第5章 真空中的恒定磁场

合集下载

大学物理学 第五章 真空中的静电场

大学物理学 第五章 真空中的静电场

q
l 2
O
l 2
q
E
r
E
r
q
l 2
1
O
l 2
q
E
r
P
E
r
q E 2 4 0 ( r l / 2)
E E E
q E 2 4 0 ( r l / 2)
1
E E E
r l
q 2rl 4 0 ( r 2 l 2 / 4)2 1 2ql 1 2p E E 3 3 4 0 r 4 0 r
与 r2 成反比,r , E 0
思考: r 0
E ?
二、点电荷系的电场
E Ei
i i
1 qi e 2 ri 4 π 0 ri
dE
er q0
三、连续带电体的电场
E dE 1 dq e 2 r q 4 π 0 r
电荷密度
二.恒定电流与稳恒磁场的基本性质及规律
(第七章)
三.电磁感应现象及规律(第八章)
第五章
主要内容
§ 1 库仑定律 § 2 静电场 § 3 高斯定律 § 4 电势 电场强度
教学基本要求
一 了解电荷及性质;掌握库仑定律. 二 理解电场的概念;明确电场的矢量性和可 叠加性;会利用电场叠加原理求解简单带电体的电 场分布. 三 理解高斯定理的物理意义;能够利用高斯 定理求解特殊场分布.
q1q2 F12 k 2 e12 F21 r12
1 令 k ( 0 为真空电容率) 4 π0 1 0 8.8542 1012 C2 N 1 m 2 4πk 12 1 8.8542 10 F m

电磁场与电磁波--真空中恒定场的基本规律

电磁场与电磁波--真空中恒定场的基本规律

=rr
rr
R12 = rr rr
2.3 真空中恒定磁场的基本规律
r
rr
蜒 蜒 r
F12
C2
0
C1 4π
I2dl2
(I1dl1 R132
R12 )
C2
r C1 dF12
r
rr
r dF12
0

I2dl2 (I1dl1 R12 ) R132
对比
r rr dFm Idl B
电流元
r Idl
Er(rr
r ) dl
0
环路定理表明:静电场是无旋场,是保守场,电场力做功与路径无关。
2.2 真空中静电场的基本规律
3. 利用高斯定理计算电场强度 在电场分布具有一定对称性的情况下,可以利用高斯定理计算电场强度。
具有以下几种对称性的场可用高斯定理求解:
• 球对称分布:包括均匀带电的球面,球体和多层同心球壳等。
位于xy 平面上,则所求场点为P (0, 0, z ) , 如图 所示。采用圆柱坐标系,
圆环上的电流元为
位置矢量为 rr erz
r Idl
er
Iad
z ,故得
'
,
其位置矢量为 rr er a,而场点 P 的
rr
rr
r ez
z
r e a,
rr rr (z2 a2)1/2
z
r Idl
(rr
rr)
1 b2 )1/2
z0
0
z0

2.2 真空中静电场的基本规律
r E(0,0, z)
r ez
S0z 2 0
1 z
(z2
1 b2 )1/2
z0

电磁场与电磁波第二版答案陈抗生

电磁场与电磁波第二版答案陈抗生

电磁场与电磁波第二版答案陈抗生【篇一:2011版电磁场与电磁波课程标准】xt>课程编号:适用专业:总学时数:学分:07050021 通信工程本科理论32学时 3一、课程目的及性质电磁场与电磁波是通信技术的理论基础,通过本课程的学习,使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。

使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。

培养学生正确的思维方法和分析问题的能力,使学生学会用场的观点去观察、分析和计算一些简单、典型的场的问题。

为后续课程打下坚实的理论基础。

二、本课程的基本内容第一章矢量分析(一)教学目的与要求1、理解矢量的标积和矢积;2、理解标量场的方向导数与梯度;3、理解矢量场的通量、散度与散度定理;4、理解矢量场旋度的散度,标量场梯度的旋度;5、理解亥姆霍兹定理、正交曲面坐标系。

