广东省2019届高三适应性考试数学(理)试卷【含答案及解析】

合集下载

2020年高考数学一轮复习考点48圆的方程必刷题理(含解析)

2020年高考数学一轮复习考点48圆的方程必刷题理(含解析)

考点48 圆的方程1.(广东省2019届高考适应性考试理)若向量a ,b ,c 满足a b ≠,0c ≠,且()()0c a c b -⋅-=,则a b a bc++-的最小值是()AB .C .2D .32【答案】C 【解析】设向量a OA =,b OB =,c OC =,则由()()0c a c b -⋅-=得0AC BC ⋅=,即C 的轨迹为以AB 为直径的圆,圆心为AB 中点M ,半径为1||2AB , 因此11||||||(||)||22c OC OM r OA OB AB =≤+=++ 1111(||)(||)(||)(||)2222OA OB OA OB a b a b =++-=++- 从而2a b a bc++-≥,选C.2.(河南省重点高中2019届高三4月联合质量检测数学理)设是圆 上的点,直线与双曲线:的一条斜率为负的渐近线平行,若点到直线距离的最大值为8,则()A .9B .C .9或D .9或【答案】C 【解析】 因为双曲线的一条斜率为负的渐近线的斜率为,所以,解得. 圆的圆心坐标是,半径为,因为圆心到直线距离为, 所以点到直线距离的最大值为,解得或.当时,;当时,.综上,或.故选.3.(广西桂林市、崇左市2019届高三下学期二模联考数学理)过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为()A.5 B.4 C.3 D.2【答案】A【解析】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,,连接,,,,可得.当且仅当为右顶点时,取得等号,即最小值5.故选:.4.(福建省龙岩市2019届高三5月月考数学理)已知点A 在圆22(2)1x y -+=上,点B 在抛物线28y x =上,则||AB 的最小值为( ) A .1 B .2 C .3 D .4【答案】A 【解析】由题得圆()2221x y -+=的圆心为(2,0),半径为1. 设抛物线的焦点为F(2,0),刚好是圆()2221x y -+=的圆心, 由题得|AB|≥|BF|-|AF|=|BF|-1, 设点B 的坐标为(x,y),所以|AB|≥x -(-2)-1=x+1,因为x≥0, 所以|AB|≥1,所以|AB|的最小值为1. 故选:A5.(新疆2019届高三第三次诊断性测试数学理)若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆221x y +=的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都有可能【答案】B 【解析】解:因为直线1ax by +=与圆221x y +=有两个公共点,1<,。

广东省惠州市2019-2020学年高三适应性考试数学(理)试题Word版含答案

广东省惠州市2019-2020学年高三适应性考试数学(理)试题Word版含答案

★启用前广东省惠州市2019-2020学年高三适应性考试数学(理)试题本试题卷共6页,22题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小时选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请主动配合监考员回收答题卡并监督监考员收齐密封答题卡袋,本试卷考生自己保留,注意在两天考试期间不得公开试卷与讨论。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)2.已知等差数列{}n a 的前n 项和为n s ,若35724a a a ++=,则9s = A .36 B .72 C .144 D .2883.设变量,x y 满足不等式组3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则22x y +的最小值是AB .92 C4.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳5.在△ABC 中,3,3AB AC AB AC AB AC +=-==u u u ur u u u r u u u r u u u r u u u r u u u r ,则CB CA ⋅u u u r u u u r 的值为A .3B .3-C .92-D .926.已知函数()ln ln(2)f x x x =+-,则 A .y =()f x 的图像关于点(1,0)对称 B .()f x 在(0,2)单调递减 C .y =()f x 的图像关于直线x =1对称D .()f x 在(0,2)单调递增7.执行程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤8.已知某几何体的三视图及相关数据如图所示,则该几何体的体积为A. 2πB. 83π C. 43πD.43π+9.直线:4520l x y -=经过双曲线()2222:10,0x y C a b a b-=>>的一个焦点和虚轴的一个端点,则C 的离心率为 A. 53B.35C.54D.4510.将函数cos 23y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位后,得到()f x 的图象,则 A .()sin 2f x x =- B .()f x 的图象关于3x π=-对称C .7132f π⎛⎫= ⎪⎝⎭ D .()f x 的图象关于,012π⎛⎫⎪⎝⎭对称11.过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为 A.5 B.22 C.23 D.3312.设函数()22,0,11,22,0.ax x x f x x ax x x ⎧+≥⎪⎡⎤=∈-⎨⎢⎥-+<⎣⎦⎪⎩当时恒有()()f x a f x +<,则实数a 的取值范围是 A.1515,22⎛⎫-+ ⎪ ⎪ B.151,2⎛⎫+- ⎪ ⎪⎝C.151,22⎛⎫--⎪ ⎪⎭D.15,02⎛⎫-⎪ ⎪⎭二、填空题:本题共4小题,每小题5分,共20分。

2019届广州市高三调研测试理科数学试题(含答案)(K12教育文档)

2019届广州市高三调研测试理科数学试题(含答案)(K12教育文档)

2019届广州市高三调研测试理科数学试题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届广州市高三调研测试理科数学试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届广州市高三调研测试理科数学试题(含答案)(word版可编辑修改)的全部内容。

秘密 ★ 启用前 试卷类型: A2019届广州市高三年级调研测试理科数学2018.12 本试卷共5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔在答题卡的相应位置填涂考生号.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|02M x x =≤<,{}2|230N x x x =--<,则集合M N = A .{}|02x x ≤< B .{}|03x x ≤< C .{}|12x x -<< D .{}|01x x ≤<2.若复数i1ia z +=-(i 是虚数单位)为纯虚数,则实数a 的值为A .2-B .1-C .1D .2 3.已知{}n a 为等差数列,其前n 项和为n S ,若336,12a S ==,则公差d 等于A .1B .53C .2D .34.若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --= 5.已知实数ln 22a =,22ln 2b =+,()2ln 2c =,则,,a b c 的大小关系是A .c b a <<B .c a b <<C .b a c <<D .a c b << 6.下列命题中,真命题的是 A .00,0x x R e ∃∈≤B .2,2x x R x ∀∈>C .0a b +=的充要条件是1ab=- D .若,x y R ∈,且2x y +>,则,x y 中至少有一个大于17.由()y f x =的图象向左平移3π个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到1sin 36y x π⎛⎫=-⎪⎝⎭的图象,则()f x =A .31sin 26x π⎛⎫+ ⎪⎝⎭B .1sin 66x π⎛⎫- ⎪⎝⎭C .31sin 23x π⎛⎫+ ⎪⎝⎭D .1sin 63x π⎛⎫+⎪⎝⎭ 8. 已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋中, 再从乙袋中随机取出1个球, 则从乙袋中取出的球是红球的概率为A .13B .12C .59D .299.已知抛物线()220y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为A 21B 31C 51D 22+10. 已知等比数列{}n a 的前n 项和为n S ,若37S =,663S =,则数列{}n na 的前n 项和为 A .3(1)2n n -++⨯ B .3(1)2n n ++⨯ C .1(1)2n n ++⨯ D .1(1)2n n +-⨯ 11.如图为一个多面体的三视图,则该多面体的体积为 A .6 B .7 C .223 D .23312.已知过点(,0)A a 作曲线:x C y x e =⋅的切线有且仅有两条,则实数a 的取值范围是 A .()(),40+-∞-∞,B .()0+∞,C .()(),1+-∞-∞1,D .(),1-∞-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 的夹角为45︒,且1,2a b ==,则a b -=____________.14.已知(42340123422x a a x a x a x a x +=++++,则()()2202413a a a a a ++-+= .15.已知实数x , y 满足20,350,0,0,x y x y x y -≤⎧⎪-+≥⎪⎨>⎪>⎪⎩则1142x yz ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的最小值为____________.16.已知在四面体A BCD -中,1AD DB AC CB ====,则该四面体的体积的最大值为___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分.17.(本小题满分12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且 B A A C B sin sin sin cos cos 222+=-。

