二次函数知识点总结59889
二次函数的知识点总结
二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。
在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。
二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。
2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。
4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。
5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。
三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。
2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。
3. 标准式:$y = ax^2 + bx + c$。
四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。
2. 完全平方法:通过配方将二次方程转化为完全平方的形式。
3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。
五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。
2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。
3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。
《二次函数》知识点知识点总结
《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。
三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。
函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。
2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。
函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。
五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。
向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。
向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。
六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。
二次函数的相关知识点总结
二次函数的相关知识点总结一、二次函数的概念。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。
二、二次函数的图象。
1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
2. 抛物线的顶点坐标。
- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。
根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。
3. 抛物线的对称轴。
- 对称轴方程为x =-(b)/(2a)。
4. 抛物线的开口方向。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。
三、二次函数的性质。
1. 增减性。
- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。
- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。
2. 最值。
- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。
二次函数的知识总结
二次函数的知识总结二次函数是高中数学中的重要内容之一,它是一种特殊的二次方程。
在学习二次函数的过程中,我们需要掌握二次函数的基本概念、性质以及相关的解题方法。
本文将从这几个方面对二次函数进行总结。
一、基本概念二次函数是指含有二次项的一元二次方程所表示的函数。
一般地,二次函数的一般形式可以写作f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
其中,a决定了二次函数的开口方向,b决定了二次函数的对称轴位置,c则是二次函数的纵坐标截距。
二、性质1. 对称性:二次函数的图像关于其对称轴对称。
对称轴的方程可以通过x = -b/2a求得。
2. 开口方向:当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。
3. 顶点坐标:对称轴与二次函数的图像的交点称为顶点,其坐标可以通过求解二次函数的导数为0的x值来确定。
4. 零点:二次函数的零点即为其方程的解,可以通过求解二次方程ax^2 + bx + c = 0来得到。
三、解题方法1. 求顶点坐标:可以通过求解二次函数的导数为0的x值来得到顶点的横坐标,再带入二次函数的表达式中求得纵坐标。
2. 求零点:可以通过因式分解、配方法、求根公式等方法来求解二次方程的解。
3. 判断开口方向:观察二次函数的系数a的正负来判断开口方向,a大于0则开口向上,a小于0则开口向下。
4. 判断图像位置:可以通过求解二次方程ax^2 + bx + c与y = k 的交点来判断二次函数的图像位置,其中k为常数。
四、常见问题1. 如何判断一个函数是否为二次函数?答:一个函数是否为二次函数,需要满足函数的表达式为f(x) = ax^2 + bx + c,且a不等于0。
