透射电镜的明场像和暗场像的成像原理
透射电镜的明暗场成像技术
2015年秋季学期研究生课程考核(读书报告、研究报告)考核科目:透射电镜的明暗场成像技术学生所在院(系):学生所在学科:学生姓名:学号:学生类别:应用型考核结果阅卷人透射电镜的明暗场成像技术一、实验内容及实验目的1.了解透射电镜其基本结构及工作原理。
2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。
二、透射电镜构造原理透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。
电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。
图1是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。
由图中可以看出,电镜中的电子光学系统主要包括电子枪、聚光镜、试样台、物镜、物镜光阑、选区光阑、中间镜、投影镜和观察记录系统等几部分组成,其成像的光路与光学显微镜基本相同。
图1 电镜电子光学系统的示意图电镜的电子光学系统中,一般将电子枪和聚光镜归为照明系统,将物镜、中间镜和投影镜归为成像系统,而观察记录系统则一般是荧光屏和照相机,现在的电镜往往还配有慢扫描CCD相机,主要用来记录高分辨像和一般的电子显微像。
图2是电子光学系统的框架图。
图2 电子光学系统的框架图2.1照明系统照明系统由电子枪、聚光镜以及相应的平移、倾转和对中等调节装置组成,其作用是提供一束亮度高、照明孔径半角小、平行度好、束流稳定的照明源。
为了满足明场和暗场成像的需要,照明束可以在5度范围内倾转。
2.2成像系统成像系统主要由物镜、中间镜和投影镜及物镜光阑和选区光阑组成。
它主要是将穿过试样的电子束在透镜后成像或成衍射花样,并经过物镜、中间镜和投影镜接力放大。
2.3观察记录、真空与供电系统(1)观察与记录系统观察和记录装置包括荧光屏、照相机(底片记录)、TV相机和慢扫描CCD。
不同电镜的荧光屏发光强度是不同的,有的电镜的荧光屏看起来不亮,但电子的强度是很强的,比如某些场发射电镜,所以选择曝光时间时要注意;照相用的底片是一种对电子束很敏感的感光材料制成,这种材料对绿光比较敏感,对红光基本不反应,因此可以在红光下换片和洗底片;TV相机是直接将光信号转变为电信号,反应速度极快,但不利于记录;慢扫描CCD是最新发展出来的一种记录方式,反应速度较TV相机慢,但记录十分方便。
透射电镜成像原理
透射电镜成像原理
透射电镜是一种常用的电子显微镜,用于观察和研究材料中的微观结构。
它利用电子的波粒二象性,通过透射原子层的电子来形成显微图像,具有比光学显微镜更高的分辨率。
透射电镜的成像原理可以简单概括为以下几个步骤:
1. 电子发射:透射电镜使用热阴极或冷阴极发射出高速电子,这些电子被加速到高能状态。
2. 透射样品:加速的电子通过一个非常薄的样品片,如薄片状的金属、陶瓷或生物组织。
样品必须具有高度透射性,以允许电子通过。
3. 散射与透射:入射电子束在样品中发生散射和透射两种现象。
散射是指电子与样品中的原子或电子相互作用,改变其运动方向,而透射是指电子穿过样品的现象。
4. 透射电子形成图像:透射电镜使用透射电子成像器件,如方形磁透镜或电磁透镜,将透射电子聚焦在屏幕或感光材料上。
根据电子的能量和散射情况,屏幕上形成亮暗不同的区域,形成图像。
透射电镜成像原理的关键在于控制电子束的发射和透射过程,以及透射电子的成像聚焦和检测。
通过调整透射电子的能量、电磁透镜的设置和样品的准备,可以获得高分辨率的电子显微图像,揭示材料的微观结构和性质。
明场像和暗场像
明场像和暗场像The Standardization Office was revised on the afternoon of December 13, 2020透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
明暗场成像原理:晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。
如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。
有关明暗场成像的光路原理参见图2-1。
就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。