(二)教学的重点与难点 1、 2、 3、矢量场中的散度定理和斯托克斯定理;无散场、无旋场的含义;格林定理。

(三)课时安排理论6课时(四)主要内容第一节:标量与矢量(1)课时 1、 2、 3、矢量的代数运算矢量的标积与矢积标量场的方向导数与梯度第二节:矢量场(1)课时 1、矢量场的通量、散度与散度定理 2、矢量场的环量、旋度与旋度定理第三节:无散场与无旋场(1)课时1、矢量场旋度的梯度2、标量场梯度的旋度3、格林定理第四节:矢量场的基本定义和坐标系 1、格林定理2、矢量场的唯一性定义3、亥姆霍兹定理4、正交曲面坐标系(3)课时第二章静电场(一)教学目的与要求 1、 2、 3、 4、 5、 6、 7、8、(二)教学的重点与难点 1、 2、 3、 4、电荷分布与电场强度、电位的关系式;静电场边界中:束缚电荷与电场,极化强度的关系;电场能量;虚位移方法在求解电场作用力的应用。

理解电通量定理,电场线及电场强度方向;理解真空中静电场的积分和微分形式;理解电荷的面密度和线密度与电位、电场强度的关系;理解束缚电荷与极化强度的关系;理解介质中静电场的微分与积分形式;理解静电场的边界条件;理解电容与电场能量的关系;理解虚位移方法在求解作用力的方法在常电荷,常电位系统中的应用。

真空中恒定磁场的基本规律

真空中恒定磁场的基本规律

P dS
S
PdV
V
P P
14
( 2 ) 极化电荷面密度
紧贴电介质表面取如图所示的闭曲面,则穿过面积元 的dS极
化电荷为
dqP qnldS cos PdS cos P dS
故得到电介质表面的极化电荷面密度为
SP P en
S P
dS en
15
4. 电位移矢量 介质中的高斯定理
• 载流圆环轴线上的磁感应强度:
B(0, 0,
z)
ez
0 Ia 2
2(a2 z2 )3
2
4
z
2
I M 1
载流直线段
z
M
ao
y
x
I
载流圆环
5
例 2.3.1 计算线电流圆环轴线上任一点的磁感应强度。 解:设圆环的半径为a,流过的电流为I。为计算方便取线电
流圆环位于xy平面上,则所求场点为P(0,0,z),如图 所示。采用圆柱
其中 0(1 e ) r0 称为介质的介电常数,r 1 e 称为介
质的相对介电常数(无量纲)。
* 介质有多种不同的分类方法,如: • 均匀和非均匀介质 • 各向同性和各向异性介质 • 时变和时不变介质
• 线性和非线性介质 • 确定性和随机介质
恒定场的散度(微分形式) 磁通连续性原理(积分形式)
B(r ) 0
S B(r ) dS 0
磁通连续性原理表明:恒定磁场是无源场,磁场线是无起点和
终点的闭合曲线。
2. 恒定磁场的旋度与安培环路定理
恒定磁场的旋度(微分形式)
B(r ) 0J (r )
安培环路定理(积分形式)
B(r)dl
I2dl2 (I1dl1 R12 )

第五章 稳恒磁场典型例题

第五章  稳恒磁场典型例题

第五章 稳恒磁场设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。

解:如图所示令 110A I H e r = 220A IH e r= 由稳恒磁场的边界条件知,12t t H H = 12n n B B = 又 B μ= 且 n H H =所以 1122H H μμ= (1) 再根据安培环路定律H dl I ⋅=⎰得 12IH H rπ+= (2) 联立(1),(2)两式便解得,21120I I H r rμμμμπμμπ=⋅=⋅++012120I I H r rμμμμπμμπ=⋅=⋅++ 故, 01110IB H e r θμμμμμπ==⋅+ 02220IB H e rθμμμμμπ==⋅+ 212()M a n M M n M =⨯-=⨯ 220()B n H μ=⨯-00()0In e rθμμμμπ-=⋅⋅⨯=+ 222()M M M J M H H χχ=∇⨯=∇⨯=∇⨯0000(0,0,)zJ Ie z μμμμδμμμμ--=⋅=⋅++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。