广东省广州市2019届高三第二次模拟考试数学(理)试卷及解析

广东省广州市2019届高三第二次模拟考试数学(理)试卷及解析

……装…………_____姓名:_________……装…………广东省广州市2019届高三第二次模拟考试数学(理)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知复数z =m(3+i)−(2+i)在复平面内对应的点在第三象限,则实数m 的取值范围是( )A. (−∞,1)B. (−∞,23)C. (23,1) D. (−∞,23)∪(1,+∞)2.已如集合A ={x|1−8x−2<0},则∁R A =( )A. {x|x <2或x ⩾6}B. {x|x ⩽2或x ⩾6}C. {x|x<2或x ⩾10}D. {x|x⩽2或x ≥10}3.某公司生产A ,B ,C 三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆,则n =( ) A. 96B. 72C. 48D. 364.执行如图所示的程序框图,则输出z 的值是( )A. 21B. 22C. 23D. 245.已知点A 与点B(1,2)关于直线x +y +3=0对称,则点A 的坐标为( )A. (3,4)B. (4,5)C. (−4,−3)D. (−5,−4)6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为ξ,则数学期望Eξ=( )A. 45 B. 1C. 75D. 27.已知sinα+cosα=15,其中α∈(π2,π),则tan2α=( )A. −247B. −43C. 724D. 2478.过双曲线x 2a 2−y 22=1 (a >0,b >0)的左焦点F 作圆x 2+y 2=a 29的切线,切点为E ,延长FE 交双答案第2页,总21页…………订……※订※※线※※内※※答※…………订……曲线右支于点P ,若FP ⃑⃑⃑⃑⃑⃑ =2FE ⃑⃑⃑⃑⃑⃑ ,则双曲线的离心率为( ) A. √173 B. √176C. √105D. √1029.若曲线y =x 3−2x 2+2在点A 处的切线方程为y =4x −6,且点A 在直线mx +ny −1=0(其中m >0,n >0)上,则1m +2n的最小值为( )A. 4√2B. 3+2√2C. 6+4√2D. 8√210.函数f(x)=2sin(ωx +φ) (ω>0,|φ|<π)的部分图像如图所示,先把函数y =f(x)图像上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的图像向右平移π4个单位长度,得到函数y =g(x)的图像,则函数y =g(x)的图像的一条对称轴为( )A. x =3π4B. x =π4C. x =−π4D. x =−3π411.已知点P 在直线x +2y −1=0上,点Q 在直线x +2y +3=0上,PQ 的中点为M (x 0,y 0),且1⩽y 0−x 0⩽7,则y0x 0的取值范围为( )A. [2,125]B. [−25,0]C. [−516,14]D. [−2,25]12.若点A(t,0)与曲线y =e x 上点P 的距离的最小值为2√3,则实数t 的值为( )A. 4−ln23B. 4−ln22C. 3+ln33D. 3+ln32第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.若e 1⃑⃑⃑⃑ ,e 2⃑⃑⃑⃑ 是夹角为60°的两个单位向量,向量a ⃑⃑ =2e 1⃑⃑⃑⃑ +e 2⃑⃑⃑⃑ ,则|a|=________.14..若5(1)ax 的展开式中3x 的系数是80,则实数a 的值是15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平……外…………○………学校:________……内…………○………方得积.”如果把以上这段文字写成公式就是S =√14[a 2c 2−(a 2+c 2−b 22)2],共中a ,b ,c 是△ABC的内角A ,B ,C 的对边为.若sinC =2sinAcosB ,且b 2,1,c 2成等差数列,则△ABC 面积S 的最大值为________.16.有一个底面半径为R ,轴截面为正三角形的圆锥纸盒,在该纸盒内放一个棱长均为a 的四面体,并且四面体在纸盒内可以任意转动,则a 的最大值为________.三、解答题(题型注释)17.已知{a n }是递增的等比数列,a 2+a 3=4,a 1a 4=3.(1)求数列{a n }的通项公式; (2)令b n=na n ,求数列{b n }的前n 项和S n .18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图: (i )求x̅; (i )计算样本相关系数(精确到0.01),并刻画它们的相关程度.答案第4页,总21页…○…………订…※装※※订※※线※※内※※答…○…………订…(2)若y 关于x 的线性回归方程为y ̂=1.56+b ̂x ,求b ̂的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量. 附:参考数据:y ̅=27,∑x i 10i=1y i=13527.8,∑x i210i=1=23638,∑y i 210i=1=7759.6,√43≈6.56,√2935≈54.18,参考公式:相关系数r=∑(x −x̅)ni=1(y −y̅)√∑(x i −x̅)2i=1√∑(y i −y ̅)2i=1 ∑x ni=1y −nx̅y̅√∑x i i=1−n(x̅)2√∑y ii=1−n(y ̅)2回归方程y ̂=a ̂+b ̂x 中斜率和截距的最小二乘估计公式分别为b ̂=∑(x i −x ̅)ni=1(y i −y ̅)∑(x i −x̅)2n i=1,a ̂=y ̅−b ̂x ̅. 19.如图,在四棱锥P−ABCD 中,底面ABCD 为菱形,∠BAD =60°,∠APD =90°,且AD =PB .(1)求证:平面PAD ⊥平面ABCD ;(2)若AD⊥PB ,求二面角D −PB −C 的余弦值.20.在平面直角坐标系中,动点M 分别与两个定点A(−2,0),B(2,0)的连线的斜率之积为−12. (1)求动点M 的轨迹C 的方程;(2)设过点(−1,0)的直线与轨迹C 交于P ,Q 两点,判断直线x =−52与以线段PQ 为直径的圆的位置关系,并说明理由. 21.己知函数f(x)=lnx −k x (k ∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)有两个零点x 1,x 2,求k 的取值范围,并证明x 1+x 2>2√−2k .22.在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为{x =2+tcosα,y =√3+tsinα(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ2=2ρcosθ+8.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l与曲线C交于A,B两点,且|AB|=4√2,求直线l的倾斜角.23.[选修4-5:不等式选讲]己知函数f(x)=|2x−1|−a.(1)当a=1时,解不等式f(x)>x+1;(2)若存在实数x,使得f(x)<12f(x+1)成立,求实数a的取值范围.答案第6页,总21页参数答案1.B【解析】1.根据复数的几何意义建立不等式关系即可.z =m(3+i)−(2+i)=(3m −2)+(m −1)i ,若复数在复平面内对应的点在第三象限, 则{3m −2<0m −1<0,解得m<23,所以m 的取值范围是(−∞,23),故选B. 2.D【解析】2.先解分式不等式求集合A ,再由补集的定义直接求解即可. 解:由1−8x−2<0,即x−10x−2<0,即(x ﹣10)(x ﹣2)<0解得2<x <10,即A={x|2<x <10},则∁R A ={x|x ≤2或x ≥10}故选:D . 3.B【解析】3.根据分层比例列式求解. 由题意得29n −39n =−8∴n =72.选B.4.A【解析】4. 运行第一次,x=1,y =2,z =3;运行第二次,x =2,y =3,z =5;运行第三次x =3,y =5,z =8;类推,直到不再符合z <20为止,输出z 即可。

2019届广东省广州市高三年级第一学期调研考试(一模)数学(理)科试题(解析版)

2019届广东省广州市高三年级第一学期调研考试(一模)数学(理)科试题(解析版)

2019届广东省广州市高三年级第一学期调研考试(一模)数学(理)科试题一、单选题1.设集合M=则集合=()A.B.C.D.【答案】A【解析】利用一元二次不等式的解法化简集合,再由交集的定义即可得结果.【详解】因为集合,,,故选A.【点睛】本题考查一元二次不等式的解法和集合的交集问题,属于简单题.研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.若复数是虚数单位)为纯虚数,则实数的值为()A.-2 B.-1 C.1 D.2【答案】C【解析】利用复数代数形式的除法运箅化简复数,再根据实部为0且虚部不为0求解即可.【详解】为纯虚数,,即,故选C.【点睛】本题考查复数代数形式的除法运箅,考查复数的基本概念,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知为等差数列,其前项和为,若,,则公差等于().A.B.C.D.【答案】C【解析】试题分析:因为,所以,选C.【考点】等差数列性质4.若点为圆的弦的中点,则弦所在直线的方程为() A.B.C.D.【答案】D【解析】圆心C(3,0),k PC=,∵点P是弦MN的中点,∴PC⊥MN,∴k MN k PC=-1,∴k MN=2,∴弦MN所在直线方程为y-1=2(x-1),即2x-y-1=0.【考点】圆的弦所在的直线方程.5.已知实数,则的大小关系是A.B.C.D.【答案】B【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【详解】由对数函数的性质,所以所以由指数函数的单调性可得,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(本题三个数分别在三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6.下列命题中,真命题的是()A.B.C.的充要条件是D.若,且,则中至少有一个大于1【答案】D【解析】根据指数函数的值域判断;根据特殊值判断;根据逆否命题与原命题的等价性判断.【详解】根据指数函数的性质可得,故错误;时,不成立,故错误;当时,不成立,故错误;因为“,则中至少有一个大于1”的逆否命题“都小于等于1,则”正确,所以“,则中至少有一个大于1”正确,故选D.【点睛】本题主要考查指数函数的值域、特称命题与全称命题的定义,以及原命题与逆否命题的等价性,意在考查综合应用所学知识解答问题的能力,属于中档题.7.由的图象向左平移个单位,再把图象上所有点横坐标伸长到原来的2倍得到的图象,则( )A .B .C .D .【答案】B【解析】将的图象上各个点的横坐标变为原来的,再把所得图象向右平移个单位,即可得到的图象,根据三角函数的图象变换规律可得的解析式.【详解】将的图象上各个点的横坐标变为原来的,可得函数的图象,再把函数的图象向右平移个单位,即可得到的图象,所以,故选B.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,属于中档题. 能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8.已知甲袋中有1个黄球和2个红球,乙袋中有2个黄球和2个红球,现随机地从甲袋中取出两个球放入乙袋中,然后从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( ) A .13 B .12 C .59 D .29【答案】C【解析】试题分析:甲取出的求有两种情况:(1)从甲取出1黄球1红球,概率为:132136213C C C ⋅=,(2)从甲取出2红球,概率为:142136129C C C ⋅=,故概率为125399+=.【考点】1、古典概型;2、分类加法、分步乘法计数原理.9.已知抛物线为双曲线有相同的焦点F,点A是两曲线的一个点,且AF⊥x轴,则双曲线的离心率为()A.B.C.D.【答案】A【解析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出的坐标,将代入抛物线方程求出双曲线的三参数的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,双曲线的焦点坐标为,,点是两曲线的一个交点,且轴,将代入双曲线方程得到,将的坐标代入抛物线方程可得,,即,解得,,解得,故选A .【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.10.已知等比数列的前项和为,若,则数列的前项和为()A.B.C.D.【答案】D【解析】当时,不成立,当时,,两式相除得,解得:,即,,,,两式相减得到:,所以,故选D.11.如图为一个多面体的三视图,则该多面体的体积为()A.B.7 C.D.【答案】C【解析】该几何体为如图所示的几何体,是从棱长为的正方体中截取去两个三棱锥后的剩余部分,其体积,故选C. 12.已知过点作曲线的切线有且仅有两条,则实数的取值范围是()A.B.C.D.【答案】A【解析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为,整理得到方程有两个解即可,解出不等式即可.【详解】设切点为,,,则切线方程为:,切线过点代入得:,,即方程有两个解,则有或.故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.13.已知实数满足,则的最小值为__________.【答案】C【解析】试题分析:不等式组表示的平面区域如下图所示,目标函数,设,令得到如上图中的虚线,向上平移易知在点处取得最小值,,所以目标函数.【考点】线性规划.二、填空题14.已知向量的夹角为45°,且,则=__________【答案】1【解析】先利用平面向量的运算法则以及平面向量的数量积公式求出平方的值,再开平方即可得结果.【详解】因为向量的夹角为,,,可得,故答案为1.【点睛】本题主要考查平面向量的运算法则以及平面向量的数量积公式,属于简单题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.15.已知,则__________.【答案】【解析】令,得;令,得;两式相加得.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.16.在四面体中,,则该四面体体积的最大值为________.【答案】【解析】由于平面是边长为1的正三角形,,底面面积固定,要使体积最大,只需高最大,故当平面时体积最大,.三、解答题17.在△ABC中,角A、B、C所对的边分别为a、b、c,且.(1)求角C的大小;(2)若A=,△ABC的面积为,M为BC的中点,求AM.【答案】(1)(2) .【解析】(1)利用正弦定理,结合同角三角函数的关系化简已知的等式,得到三边的关系式,再利用余弦定理表示出根据的值,可求角的大小;(2)求得,为等腰三角形,由三角形面积公式可求出的值,再利用余弦定理可得出的值.【详解】(1)∵∴∴由正弦定理得:即∴∵C为三角形的内角,∴(2)由(1)知,∴∴△ABC为等腰三角形,即CA=CB又∵M为CB中点∴CM=BM设CA=CB=2x则CM=BM=x∴解得:x=2∴CA=4,CM=2由余弦定理得:AM=.【点睛】本题主要考查正弦定理、余弦定理以及三角形的面积公式,属于中档题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18.某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.【答案】(1) 30.2;(2)分布列见解析, 400.【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)的可能取值为:240,300,360, 420, 480,根据直方图求出样本中一、二、三等品的频率分别为,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【详解】(1)样本的质量指标平均值为.根据样本质量指标平均值估计总体质量指标平均值为30.2.(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为,故从所有产品中随机抽一件,是一、二、三等品的概率分别为,随机变量的取值为:240,300,360, 420, 480,;,,所以随机变量的分布列为:.【点睛】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19.如图,多面体ABCDEF中,四边形ABCD为矩形,二面角A-CD-F为60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.(1)求证:BF∥平面ADE;(2)在线段CF上求一点G,使锐二面角B-EG-D的余弦值为.【答案】(1)详见解析;(2)点满足.【解析】(1)先证明平面,平面,可得平面平面,从而可得结果;(2)作于点,则平面,以平行于的直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,设,利用向量垂直数量积为零列方程组求得平面的法向量,结合面的一个法向量为,利用空间向量夹角余弦公式列方程解得,从而可得结果.【详解】(1)因为ABCD是矩形,所以BC∥AD,又因为BC不包含于平面ADE,所以BC∥平面ADE,因为DE∥CF,CF不包含于平面ADE,所以CF∥平面ADE,又因为BC∩CF=C,所以平面BCF∥平面ADF,而BF⊂平面BCF,所以BF∥平面ADE.(2)∵CD⊥AD,CD⊥DE∴∠ADE为二面角A-CD-F的平面角∴∠ADE=60°∵CD⊥面ADE平面平面,作于点,则平面,由,得,以为原点,平行于的直线为轴,所在直线为轴,所在直线为轴,建立如图所示的空间直角坐标系,则,,设,则,设平面的法向量为,则由,得,取,得平面的一个法向量为,又面的一个法向量为,,,解得或(舍去),此时,得,即所求线段上的点满足.【点睛】本题主要考查线面平行的判定定理、空间向量的应用,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20.已知椭圆C:的离心率为,点P在C上.(1)求椭圆C的方程;(2)设分别为椭圆C的左右焦点,过的直线与椭圆C交于不同的两点A、B,求△的内切圆的半径的最大值.【答案】(1);(2) 最大值为.【解析】(1) 根据离心率为,点在椭圆上,结合性质,列出关于、、的方程组,求出、,即可得结果;(2)可设直线的方程为,与椭圆方程联立,可得,结合韦达定理、弦长公式,利用三角形面积公式可得,换元后利用导数可得,的最大值为,再结可得结果.【详解】(1)依题意有,解得,故椭圆的方程为.(2)设,设的内切圆半径为,的周长为,,根据题意知,直线的斜率不为零,可设直线的方程为,由,得,,由韦达定理得,,令,则,,令,则当时,单调递增,,即当时,的最大值为,此时,故当直线的方程为时,内切圆半径的最大值为.【点睛】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题. 用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.21.已知函数.(1)讨论的单调性;(2)若的有两个零点,求实数的取值范围.【答案】(1) 当a≤0,在(0,2)上单调递增,在(2,+∞)递减;当,在(0,2)和上单调递增,在(2,)递减;当a=,在(0,+∞)递增;当a>,在(0,)和(2,+∞)上单调递增,在(,2)递减;(2) . 【解析】(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,可证明,有两个零点等价于,得,可证明,当时与当且时,至多一个零点,综合讨论结果可得结论.【详解】(1)的定义域为,,(i)当时,恒成立,时,在上单调递增;时,在上单调递减.(ii)当时,由得,(舍去),①当,即时,恒成立,在上单调递增;②当,即时,或,恒成立,在上单调递增;时,恒成立,在上单调递减.③当,即时,或时,恒成立,在单调递增,时,恒成立,在上单调递减.综上,当时,单调递增区间为,单调递减区间为;当时,单调递增区间为,无单调递减区间为;当时,单调递增区间为,单调递减区间为.(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,令,则在成立,故单调递增,,,有两个零点等价于,得,,当时,,只有一个零点,不符合题意;当时,在单调递增,至多只有一个零点,不符合题意;当且时,有两个极值,,记,,令,则,当时,在单调递增;当时,在单调递减,故在单调递增,时,,故,又,由(1)知,至多只有一个零点,不符合题意,综上,实数的取值范围为.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22.已知曲线C的极坐标方程为,直线,直线,设极点O为坐标原点,极轴为x轴的正半轴建立平面直角坐标系.(1)求直线的直角坐标系方程以及曲线C的参数方程;(2)若直线与曲线C交于O、A两点,直线与曲线C交于O、B两点,求△AOB的面积.【答案】(1);;为参数;(2).【解析】(1)利用极角的定义、直线的倾斜角的定义以及两直线过原点,可得到直线与直线的直角坐标方程;曲线的极坐标方程两边同乘以利用即可得其直角坐标方程,然后化为参数方程即可;(2)联立,得,同理,利用三角形面积公式可得结果.【详解】(1)依题意,直线直角的坐标方程为,直线直角的坐标方程为,由得,,,曲线的参数方程为为参数).(2)联立,得,同理,又,,即的面积为.【点睛】本题主要考查极坐标方程化为直角坐标方程与参数方程,属于中档题. 利用关系式,可以把极坐标方程与直角坐标方程互化,通过选取相应的参数可以把普通方程化为参数方程.23.选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.【答案】(1).(2).【解析】试题分析:(1)利用零点分段讨论求解.(2)利用化简得到在区间上是恒成立的,也就是是不等式的子集,据此得到关于的不等式组,求出它的解即可.解析:(1)当时,原不等式可化为.①当时,原不等式可化为,解得,所以;②当时,原不等式可化为,解得,所以;③当时,原不等式可化为,解得,所以.综上所述,当时,不等式的解集为.(2)不等式可化为,依题意不等式在恒成立,所以,即,即,所以.解得,故所求实数的取值范围是.。

