平面向量的数量积及其应用

合集下载

平面向量的数量积与平面向量应用举例_图文_图文

平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线

平面向量的数量积与应用知识点总结

平面向量的数量积与应用知识点总结

平面向量的数量积与应用知识点总结平面向量是数学中一个重要的概念,涉及到许多与力学、几何等学科相关的应用。

其中,数量积是平面向量运算中的一种重要操作,具有广泛的应用价值。

本文将对平面向量的数量积以及其应用知识点进行总结。

一、平面向量的数量积数量积,又称点积或内积,是平面向量运算中的一种形式。

对于平面内的两个向量a = (a1, a2) 和 b = (b1, b2),它们的数量积定义为:a·b = a1*b1 + a2*b2其中,a1 和 b1 是向量 a 和 b 在同一方向上的投影长度,a2 和 b2 是它们在另一方向上的投影长度。

数量积具有以下特性:1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积为0的判定:如果 a·b = 0,则两个向量 a 和 b 垂直。

4. 数量积为正负的判定:如果 a·b > 0,则两个向量 a 和 b 的夹角小于 90 度;如果 a·b < 0,则两个向量 a 和 b 的夹角大于 90 度。

二、数量积的应用知识点1. 向量的模长根据数量积的定义,可以得到两个向量 a 和 b 的数量积可以表示为:a·a = ||a||^2其中,||a|| 表示向量 a 的模长,也称为向量 a 的长度。

因此,根据以上公式可以计算向量的模长。

2. 向量夹角的计算利用数量积的特性,可以计算两个向量 a 和 b 之间的夹角θ,公式如下:cosθ = (a·b) / (||a|| * ||b||)利用这个公式,可以计算任意两个向量之间的夹角。

3. 向量投影考虑一个向量 a 在另一个向量 b 上的投影,可以根据数量积得到投影的长度:proj_b(a) = (a·b) / ||b||这个投影长度表示了向量 a 在向量 b 上的投影长度,可以用于求解各种问题。