满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。
而暗场像中的衬度则与选择哪支衍射束成像有关。
如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。
a) 明场成像 b) 中心暗场成像明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下:(1)在明场像下寻找感兴趣的视场。
(2) 插入选区光栏围住所选择的视场。
(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。
为获得较强的衍射束,可适当的倾转样品调整其取向。
界面共格关系 透射电镜
界面共格关系透射电镜界面共格关系(Interface crystal-lographic relationship)是指两个不同晶体结构之间的接触面处,其原子排列保持相对连续和协调的现象。
在透射电子显微镜(Transmission electron microscope, TEM)中,通过观察和分析这种共格关系,可以深入了解材料内部的结构和性质。
透射电子显微镜是一种利用电子束穿透材料,并通过成像系统观察和记录材料内部结构的显微技术。
其分辨率可以达到原子级别,因此能够清晰地观察界面共格关系。
在TEM中,界面共格关系通常可以通过以下几种方式观察:1. 明场成像(Bright-field imaging):在这种成像方式下,电子束直接穿透样品,通过成像系统观察到不同晶体结构之间的界面。
如果界面处原子排列保持相对连续和协调,那么就可以认为存在共格关系。
2. 暗场成像(Dark-field imaging):在这种成像方式下,电子束被样品表面的电子束衍射,形成衍射图案。
通过分析衍射图案,可以判断界面处的原子排列是否保持共格关系。
3. 电子衍射(Electron diffraction):通过测量电子束在样品表面发生的衍射现象,可以获取样品内部晶体的信息。
如果界面处存在共格关系,那么电子衍射图案中会出现特定的对称性和干涉条纹。
4. 能量散射谱(Energy dispersive spectroscopy, EDS):通过测量电子束与样品原子相互作用时产生的能量信号,可以获取样品的元素组成信息。
结合其他实验结果,可以判断界面共格关系的存在。
总之,在透射电子显微镜中,通过观察和分析界面共格关系,可以深入了解材料内部的结构和性质,为材料科学和物理学研究提供重要的实验依据。
透射电镜(TEM)原理详解
• 除了电磁波谱外, 在物质波中, 电子波不仅具有短波长, 而且存在使之发生折射聚焦的物质。所以电子波可以作为 照明光源, 由此形成电子显微镜。
图为日立公司H800透射电子显微镜(镜筒)
高压系统
真空系统
操作控制系统
观察和记录系统
阴极透电射子电枪镜来, 获通得常工电采作子用原束热 理
作为照明源。 热阴极发射的电子, 在
阳极加速电压的作用下, 高速穿过阳极孔, 然后被 聚光镜会聚成具有一定直 径的束斑照到样品上。
具有一定能量的电子束 与样品发生作用, 产生反 映样品微区厚度、平均原
量决定于衬度
B
A
(像中各部分
的亮度差异)。
现在讨论的
这种差异是由
于相邻部位原
子对入射电子
散射能力不同, Aˊ
因而通过物镜
光阑参与成像
质厚衬度表达式 令N1为A区样品单位面积参与成像
的电子数,N2为B区样品单位面积参
与成像的电子数,则A.B两区的电子
衬G将度上GN式为1N展1N成2 级 1数,ex并p略N A去 二0M2级22及t2 其
• 正确分析透射电子像,需要了解图象衬度与以上这 些反映材料特征信息之间的关系。
• 透射电子像中,有三种衬度形成机制: • 质厚衬度 • 衍射衬度 • 相位衬度
透射经电典镜像理衬论形成认原为理(散一)射质是厚衬度
供入观察射形貌电结子构的在复型靶样物品和质非晶粒态物质样品的衬度是质厚衬度
1子转.原场。子中可核受采和力用核而散外发 射电生截子偏面对入射电子的散射
透射电镜成像分类
透射电镜的成像原理主要有三种类型,分别是吸收像、衍射像和相位像。
1. 吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。
样品上质量厚度大的地方对电
子的散射角大,通过的电子较少,像的亮度较暗。