2019届广州市高三调研测试理科数学(解析版)

2019届广州市高三调研测试理科数学(解析版)

1
1
切线,故 t 1,所以 a t t
t 1 (t 1) 2 ,
t 1
t 1
t 1
t 1
1
4
作出函数 y (t 1) 2 的图象如图所示,由图可知,
t 1
2
1 当 a 0 或 a 4 时,直线 y a 与函数 y (t 1) 2 的图象
t 1
5
5
有两个交点.
2
4
2ab
2ab 2
2 因为 0 C ,所以 C . ……………………………………………………6 分
3
(2) 因为 A ,所以 B .
6
6
……………………………………………………7 分
2 所以△ABC 为等腰三角形,且顶角 C .
3
1 因为 S△ABC 2 ab sin C
3 a2 4 4
4
(a0 a2 a4 )2 (a1 a3 )2 (a0 a1 a2 a3 a4 )(a0 a1 a2 a3 a4 ) (2 2)(2 2) 24 16 .
数学(理科)试题 A 第 4 页 共 16 页
2x y ≤ 0,
x 3y 5≥ 0,
x
y
1 1
15.已知实数 x , y 满足 x 0,
6
8
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.已知向量 a, b 的夹角为 45 ,且 a 1, b 2 ,则 a b ____________.
13.答案:1
2
解析: a b
a b
2
a
2
2 2a b b
a
2
2
a
b
cos 45

广东省2019届高考适应性考试理科数学试卷含答案

广东省2019届高考适应性考试理科数学试卷含答案

广东省2019届高考适应性考试理科数学试卷本试卷6页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

1. 已知集合{}{}22|20,|log 2A x x x B x x =-->=≤,则AB =A .(,1)(0,)-∞-+∞B .(2,4]C .(0,2)D .(1,4]-2. 复数132z i =+(i 为虚数单位)是方程260z z b -+=(b R ∈)的根,则b =AB .13 CD .53. 曲线4()2x f x e x =--在点(0,(0))f 处的切线方程是A .310x y ++=B .310x y +-=C .310x y -+= D . 310x y --=4. 已知实数,x y 满足约束条件133x x y y x ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最小值为A .6-B .4-C .3-D .1-5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为A .932 B .516C .38D .7166.在直角坐标系xOy 中,抛物线2:4C y x =的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若60NFR ∠=︒,则NR =A .2BC .D .37.直线x y 2=绕原点顺时针旋转45o 得到直线l ,若l 的倾斜角为α,则α2cos 的值为 A .10108+ B .10108- C . 54-D .54 8.函数1sin 1x x e y x e +=⋅-的部分图像大致为A .B .C .D .9.平面四边形ABCD 中,AD AB ==,CD CB ==且AD AB ⊥,现将△ABD沿对角线BD 翻折成'A BD ∆,则在'A BD ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为A . 2B .12CD .10.已知函数()2sin()1(0,)f x x ωϕωϕπ=+-><的一个零点是3x π=,6x π=-是()y f x =的图象的一条对称轴,则ω取最小值时,()f x 的单调递增区间是A . 51[3,3],36k k k Z ππππ-+-+∈ B . 71[3,3],36k k k Z ππππ-+-+∈ C . 21[2,2],36k k k Z ππππ-+-+∈ D .11[2,2],36k k k Z ππππ-+-+∈ 11.某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

广东省2019届高考适应性考试(理数)

广东省2019届高考适应性考试(理数)

广东省2019届高考适应性考试数 学(理科)本试卷4页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}{}22|20,|log 2A x x x B x x =-->=≤,则A B =IA .(,1)(0,)-∞-+∞UB .(2,4]C .(0,2)D .(1,4]- 2. 复数132z i =+(i 为虚数单位)是方程260z z b -+=(b R ∈)的根,则b =A 13B .13C 5D .53. 曲线4()2x f x e x =--在点(0,(0))f 处的切线方程是A .310x y ++=B .310x y +-=C .310x y -+=D . 310x y --=4. 已知实数,x y 满足约束条件133x x y y x ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最小值为A .6-B .4-C .3-D .1-5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板 拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分 的概率为A .932 B .516 C .38 D . 7166.在直角坐标系xOy 中,抛物线2:4C y x =的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若60NFR ∠=︒,则NR = A .2B 3C .23D .37.直线x y 2=绕原点顺时针旋转45o 得到直线l ,若l 的倾斜角为α,则α2cos 的值为 A .10108+ B .10108- C . 54-D .54 8.函数1sin 1x x e y x e +=⋅-的部分图像大致为A .B .C .D .9.平面四边形ABCD 中,2AD AB ==5CD CB ==,且AD AB ⊥,现将△ABD 沿对角线BD 翻折成'A BD ∆,则在'A BD ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为 A . 2B .12C 3D .310.已知函数()2sin()1(0,)f x x ωϕωϕπ=+-><的一个零点是3x π=,6x π=-是()y f x =的图象的一条对称轴,则ω取最小值时,()f x 的单调递增区间是 A . 51[3,3],36k k k Z ππππ-+-+∈ B . 71[3,3],36k k k Z ππππ-+-+∈ C . 21[2,2],36k k k Z ππππ-+-+∈ D . 11[2,2],36k k k Z ππππ-+-+∈11.某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

2019届广东省高三3月模拟考试(一)数学(理)试卷(PDF版)

2019届广东省高三3月模拟考试(一)数学(理)试卷(PDF版)
左至右的某三个相邻交点,且 2|PQ|=|QR|= 2 ,则 ω+m=( ) 3
5
A.
2
B.2+ 3
C. 3
2
D. 5 3 2
12.已知函数 f(x)=(kx+ 1 )ex﹣3x,若 f(x)<0 的解集中有且只有一个正整数,则实数 k 的取值范 4
围为 ( )
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
21.已知函数
.
(1)讨论 的单调性;
(2)当 时,
,记函数
在 上的最大值为 ,证明:
.
(二)选考题:共 10 分.请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一 题记分.
22.(10 分)在平面直角坐标系 xOy 中,曲线 C1 的参数方程为
,(θ 为参数)已知点 Q(4,0),
的焦点,曲线 是以 为圆心, 为半径的圆,直线