平面向量的数量积与向量积的应用的应用

平面向量的数量积与向量积的应用的应用

平面向量的数量积与向量积的应用的应用平面向量的数量积与向量积的应用平面向量是解决平面几何问题的重要工具,其数量积与向量积是常用的运算符号。

本文将探讨平面向量的数量积与向量积的应用,并运用相应的公式进行详细计算和论证。

一、平面向量的数量积的应用平面向量的数量积,也称为点积或内积,是两个向量之间的一种运算,表示了向量之间的夹角关系。

数量积的应用广泛,包括计算向量的模长、求解向量的夹角、判定向量是否垂直或平行等。

1. 求解向量的模长对于平面向量a,其模长可以通过数量积求解。

设a = (a₁, a₂),则a的模长|a| = √(a₁² + a₂²)。

2. 求解向量的夹角对于平面向量a和b,它们的夹角θ可以通过数量积求解。

设a = (a₁, a₂)和b = (b₁, b₂),则a与b的夹角θ的余弦值可以表示为cosθ = (a·b) / (|a|·|b|)。

通过求解cosθ,我们可以进一步求解夹角θ。

3. 判定向量是否垂直或平行若两个向量a和b的数量积等于0,即a·b = 0,则a与b垂直。

若数量积不等于0,即a·b ≠ 0,则a与b不垂直。

另外,如果两个向量的数量积等于a和b的模长之积,即a·b = |a|·|b|,则a与b平行。

二、平面向量的向量积的应用平面向量的向量积,也称为叉积或外积,是两个向量之间的一种运算,表示了向量之间的方向关系。

向量积的应用主要涉及到平行四边形面积、垂直判定以及向量的混合积的计算。

1. 平行四边形面积对于平面向量a和b,它们的向量积a×b的模长等于a和b所构成的平行四边形的面积。

即|a×b| = |a|·|b|·sinθ,在计算时取正值即可。

2. 垂直判定若两个向量a和b的向量积等于0,即a×b = 0,则a与b平行或共线。

若向量积不等于0,即a×b ≠ 0,则a与b垂直。

高中数学基础之平面向量的数量积及应用

高中数学基础之平面向量的数量积及应用

高中数学基础之平面向量的数量积及应用平面向量的数量积定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0.平面向量数量积的几何意义:设a ,b 是两个非零向量,AB→=a ,CD →=b ,它们的夹角是θ,e 是与b 方向相同的单位向量,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影,A 1B 1→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 一、平面向量数量积的运算例1 已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则BC→·AF →的值为( ) A .-58 B .18 C .14 D .118答案 B解析 如图,由条件可知BC→=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2.因为△ABC 是边长为1的等边三角形,所以|AC→|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18.例2 在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC →=2AB →·AD →,则AD →·AC →=________.答案 12解析 如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n,0),其中m >0,n >0,则由AB→·AC →=2AB →·AD →,得(n,0)·(m +2,m )=2(n,0)·(m ,m ),所以n (m +2)=2nm ,化简得m =2.故AD→·AC →=(m ,m )·(m +2,m )=2m 2+2m =12.例3 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE→=23BC →,DF →=16DC →,则AE →·AF →的值为________.答案 2918解析 在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1,∠ABC =60°,∴CD =1,AE →=AB →+BE →=AB →+23BC →,AF →=AD →+DF →=AD →+16DC →,∴AE →·AF →=⎝ ⎛⎭⎪⎫AB →+23BC →·⎝ ⎛⎭⎪⎫AD →+16DC →=AB →·AD→+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos60°+2×16+23×12×cos60°+23×16×12×cos120°=2918.方法:解决涉及几何图形的向量的数量积运算常用两种方法:一是定义法,二是坐标法.定义法可先利用向量的加、减运算或数量积的运算律化简后再运算,但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补;坐标法要建立合适的坐标系.(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.二、平面向量数量积的应用.例4 已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1B .12C .34D .32答案 D解析 ∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R ),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32.故选D.例5 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.答案223解析 因为a 2=(3e 1-2e 2)2=9-2×3×2×12×cos α+4=9,所以|a |=3,因为b 2=(3e 1-e 2)2=9-2×3×1×12×cos α+1=8,所以|b |=22,又a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a ||b |=83×22=223.例6 若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3解析 ∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,∴4k -6-6<0,∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.例7 已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案 712解析 因为AP →⊥BC →,所以AP →·BC →=0.又AP →=λAB →+AC →,BC →=AC →-AB →,所以(λAB→+AC →)·(AC →-AB→)=0,即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|·cos120°-9λ+4=0,即(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0,解得λ=712.例8 已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD→|等于( )A .2B .4C .6D .8答案 A解析 因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2a ·b +b 2)=4×⎝⎛⎭⎪⎫3-2×3×2×cos π6+4=4,则|AD →|=2.故选A. 例9 已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB →的夹角为60°,且OC →⊥AB→,则实数m n的值为( ) A.16 B .14 C .6 D .4答案 A解析 因为向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,OA →与OB →的夹角为60°,所以OA →·OB →=3×2×cos60°=3,所以AB→·OC →=(OB →-OA →)·(mOA →+nOB →)=(m -n )OA →·OB →-m |OA →|2+n |OB →|2=3(m -n )-9m +4n =-6m +n =0,所以m n =16.故选A.例10 已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB→|的最小值为________.答案 5解析 建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ),则P A →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ).所以|P A →+3PB →|=25+(3b -4y )2(0≤y ≤b ).当y =34b 时,|P A →+3PB →|min=5.例11 设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b 等于( ) A .1 B .2 C .3 D .5答案 A解析 a ·b =14[(a +b )2-(a -b )2]=14×(10-6)=1.故选A.例12 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C .2D .22 答案 C解析 设OA→⊥OB →,且OA →=a ,OB →=b ,OC →=c ,D 为线段AB 的中点,因为|a |=|b |=1,所以AB =2,AD =22,(a -c )·(b -c )=CA →·CB →=|CD →|2-|DA →|2=|CD →|2-12=0,所以|CD→|=22,上式表明,DC→是有固定起点,固定模长的动向量,点C 的轨迹是以22为半径的圆,因此|c |的最大值就是该轨迹圆的直径 2.故选C.例13 如图所示,正方形ABCD 的边长为1,A ,D 分别在x 轴、y 轴的正半轴(含原点)上滑动,则OC→·OB →的最大值是________.答案 2解析 如图,取BC 的中点M ,AD 的中点N ,连接MN ,ON ,则OC→·OB →=OM →2-14.因为OM ≤ON +NM =12AD +AB =32,当且仅当O ,N ,M 三点共线时取等号,所以OC →·OB →的最大值为2.极化恒等式(1)极化恒等式:设a ,b 为两个平面向量,则a ·b =14[(a +b )2-(a -b )2].极化恒等式表示平面向量的数量积运算可以转化为平面向量线性运算的模,如果将平面向量换成实数,那么上述公式也叫“广义平方差”公式.(2) 极化恒等式的几何意义:平面向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14,即a ·b =14(|AC →|2-|BD →|2).(3) 极化恒等式的三角形模式:在△ABC 中,若M 是BC 的中点,则AB→·AC →=AM →2-14BC →2.可以利用极化恒等式来求数量积、求最值、求模长.平面向量有“数”与“形”双重身份,它沟通了代数与几何的关系,所以平面向量的应用非常广泛,主要体现在平面向量与平面几何、函数、不等式、三角函数、解析几何等方面,解决此类问题的关键是将其转化为向量的数量积、模、夹角等问题,进而利用向量方法求解.。