?解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分量,而与φ,z 无关。

由2A ∇的柱坐标系中的表达式可知,只有一个分量,即 210A J μ∇=- 220A ∇= 此即101()A r J r r r μ∂∂=-∂∂21()0A r r r r∂∂=∂∂ 通解为 21121ln 4A Jr b r b μ=-++212ln A c r c =+ 当0r =时,1A 有限,有10b =由于无限长圆柱导体上有恒定电流J 均匀分布于截面上,设r a =时, 120A A ==,得202121ln 04Ja b c a c μ-+=+=)又r a =时,12011e A e A ρρμμ⨯∇⨯=⨯∇⨯,得 112c Ja a μ-=所以 2221220111,,224c Ja c Ja b Ja μμμ=-=-=所以, 22101()4A J r a μ=--221ln 2a A Ja rμ=写成矢量形式为 22101()4A J r a μ=--221ln 2a A Ja rμ=设无限长圆柱体内电流分布,0()z J a rJ r a =-≤求矢量磁位A 和磁感应B 。

第05讲 真空中的麦克斯韦方程组

第05讲  真空中的麦克斯韦方程组

第4讲 真空中的麦克斯韦方程组 第一章 电磁现象的普遍规律(3) §1.3 真空中的麦克斯韦方程组以上两节由实验定律总结了恒定磁场的基本规律。

随着交变电流的研究和广泛应用,人们对电磁场的认识有了一个飞跃。

由实验发现不但电荷激发电场,电流激发磁场,而且变化着的电场和磁场可以互相激发,电场和磁场成为统一的整体——电磁场。

和恒定场相比,变化电磁场的新规律主要是: (1)变化磁场激发电场(法拉第电磁感应定律); (2)变化电场激发磁场(麦克斯韦位移电流假设)。

下面分别讨论这两问题。

1. 电磁感应定律 自从发现了电流的磁效应之后,人们跟着研究相反的效应,即磁场能否导致电流?开始人们企图探测处于恒定磁场中的固定线圈上的感应电流,这些尝试都失败了,最后于1831年法拉第发现当磁场发生变化时,附近闭合线圈中有电流通过并由此总结出电磁感应定律:闭合线圈中的感应电动势与通过该线圈内部的磁通量变化率成正比,其方向关系在下面说明。

如图1-6,设L 为闭合线圈,S 为L 所围的一个曲面,d S 为S 上的一个面元。

按照惯例,我们规定L 的围绕方向与d S 的法线方向成右手螺旋关系。

由实验测定,当通过S 的磁通量增加时,在线圈L 上的感应电动势E 与我们规定的L 围绕方向相反,因此用负号表示。

电磁感应定律表为 ε=⎰⋅-S d dtdS B (1.3---1)线圈上的电荷是直接受到该处电场作用而运动的,线圈上有感应电流就表明空间中存在着电场。

因此,电磁感应现象的实质是变化磁场在其周围空间中激发了电场,这是电场和磁场内部相互作用的一个方面。

感应电动势是电场强度沿闭合回路的线积分,因此电磁感应定律(1.3---1)式可写为LSdd d dt ⋅=-⋅⎰⎰E B S l (1.3---2) 若回路L 是空间中的一条固定回路,则上式中对t 的全微商可代为偏微商 LS d d t∂⋅=-⋅∂⎰⎰BE S l 化为微分形式后得t∂∂-=⨯∇BE (1.3---3) 这是磁场对电场作用的基本规律。

电磁场与波模拟题

电磁场与波模拟题

电磁场与波模拟题一、填空题1.矢量分析中的散度定理(或高斯公式)是 ,斯托克斯定理(或斯托克斯公式)是 。

2.空间位场()+()()x y z R e x x e y y e z z '''=--+-,||R R =。

则R ∇= ,1R ⎛⎫∇= ⎪⎝⎭,R ∇⨯= 。

3.真空中静电场的基本方程的微分形式为 , ,静电场用静电位表示为 。

静电位满足的泊松微分方程为____________________。

4.导体中稳恒电流场的基本方程的微分形式为 , ,稳恒电流场用静电位表示为 。

静电位满足的拉普拉斯微分方程为____________________。

5.真空中恒定磁场的基本方程的微分形式为 , ,恒定磁场用矢量磁位表示为 。

若引入库伦规范条件___________,则矢量磁位满足的微分方程为__________。

6.在时变电磁场中,定义动态矢量位A 和标量位ϕ,则磁场B =__________,电场E =__________。

若引入洛仑兹规范条件___________,则动态位满足的微分方程为_____________、______________。

7.在理想介质分界面上磁场强度H 满足的关系是 ,磁感应矢量B 满足的关系 。

8.在理想介质分界面上电场强度E 满足的关系是 ,电位移矢量D 满足的关系 。

9.应用分离变量法在解矩形二维场的问题时,位函数所满足的拉普拉斯方程为_______,其第一步是令(,)x y ϕ=________,然后可将此偏微分方程分解为两个_____微分方程。