曲线 , 从左至右依次相交于
,则
___.
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每
个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:60 分
17. 的内角 的对边分别为 ,已知
C. =﹣12 +3
D. =﹣12 ﹣3
9.在数列{an}的前 n 项和为 Sn,怚 a1=2,an+an+1=2n(n∈N*),则 S13=( )
10.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段 AB 分为两 线段 AC,CB,使得其中较长的一段 AC 是全长 AB 与另一段 CB 的比例中项,即满足 = =

2019届广州市高三调研测试(理科答案)高考资料高考复习资料中考资料

2019届广州市高三调研测试(理科答案)高考资料高考复习资料中考资料
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C C D B D B B A D B A
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
由正弦定理,得 c2 b2 a2 ab ,即 a2 b2 c2 ab , …………………………3 分
所以 cos C a2 b2 c2 ab 1 . ………………………………………………5 分
2ab
2ab 2
因为 0 C ,所以 C…………………………………………6 分
(2) 因为 A ,所以 B .
6
6
……………………………………………………7 分
所以 ABC 为等腰三角形,且顶角 C 2 . 3
因为 SABC

1 2
ab sin C

3 a2 4 4
3,
………………………………………………8 分
建立如图所示的空间直角坐标系 O xyz ,则
A 0,0, 3 ,C 3, 1,0, D 0, 1,0 , E(0, 2,0), F (3,5,0) ,
OB OA AB OA DC 3,0, 3 ,……7 分
所以随机变量 X 的分布列为:
X
240
300
360
420
480
P
1 36
1 9
5 18
1
1
3
4
…………………………………………………………………11 分

2019届广东省深圳市高级中学高三适应性考试(6月)数学(理)试题(解析版)

2019届广东省深圳市高级中学高三适应性考试(6月)数学(理)试题(解析版)