早期的透射电子显微镜都是基于这种原理成像。
2. 衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能
力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。
3. 相位像:当样品薄至100埃以下时,电子可以穿透样品,波的振幅变化可以忽略,成像来自于相位的变
化。
透射电镜结构原理及明暗场成像
透射电镜结构原理及明暗场成像透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束来观察物质微观结构的仪器。
与光学显微镜相比,透射电镜具有更高的分辨率和更强的放大能力。
其结构原理主要包括电子源、透射电子束、样品与透射电镜之间的相互作用、透射电镜成像系统。
1.电子源:透射电子显微镜主要使用热电子发射阴极作为电子源。
通常使用钨丝发射、氧化物表面发射或冷钨阴极等方式来产生电子束。
2.透射电子束:电子源发射出的电子经过一系列的电子光学透镜系统进行聚焦和调节,形成一束准直的电子束。
透射电子束的能量通常为几千伏到几十万伏之间,能量越高,穿透力越强。
3.样品与透射电镜之间的相互作用:透射电子束通过样品后,会与样品中的原子和分子发生相互作用。
这些相互作用包括散射、散射衍射和吸收。
这些相互作用使得电子束的方向、速度、能量等发生变化。
透射电子显微镜中的明暗场成像原理如下:1.明场成像:在明场条件下,样品中的透射电子束被物镜聚焦,形成一个清晰的像。
物体的亮度取决于电子束的强度,在没有样品的地方透射电子束强度最大,物体越厚,透射强度就越小,呈现出亮度变暗的效果。
明场成像适合于观察形貌和表面特性。
2.暗场成像:在暗场条件下,样品被遮挡住一部分区域,只有经过遮挡区域的电子束能够通过。
这样,只有经过散射才能把电子束引入投影镜,通过暗场的形成,呈现出样品的内部结构。
暗场成像适合于观察晶体缺陷、界面反应等。
总之,透射电子显微镜利用电子束的穿透性质,通过样品与电子束的相互作用以及透射电镜的光学系统,实现了对物质微观结构的高分辨率观察。
明暗场成像原理使得我们可以观察到不同结构和特性的样品的不同信息。
明场像与暗场像都有什么区别呢
明场像与暗场像都有什么区别呢一个是透射束成像,一个是衍射束成像透射电镜图像分为试样的显微像和衍射花样,这两种像分别为不同电子成像,前者是透射电子成像,后者为散射电子成像。
透射电镜中,不仅可以选择特定的像区进行电子衍射(选区电子衍射),还可以选择成像电子束。
(选择衍射成像)明场像(BF):选用直射电子形成的像(透射束),像清晰。
暗场像(DF):选用散射电子形成的像(衍射束),像有畸变、分辨率低。
成像电子的选择是通过在物镜的背焦面上插入物镜光阑来实现的。
中心暗场像(CDF):入射电子束对试样倾斜照明,得到的暗场像。
像不畸变、分辨率高。
暗场成像条件下,成像电子束偏离透射电镜的光轴,造成较大的像差,成像质量差,为获得高质量暗场像,采取中心暗场成像。
即入射电子束反向倾斜一个相应的散射角度,使散射电子沿光轴传播。
所谓明场,暗场成像只是对低倍观察时说的。
一般来说,观察形貌我们都比较喜欢用明场像,因为成像衬度好(尤其是加了合适的光阑),形变小。
其主要表现为厚度衬度,对厚度敏感。
而观察缺陷如位错,孪晶的时候喜欢用暗场像,因为暗场像是来自于选定的某个衍射束,对应于晶体特定的晶面。
在缺陷地方,电子衍射的方向和完整的地方不一样,从而使得缺陷地方能够在暗场像上清楚的显示出来。
而明场像因为是多个衍射束的成像,对缺陷不敏感,虽然有时候也能反应出缺陷,但是及其模糊。
其主要表现为衍射衬度。
也就是对衍射面敏感。
比如说一个孪晶材料,对于明场,孪晶界面很淡,但是选择合适的衍射点做暗场像可以很清楚的看见孪晶界面。
而且选择其中一个晶体特有的衍射点,做暗场可以发现只有这一个晶体出现在图像上,而另外一个晶体看不见。
对于暗场一个重要的用途是观察层错,比如说立方晶系里面的111方向的层错用明场像无法看出来。
因为有缺陷和无缺陷的地方厚度一样。
但是暗场像在特定的方向观察时,可以观察到三角形或者蝴蝶状甚至金字塔装的衬度明暗条纹。
这个时候用到的一个TEM技术叫做双束。
透射电子显微镜的成像原理
SAD pattern corresponding to (OR1). The rectangle corresponds to the range of (b).