10.复数形式的麦克斯韦方程组是___________、______________、_____________、______________。

11.无源空间的电磁场波动方程为_____________、______________;时谐场的波动方程的复数形式即亥姆霍兹方程是_______________、________________。

恒定磁场

恒定磁场

1恒定磁场1.真空中位于'r点的点电荷q的电位的泊松方程为()2.由()可知,无界空间中的恒定磁场由恒定磁场的散度和旋度方程共同决定3.恒定磁场在自由空间中是()场4.磁通连续性定律公式物理意义:穿过任意闭和面的磁通量为()。

即进入闭和面S的磁力线数与穿出闭和面S的磁力线数(),磁力线是闭和的5.安培环路定律公式物理意义:磁感应强度B沿任意闭和路径l的线积分,()穿过路径l所围面积的总电流与的乘积6.一个载流的小闭和圆环称为()7.电流环的面积与电流的乘积,称为()8.在远离偶极子处,磁偶极子和电偶极子的场分布是()的,但在偶极子附近,二者场分布()9.磁力线是()的,电力线是间断的10.介质在磁场作用下会产生()11.磁化引起的分子电流、原子电流相当于()12.磁偶极子产生()磁场,叠加于原场之上,使磁场发生变化。

磁化的结果使介质中的合成磁场可能减弱,也可能增强13.介质磁性能分类:()磁性介质,()磁性介质,铁磁性及亚铁磁性介质14.()磁性介质:二次磁场与外加磁场方向相反,导致介质中合成磁场减弱15.()磁性介质:二次磁场与外加磁场方向相同,导致介质中合成磁场增强16.铁磁性及亚铁磁性介质:在()作用下,磁化现象非常显著17.在无传导电流的均匀介质中,束缚电流体密度为()18.只有磁场强度为零或磁场强度与介质表面相垂直的区域,束缚电流面密度为()19.磁感应强度通过某一表面的通量称为()20.与某电流交链的磁通量称为()21.导线回路的总自感等于内、外自感之()22.单位导线回路的内自感为()23.磁场问题的基本变量是场源变量和两个基本的场变量:磁感应强度和磁场强度。

实验证明:磁场的两个基本变量之间的关系为()24.磁通量连续性方程微分形式:()25.安培力可以用磁能量的空间变化率称()来计算26.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内外的磁感应强度27.一段长为L的导线,当其中有电流I通过时,求空间任一点的矢量磁位及磁感应强度28.磁导率为,内外半径分别为a,b的无限长空心导体圆柱,其中存在轴向均匀电流密度,求各处磁场强度和磁化电流密度。

真空中的恒定磁场(中文)

真空中的恒定磁场(中文)
向一致,那么上式的矢量积分变为标量积分 ,且B 可以由积分号移出,即可求出B值。
<>
=3<
—!
1微分形式
安培环路定律 磁
口 B & = m 01
通连续性原理
<>
=3<
—!
二多 由散度定理获知毓
口 原理,
SdV 那么,根据磁通连续性 B魅=0得
LV.Bdv=°
由于此式处处成立,因此被积函数应为零,即
V. B = 0
此式表明,真空中磁通密度的散度处处为零。
真空中恒定磁场方程的微分形式为
B V x B = m 0 J V - = 0
可见,真空中恒定磁场是有旋无散的。
r
dV,毕奥 _
萨伐定律
利用上式也可根据电流分布直接计算磁通密度。
<>
=3<
—!
电流可以分布在体积中,表面上或细导线中。
面分布的电流称为表面电流,表面电流密度JS 的单位为 A/m o
二 各种电流之间的关系为"=JS^
0面电流和线电流产生的矢量磁位及磁通密度分
别为
斜 口 二栄 9 口 A(r) = 99
丄 ° 此外F dl。
<>
=3<
—!
小电流环受到的转矩。
尺寸远小于观察距离的小电流 环称为磁偶极子。
在小环的平面内可以认为磁场
二 F IIxB 是均匀的。
当磁通密度B与电流环平面平行时,则ab及 cd两条边不受力,ad及bc两条边受力方向相反, 因此,电流环受到一个转矩T,其大小为
T = Fl = IlBl = Il2 B = ISB
运动电荷在磁场中受到的作用力不仅与电荷 量及 运动速度的大小成正比,而且还与电荷的运 动方向 有关。

