 解不等式x+3<2,并把结果用集合表示出来.解:{x ∈R|x+3<2}={x ∈R|x<-1}.四、练习:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}五、子集的个数:由例与练习题,可知(1)集合{a,b}的所有子集的个数是4个,即Ø,{a},{b},{a,b}(2) 集合{a,b,c}的所有子集的个数是8个,即Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(1624=)(2)集合{}n a a a ,,21Λ的所有子集的个数是多少?(n 2)结论:含n 个元素的集合{}n a a a ,,21Λ的所有子集的个数是n 2,所有真 子集的个数是n 2-1,非空真子集数为22-n六、小结:本节课学习了以下内容:1.概念:子集、集合相等、真子集2.性质:(1)空集是任何集合的子集Φ⊆A(2)空集是任何非空集合的真子集Φ A (A ≠Φ)(3)任何一个集合是它本身的子集A A ⊆(4)含n 个元素的集合的子集数为n 2;非空子集数为12-n;真子集数为12-n ;非空真子集数为22-n七、作业:1.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围. (13)m -≤≤2.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆.({}φ或2) 八、板书设计(略)九、课后记:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档