位错衍衬像
Dislocations in Ni-base superalloy
The micrograph shows the dislocation structure following creep, with dislocations looping around the particles
在完整晶体中引入缺陷的普遍效应,是使原 来规则排列的周期点阵受到破坏,点阵发生了短 程或长程畸变。
四、不完整晶体中衍衬像运动学理论
处理畸变晶体方法:
1、把畸变晶体看成是局部倒易点阵矢量、或局部晶面间
距发生变化: g g g
2、把畸变晶体看成是完整晶体的晶胞位置矢量发生变化,
位置矢量由理想晶体
(s=常数,t变化)
等厚条纹
(s=常数,t变化)
试样斜面和锥形孔产生等厚条纹示意图
等厚条纹
(s=常数,t变化)
等厚条纹
(s=常数,t变化)
等倾干涉
( t =常数, s 变化)
四、不完整晶体中衍衬像运动学理论
1、不完整晶体衍射强度公式
所谓不完成晶体是指在完整晶体中引入诸如位 错、层错、空位集聚引起的点阵崩塌、第二相和 晶粒边界等缺陷。
位错运动的动态电子显微镜观察
左:具有最大衬度的刃位错像 g∥b 右:位错衬度趋于零 g⊥b
多相合金的衍射和衬度效应
透射电镜基本成像操作及像衬度.ppt
质厚衬度 透射电镜 像衬度
非晶体样品衬度
振幅衬度
衍射衬度 相位衬度 晶体样品衬度
图1 透射电镜像衬度分类
8
2.像衬度
质厚衬度 透射电镜 像衬度 振幅衬度 衍射衬度 晶体样品衬度 非晶体样品衬度
相位衬度
图1 透射电镜像衬度分类
1.相位衬度 当透射束和至少一束衍射束同时通过物镜光栏参与成像时,由于透射束 与衍射束的相互干涉,形成一种反映晶体点阵周期性的条纹像和结构像,这 种像衬的形成是透射束和衍射束相位相干的结果,故称相位衬度。
(d) 准晶
衍射衬度
定义:对晶体样品,电子将发生相干散射即衍射。所以,在晶体样品的成像 过程中,起决定作用的是晶体对电子的衍射。由样品各处衍射束强度的差异 形成的衬度称为衍射衬度。
衍射强度影响因素:晶体取向和结构振幅。对没有成分差异的单相材料,衍 射衬度是由样品各处满足布拉格条件程度的差异造成的。
sin
2d
10 2
102 rad< 1
这表明,电子衍射的衍射角总是非常小,这是它的花样特征之所以区别X射线衍 射的主要原因。
电子衍射原理
(a)单晶体---排列十分整齐的许多斑点 (b)多晶体---一系列不同半径的同心圆环 (c)非晶------一个漫散的中心斑点 (d)准晶
7
2.像衬度
像衬度是图像上不同区域间明暗程度的差别。正是由于图像上不同区域间存在明暗 程度的差别即衬度的存在,才使得我们能观察到的各种具体的图像。
透射电镜的像衬度与所研究的样品材料自身的组织结构、所采用的成像操作方式和 成像条件有关。 透射电镜的像衬度来源于样品对入射电子束的散射。当电子波穿越样品时,其振幅 和相位都将发生变化,这些变化都可以产生像衬度。
透射电镜的成像原理
透射电镜的成像原理
透射电镜是一种使用电子束来形成样本的高分辨率图像的仪器。
其成像原理是基于电子束与样品之间的相互作用,以及测量和记录电子束与样品间散射电子的数量。
在透射电镜中,电子束被发射器产生,并通过一系列的电磁透镜系统进行控制和聚焦。
控制电磁透镜的磁场可以调整电子束的轨迹和聚焦点,确保其足够细致地照射到待观察的样品上。
当电子束照射到样品上时,一部分电子将被透射,另一部分电子将会被样品散射。
透射电子将会进入一个环形激光诱导荧光屏幕,形成亮点。
而散射电子将会被对称地捕获并聚焦到像差校正器上。
这些散射电子将被像差校正器中的透镜所聚集,并被定向进入像增强器。
像增强器中的透镜系统再次聚焦散射电子,将其集中到探测器上。
探测器会记录下每个点的电子数量,并转化为一个数值图像。