2019届广东省深圳市高级中学高三适应性考试(6月)数学(理)试题一、单选题1.已知集合{|A x y =,2{|1}B x log x =≤,则A B ⋂=( ) A .1{|}3x x ≤≤- B .{|01}x x <≤ C .{|32}-≤≤x x D .{|2}x x ≤【答案】B【解析】根据函数的定义域化简集合A ,利用对数函数的单调性化简集合B ,由交集的定义可得结果. 【详解】由二次根式有意义的条件可得(1)(3)0x x -+≥, 解得31x -≤≤,所以{|A x y =={|31}x x =-≤≤. 由对数函数的性质可得22log log 2x ≤, 解得02x <≤,所以2{|1}B x log x =≤{|02}x x =<≤, 所以A B ⋂={|01}x x <≤. 故选B. 【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合. 2.已知31iz i-=-(其中i 为虚数单位),则z 的虚部为( ) A .i - B .1-C .1D .2【答案】B【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,进而可得结果. 【详解】因为3(3)(1)4221(1)(1)2i i i iz i i i i --++====+--+, 所以2z i =-,故z 的虚部为1-,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.在等比数列{}n a 中,21=a ,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) A .122n +- B .3nC .2nD .31n -【答案】C【解析】等比数列{}n a 前三项为,又{}1n a +也是等比数列,,∴,∴,选C4.若4cos 5α=-, α是第三象限的角,则1tan21tan 2αα+=-( ) A .12- B .12C .2D .-2【答案】A【解析】试题分析:∵4cos 5α=-, α为第三象限,∴3sin 5α=-, ∵2sin21cos sin 1tancos cos sin 2222221tansin cossincos sin cos sin 222222221cos2αααααααααααααααα+⎛⎫+++ ⎪⎝⎭===⎛⎫⎛⎫---+ ⎪⎪⎝⎭⎝⎭-22311sin 1sin 154cos 2cos sin 225ααααα⎛⎫+- ⎪++⎝⎭====---.【考点】同角间的三角函数关系,二倍角公式.5.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现, 其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.现在勒洛三角形中随机取一点,则此点取自正三角形内的概率为( )ABCD【答案】B【解析】利用3个扇形面积减去2个正三角形面积可得勒洛三角形的面积,利用几何概型概率公式可得结果. 【详解】如图:设2BC =,以B 为圆心的扇形面积是22263ππ⨯=,ABC ∆的面积是12222⨯⨯⨯=所以勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即2323ππ⨯-=- 所以在勒洛三角形中随机取一点,此点取自正三角形的概率是= B.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.6.已知51(1)(2)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为( ) A .80- B .40- C .40 D .80【答案】D【解析】51(1)(2)a x x x+-中,给x 赋值1求出各项系数和,列出方程求出a ,展开式中常数项为512x x ⎛⎫- ⎪⎝⎭的常数项与x 的系数和,利用二项展开式的通项公式求出通项,进而可得结果 【详解】令二项式中的x 为1得到展开式的各项系数和为1a +,12a ∴+= 1a \=551111212a x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫∴+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭5511122x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,展开式中常数项为512x x ⎛⎫- ⎪⎝⎭的常数项与x 的系数和512x x ⎛⎫- ⎪⎝⎭展开式的通项为55215(1)2r r r r r T C x --+=-, 令521r -=得2r =;令520r -=,无整数解,展开式中常数项为25880C =,故选D.【点睛】本题主要考查二项展开式定理的通项与各项系数和,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.7.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图.根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有理科意愿的学生数量多于有文科意愿的学生数量C .样本中的男生偏爱理科D .样本中的女生偏爱文科 【答案】D【解析】由条形图知女生数量多于男生数量,有理科意愿的学生数量多于有文科意愿的学生数量,男生偏爱理科,女生中有理科意愿的学生数量多于有文科意愿的学生数量,所以选D.8.抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是 ( )A .B .C .D .【答案】C【解析】解:∵抛物线y2=4x 的焦点F (1,0),准线为l :x=-1,经过F 且斜率为 3 的直线y=" 3" (x-1)与抛物线在x 轴上方的部分相交于点A (3,),AK ⊥l ,垂足为K (-1,),∴△AKF 的面积是故选C .9.在平行四边形ABCD 中,113,2,,,32AB AD AP AB AQ AD ====若12,CP CQ ⋅=则ADC ∠=( )A .56πB .34π C .23π D .2π 【答案】C【解析】由23CP CB BP AD AB =+=--,12CQ CD DQ AB AD =+=--,利用平面向量的数量积运算,先求得,3BAD π∠=利用平行四边形的性质可得结果.【详解】如图所示,平行四边形ABCD 中, 3,2AB AD ==,11,32AP AB AQ AD ==, 23CP CB BP AD AB ∴=+=--,12CQ CD DQ AB AD =+=--,因为12CP CQ ⋅=, 所以2132CP CQ AD AB AB AD ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭22214323AB AD AB AD =++⋅222143232cos 12323BAD =⨯+⨯+⨯⨯⨯∠=, 1cos 2BAD ∠=,,3BAD π∴∠= 所以233ADC πππ∠=-=,故选C. 【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).10.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13B .23C .83D .32或83【答案】A【解析】设()()0000,,,P x y Q x y --,结合(,0),(,0)A a F c ,求出M 坐标,利用MF QF k k =,消去00,x y ,进而可得结果.【详解】 如图设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M 三点共线,MF QF k k =00022y y x a c x c-∴=++-, 即00002y y c x x a c=++-, 002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A. 【点睛】本题主要考查利用椭圆的简单性质以及椭圆的离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解. 11.设函数的图像与的图像关于直线对称,且,则( )A .B .C .D .【答案】C【解析】试题分析:设是函数的图像上任意一点,它关于直线对称为(),由已知知()在函数的图像上,∴,解得,即,∴,解得,故选C . 【考点】函数求解析式及求值12.设O 是正四面体P ABC -底面ABC 的中心,过O 的动平面与PC 交于,S 与,PA PB 的延长线分别交于,,Q R 则111||||||PQ PR PS ++( ) A .有最大值而无最小值 B .有最小值而无最大值C .既有最大值又有最小值,且两者不相等D .是一个与平面QRS 无关的常数 【答案】D【解析】设正三棱锥P ABC -中,各侧棱两两夹角为α, PC 与面PAB 所成角为β,记O 到各面的距离为d ,利用S PQR O PQR O PRS O PQS V V V V ----=++化简可得111sin PQ PR PS dβ++=,从而可得结论.【详解】设正三棱锥P ABC -中,各侧棱两两夹角为α, PC 与面PAB 所成角为β, 则111sin sin 332S PQR PQR S h PQ PR S V P αβ-⎛⎫=⋅=⋅⋅⋅ ⎪⎝⎭.另一方面,记O 到各面的距离为d ,则S PQR O PQR O PRS O PQS V V V V ----=++, 即11113333PQR PQR PRS PQS S d S d S d S d ⋅=⋅+⋅+⋅ 111sin sin sin 323232d d d PQ PR PS PR PQ PS ααα=⨯⋅+⨯⋅+⨯⋅⋅, 故有: sin ()PQ PR PS d PQ PR PR PS PQ PS β⋅⋅⋅=⋅+⋅+⋅,即111sin PQ PR PS dβ++==常数,故选D. 【点睛】本题主要考查正四面体的性质、棱锥的体积公式以及分割法的应用,属于中档题. (1)求简单几何体的体积时若所给的几何体为柱体锥体或台体,则可直接利用公式求解;(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.二、填空题13.在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【答案】1【解析】由11,(*)(1)n n a a n N n n +=+∈+,可得1111(1)1n n a a n n n n +-==-++,利用“累加法”可得结果. 【详解】 因为11,(*)(1)n n a a n N n n +=+∈+所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=- ...,201920181120182019a a -=-, 各式相加,可得20191112019a a -=-, 201911120192019a -=-,所以,20191a =,故答案为1. 【点睛】本题主要考查利用递推关系求数列中的项,属于中档题.利用递推关系求数列中的项常见思路为:(1)项的序号较小时,逐步递推求出即可;(2)项的序数较大时,考虑证明数列是等差、等比数列,或者是周期数列;(3)将递推关系变形,利用累加法、累乘法以及构造新数列法求解.14.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___.【答案】35【解析】由函数()y f x =的图象关于直线x π=对称可得322f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,化简得tan ϕ的值,再根据222222cos sin 1tan cos 2cos sin 1tan ϕϕϕϕϕϕφ--==++,计算可得结果.【详解】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭,即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.【点睛】本题主要考查诱导公式的应用、考查了同角三角函数的关系以及二倍角公式的应用,属于中档题. 应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.15.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC ∆是边长为6的等边三角形,PAB ∆是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.【答案】48π【解析】在等边三角形ABC 中,取AB 的中点F ,设其中心为O ,则23AO BO CO CF ====,再利用勾股定理可得OP =O 为棱锥P ABC -的外接球球心,利用球的表面积公式可得结果.【详解】如图,在等边三角形ABC 中,取AB 的中点F , 设其中心为O ,由6AB =,得23AO BO CO CF ====, PAB ∆是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又因为平面PAB ⊥平面ABC ,PF ∴⊥平面 ABC ,PF OF ∴⊥,OP ==则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(2448ππ⨯=,故答案为48π. 【点睛】本题考查主要四面体外接球表面积,考查空间想象能力,是中档题. 要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.16.已知函数22,0,(),0,x x x f x e x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】不妨设12x x < ,则2212x x e ==(1)t t =>,可得()12ln x x t g t +=-=,利用导数研究函数的单调性,根据单调性可得结果. 