2. 二次函数的图像有哪些特点?答:二次函数的图像是一条平滑的曲线,其形状可以为开口向上或开口向下的抛物线。
3. 如何求二次函数的顶点坐标?答:求二次函数的顶点坐标,可以通过求解二次函数的导数为0的x值,再带入函数表达式中求得纵坐标。
二次函数的知识点总结
二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。
其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。
2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。
4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。
零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。
5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。
二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。
通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。
2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。
3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。
4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。
三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。
2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。
中考数学--二次函数知识点总结
欢m二次函数知识点总结二次函数知识点:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b是一次项系数,c 是常数项.二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
b i n a .c o m总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:o m .c n /b e i j i n g s t u d y总结:二次函数图象的平移平 1. 移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
请将2y ax bx c =++配成()2y a x h k =-+。
总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.迎访问h t t p ://b l og .si n a .c o m .c n /b e i j i n g s tu d y 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.欢迎访问h tt p ://b l o g .si n a.c o m .c n /be i j i n g s t ud y ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结:3. 常数项c ⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;欢迎访问h t t p://b l og .si n a .c o m.c n /b e i j i n g s t u d y ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数与一元二次方程: 1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.。
关于二次函数的知识点总结
关于二次函数的知识点总结导语:二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
下面是由小编整理的关于二次函数的知识点总结。
欢迎阅读!1、二次函数及其图像二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2bxc(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;bxc(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);顶点式y=a(xm)∧2k(a≠0,a、m、k为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用*法把一般式化成顶点式;交点式y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿*值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。
由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)求根的方法还有因式分解法和*法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
二次函数知识点 二次函数知识点总结
二次函数知识点二次函数知识点总结
二次函数是形如y=ax^2+bx+c的函数,其中a≠0。
二次函数的图像呈现出抛物线的形状,开口的方向取决于a的正负。
1. 零点:二次函数的零点就是方程ax^2+bx+c=0的解,可以通过因式分解、配方法、根公式等求得。
2. 平移:二次函数可以通过平移抛物线来改变其图像的位置。
平移的方法包括横向平
移和纵向平移,分别通过将x和y值加上或减去常数来实现。
3. 对称轴:二次函数的对称轴是抛物线的镜像轴,可以通过x= -b/2a求得。