这个数值图像可以被计算机显示和存储,形成我们在透射电镜中观察到的高分辨率样品图像。
透射电镜的成像原理依赖于电子束与样品之间的相互作用,以及通过控制电磁透镜和像增强器等装置的电子束的聚焦和记录。
通过这种方式,透射电镜可以达到非常高的分辨率,使我们能够观察并研究微观尺度的样品结构和特性。
透射电镜明暗场成像原理
透射电镜明暗场成像原理哎呀,透射电镜这玩意儿,说起来可真是让人头大。
你知道吗,我最近在实验室里搞这个,整天对着显微镜,眼睛都快成斗鸡眼了。
不过呢,说起来也挺有趣的,就像看一场微观世界的电影。
首先得说说,透射电镜这家伙,它可不简单。
它能把那些我们肉眼看不见的小东西,比如细菌啊、病毒啊,放大到我们能看清楚。
这就像是给显微镜装了个超级放大镜,不过这个放大镜可不一般,它用的是电子束,不是普通的光线。
明暗场成像,这俩词听起来挺高大上的,其实说白了,就是看东西的时候,有的地方亮,有的地方暗。
这跟我们平时拍照差不多,有的地方曝光过度,有的地方曝光不足。
但是,在透射电镜里,这明暗可不简单,它们能告诉我们好多关于样品的信息。
比如说,明场成像,就是电子束直接穿过样品,然后打到屏幕上,形成图像。
这就像是你拿着手电筒照在一张纸上,纸上的字透过光就能看见了。
但是,如果纸上有凸起或者凹陷,那些地方就会挡住光线,形成阴影。
在透射电镜里,样品上的不同结构也会让电子束发生偏转,形成明暗不同的区域。
暗场成像就更有意思了。
这就像是你用手电筒照在一张纸上,但是不看纸,而是看那些被纸挡住的光。
在透射电镜里,就是让那些被样品挡住的电子束形成图像。
这样,样品上的凸起或者凹陷就会显得特别明显,因为它们挡住了更多的电子束。
我记得有一次,我在显微镜下观察一个样品,那是一个细菌的切片。
我调整了透射电镜的参数,先是用明场成像,看到细菌的轮廓,然后切换到暗场成像,那些细菌的表面结构就变得异常清晰。
那种感觉,就像是你突然戴上了一副3D眼镜,看2D电影变成了立体的。
透射电镜的这些成像原理,虽然听起来挺复杂的,但只要你亲自操作一次,就会觉得,哇,这玩意儿真是太神奇了。
它就像是打开了一扇通往微观世界的大门,让我们能够看到那些我们平时根本看不到的东西。
所以,下次你要是有机会,也去试试透射电镜,感受一下那种从微观世界里看到宏观世界的感觉。
不过,记得保护好你的眼睛,别像我一样,整天盯着显微镜,眼睛都快成斗鸡眼了。
透射电镜成像原理
透射电镜成像原理
透射电镜是一种使用电子束对物质样品进行成像的仪器。
它的成像原理是利用电子的波动特性和与物质的相互作用来实现。
首先,透射电镜中的电子枪产生高能电子束,并通过一系列的电磁透镜来聚焦电子束。
聚焦后的电子束通过空气中的减速电场而减速,最终形成一个合适的电子束直径。
然后,减速后的电子束经过一个称为透射电镜样品室的区域。
在这个区域中,待观察的物质样品被放置在一个特制的网状载体上。
电子束通过样品时,一部分电子将被散射或吸收,而另一部分电子将穿过样品并继续前进。
穿过样品的电子束进入投影电子镜系统。
这个系统包括一个透镜和一个投影屏(荧光屏)。
透镜在电子束上对其进行聚焦,使其束斑尺寸变小。
最终,电子束投射到荧光屏上,并在屏幕上形成一个对应于原始样品的图像。
荧光屏中的电子束的强度变化被转化为亮度变化,从而产生像。
透射电镜的成像原理是基于电子的波动性和与物质的相互作用。
通过调整电子束的能量和电子透镜的参数,可以实现对不同样品的高分辨率成像。
这种成像技术广泛应用于材料科学、生物学、纳米技术等领域,提供了对微观结构和化学组成的详细信息。
1透射电镜结构及明暗场成像
透射电镜结构原理及明暗场成像1 简介透射电子显微镜如图1所示(Transmission Electron Microscope,TEM)是利用高能电子束充当照明光源而进行放大成像的大型显微分析设备,透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。