【详解】作出()f x 的函数图象如图所示,由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x < ,则2212x x e ==(1)t t =>,则12ln x x t ==,12ln x x t ∴+=-()ln g t t =,则4'()4g t t=, ∴当 18t <<时,()'0g t >,()g t 在()1,8上递增;当8t >时,()'0g t <,()g t 在()8,+∞上递减;∴当8t =时,()g t 取得最大值g(8)=ln82=3ln22--,故答案为3ln 22-. 【点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 极值与最值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.三、解答题17.工程队将从A 到D 修建一条隧道,测量员测得图中的一些数据(,,,A B C D 在同一水平面内),求,A D 之间的距离.【解析】在直角ABC ∆中 ,求得cosACB ACB ∠=∠=,利用两角差的余弦公式可得cos ACD ∠的值,再由余弦定理可得结果. 【详解】 连接AC,在ABC ∆中 AC ==,cosACB ACB ∠=∠=21cos cos322ACD ACB π⎛⎫⎛⎫∠=-∠=-+= ⎪ ⎪⎝⎭⎝⎭在ACD ∆ 中,AD ==【点睛】本题主要考查两角差的余弦公式以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.18.已知四棱锥P ABCD -,底面ABCD 为菱形,PD PB =,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且//BD 平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,PA PC ==,PA 与平面ABCD 所成的角为60︒,求AD 与平面AMHN 所成角的正弦值.【答案】(1)见证明(2)【解析】(1)连结AC 、BD 且AC BD O =,连结PO ,先证明BD ⊥平面PAC ,可得BD PC ⊥,再利用线面平行的性质定理证明//BD MN ,从而可得结论;(2)利用(1)可证明PO ⊥平面ABCD ,利用PA 与平面ABCD 所成的角为60︒求出线段间的等量关系,以OA ,OD ,OP 分别为x ,y ,z 轴,建立空间直角坐标系,求出(,0)AD =-,再利用向量垂直数量积为零列方程求出平面AMHN 的法向量,由空间向量夹角余弦公式可得结果. 【详解】(1)连结AC 、BD 且AC BD O =,连结PO .因为,ABCD 为菱形,所以,BD AC ⊥, 因为,PD PB =,所以,PO BD ⊥, 因为,ACPO O =且AC 、PO ⊂平面PAC ,所以,BD ⊥平面PAC ,因为,AC ⊂平面PAC ,所以,BD PC ⊥, 因为,//BD 平面AMHN , 且平面AMHN平面PBD MN =,所以,//BD MN , 所以,MN PC ⊥.(2)由(1)知BD AC ⊥且PO BD ⊥, 因为PA PC =,且O 为AC 的中点, 所以,PO AC ⊥,所以,PO ⊥平面ABCD ,所以PA 与平面ABCD 所成的角为PAO ∠,所以60PAO ∠=︒,所以,12AO PA =,2PO PA =,因为,PA =,所以,6BO PA =. 以OA ,OD ,OP 分别为x ,y ,z 轴,如图所示建立空间直角坐标系记2PA =,所以,(0,0,0)O ,(1,0,0)A,(0,3B -,(1,0,0)C -,(0,3D,P,1(,0,22H -,所以,BD =,3(2AH =-,(AD =- 记平面AMHN 的法向量为(,,)n x y z =,所以,00n BD n AH ⎧⋅=⎨⋅=⎩即03302y x z ⎧=⎪⎪⎨⎪-+=⎪⎩,令2x =,解得0y =,z =(2,0,23)n =, 记AD 与平面AMHN 所成角为θ,所以,3sin |cos ,|||||||n AD n AD n AD θ⋅=<>==. 所以,AD 与平面AMHN 【点睛】本题主要考查线面平行的性质定理、线面垂直证明面面垂直以及利用空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.在平面直角坐标系xOy 中,离心率为3的椭圆2222:1(0)x y C a b a b +=>>过点M . (1)求椭圆C 的标准方程;(2)若直线0x y m ++=上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.【答案】(1) 2213x y+=(2) [-【解析】(1的椭圆过点M ,结合性质222a b c =+ ,列出关于a 、b 、c 的方程组,求出a 、b 即可得结果;(2)设000(,), G x y x ≠切线方程为00()y k x x y =-+,代入椭圆方程得2220000(31)6()3()30k x k kx y x kx y +--+--=,则201220113y k k x -==--,化为22004x y +=,利用直线0x y m ++=与圆224x y +=有公共点,即可得结果.【详解】(1)由题意,222,c a a b c ⎧=⎪⎨⎪=+⎩解得223a b =,又221213a b +=,解得223,1,a b ⎧=⎨=⎩ 所以椭圆C 的标准方程为2213x y +=.(2)①当过点G 的椭圆C 的一条切线的斜率不存在时,另一条切线必垂直于y 轴,易得(1)G ±②当过点G 的椭圆C的切线的斜率均存在时,设000(,), G x y x ≠ 切线方程为00()y k x x y =-+,代入椭圆方程得2220000(31)6()3()30k x k kx y x kx y +--+--=,2220000[6()]4(31)[3()3]0k kx y k kx y ∆=--+--=,化简得:2200()(31)0kx y k --+=,由此得2220000(3)210x k x y k y --+-=,设过点G 的椭圆C 的切线的斜率分别为12,k k ,所以20122013y k k x -=-.因为两条切线相互垂直,所以2020113y x -=--,即220004(x y x +=≠, 由①②知G 在圆22004x y +=上,又点G 在直线0x y m ++=上, 所以直线0x y m ++=与圆224x y +=有公共点,2≤,所以m -≤综上所述,m的取值范围为[-.【点睛】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求.20.某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:该景点为了预测2021年的旅游人数,建立了y 与x 的两个回归模型:模型①:由最小二乘法公式求得y 与x 的线性回归方程50.8169.7y x =+; 模型②:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近. (1)根据表中数据,求模型②的回归方程bx y ae =.(a 精确到个位,b 精确到0.01). (2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).参考公式、参考数据及说明: ①对于一组数据()()()1122,,,,,,n n v w v w v w ,其回归直线w v αβ=+的斜率和截距的最小二乘法估计分别为121()(),()niii nii w w v v w v v v βαβ==--==--∑∑.②刻画回归效果的相关指数22121()1()nii i n ii yy R yy ==-=--∑∑ .③参考数据: 5.46235e ≈, 1.43 4.2e ≈.表中1011ln ,10i i i i u y u u ===∑. 【答案】(1) 0.11235x y e = (2)见解析【解析】(1)对bxy ae =取对数,得ln ln y bx a =+, 设ln u y =,ln c a =,先建立u 关于x 的线性回归方程,进而可得结果;(2)由表格中的数据, 30407>14607,可得101022113040714607()()iii i y y y y ==>--∑∑,从而得2212R R < ,进而可得结果.【详解】(1)对bxy ae =取对数,得ln ln y bx a =+,设ln u y =,ln c a =,先建立u 关于x 的线性回归方程,()()()10110219.000.10883iii ii x x u u b x x ==--==≈-∑∑, 6.050.108 5.5 5.456 5.46c u bx =-≈-⨯=≈ 5.46235c a e e =≈≈∴模型②的回归方程为0.11235x y e =(2)由表格中的数据,有30407>14607,即101022113040714607()()iii i y y y y ==>--∑∑,即10102211304071460711()()iii i y y y y ==-<---∑∑,2212R R <模型①的相关指数21R 小于模型②的22R ,说明回归模型②的拟合效果更好.2021年时,13x =,预测旅游人数为0.1113 1.43235235235 4.2987y e e ⨯==≈⨯=(万人) 【点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误. 21.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(,1)()k k k N +∈上有零点,求k 的值; (3)若不等式()(1)()x m x f x x-->对任意正实数x 恒成立,求正整数m 的取值集合.【答案】(1) 1y =- ;(2) k 的值为0或3 ;(3) {}1,2,3.【解析】(1)由()1f 的值可得切点坐标,求出()'1f 的值,可得切线斜率,利用点斜式可得曲线()y f x =在点()()1,1f 处的切线方程;(2)先利用导数判断函数的单调性,然后根据零点存在定理可判断()f x 在区间(0,1)、(3,4)上分别存在一个零点,从而可得结果;(3)当1x =时,不等式为(1)10g =>恒成立;当01x <<时,不等式可化为ln 1x x x m x +>-,可得1m x >,当1x >时,不等式可化为ln 1x x x m x +<-,可得2m x <,结合(2),综合三种情况,从而可得结果.【详解】(1)1()1f x x'=-,所以切线斜率为()01f '=, 又(1)1f =-,切点为(1,1)-,所以切线方程为1y =-.(2)令1()1f x x'=-,得1x =, 当01x <<时,()0f x '<,函数()f x 单调递减;当1x >时,()0f x '>,函数()f x 单调递增,所以()f x 的极小值为(1)10f =-<,又22221111()ln 20e e e e f =--=>, 所以()f x 在区间(0,1)上存在一个零点1x ,此时0k =;因为(3)3ln321ln30f =--=-<,(4)4ln 4222ln 22(1ln 2)0f =--=-=->, 所以()f x 在区间(3,4)上存在一个零点2x ,此时3k =.综上,k 的值为0或3. (3)当1x =时,不等式为(1)10g =>.显然恒成立,此时m R ∈;当01x <<时,不等式()(1)()x m x f x x -->可化为ln 1x x x m x +>-, 令ln ()1x x x g x x +=-,则22ln 2()()(1)(1)x x f x g x x x --'==--, 由(2)可知,函数()f x 在(0,1)上单调递减,且存在一个零点1x ,此时111()ln 20f x x x =--=,即11ln 2x x =-所以当10x x <<时,()0f x >,即()0g x '>,函数()g x 单调递增;当11x x <<时,()0f x <,即()0g x '<,函数()g x 单调递减.所以()g x 有极大值即最大值1111111111ln (2)()11x x x x x x g x x x x +-+===--,于是1m x >. 当1x >时,不等式()(1)()x m x f x x -->可化为ln 1x x x m x +<-, 由(2)可知,函数()f x 在(3,4)上单调递增,且存在一个零点2x ,同理可得2m x <.综上可知12x m x <<.又因为12(0,1), (3,4)x x ∈∈,所以正整数m 的取值集合为{}1,2,3.【点睛】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性以及不等式恒成立问题,属于难题.求曲线切线方程的一般步骤是:(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在P 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'000()()y y f x x x -=⋅-.22.在平面直角坐标系中,曲线的方程为,直线的参数方程(为参数),若将曲线上的点的横坐标不变,纵坐标变为原来的倍,得曲线.(1)写出曲线的参数方程;(2)设点,直线与曲线的两个交点分别为,,求的值.【答案】(1)(为参数);(2)【解析】分析:(1)若将曲线上的点的纵坐标变为原来的,则曲线的直角坐标方程,进而得到曲线的参数方程.(2)将直线的参数方程化为标准形式代入曲线,得到,进而可求解结论. 详解:(1)若将曲线上的点的纵坐标变为原来的,则曲线的直角坐标方程为, 整理得,曲线的参数方程(为参数).(2)将直线的参数方程化为标准形式为(为参数),将参数方程带入得整理得.,,.点睛:本题考查了参数方程与普通方程的互化,及直线的参数方程的应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用直线参数的几何意义求解.要结合题目本身特点,确定选择何种方程.23.已知正实数x,y满足x+y=1.(1)解关于x的不等式;(2)证明:.【答案】(1).(2)见解析.【解析】(1)利用零点分段法即可求解.(2)利用“1”的转换,以及基本不等式即可证明.【详解】(1)解得,所以不等式的解集为(2)解法1:且,.当且仅当时,等号成立.解法2:且,当且仅当时,等号成立.【点睛】主要考查了绝对值不等式的求解、不等式证明、以及基本不等式的应用,属于中档题.对于绝对值不等式的求解,主要运用零点分段法,也可以运用图像法.而不等式的证明,关键是灵活运用不等式的性质以及基本不等式.。