真空中恒定磁场的安培环路定理

真空中恒定磁场的安培环路定理
dI
dI
dB dB dB dB
P
I 当r R时, I内 r 2 R2
B
L
r2 B 2 r 0 2 I R
0 I B r 2 2 R
R
7
r
2、求无限长螺线管内的磁感应强度。设螺线管长 为L,共有N匝线圈,通有电流I。 解:管内中部磁场均匀,方 向与管平行;管外中部贴近管 P b a 壁处磁场很弱,B=0。 作一长方形环路abcda c d B dl B dl B dl B dl B dl
二、安培环路定理的应用举例 1、求无限长载流圆柱导体内外的磁场。设圆柱体 半径为R,面上均匀分布的总电流为I。 I R 解:沿圆周L的B环流为 P B dl B 2 r 0 I内
( L)
当r R时,
0 I B 2 r
I内 I
B 2 r 0 I
l B dl 0 I
I
l
d
B dlIrl3
(2) 闭合曲线不包围长直电流:
B1

B2
dl 2 dl
1
I
r1
r2
0 I 0 I B1 B2 2π r1 2π r2 μ0 I B1 dl1 dφ 2π μ0 I B2 dl2 dφ 2π l B dl l B1 dl1 l B2 dl2
abcda ab bc cd da
B ab
0
0
0
N )B dl 0 ab L I 0 abn I (L
B 0 n I
8
例题 一矩形截面的空心环形螺线管,尺寸如图所示, 其上均匀绕有N匝线圈,线圈中通有电流I。试求: (1)环内距轴线为r 远处的磁感应强度; (2)通过螺线管截面的磁通量。 I 解:与螺线管共轴的圆周上各点 B大小相等,方向沿圆周切线。 r 0 N I B dl B 2 r

物理学稳恒磁场课件

物理学稳恒磁场课件

B内ab 由安培环路定理
0
N l
abI
n N l
b B内a
c d
B 0nI
均匀场
由安培环路定理可解一些典型的场
无限长载流直导线
密绕螺绕环
匝数
B 0I 2 r
Ir
B 0 NI 2 r
无限大均匀载流平面
B 0 j
2
(面)电流的(线)密度
场点距中心
的距离 r
电流密度
I
Idl
B dF
安培指出 任意电流元受力为
dF Idl B
安培力公式
整个电流受力 F Idl B
l
例1 在均匀磁场中放置一半径为R的半圆形导线, 电流强度为I,导线两端连线与磁感强度方向夹角 =30°,求此段圆弧电流受的磁力。
解:在电流上 任
ab 2R
取电流元 Id l
(b)
洛 仑兹力是相对论不变式 B 磁感强度
(Magnetic Induction)
或称磁通密度 (magnetic flux density) 单位:特斯拉(T)
§3 磁力线 磁通量 磁场的高斯定理
一.磁力线
1. 典型电流的磁力线
2. 磁力线的性质
无头无
与电流
与电流成右
尾 闭 套连
手螺旋关系
合二曲. 线磁通量
IS
(体)电流的(面)密度
如图 电流强度为I的电流通过截面S
若均匀通过 电流密度为 J I S
(面)电流的(线)密度
I
如图 电流强度为I的电流通过截线 l
l
若均匀通过 则
j I l
§6 磁力及其应用
一 1..洛带仑电兹粒力子在磁f场m 中受qv力

大学物理学第五六章恒定磁场自学练习题

大学物理学第五六章恒定磁场自学练习题

07《大学物理学》第五六章恒定磁场自学练习题(共11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章 恒定磁场部分 自学练习题要掌握的典型习题: 1.载流直导线的磁场:已知:真空中I 、1α、2α、x建立坐标系Oxy ,任取电流元I dl ,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。

统一积分变量:cot()cot y x x παα=-=-;有:2csc dy x d αα=;sin()r x πα=-。

则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I xμααπ-=。

①无限长载流直导线:παα==210,,02IB xμπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。