提高加速电压,可缩短入射电子的波长。
一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况,在自然科学研究中起到日益重要的作用图1 透射电镜2 透射电镜的基本结构及工作原理透射电子显微镜由以下几大部分组成:照明系统,成像光学系统;记录系统;真空系统;电气系统,如图2所示。
成像光学系统,又称镜筒,是透射电镜的主体。
照明系统主要由电子枪和聚光镜组成。
电子枪是发射电子的照明光源。
聚光镜是把电子枪发射出来的电子会聚而成的交叉点进一步会聚后照射到样品上。
照明系统的作用就是提供一束亮度高、照明孔径角小、平行度好、束流稳定的照明源。
图2 透射电子显微镜主体的剖面图成像系统主要由物镜、中间镜和投影镜组成。
物镜是用来形成第一幅高分辨率电子显微图像或电子衍射花样的透镜。
透射电子显微镜分辨本领的高低主要取决于物镜。
因为物镜的任何缺陷都被成像系统中其它透镜进一步放大。
欲获得物镜的高分辨率,必须尽可能降低像差。
通常采用强激磁,短焦距的物镜。
物镜是一个强激磁短焦距的透镜,它的放大倍数较高,一般为100-300倍。
目前,高质量的物镜其分辨率可达0.1nm左右。
中间镜是一个弱激磁的长焦距变倍透镜,可在0-20倍范围调节。
当M>1时,用来进一步放大物镜的像;当M<1时,用来缩小物镜的像。
在电镜操作过程中,主要是利用中间镜的可变倍率来控制电镜的放大倍数。
明场像与暗场像PPT
Ψ0:是入射波函数的振幅,在运动学理论中,它总为单位1; λ:衍射波的波长; Fg:晶体单胞的结构因子; Vc:晶体单胞的体积; θ: 衍射波波矢与水平小薄层之间的夹角。
令ζg = πVccosθ/λF g , 并称为消光距离,上式变为
由于透射束与衍射束之间不可避免地存在动力学交互作 用,透射振幅及透射束强度并不是不变的。衍射束和透 射束的强度是互相影响的,当衍射束的强度达到最大时, 透射束的强度最小。而且动力学理论认为,当电子束达 到晶体的某个深度位置时,衍射束的强度会达到最大, 此时它透射束的强度为0,衍射束的强度为1. 所谓消光距离,是指衍射束的强度从0逐渐增加到最大, 接着又变为0时在晶体中经过的距离。
电子显微镜下的蚊子
金相显微镜及扫描电镜均只能观察物质表面的微 观形貌,它无法获得物质内部的信息。而透射电镜 由于入射电子透射试样后,将与试样内部原子发生 相互作用,从而改变其能量及运动方向。显然,不 同结构有不同的相互作用。这样,就可以根据透射 电子图象所获得的信息来了解试样内部的结构。由 于试样结构和相互作用的复杂性,因此所获得的图 象也很复杂。它不象表面形貌那样直观、易懂。
对于透射电镜试样,由于样品较厚,则质厚衬度可近似表 示为: Gρt = N(δ02ρ2t2 /A2 - δ01ρ1t1 /A1 ) (4-1)
其中 δ02.δ01 --- 原子的有效散射截面 A2.A1 --- 试样原子量 ρ2.ρ1 --- 样品密度 t2,t1 --- 试样厚度 N --- 阿佛加德罗常数
暗场像的衬度 而对于暗场像来讲,双光束条件下B晶粒的强度为0,而A 晶粒的强度为Ihkl, 以亮的晶粒A为背景时B晶粒的衬度为:
由此可见,暗场成像时的衬度要比明场成像时要好得多。
衍射衬度来源主要有以下几种: 1.两个晶粒的取向差异使它们偏离布拉格衍射的程度不同而形 成的衬度; 2.缺陷或应变场的存在,使晶体的局部产生畸变,从而使其布 拉格条件改变而形成的衬度; 3.微区元素的富集或第二相粒子的存在,有可能使其晶面间距 发生变化,导致布拉格条件的改变从而形成衬度,还包括第二 相由于结构因子的变化而显示衬度; 4.等厚条纹,完整晶体中随厚度的变化而显示出来的衬度; 5.等倾条纹,在完整晶体中,由于弯曲程度不同(偏离矢量不 同)而引起的衬度.