广东省2019年全国卷适应性考试理科数学试题含答案解析

广东省2019年全国卷适应性考试理科数学试题含答案解析

2019年适应性考试理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{430}A x x x =++≥,{21}xB x =<,则A B =( )A .[3,1]--B .(,3][1,0)-∞--C .(,3)(1,0]-∞--D .(,0)-∞【答案】B【解析】(,3][1,)A =-∞--+∞,(,0)B =-∞, ∴(,3][1,0)AB =-∞--.2.若(z a ai =+为纯虚数,其中∈a R ,则7i 1ia a +=+( ) A .i B .1 C .i - D .1- 【答案】C【解析】∵z为纯虚数,∴a =∴7i 3i i 1i 3a a +-====-+. 3.设n S 为数列{}n a 的前n 项的和,且*3(1)()2n n S a n =-∈N ,则n a =( ) A .3(32)nn- B .32n+ C .3n D .132n -⋅【答案】C【解析】1111223(1)23(1)2a S a a a a ⎧==-⎪⎪⎨⎪+=-⎪⎩,1239a a =⎧⎨=⎩,经代入选项检验,只有C 符合.4.执行如图的程序框图,如果输入的100N =,则输出的x =( )A .0.95B .0.98C .0.99D .1.00 【答案】C 【解析】111112233499100x =+++⋅⋅⋅+⨯⨯⨯⨯ 111111199(1)()()()2233499100100=-+-+-+⋅⋅⋅+-=.5.三角函数()sin(2)cos 26f x x x π=-+的振幅和最小正周期分别是( )A2πBπC2πDπ【答案】B 【解析】()sincos 2cossin 2cos 266f x x x x ππ=-+31cos 222sin 2)22x x x x ==-)6x π=+,故选B .6.一空间几何体的三视图如图所示,则该几何体的体积为( ) A .12 B .6 C .4 D .2 【答案】D【解析】11=2(2+1)2232V ⨯⨯⨯⨯=正四棱锥.7.设p 、q 是两个命题,若()p q ⌝∨是真命题, 那么( )A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题【答案】D8.从一个边长为2的等边三角形的中心、各边中点及三个顶点这7个点中任取两个点,则这两点间的距离小于1的概率是( ) A .71 B .73 C .74 D .76 【答案】A【解析】两点间的距离小于1共有3种情况, 分别为中心到三个中点的情况, 故两点间的距离小于1的概率27317P C ==. 9.已知平面向量a 、b 满足||||1==a b ,(2)⊥-a a b ,则||+=a b ( )A .0B .2C .2D .3 【答案】D【解析】∵(2)⊥-a a b ,∴(2)0⋅-=a a b , ∴21122⋅==a b a ,∴||+==a b==10.62)21(xx -的展开式中,常数项是( ) A .45- B .45 C .1615- D .1615【答案】D【解析】2612316611()()()22r r r r r r r T C x C x x --+=-=-,令1230r -=,解得4r =.∴常数项为446115()216C -=. 11.(2019广东适应)已知双曲线的顶点为椭圆1222=+y x 长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是( )A .122=-y xB .122=-x y C .222=-y x D .222=-x y【答案】D【解析】∵椭圆的端点为(0,,离心率为2,依题意双曲线的实半轴a =2c =,b =,故选D .12.如果定义在R 上的函数)(x f 满足:对于任意21x x ≠,都有)()(2211x f x x f x +)()(1221x f x x f x +>,则称)(x f 为“H 函数”.给出下列函数:①13++-=x x y ;②)cos sin (23x x x y --=;③1+=xe y ;④⎩⎨⎧=≠=000||ln x x x y ,其中“H 函数”的个数是( )A .4B .3C .2D .1【答案】C【解析】∵1122()()x f x x f x +)()(1221x f x x f x +>, ∴1212()[()()]0x x f x f x -->,∴)(x f 在R 上单调递增.①231y x '=-+, (x ∈-∞,0y '<,不符合条件;②32(cos +sin )=3)04y x x x π'=--+>,符合条件;③0xy e '=>,符合条件;④()f x 在(,0)-∞单调递减,不符合条件; 综上所述,其中“H 函数”是②③.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a的取值范围是 . 【答案】(,2)-∞-【解析】不等式组表示的平面区域的角点坐标分别为(1,0),(0,1),(3,4)A B C , ∴2A z =,B z a =,64C z a =+. ∴64264a a a +<⎧⎨+<⎩,解得2a <-.14.已知双曲线1163222=-py x 的左焦点在抛物线px y 22=的准线上,则=p .【答案】4【解析】223()162p p+=,∴4p =. 15.已知数列}{n a 的各项均为正数,n S 为其前n 项和,且对任意∈n N *,均有n a 、n S 、2n a 成等差数列,则=n a . 【答案】n【解析】∵n a ,n S ,2n a 成等差数列,∴22n n n S a a =+ 当1n =时,2111122a S a a ==+ 又10a > ∴11a =当2n ≥时,2211122()n n n n n n n a S S a a a a ---=-=+--,∴2211()()0n n n n a a a a ----+=,∴111()()()0n n n n n n a a a a a a ---+--+=, 又10n n a a -+>,∴11n n a a --=, ∴{}n a 是等差数列,其公差为1,∵11a =,∴*(N )n a n n =∈.16.已知函数)(x f 的定义域R ,直线1=x 和2=x 是曲线)(x f y =的对称轴,且1)0(=f ,则=+)10()4(f f .【答案】2【解析】直线1=x 和2=x 是曲线)(x f y =的对称轴, ∴(2)()f x f x -=,(4)()f x f x -=,∴(2)(4)f x f x -=-,∴)(x f y =的周期2T =. ∴(4)(10)(0)(0)2f f f f +=+=.三、解答题:解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且 C b B c A a cos cos cos 2+=. (1)A cos 的值; (2)若422=+c b ,求ABC ∆的面积. 【解析】(1)∵2cos cos cos a A c B b C =+,∴2sin cos sin cos sin cos A A C B B C ⋅=+, ∴2sin cos sin()A A B C ⋅=+,∵A B C π++=,∴sin()sin B C A +=, ∴2sin cos sin A A A ⋅=.∵0A π<<,∴sin 0A ≠, ∴2cos 1A =,∴1cos 2A =.(2)由1cos 2A =,得sin A =,由2sin aA=,得2sin a A ==. ∵2222cos a b c bc A =+-, ∴222431bc b c a =+-=-=,∴11sin 2224ABC S bc A ∆==⋅=.(1)求该单位员工当年年薪的平均值和中位数;(2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望; (3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为3万元、5.4万元、6.5万元、2.7万元,预测该员工第五年的年薪为多少?附:线性回归方程a x b yˆˆˆ+=中系数计算公式分别为: 121()()()niii nii x x y y b x x ==--=-∑∑,x b y aˆˆ-=,其中x 、y 为样本均值. 【解析】(1)平均值为10万元,中位数为6万元. (2)年薪高于5万的有6人,低于或等于5万的有4人;ξ取值为0,1,2.152)0(21024===C C P ξ,158)1(2101614===C C C P ξ,31)2(21026===C C P ξ, ∴ξ的分布列为∴()012151535E ξ=⨯+⨯+⨯=. (3)设)4,3,2,1(,=i y x i i 分别表示工作年限及相应年薪,则5,5.2==y x ,21()2.250.250.25 2.255nii x x =-=+++=∑,41()() 1.5(2)(0.5)(0.8)0.50.6 1.5 2.27iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑,121()()7 1.45()niii nii x x y y b x x ==--===-∑∑,ˆˆ5 1.4 2.5 1.5ay b x =-=-⨯=, 由线性回归方程为 1.4 1.5y x =+.可预测该员工年后的年薪收入为8.5万元.如图,在直二面角C AB E --中,四边形ABEF 是矩形,2=AB ,32=AF ,ABC ∆是以A 为直角顶点的等腰直角三角形,点P 是线段BF 上的一点,3=PF .(1)证明:⊥FB 面PAC ;(2)求异面直线PC 与AB 所成角的余弦值.【解析】(1)证明:以A 为原点,建立空间直角坐标系,如图,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C,(0,0,F .∵4BF ==,3PF =,∴3(,0,22P,(2,0,FB =-, (0,2,0)AC =,3(2AP =.∵0FB AC ⋅=,∴FB AC ⊥. ∵0FB AP ⋅=,∴FB AP ⊥. ∵FB AC ⊥,FB AP ⊥,AC AP A =,∴FB ⊥平面APC .(2)∵(2,0,0)AB =,3(,2,22PC =--, 记AB 与PC 夹角为θ,则3cos =2AB PC AB PCθ⋅-==PCABE F【方法2】(1)4FB =,cos cos PFA BFA ∠=∠=,PA==∵2223912PA PF AF +=+==, ∴PA BF ⊥.∵平面ABEF ⊥平面ABC ,平面ABEF 平面ABC AB =,AB AC ⊥,AC ⊂平面ABC , ∴AC ⊥平面ABEF .∵BF ⊂平面ABEF ,∴AC BF ⊥. ∵PA AC A =I ,∴BF ⊥平面PAC .(2)过P 作//,//PM AB PN AF ,分别交,BE BA 于,M N 点,MPC ∠的补角为PC 与AB 所成的角.连接MC ,NC .PN MB ==,32AN =,52NC ==,BC =PC =MC ==135744cos 11422MPC +-∠===-⋅. ∴异面直线PC 与AB.已知抛物线C :x y 42=,过其焦点F 作两条相互垂直且不平行于x 轴的直线,分别交抛物线C 于点1P 、2P 和点3P 、4P ,线段21P P 、43P P 的中点分别为1M 、2M .(1)求21M FM ∆面积的最小值; (2)求线段21M M 的中点P 满足的方程. 【解析】(1)由题设条件得焦点坐标为(1,0)F ,设直线12P P 的方程为(1)y k x =-,0k ≠. 联立2(1)4y k x y x=-⎧⎨=⎩,得22222(2)0k x k x k -++=.(*)22222[2(2)]416(1)0k k k k ∆=-+-=+>.设111(,)P x y ,222(,)P x y ,则21222(2)k x x k ++=. 设111(,)M M M x y ,则1112122222(1)M M M x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩. 类似地,设222(,)M M M x y ,则2222212211221M M kx k k y k k ⎧+⎪==+⎪⎪⎨⎪==-⎪⎪-⎩.∴1||FM ==2||2|FM k ==, 因此121211||||2(||)2||FM M S FM FM k k ∆=⋅=+. ∵1||2||k k ≥+,∴124FM M S ∆≥, 当且仅当1||||k k =,即1k =±时,12FM M S ∆取到最小值4. (2)设线段12M M 的中点(,)P x y ,由(1)得121222221121()(22)1221121()(2)22M M M M x x x k k k k y y y k k k k ⎧=+=++=++⎪⎪⎨⎪=+=-=-+⎪⎩,消去k 后得23y x =-.∴线段12M M 的中点P 满足的方程为23y x =-.设函数mx x x x f -+=ln 21)(2(0>m ). (1)求)(x f 的单调区间; (2)求)(x f 的零点个数;(3)证明:曲线)(x f y =没有经过原点的切线.【解析】(1)()f x 的定义域为(0,)+∞,211()x mx f x x m x x-+'=+-=.令()0f x '=,得210x mx -+=.当240m ≤∆=-,即02m ≤<时,()0f x ≥',∴()f x 在(0,)+∞内单调递增.当240m ∆=->,即2m >时,由210x mx -+=解得12m x -=,22m x +=,且120x x <<,在区间1(0,)x 及2(,)x +∞内,()0f x '>,在12(,)x x 内,()0f x '<,∴()f x 在区间1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减.(2)由(1)可知,当02m ≤<时,()f x 在(0,)+∞内单调递增,∴()f x 最多只有一个零点.又∵1()(2)ln 2f x x x m x =-+,∴当02x m <<且1x <时,()0f x <; 当2x m >且1x >时,()0f x >,故()f x 有且仅有一个零点.当2m >时,∵()f x 在1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减,且211(()()ln 2222m m m m f x -=+-=22204m m -+-<<,40124m <=<=(∵2m >),∴1()0f x <,由此知21()()0f x f x <<,又∵当2x m >且1x >时,()0f x >,故()f x 在(0,)+∞内有且仅有一个零点. 综上所述,当0m >时,()f x 有且仅有一个零点.(3)假设曲线()y f x =在点(,())x f x (0x >)处的切线经过原点,则有()()f x f x x '=,即21ln 2x x mxx +-1x m x =+-, 化简得:21ln 102x x -+=(0x >).(*)记21()ln 12g x x x =-+(0x >),则211()x g x x x x -'=-=,令()0g x '=,解得1x =.当01x <<时,()0g x '<,当1x >时,()0g x '>,∴3(1)2g =是()g x 的最小值,即当0x >时,213ln 122x x -+≥.由此说明方程(*)无解,∴曲线()y f x =没有经过原点的切线.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清楚题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图所示,BC 是半圆O 的直径,AD BC ⊥,垂足为D ,AB AF =,BF 与AD 、AO 分别交于点E 、G .(1)证明:DAO FBC ∠=∠;(2)证明:AE BE =.【解析】(1)连接FC ,OF ,∵AB AF =,OB OF =,∴点G 是BF 的中点,OG BF ⊥.∵BC 是O 的直径,∴CF BF ⊥.∴//OG CF .∴AOB FCB ∠=∠,∴90,90DAO AOB FBC FCB ∠=︒-∠∠=︒-∠,∴DAO FBC ∠=∠.(2)在Rt OAD ∆与Rt OBG ∆中,由(1)知DAO GBO ∠=∠,又OA OB =,∴OAD ∆≅OBG ∆,于是OD OG =.∴AG OA OG OB OD BD =-=-=.在Rt AGE ∆与Rt BDE ∆中,由于DAO FBC ∠=∠,AG BD =,∴AGE ∆≅BDE ∆,∴AE BE =.E F G CO A B B D A O CG F E23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,过点(1,2)P -的直线l 的倾斜角为45.以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=,直线l 和曲线C 的交点为,A B . (1(2 【解析】(1)∵直线过点(1,2)P -,且倾斜角为45. ∴直线l 的参数方程为1cos 452sin 45x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数), 即直线l 的参数方程为1222x t y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数).(2)∵2sin 2cos ρθθ=,∴2(sin )2cos ρθρθ=,∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为22y x =,∵122x y ⎧=+⎪⎪⎨⎪=-+⎪⎩,∴2(2)2(1)22t -+=+,∴240t -+=,∴124t t =24.(本小题满分10分)选修4-5设函数()5f x x a x =-+.(1)当1a =-时,求不等式()53f x x ≤+的解集;(2)若1x ≥-时有()0f x ≥,求a 的取值范围.【解析】(1)当1a =-时,不等式()53f x x ≤+,∴5315x x x ≤+++,∴13x +≤,∴24x -≤≤.∴不等式()53f x x ≤+的解集为[4,2]-.(2)若1x ≥-时,有()0f x ≥,∴50x a x -+≥,即5x a x -≥-,∴5x a x -≥-,或5x a x -≤,∴6a x ≤,或4a x ≥-,∵1x ≥-,∴66x ≥-,44x -≤,∴6a ≤-,或4a ≥.∴a 的取值范围是(,6][4,)-∞-+∞.。