4. 最值:对于开口向上的抛物线,最小值为对称轴上的y值;对于开口向下的抛物线,最大值为对称轴上的y值。
5. 函数值的范围:对于开口向上的抛物线,函数值的范围为对称轴上的y值到正无穷;对于开口向下的抛物线,函数值的范围为负无穷到对称轴上的y值。
6. 判别式:判别式是方程ax^2+bx+c=0的判别式b^2-4ac,通过判别式可以判断方
程有几个解,并且可以判断解的性质。
7. 与x轴交点:与x轴交点是方程ax^2+bx+c=0的解,可以通过零点或者因式分解
求得。
8. 与y轴交点:与y轴交点是当x等于0时的函数值,即c。
9. 开口方向:二次函数的开口方向由系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
10. 求解顶点:顶点是抛物线的最高或最低点,可以通过对称轴和函数的最值求得。
二次函数知识点总结
二次函数知识点总结二次函数是数学中一个重要的函数类型,它在许多领域都有广泛的应用。
二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。
以下是二次函数的主要知识点总结:1. 定义:二次函数是最高次项为二次的多项式函数。
2. 标准形式:二次函数的标准形式是 y = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。
3. 系数意义:系数 a 决定了抛物线的开口方向和宽度,b 和 c 决定了抛物线的位置。
4. 开口方向:当 a > 0 时,抛物线向上开口;当 a < 0 时,抛物线向下开口。
5. 顶点:二次函数的顶点是抛物线的最值点,其坐标可以通过公式(-b/2a, f(-b/2a)) 计算得出。
6. 对称轴:二次函数的对称轴是一条垂直于 x 轴的直线,其方程为x = -b/2a。
7. 极值:当 a > 0 时,抛物线有最小值;当 a < 0 时,抛物线有最大值。
8. 零点:二次函数的零点是函数图像与 x 轴的交点,可以通过求解方程 ax^2 + bx + c = 0 得到。
9. 判别式:二次方程 ax^2 + bx + c = 0 的判别式为Δ = b^2 -4ac,它决定了方程的根的性质。
- 当Δ > 0 时,方程有两个不相等的实数根。
- 当Δ = 0 时,方程有两个相等的实数根。
- 当Δ < 0 时,方程没有实数根。
10. 应用:二次函数在物理、工程、经济学等领域有广泛应用,如抛体运动、最优化问题等。
11. 图像特征:二次函数的图像是一个抛物线,其形状和位置由系数a、b、c 共同决定。
12. 函数性质:二次函数具有连续性、可导性等性质,其导数为 f'(x) = 2ax + b。
13. 函数图像绘制:通过确定顶点、对称轴和零点,可以绘制出二次函数的图像。
14. 函数变换:通过对二次函数进行平移、伸缩等变换,可以得到新的二次函数图像。
二次函数知识点总结
二次函数知识点总结二次函数是高中数学中的重要内容之一,它在解决实际问题、解析几何和函数图像的分析等方面都有重要应用。
下面我将详细总结二次函数的知识点。
一、二次函数的定义:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a≠0。
二、二次函数的图像:1.函数的对称轴:对称轴是函数图像关于其顶点对称的直线。
对称轴的方程为x=-b/(2a)。
如果a>0,则对称轴是向下开口的抛物线;如果a<0,则对称轴是向上开口的抛物线。
2.函数的顶点:顶点是函数图像的最高点或者最低点。
顶点的坐标为(-b/(2a),f(-b/(2a)))。
3.函数的开口方向:如果a>0,则函数开口向下,图像是一个向下的抛物线;如果a<0,则函数开口向上,图像是一个向上的抛物线。
4.函数的图像关于对称轴对称,左侧和右侧的图像相同。
三、二次函数的常用形式:1. 标准型:y = ax^2 + bx + c。
2.顶点型:y=a(x-h)^2+k,其中(h,k)为顶点坐标。
3.因式分解型:y=a(x-x1)(x-x2),其中x1和x2为函数的零点。
四、二次函数的性质:1. 零点:也称为函数的根或者解,即使方程ax^2 + bx + c = 0的解。
二次函数的零点可以通过因式分解、求根公式或者配方法来求得。
2. 判别式:Δ = b^2 - 4ac,用于判断二次方程的解的情况。
a.如果Δ>0,则方程有两个不相等的实数根。
b.如果Δ=0,则方程有一个实数根。
c.如果Δ<0,则方程没有实数根,但可能有复数根。
3.对称性:抛物线在对称轴处对称,即f(x)=f(-x)。
4.单调性:对称轴两侧函数的增减情况是一样的,当a>0时,函数在对称轴左侧单调递减,在对称轴右侧单调递增,当a<0时,函数在对称轴左侧单调递增,在对称轴右侧单调递减。
5.最值:函数的最高点或最低点即为函数的最值,当a>0时,函数有最小值;当a<0时,函数有最大值。
二次函数知识点总结
二次函数知识点总结二次函数是数学中一种重要的函数形式,具有较广泛的应用。
本文将详细介绍二次函数的定义、性质、图像与变换、解析式、根与判别式、与其他函数的关系以及应用等知识点。
一、定义与性质:二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为已知常数,且a ≠ 0。
二次函数的定义域为全体实数集R,值域根据a的正负值有所不同。
二次函数的图像为抛物线,开口向上或向下。
性质1:二次函数f(x) = ax^2 + bx + c的导数为f'(x) = 2ax + b。
性质2:当二次函数的对称轴为x=h时,最高/最低点的横坐标为x=h,纵坐标为f(h)。
性质3:如果a>0,则抛物线开口向上,最低点为最小值;如果a<0,则抛物线开口向下,最高点为最大值。
二、图像与变换:二次函数的图像为一条抛物线,关键要素有顶点、对称轴、开口方向以及最高/最低点等。
1.顶点:二次函数的顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。
2.对称轴:二次函数的对称轴是垂直于x轴的一条线,其方程为x=-b/2a。
3.开口方向:二次函数的开口方向由二次项系数a的正负决定。