2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。

建立坐标系Oxy :任取电流元Idl ,P 204rIdldB πμ=;方向如图。

分析对称性、写出分量式:0B dB ⊥⊥==⎰;⎰⎰==20sin 4r Idl dB B x x απμ。

统一积分变量:r R =αsin∴⎰⎰==20sin 4r Idl dB B x x απμ⎰=dl r IR 304πμR r IR ππμ2430⋅=232220)(2x R IR +=μ。

结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。

①当x R >>时,220033224IRI R B x xμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB RRμμππ==⋅; B⊗RI dlIdlr αOB d RrB③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。

电磁场与电磁波(第三版)课后答案第5章

电磁场与电磁波(第三版)课后答案第5章

第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。

解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。

将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

恒定磁场分析

恒定磁场分析
真空中本构关系
7
求证:
证 明:

ur r B ds = 0
Q
ur µ B= 0 4π

r ur Id l × R R3
r r u r r µ0 Idl × eR r ∴ ∫ B ds = ∫ ∫ c R2 d s s 4π
又Q
uv ur uv uv ur uv A× B C = A B×C
23
2、磁偶极子的标量位(解释P116) 磁偶极子的标量位(解释 ) 在无源区域( 在无源区域(只有无源 ∇ × H = J=0 uu r 区域才定义标量位): 区域才定义标量位): ∇×H =0 uu r H = −∇ ϕ m 由下面式子
P ( r ,θ , 0 )
µ0 µ0 1 A = p m × e r = − p m × ∇ 2 4πr 4π r B、幂级数近似) 与求电偶极子类似的方法(余弦定理、幂级数近似)可以得到 磁偶极子的矢量位和标量位: 磁偶极子的矢量位和标量位:
µ0 µ0 1 A= p m × er = − p m × ∇ 2 4πr 4π r
的距离,是标量。 其中 r 为场点 P 到磁偶极子中心 O 的距离,是标量。
这表明恒定磁场是无散有旋场, 这表明恒定磁场是无散有旋场, 无散有旋场 传导电流是其旋涡源。 传导电流是其旋涡源。
13
5-2、内、外半径分别为 a、b 的无限长空心圆柱中,均匀 - 、 、 的无限长空心圆柱中, 分布着轴向电流 求柱内、外的磁场强度。 I ,求柱内、外的磁场强度。
解:使用圆柱坐标系。电流密度沿轴线方向为 使用圆柱坐标系。
12
3、真空(介质)中磁场的基本方程: 真空(介质)中磁场的基本方程:
∫sB • d s = 0 , ∇•B =0 , ∇×H = J ∫c H • d l = I B = µ0H B = µH

电磁场与电磁波 第五章答案

电磁场与电磁波 第五章答案

第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。

但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。

说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。

讲解恒定磁场时,应与静电场进行对比。

例如,静电场是无散场,而恒定磁场是无旋场。

在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。

重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(30 r r r r r J r B πμ 毕奥─萨伐定律。

3,I ⎰=⋅ll B 0d μ安培环路定律。

面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0 r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇矢量磁位微分方程的解: V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。

电磁场与电磁波课后习题及答案五章习题解答

电磁场与电磁波课后习题及答案五章习题解答

五章习题解答真空中直线长电流I 的磁场中有一等边三角形回路,如题图所示,求三角形回路内的磁通。

解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I rφμπ=B e 穿过三角形回路面积的磁通为d S ψ==⎰B S 32320002[d ]d d 2d b d b z ddII zz x x x xμμππ=⎰ 由题图可知,()tan63z x d π=-=,故得到320d 3d b d x d x x ψπ-==⎰03[23I b b μπ 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

dbIz题 图d S由安培环路定律d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r b b r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 020222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。

将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <> 空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a < 式中d 是点和b o 到点a o 的位置矢量。