广东省2019届高三数学适应性考试试题文(含解析)

广东省2019届高三数学适应性考试试题文(含解析)

广东省2019届高三数学适应性考试试题 文(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}220A x x x =-->,{}2log 2B x x =≤,则A B =I ( ) A. ()(),10,-∞-+∞U B. (]2,4 C. ()0,2D. (]1,4-【答案】B 【解析】 【分析】先求出集合A ,B ,由此能求出A ∩B .【详解】∵集合A ={x |x 2﹣x ﹣2>0}={x |x <﹣1或x >2},B ={x |log 2x ≤2}={x |0<x ≤4},∴A ∩B ={x |2<x ≤4}=(2,4]. 故选:B .【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.复数132z i =+(i 为虚数单位)是方程()260z z b b R -+=∈的根,则b 的值为( )B. 13D. 5【答案】B 【解析】 【分析】利用实系数一元二次方程虚根成对及根与系数的关系求解. 详解】∵132z i =+是方程z 2﹣6z +b =0(b ∈R )的根,由实系数一元二次方程虚根成对原理可知,232z i =-为方程另一根, 则b =(3+2i )(3﹣2i )=13. 故选:B .【点睛】本题考查实系数一元二次方程虚根成对原理的应用,考查复数代数形式的乘除运算,是基础题.3.已知实数x,y满足约束条件133xx yy x≥⎧⎪+≤⎨⎪≥-⎩,则2z x y=-+的最小值为( )A. -6B. -4C. -3D. -1【答案】A【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=﹣2x+y的最小值.【详解】由z=﹣2x+y,得y=2x+z,作出不等式对应的可行域(阴影部分),平移直线y=2x+z,由平移可知当直线y=2x+z,经过点A时,直线y=2x+z的截距最大,此时z取得最小值,由330x yx y+=⎧⎨--=⎩,解得A(3,0).将A的坐标代入z=﹣2x+y,得z=﹣6,即目标函数z=﹣2x+y的最小值为﹣6.故选:A.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.4.如图是2018年第一季度五省GDP情况图,则下列描述中不正确...的是()A. 与去年同期相比2018年第一季度五个省的GDP 总量均实现了增长B. 2018年第一季度GDP 增速由高到低排位第5的是浙江省C. 2018年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个D. 去年同期河南省的GDP 总量不超过4000亿元 【答案】C 【解析】 【分析】根据柱型图与折线图的性质,对选项中的结论逐一判断即可,判断过程注意增长量与增长率的区别与联系.【详解】由2018年第一季度五省GDP 情况图,知:在A 中, 与去年同期相比,2018年第一季度五个省的GDP 总量均实现了增长,A 正确; 在B 中,2018年第一季度GDP 增速由髙到低排位第5的是浙江省,故B 正确;在C 中,2018年第一季度总量和增速由髙到低排位均居同一位的省有江苏和河南,共2个,故C 不正确;在D 中,去年同期河南省的总量增长百分之六点六后达到2018年的4067.6亿元,可得去年同期河南省的总量不超过4000亿元,故D 正确,故选C.【点睛】本题主要考查命题真假的判断,考查折线图、柱形图等基础知识,意在考查阅读能力、数据处理能力,考查数形结合思想的应用,属于中档题.5.已知各项均为正数的等差数列{}n a 的公差为2,等比数列{}n b 的公比为-2,则( ) A. 14n n a a b b --=B.14n n a a b b -=C. 14n n a a b b --=-D.14n na ab b -=-【答案】B 【解析】 【分析】由已知求得等比数列{b n }的通项公式,作比即可得到14n n a a b b -=.【详解】∵等差数列{a n }的公差为2,数列{b n }是公比为﹣2的等比数列,∴11(2)n n b b -=⋅-,∴11111121111(2)(2)(2)(2)4(2)(2)n n n n n n n n a a a a a a a a b b b b ---------⋅--===-=-=⋅--. 故选:B .【点睛】本题考查等差数列与等比数列的通项公式,是基础题.6.如图,先画一个正方形ABCD ,再将这个正方形各边的中点相连得到第2个正方形,依此类推,得到第4个正方形EFGH ,在正方形ABCD 内随机取一点,则此点取自正方形EFGH 内的概率是( )A.14B.16C.18D.116【答案】C 【解析】 【分析】结合图形发现:每一个最小正方形的面积都是前边正方形的面积的12.则四边形的面积构成公比为12的等比数列,由几何概型概率的求法即可得到.【详解】观察图形发现:每一个最小正方形的面积都是前边正方形的面积的12,四边形的面积构成公比为12的等比数列,∴第n个正方形的面积为112n-⎛⎫⎪⎝⎭,即第四个正方形的面积31128⎛⎫=⎪⎝⎭. ∴根据几何概型的概率公式可得所投点落在第四个正方形的概率为P=11818=,故选:C.【点睛】本题主要考查几何概型的概率计算,根据条件求出正方形面积之间的关系是解决本题的关键,属于基础题.7.在直角坐标系xOy中,抛物线2:4C y x=的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴交于点R,若60NFR∠=︒,则NR=()A. 2 C. D. 3【答案】A【解析】【分析】根据题意画出图形,根据题意可得△PQF为等边三角形,求出其边长,进而在Rt△FMR分析可得答案.【详解】根据题意,如图所示:连接MF,QF,抛物线的方程为y2=4x,其焦点为(1,0),准线x=﹣1,则FH=2,PF=PQ,又由M,N分别为PQ,PF的中点,则MN∥QF,又PQ=PF,∠NRF=60°,且∠NRF=∠QFH=∠FQP=60°,则△PQF为边长为4等边三角形,MF=在Rt△FMR中,FR=2,MF=则NR12=MR =2, 故选:A .【点睛】本题考查抛物线的定义以及简单性质,注意分析△PQF 为等边三角形,属于综合题.8.已知ABC ∆,点M 是边BC 的中点,若点O 满足230OA OB OC ++=u u u r u u u r u u u r r,则( )A. 0OM BC •=u u u u r u u u rB. 0OM AB •=u u u u r u u u rC. //OM BC u u u u r u u u rD. //OM AB u u u u r u u u r【答案】D 【解析】 【分析】由向量的中点表示和加减运算、以及向量的共线定理,即可得到结论. 【详解】点M 是边BC 的中点,可得2OM OB OC =+u u u u r u u u r u u u r,230OA OB OC u u u r u u u r u u u r r ++=,可得OA OC ++u u u r u u u r 2(OB OC +u u u r u u u r )23OA OB OA +=-+u u u r u u u r u u u r 40OM =u u u u r r,即2(OA OB u u u r u u u r -)+120OM =u u u u r r,可得AB =u u u r6OM u u u u r ,即OM u u u u r ∥AB u u u r,【点睛】本题考查向量的中点表示,以及向量的加减运算和向量共线定理的运用,考查化简运算能力,属于基础题.9.函数1sin 1x x e y x e +=⋅-的部分图像大致为( )A. B.C. D.【答案】B 【解析】 【分析】先判断函数的奇偶性,再根据11x x e e +-与sin x 的性质,确定函数图象【详解】1()sin 1x xe f x x e +=⋅-,定义域为()(),00,-∞⋃+∞,11()sin()sin 11x x x xe ef x x x e e --++-=-⋅=⋅--,所以函数1()sin 1x x e f x x e +=⋅-是偶函数,排除A 、C ,又因为0x >且x 接近0时,101x x e e +>-,且sin 0x >,所以1()sin 01xx e f x x e +=⋅>-,选择B【点睛】函数图象的辨识可以从以下方面入手: 1.从函数定义域,值域判断; 2.从函数的单调性,判断变化趋势; 3.从函数奇偶性判断函数的对称性;4.从函数的周期性判断;5.从函数的特征点,排除不合要求的图象10.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,点M 在侧面11AA B B 内,若1D M CP ⊥,则BCM ∆面积的最小值为( )A. 8B. 4C. 285【答案】D 【解析】 【分析】建立坐标系,求出M 的轨迹,得出M 到B 的最小距离,得出三角形的最小面积. 【详解】解:以AB ,AD ,AA 1为坐标轴建立空间坐标系如图所示: 则P (0,0,2),C (4,4,0),D 1(0,4,4),设M (a ,0,b ),则1D M =u u u u u r (a ,﹣4,b ﹣4),CP =u u u r (﹣4,﹣4,2), ∵D 1M ⊥CP ,∴1D M CP ⋅=-u u u u u r u u u r4a +16+2b ﹣8=0,即b =2a ﹣4.取AB 的中点N ,连结B 1N ,则M 点轨迹为线段B 1N , 过B 作BQ ⊥B 1N ,则BQ 4525==. 又BC ⊥平面ABB 1A 1,故BC ⊥BQ , ∴S △BCM 的最小值为S △QBC 1458542=⨯=. 故选:D .【点睛】本题考查了空间点的轨迹问题,考查了空间向量的运算,考查了空间想象能力与运算能力,属于中档题.11.已知函数()()()2sin 10,f x x ωϕωϕπ=+-><的一个零点是3x π=,6x π=-是()y f x =的图象的一条对称轴,则ω取最小值时,()f x 的单调递增区间是( )A. 513,336k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈B. 713,336k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈C. 212,236k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈ D. 112,236k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈ 【答案】A 【解析】 【分析】根据函数()f x 的一个零点是3x π=,得出03f π⎛⎫=⎪⎝⎭,再根据直线6x π=-是函数()f x 图象的一条对称轴,得出(),62n n Z ππωϕπ-+=+∈,由此求出,,k n ω的关系式,进而得到ω的最小值与对应ϕ的值,进而得到函数()f x 的解析式,从而可求出它的单调增区间. 【详解】∵函数()f x 的一个零点是3x π=,∴2sin 103ωπϕ⎛⎫+-=⎪⎝⎭, ∴1sin 32ωπϕ⎛⎫+= ⎪⎝⎭,∴236k ωππϕπ+=+,或()5236k k Z ωππϕπ+=+∈.① 又直线6x π=-是()y f x =的图像的一条对称轴,∴(),62n n Z ππωϕπ-+=+∈,②由①②得()()222,?,3k n k n Z ω=-±∈, ∵0,,k n Z ω>∈, ∴min 23ω=; 此时252,296k n k ππϕπ+=+=, ∴()11218k k Z πϕπ=+∈,∵ϕπ<, ∴1118πϕ=, ∴()2112sin 1318f x x π⎛⎫=+- ⎪⎝⎭. 由()2112223182k x k k Z πππππ-+≤+≤+∈, 得()53336k x k k Z ππππ-+≤≤-+∈.∴()f x 的单调增区间是513,3,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦.故选A .【点睛】本题综合考查三角函数的性质,考查转化和运用知识解决问题的能力,解题时要将给出的性质进行转化,进而得到关于参数的等式,并由此求出参数的取值,最后再根据解析式得到函数的单调区间.12.双曲线22221(0,0)x y a b a b-=>>,(,0),(,0)(0)A t B t t ->,斜率为13的直线过A 点且与双曲线交于,M N 两点,若2OD OM ON =+u u u r u u u u r u u u r ,0BD MN ⋅=u u u r u u u u r,则双曲线的离心率为( )A. 5B. 5C.10D.10【答案】A【解析】【分析】联立方程组消元,根据根与系数的关系和中点坐标公式得出D点坐标,根据BDk=﹣3列方程得出a,b的关系,从而可得出双曲线的离心率.【详解】直线MN的方程为y13=(x+t),联立方程组()2222131y x tx ya b⎧=+⎪⎪⎨⎪-=⎪⎩,消元可得:(9b2﹣a2)x2﹣2a2tx﹣a2t2﹣9a2b2=0,设M(11,x y),N(22,x y),则由根与系数的关系可得:12x x+22229a tb a=-,∵2OD OM ON=+u u u r u u u u r u u u r,∴D为MN的中点,∴D(2229a tb a-,()222339a t tb a+-),∵0BD MN⋅=u u u r u u u u r,∴BD⊥MN,∴k BD=﹣3,即()22222233939a t tb aa ttb a+-=---,化简可得222495ab a=-,即b2a=,∴e225c a ba+===.故选:A.【点睛】本题考查了双曲线的性质,直线与双曲线的位置关系,属于中档题.二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省2019届高三适应性考试数学(理)试卷【含答
案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 下列各式的运算结果为纯虚数的是
A. i(1+i) 2
B. i 2 (1-i)
C. (1+i) 2
D. i(1+i)
2. 已知等差数列的前项和为,若,则()
A. 36
B. 72
C. 144
D. 288
3. 设变量满足不等式组,则的最小值是()
A. B. C. D.
4. 某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A. 月接待游客逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
5. 在△ABC中,,,则的值为()
A. 3
B.
C.
D.
6. 已知函数,则
A. y = 的图像关于点(1,0)对称________
B. 在(0,2)单调递减
C. y = 的图像关于直线 x =1对称________
D. 在(0,2)单调递增
7. 执行右侧的程序框图,当输入的值为4时,输出的的值为2,则空白判断框中的条件可能为
A. B. C. D.
8. 已知某几何体的三视图及相关数据如图所示,则该几何体的体积为
A. B.
C. D.
9. 直线经过双曲线的一个焦点和虚轴的
一个端点,则C的离心率为
A. B. C. D.
10. 将函数的图象向左平移个单位后,得到的图象,

A. B. 的图象关于对称
C. D. 的图象关于对称
11. 过抛物线的焦点,且斜率为的直线交于点(在的
轴上方),为的准线,点在上且 ,则到直线的距离为
A. B. C. D.
12. 设函数时恒有,则实
数 a 的取值范围是
A. B. C. D.
二、填空题
13. 已知向量,且,则 _______ .
14. 文渊阁本四库全书《张丘建算经》卷上(二十三):今有女子不善织,日减功,迟。

初日织五尺,末日织一尺,今三十日织訖。

问织几何?意思是:有一女子不善织布,逐日
所织布按等差数列递减,已知第一天织5尺,最后一天织1尺,共织了30天。

问共织布_______ 尺.
15. 已知的展开式中第 3 项与第 8 项的二项式系数相等,则展开式中所有项的系数和为 ___________ .
16. 在平面直角坐标系 xOy 中,双曲线的右支与焦点为 F
的抛物线交于 A , B 两点,若| AF |+| BF |=4| OF |,则该双曲线的渐近线方程为 _________ .
三、解答题
17. 已知在中,角的对边分别为,且.(Ⅰ)求角的大小;
(Ⅱ)若,,求的面积.
18. 已知某企业近 3 年的前 7 个月的月利润(单位:百万元)如下面的折线图所示:
( 1 )试问这 3 年的前 7 个月中哪个月的月平均利润最高?
( 2 )通过计算判断这 3 年的前 7 个月的总利润的发展趋势;
( 3 )试以第 3 年的前 4 个月的数据(如下表),用线性回归的拟合模式估测第 3 年 8 月份的利润.p
19. ly:宋体; font-size:11.5pt">月份 x 1 2 3 4 利润 y (单位:百万元) 4 4 6 6 相关公式:,.
20. 如图,在三棱柱中,平面,
为的中点 .
( 1 )求证:平面;
( 2 )求二面角的余弦值 .
21. 设椭圆,定义椭圆的“伴随圆”方程为
;若抛物线的焦点与椭圆C的一个短轴端点重合,且椭圆C 的离心率为.
( 1 )求椭圆 C 的方程和“伴随圆” E 的方程;
( 2 )过“伴随圆” E 上任意一点 P 作椭圆 C 的两条切线 PA , PB , A , B 为切点,延长 PA 与“伴随圆” E 交于点 Q , O 为坐标原点.
(i) 证明:PA⊥PB ;
(ii) 若直线 OP , OQ 的斜率存在,设其分别为,试判断是否为定值,若是,___________ 求出该值;若不是,请说明理由.
22. 已知函数 =e x (e x ﹣ a )﹣ a 2 x .
(1)讨论的单调性;
(2)若,求 a 的取值范围.
23. 【选修 4-4 :坐标系与参数方程】
在直角坐标系中圆 C 的参数方程为(为参数),以原点O 为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为
(1 )求圆 C 的直角坐标方程及其圆心 C 的直角坐标;
(2 )设直线与曲线交于两点,求的面积 .
24. 【选修 4-5 :不等式选讲】
已知函数
(1) 解关于的不等式;
(2) 若,使得成立,试求实数的取值范围 .
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】。

相关文档
最新文档