透射电镜分析
透射电子显微镜彭彭(沈阳化工大学机械工程学院,辽宁沈阳110142)2015年01月20日15:51来源:钢之家透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
明暗场成像原理:晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。
如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。
有关明暗场成像的光路原理参见图2-1。
就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。
满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。
而暗场像中的衬度则与选择哪支衍射束成像有关。
如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。
a) 明场成像 b) 中心暗场成像明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下:(1)在明场像下寻找感兴趣的视场。
(2) 插入选区光栏围住所选择的视场。
(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。
为获得较强的衍射束,可适当的倾转样品调整其取向。
(4) 倾斜入射电子束方向,使用于成像的衍射束与电镜光铀平行,此时该衍射斑点应位于荧光屏中心。
透射电镜成像原理
从聚光镜来的电子束打到样品上。
与样品发生相互作用。
如果样品薄到一定程度,电子就可以透过样品。
透过去的电子分成两类。
一类是继续按照原来的方向前进,能量几乎没有改变。
我们称之为直进电子。
另一类是方向偏离原来的方向。
我们称之为散射电子。
这些电子中有的能量有比较大的改变。
我们称之为非弹性散射电子。
有的电子能量几乎没有改变。
我们称之为弹性散射电子。
所有这些电子通过物镜后在物镜的后焦面上会形成一种特殊的图象。
我们称之为夫琅禾费衍射花样。
如果被电子束照射的区域是非晶,则花样的特点是中央亮斑加从中央到外围越来越暗的光晕。
如果被电子束照射的区域是一块单晶,则花样的特点是中中央亮斑加周围其它离散分布、强弱不等的衍射斑。
如果被电子束照射的区域包括许多单晶,则花样的特点是中央亮斑加周围半径不等的一圈圈亮环。
至于为什么会形成这些花样。
可以从入射电子的散射来解释。
对非晶样品,从不同原子上散射出的同一方向上的电子波之间没有固定的相位差,且随着散射角的增大,散射的电子数量少,能量损失大,它们通过物镜后,直进的电子形成中央亮斑。
散射的电子形成周围的光晕。
越往外,光晕越来越弱。
对晶体样品,由于原子排列的规律性,不同原子的同一方向的散射波之间存在固定的相位差。
某些方向上相位差为2π的整数倍。
根据波的理论,在这些方向上的散射波会发生加强干涉。
我们称之为衍射。
同一方向的衍射波在物镜后焦面上形成一个亮斑。
我们称之为衍射斑。
直进的电子形成中央的透射斑。
整个后焦面的图象称之为电子衍射花样。
至于哪些方向上会出现衍射波,这可由布拉格公式决定。
详细内容见教材。
由于电子衍射花样与晶体的结构之间存在对应关系,如果我们记录下衍射花样,就可以对晶体结构进行分析。
这正是透射电子显微镜能够进行晶体结构分析的原因之一。
对多晶样品,每个单晶形成自己的衍射花样。
由于各个单晶的取向不同,每个单晶上相同指数的衍射波出现在以入射电子方向为中心线的圆锥上,它们通过物镜后形成衍射圈。
透射电镜的明场像和暗场像的成像原理
透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
明暗场成像原理:晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。
如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。
有关明暗场成像的光路原理参见图2-1。
就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。
满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。
而暗场像中的衬度则与选择哪支衍射束成像有关。
如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。
a) 明场成像 b) 中心暗场成像明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下:(1) 在明场像下寻找感兴趣的视场。
(2) 插入选区光栏围住所选择的视场。
(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。
为获得较强的衍射束,可适当的倾转样品调整其取向。
(4) 倾斜入射电子束方向,使用于成像的衍射束与电镜光铀平行,此时该衍射斑点应位于荧光屏中心。
(5) 插入物镜光栏套住荧光屏中心的衍射斑点,转入成像操作方式,取出选区光栏。
透射电镜基本成像操作及像衬度
目录
成像操作 像衬度
2
成像操作
1 明场成像
成像操作
2 暗场成像
3 中心暗场成像
5
1.明场成像和暗场成像
利用投射到荧光屏上的选区衍射谱可以进行透射电镜的两种最基本的成像操作。