《电磁场与电磁波》恒定磁场

《电磁场与电磁波》恒定磁场

分界面磁化电流: Km (M1 M2 ) en
Im
M dl
l
安培环路定理
1.真空中的安培环路定理
l B dl 0 I
真空磁场中,磁感应强度沿任意回路的 环路积分等于真空的磁导率乘以穿过该 回路所限定面的电流的代数和;
2.一般形式的安培环路定理
l B dl 0 ( I Im )
H dl H dl I
PaQ
PbQ
c
I
闭合回路PaQcP:
Q
H dl 2I PaQcP
H dl H dl 2I
PaQ
PcQ
规定:积分路径不穿过电流回路所限定的面。
2.标量磁位的边值问题 微分方程
B 0
H 0
H m
m 0
m m 0 均匀媒质:=0
2m 0 标量磁位的微分方程
Sd
(1)常磁链系统:
Wm
1 2
H BdV
V
V
B2 dV
20
B2Sd
2d
20 20S
f
Wm g
k const
2 20 S
吸力:F 2 f
3.虚位移法举例
例:分析电磁铁吸力,气隙截面积S,长d
1. 恒定磁场基本方程 恒定磁场的性质可由下面一组基本方程描述:
磁通连续性定理 SB dS 0 安培环路定理 l H dl I
各向同性线性媒质的构成方程
B 0 H J
B H
恒定磁场的性质:有旋无散。
2.分界面的衔接条件
B 的衔接条件
2
B2n B2
S h
1 B1
B1n
SB dS 0
B1nS B2nS 0 B1n B2n

恒定磁场

恒定磁场

x r sin
Idl
x dl 2 d sin
r l o 1
积分变为:
x I sin d 2 Idlsin 2 2 0 sin 0 B dB 1 4π L 1 4 π r2 x2 2 sin 0 I 0 I sin d cos1 cos 2
1 0 , 2 0,
B =0
a
直线电流的磁感应线
磁感应线是以直线电流为轴的一层层同心圆环。
I
I
B
2.通电圆线圈的磁场
已知:电流为I,半径 R
Idl
求:圆电流的垂直轴线上P点的 B
R
I
解:将圆环分割为无限多个电流元, 电流元在轴线上产生的磁感应强度 dB 为:
o
Idl
dB dB r dBx x P dBx ' x dB ' dB'
I
I
第三节 恒定磁场的高斯定理 一.磁感应线
为形象的描绘磁场分布而引入的一组有方向的 空间曲线。 规定: •方向:磁感应线上各点的切线方向就是该点磁感应 强度的方向。 •大小:通过磁场中某点垂直于磁感应强度的单位 面积的磁感应线条数等于该点磁感应强度的大小。 磁感应线的疏密可以反映磁感应强度的大小。 磁感应线稀疏处B较小,磁感应线密集处B较大。

二.毕奥-萨伐尔定律的应用
解题步骤
1.选取合适的电流元——根据已知电流的分布与待求场点的位
置; 2.选取合适的坐标系——要根据电流的分布与磁场分布的特点 来选取坐标系,其目的是要使数学运算简单; 3.写出电流元产生的磁感应强度——根据毕奥-萨伐尔定律;
4.计算磁感应强度的分布——叠加原理;

电磁场试题及答案

电磁场试题及答案

题前带“***“号的题可看可不看,稍微看看就行亲,发现错误,记得共享o !!一、填空1.方程▽2φ=0称为静电场的(拉普拉斯(微分))方程2.在静电平衡条件下,导体内部的电场强度E 为(0)3.线性导电媒质是指电导率不随(空间位置)变化而变化4.局外电场是由(局外力)做功产生的电场5.电感线圈中的磁场能量与电流的平方(成正比)6.均匀平面电磁波中,E 和I 均与波的传播方向(垂直)7.良导体的衰减常数α≈(2ωμσ)8.真空中,恒定磁场安培环路定理的微分形式(▽x B=0μJ )9.在库伦规范和无穷远参考点前提下,面电流分布的矢量的磁位公式(A=⎰RdS J 4s 0πμ)公式3-43 10.在导体中,电场力移动电荷所做的功转化为(热能)11. 在静电平衡条件下,由导体中E=0,可以得出导体内部电位的梯度为(0 )(p4页)12.电源以外的恒定电场中,电位函数满足的偏微分方程为(▽ϕ2=0)(p26页)***13.在无源自由空间中,阿拉贝尔方程可简化为----------波动方程。