若a>0,开口向上;若a<0,开口向下。
4.最高/最低点:顶点即为最高或最低点,纵坐标为二次函数的最值。
变换1:平移变换二次函数f(x) = ax^2 + bx + c关于横轴上下平移h个单位的函数为f(x) = a(x-h)^2 + bx + c。
变换2:垂直伸缩与翻转二次函数f(x) = ax^2 + bx + c关于纵轴上下压缩k倍且翻转ξ度的函数为f(x) = a(k(x-ξ))^2 + bx + c。
三、解析式:二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为已知常数,且a ≠ 0。
根据实际问题的要求,可以确定二次函数的具体形式。
二次函数知识点总结
二次函数知识点总结定义:二次函数的一般形式为 f(x)=ax2+bx+cf(x) = ax^2 + bx +cf(x)=ax2+bx+c,其中a≠0a \neq 0a=0。
开口方向:当 a>0a > 0a>0 时,二次函数开口向上。
当 a<0a < 0a<0 时,二次函数开口向下。
对称轴:二次函数的对称轴是直线 x=−b2ax = -\frac{b}{2a}x=−2ab。
顶点:二次函数的顶点坐标为 (−b2a,f(−b2a))(-\frac{b}{2a}, f(-\frac{b}{2a}))(−2ab,f(−2ab))。
判别式:二次函数的判别式Δ=b2−4ac\Delta = b^2 - 4acΔ=b2−4ac 用于判断二次函数的根的情况。
当Δ>0\Delta > 0Δ>0 时,方程有两个不相等的实根。
当Δ=0\Delta = 0Δ=0 时,方程有两个相等的实根(重根)。
当Δ<0\Delta < 0Δ<0 时,方程无实根,有两个共轭复根。
函数的增减性:当 a>0a > 0a>0 时,函数在对称轴左侧是减函数,在对称轴右侧是增函数。
当 a<0a < 0a<0 时,函数在对称轴左侧是增函数,在对称轴右侧是减函数。
二次函数与坐标轴的交点:与 xxx 轴交点:解方程 ax2+bx+c=0ax^2 + bx + c =0ax2+bx+c=0。
与 yyy 轴交点:当 x=0x = 0x=0 时,y=cy = cy=c。
二次函数的图像变换:平移:通过改变 bbb 和 ccc 的值实现。
伸缩:通过改变 aaa 的值实现。
旋转:通过改变 xxx 的系数实现,但这并不改变函数本质。
二次函数的性质:对称性:函数图像关于对称轴对称。
最大值或最小值:函数在其定义域内有最大值或最小值,该值在顶点处取得。
二次函数的应用:抛物线的应用:如投篮轨迹、喷泉抛物线等。
二次函数知识点总结
二次函数知识点总结第一篇:二次函数基础知识一、什么是二次函数二次函数是具有一般式y=ax²+bx+c的函数,其中a、b、c为常数,且a不为0。
二、二次函数的图像1.开口向上的二次函数当a>0时,函数图像开口向上,其中x=-b/2a为函数的对称轴,抛物线的最低点为(x,-Δ/4a),其中Δ=b²-4ac为判别式。
2.开口向下的二次函数当a<0时,函数图像开口向下,其中x=-b/2a为函数的对称轴,抛物线的最高点为(x,-Δ/4a),其中Δ=b²-4ac为判别式。
三、二次函数的性质1.对于一般形式的二次函数y=ax²+bx+c,a称为二次项系数,b称为一次项系数,c称为常数项。
2.二次函数的图像为抛物线,对称轴方程为x=-b/2a。
3.当a>0时,二次函数抛物线开口向上,当a<0时,二次函数抛物线开口向下。
4.当a≠0时,二次函数与x轴最多有一个交点。
5.二次函数的解析式y=ax²+bx+c与顶点式y=a(x-p)²+q之间的关系为y=a(x-p)²+q=ax²-2apx+ap²+q,所以q=c+ap²,p=-b/2a。
6.当a>0时,二次函数的取值范围为[y(x)>= Δ/4a](其中x为实数);当a<0时,二次函数的取值范围为[y(x)<=Δ/4a](其中x为实数),其中Δ=b²-4ac为判别式。
四、二次函数的应用1.利用二次函数模型求最值问题。
2.用二次函数解决物理运动中的问题,如自由落体、抛体等。
3.用二次函数理解和解决概率问题,如正态分布等。
4.用二次函数解决经济问题、金融问题等。
以上就是二次函数的基础知识,通过学习这些知识可以帮助我们更好地理解和应用二次函数。
接下来,我们将深入了解二次函数的相关内容。
第二篇:二次函数进阶知识一、变形1.左右平移:y=a(x-h)²+k,其中(h,k)为顶点坐标,顶点向左平移h个单位,向右平移-h个单位。
二次函数重要知识点归纳
二次函数重要知识点归纳二次函数是高中数学中的重要内容,下面是关于二次函数的重要知识点的归纳。
1. 二次函数的定义:二次函数是具有形式f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
2.二次函数的图象特点:二次函数的图象是一个抛物线,其开口方向由二次函数的系数a的正负决定。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
3.二次函数的顶点:二次函数的顶点是抛物线的最低点(当a>0时)或最高点(当a<0时)。
顶点的坐标为(-b/2a,f(-b/2a))。
4.二次函数的对称轴:二次函数的对称轴是通过顶点的直线,其方程为x=-b/2a。
5. 二次函数的零点:二次函数的零点是函数图象与x轴的交点。
可以通过解二次方程ax² + bx + c = 0来求得二次函数的零点。
6. 二次函数的判别式:对于二次函数ax² + bx + c,判别式的值为D = b² - 4ac。
判别式的值可以用来判断二次函数的零点情况。
当D > 0时,二次函数有两个不相等的实数根;当D = 0时,二次函数有两个相等的实数根;当D < 0时,二次函数没有实数根。
7.二次函数的最值:当a>0时,二次函数的最小值为函数的顶点值;当a<0时,二次函数的最大值为函数的顶点值。
可以通过求解二次方程f'(x)=0来找到最值点。
8. 二次函数的平移:对于一般式为f(x) = ax² + bx + c的二次函数,横向平移h个单位和纵向平移k个单位后的函数为f(x-h) + k。