晶体样品或非晶体样品,其选区衍射谱上必存在一个由直射电子束形成的 中心亮斑以及一些散射电子。
我们可以选直射电子也可以选部分散射电子来成像。这种成像电子的选择 是通过在物镜背焦面上插入物镜光栏来实现的。
衍射衬度
定义:对晶体样品,电子将发生相干散射即衍射。所以,在晶体样品的成像 过程中,起决定作用的是晶体对电子的衍射。由样品各处衍射束强度的差异 形成的衬度称为衍射衬度。
衍射强度影响因素:晶体取向和结构振幅。对没有成分差异的单相材料,衍 射衬度是由样品各处满足布拉格条件程度的差异造成的。
衍衬成像和质厚衬度成像的重要差别:在形成显示质厚衬度的暗场像时,可 以利用任意的散射电子。而形成显示衍射衬度的明场像或暗场像时,为获得 高衬度高质量的图像,总是通过倾斜样品台获得所谓“双束条件”,即在选 区衍射谱上除强的直射束外只有一个强衍射束。
如以A晶粒亮度IA为背景强度,则B晶粒的像衬度为
I IA-IB Ihkl I B IA I0
于是我们在荧光屏上将会看到,B晶粒较暗而A晶粒较亮。 这种让透射束通过物镜光阑而把衍射束挡掉得到的图像衬度,叫明场成像。
衍射衬度
习惯上常以另一种方式产生暗场像,即把入射电子束方向倾斜2θ角度,使B晶 粒的 (h k l ) 晶面组处于强烈衍射的位向,而物镜光阑仍在光轴位置。此时只有 B晶粒的 (h k l ) 衍射束正好通过光阑孔,而透射束被挡掉,这叫做中心暗场成像 方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
明暗场成像原理:晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。
如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。
有关明暗场成像的光路原理参见图2-1。
就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。
满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。
而暗场像中的衬度则与选择哪支衍射束成像有关。
如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。
a) 明场成像 b) 中心暗场成像
明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下:
(1) 在明场像下寻找感兴趣的视场。
(2) 插入选区光栏围住所选择的视场。
(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。
为获得较强的衍射束,可适当的倾转样品调整其取向。
(4) 倾斜入射电子束方向,使用于成像的衍射束与电镜光铀平行,此时该衍射斑点应位于荧光屏中心。
(5) 插入物镜光栏套住荧光屏中心的衍射斑点,转入成像操作方式,取出选区光栏。
此时,荧光屏上显示的图像即为该衍射束形成的暗场像。
(衍射使用选区光阑,成像使用物镜光阑)
通过倾斜入射束方向,把成像的衍射束调整至光轴方向,这样可以减小球差,获得高质量的图像。
用这种方式形成的暗场像称为中心暗场像。
在倾斜入射束时,应将透射斑移至原强衍射斑(hkl)位置,而(hkl)弱衍射斑相应地移至荧光屏中心,而变成强衍射斑点,这一点应该在操作时引起注意。
利用暗场像观测析出相的尺寸、空间形态及其在基体中的分布,是衍衬分析工作中一种常用的实验技术。
利用层错明暗场像外侧条纹的衬度,可以判定层错的性质。
2-2 显示钨合金晶粒形貌的衍衬像
a) 明场像 b) 暗场像
图2-3 显示析出相(ZrAl3)在铝合金基体中分布衍衬像
a) 明场像b) 暗场像
图2-4 铝合金中位错分布形态的衍衬像
a) 明场像b) 暗场像
图2-5 铜合金中层错的衍衬像
a) 明场像b) 暗场像
在电子显微镜中,根据入射电子束的几何性质不同,相应地有两类衍射技术。
一类是选区电子衍射(selectedarea diffraction)或微衍射
(microdiffraction),它以平行的电子束作为入射源;另一类是会聚束电子衍射(convergent beam diffraction),它以具有一定会聚角(一般在±4°以内)的电子束作为入射源。
目前这两类技术都有很大发展,并具有各自不同的专门用途。
为了研究样品上一个小区域的晶体结构或取向,我们可以在物镜像平面上放置一个视场光阑,此时投射到光阑孔外面的成像电子束将被挡住,不能进入中间镜,这就相当于在样品上选择了分析的范围。
利用这种方法,可以获得 1μm 或更小一些选区的衍射花样。
由于物镜球差及其聚焦误差等原因,目前很难精确地从小于 0.5μm的区域中得到衍射。
随着扫描透射电子显微术(STEM)的发展,采用强烈聚焦的细小电子束照射样品上极其有限的区域,与视场光阑的方法相比,不但选区尺寸小,而且精度高。
这就是所谓微衍射(选区小于100nm)和微微衍射(选区小于10nm),也有人把它们分别叫做μ衍射和μμ衍射。
会聚束电子衍射 (CBD) 如果利用透射电子显微镜的聚光系统产生一个束斑很小的会聚电子束照射样品,形成发散的透射束和衍射束(图3)。
此时,由于存在一定范围以内的入射方向,通常的衍射“斑点”扩展成为衍射“圆盘”,典型的花样如图4所示。
除了被分析的区域小(100nm以下)以外,会聚束电子衍射的主要优点在于通过圆盘内晶带轴花样及其精细结构的分析,可以提供关于晶体对称性、点阵电势、色散面几何等大量结构信息。