瞬时值矢量齐次 (p145页)14.定义位移电流密度的微分表达式为(J d =t ∂∂D =0εt ∂∂E +tP ∂∂) (p123页)15.设电场强度E=4,则0 P12页16.在单位时间内,电磁场通过导体表面流入导体内部的能量等于导线电阻消耗的(热功率)17.某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(负梯度)18.电流连续性方程的积分形式为(⎰JdS =-dtdq ) 19.两个同性电荷之间的作用力是(相互排斥的)20.单位面积上的电荷多少称为(面电荷密度)21.静电场中,导体表面的电场强度的边界条件是:(E t =0,D n =s ρ)22.矢量磁位A 和磁感应强度B 之间的关系式:( =▽ x )***23.E(Z,t)=e x E m sin(wt-kz-)+ e y E m cos(wt-kz+),判断上述均匀平面电磁波的极化方式为:(线极化)24.相速是指(平面电磁波等相位面行进的速度)25.电位移矢量D=ε0E+P 在真空中P的值为(0)26.平板电容器的介质电容率 越大,电容量越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、概念选择题:
1.磁场对运动电荷或载流导线有力的作用,下列说法中不正确的是:( B )(A)磁场对运动粒子的作用不能增大粒子的动能
(B)在磁场方向和电流方向一定的情况下,导体所受安培力的方向与载流子种类有关
(C)在磁场方向和电流方向一定的情况下,霍尔电压的正负与载流子的种类有关
(D)磁场对运动电荷的作用力称做洛仑兹力,它与运动电荷的正负、速率以及速度与磁场的方向有关。

2.在均匀磁场中,放置一个正方形的载流线圈,使其每边受到的磁力的大小都相同的方法有:( B )
(A)无论怎么放都可以(B)使线圈的法线与磁场平行
(C)使线圈的法线与磁场垂直(D)(B)和(C)两种方法都可以
3.一平面载流线圈置于均匀磁场中,下列说法正确的是:(D )
(A)只有正方形的平面载流线圈,外磁场的合力才为零
(B)只有圆形的平面载流线圈,外磁场的合力才为零
(C)任意形状的平面载流线圈,外磁场的合力和力矩一定为零
(D)任意形状的平面载流线圈,外磁场的合力一定为零,但力矩不一定零
4.洛仑兹力可以:(B )
(A)改变运动带电粒子的速率(B)改变带电运动粒子的动量
(C)对带电运动粒子作功(D)增加带电运动粒子的动能
5.取一闭合积分回路L,使三根载流导线穿过它所围成的面。

现改变三根导线之间的相互间隔,但不越出积分回路,则:( B )
∑不变,L上各点的B 不变
(A) 回路L内的I
∑不变,L上各点的B 改变
(B) 回路L内的I
∑改变,L上各点的B 不变
(C) 回路L内的I
∑改变,L上各点的B 改变
(D) 回路L内的I
6.若空间存在两根无限长载流直导线,空间的磁场分布就不具有简单的对称性,则该磁场分布:( D )
(A)不能用安培环路定理来计算
(B )可以直接用安培环路定理求出
(C )只能用毕奥-萨伐尔定律求出
(D )可以用安培环路定理和磁感强度的叠加原理求出
7.下列关于磁感线的说法中错误的是:( D )
(A) 曲线上任意一点的切线方向就是该点磁感强度的方向
(B) 磁感线密的地方磁场就强
(C) 载流导线周围的磁感线都是围绕电流的闭合曲线
(D) 磁场中某点处单位面积上通过的磁感线数目就等于该点磁感强度的大小
8.下列结论中你认为正确的是:( C )
(A) 一根给定磁感应线上各点的磁感强度B 的量值相同
(B) 用安培环路定理可以求出有限长一段直线电流周围的磁场
(C) 运动电荷所受磁力最小时,电荷的运动方向和B 的方向平行;
(D) 一个不为零的电流元在它的周围空间中任一点产生的磁感强度均不为零
二、判断题:
1.一条载流长直导线,在导线上的任何一点,由导线上的电流所产生的磁场强度为零。

( √ ) 2.一段电流元Idl 所产生的磁场的方向并不总是与Idl 垂直。

( × )
3.载流导线所产生的磁场与地球磁场之间,由于性质不同,不可以进行磁场的叠加。

( × )
4.通过磁场的高斯定理可以说明,磁感应线是无头无尾,恒是闭合的。

( √ )
5. 电动势用正、负来表示方向,它是矢量。

( × )
四、填空题:
6.通过S 面上某面元dS 的元磁通为d ϕ,若线圈中的电流变为原来的2倍,通过
同一面元的元磁通为d ϕ',则:d d ϕϕ'= 1:2 。

相关文档
最新文档