9. 二次函数的因式分解:对于一般式为f(x) = ax² + bx + c的二次函数,若可以因式分解成f(x) = a(x-x₁)(x-x₂)的形式,则x₁和x₂为f(x)的零点。
10. 二次函数的导数:对于二次函数f(x) = ax² + bx + c,其导数f'(x) = 2ax + b。
二次函数全章知识点综合
页眉内容二次函数知识点总结二次函数知识点:1.二次函数的概念:一般地,形如y ax 2 bx c ( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数 a 0,而 b ,c 可以为零.二次函数的定义域是全体 实数.22. 二次函数 y ax 2 bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量 ⑵a ,b ,c 是常数, a 是二次项系数,x 的二次式, x 的最高次数是 2. b 是一次项系数, c 是常数项.二次函数的基本形式21. 二次函数基本形式: y ax 2 的性质:结论: a 的绝对值越大,抛物线的开口越小。
总结:a 的符号开口方向 顶点坐标 对称轴 性质a0向上0,0 y 轴x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小; x 0 时, y 有最小值 0 .a0向下0,0y 轴x 0 时, y 随 x 的增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最大值 0 .22. y ax 2 c 的性质:页眉内容结论:上加下减。
总结:23. y a x h 的性质:结论:左加右减。
总结:24. y a x h k 的性质:总结:a 的符号开口方向 顶点坐标 对称轴 性质a0向上h ,k X=hx h 时, y 随 x 的增大而增大; x h 时, y 随 x 的增大而减小; x h 时, y 有最小值 k .a0向下 h ,k X=hx h 时, y 随 x 的增大而减小; x h 时, y 随 x 的增大而增大; x h 时, y 有最大值 k .二次函数图象的平移1. 平移步骤:2⑴ 将抛物线解析式转化成顶点式 y a x h 2 k ,确定其顶点坐标 h ,k ; ⑵ 保持抛物线 y ax 2 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2. 平移规律 在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移 概括成八个字“左加右减,上加下减” .、二次函数 y a x h k 与 y ax 2 bx c 的比较请将 y 2x 2 4x 5利用配方的形式配成顶点式。
数学二次函数知识点总结【通用6篇】
数学二次函数知识点总结【通用6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲致辞、法律文书、心得体会、岗位职责、鉴定评语、实习文案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, legal documents, personal experiences, job responsibilities, appraisal comments, internship copywriting, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学二次函数知识点总结【通用6篇】作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。
二次函数知识点总结
二次函数知识点总结二次函数是高中数学中的一个重要内容,其知识点涉及函数的定义、性质、图象、解析式、应用等。
下面是对二次函数知识点的总结。
一、函数的定义和基本性质:二次函数是形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c 为实数,a称为二次函数的系数。
①定义域:二次函数的定义域是任意实数集R。
②值域:对于二次函数y=ax^2+bx+c,当a>0时,函数的值域是[0,+∞),当a<0时,函数的值域是(-∞,0],当a=0时,函数的值域是{c}。
③对称轴:二次函数的对称轴是垂直于x轴的直线x=-b/2a。
④顶点:二次函数的顶点是对称轴上的点(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。
⑤开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
二、图象和性质:①图象特点:二次函数在平面直角坐标系内的图象是一个抛物线。
②定点:二次函数开口向上时,顶点是最小点;二次函数开口向下时,顶点是最大点。
③与坐标轴的交点:二次函数与x轴的交点叫做零点,是方程ax^2+bx+c=0的解;与y轴的交点是函数的常数项c。
④单调性:二次函数的单调性受其系数a的符号影响。
当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。
⑤零点与解析式:对于二次函数y=ax^2+bx+c,其零点可以通过求解方程ax^2+bx+c=0得到,其中的判别式Δ=b^2-4ac可以判断二次方程的解的情况。
三、解析式和变形:①标准形式:二次函数的标准形式是y=ax^2+bx+c。
②顶点式:二次函数的顶点式是y=a(x-h)^2+k,其中(h,k)为顶点坐标。
③因式分解式:当二次函数可因式分解时,可以表示成y=a(x-p)(x-q)的形式。
四、一些常见问题和解法:①如何确定二次函数的开口方向和顶点:若a>0,则开口向上,顶点为抛物线的最小值;若a<0,则开口向下,顶点为抛物线的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的在联系:图像参考:y=-2x 22y=3(x+4)22y=3x 22-32y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少1、求有关点的坐标2、求函数解析式3、求最值4、求面积5、动点、动线、动图问题。