平面向量的数量积及其应用

平面向量的数量积及其应用

突破点(一) 平面向量的数量积1.向量的夹角;21.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且u u u r BE =23u u u r BC ,u u u r DF =16u u u r DC ,则u u u r AE ·u u u r AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝ ⎛⎭⎪⎫-12,1,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. (2)取u u u r BA ,u u u r BC 为一组基底,则u u u r AE =u u u r BE -u u u r BA =23u u u r BC -u u u r BA ,u u u r AF =u u u r AB +u u u r BC +u u u r CF =-u u u r BA +u u u r BC +512u u u r BA =-712u u u r BA +u u u r BC ,∴u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫23 u u u r BC -u u u r BA ·⎝ ⎛⎭⎪⎫-712 u u u r BA +u u u r BC =712|u u u r BA |2-2518u u u r BA ·u u u r BC +23|u u u r BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.突破点(二) 平面向量数量积的应用 的关系1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足u u u r AB =2a ,u u u r AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥u u u r BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 [解析] (1)在△ABC 中,由u u u r BC =u u u r AC -u u u r AB =2a +b -2a =b ,得|b |=2,A 错误.又u u u r AB =2a 且|u u u r AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·u u u r BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥u u u r BC ,D 正确,故选D.(2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C[易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法:(1)a 2=a ·a =|a |2; (2)|a ±b |=a ±b 2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( ) A .2 B .6 C .2 3 D .12(2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. [解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3. (2)∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233 [方法技巧] 求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题第一步 由坐标运算或定义计算出这两个向量的数量积第二步 分别求出这两个向量的模第三步 根据公式cos 〈a ,b 〉=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值 第四步 根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) D .π(2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a ||b |cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0.∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8, a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223.[易错提醒](1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线.(2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.突破点(三) 平面向量与其他知识的综合问题平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.[例1] 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z), 所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1. 又0<A <π,故π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sin C .由正弦定理得2b =3c ,②由①②,可得b =3,c =2. [方法技巧]平面向量与三角函数综合问题的类型及求解思路(1)向量平行(共线)、垂直与三角函数的综合:此类题型的解答一般是利用向量平行(共线)、垂直关系得到三角函数式,再利用三角恒等变换对三角函数式进行化简,结合三角函数的图象与性质进行求解.(2)向量的模与三角函数综合:此类题型主要是利用向量模的性质|a |2=a 2,如果涉及向量的坐标,解答时可利用两种方法:一是先进行向量的运算,再代入向量的坐标进行求解;二是先将向量的坐标代入,再利用向量的坐标运算求解.此类题型主要表现为两种形式:①利用三角函数与向量的数量积直接联系;②利用三角函数与向量的夹角交汇,达到与数量积的综合.[例2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若u u u r AC ·u u u r BE =1, 则AB的长为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若u u u r AE ·u u u r AF =1,则 λ的值为________. [解析] (1)设|u u u r AB |=x ,x >0,则u u u r AB ·u u u r AD =12x .又u u u r AC ·u u u r BE =(u u u r AD +u u u r AB )·(u u u r AD -12u u u r AB )=1-12x 2+14x =1,解得x =12,即AB 的长为12. (2)由题意可得u u u r AB ·u u u r AD =|u u u r AB |·|u u u r AD |cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2, 在菱形ABCD 中,易知u u u r AB =u u u r DC ,u u u r AD =u u u r BC , 所以u u u r AE =u u u r AB +u u u r BE =u u u r AB +13u u u r AD ,u u u r AF =u u u r AD +u u u r DF =1λu u u r AB +u u u r AD , u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫u u u r AB +13 u u u r AD ·⎝ ⎛⎭⎪⎫1λ u u u r AB +u u u r AD =4λ+43-2⎝ ⎛⎭⎪⎫1+13λ=1,解得λ=2.[答案](1)12 (2)2 [方法技巧]平面向量与几何综合问题的求解方法(1)坐标法:把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.[检验高考能力]一、选择题1.已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )A .-3B .-2C .1D .-1解析:选A 因为a +2b 与c 垂直,所以(a +2b )·c =0,即a ·c +2b ·c =0,所以3k +3+23=0,解得k =-3. 2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,u u u r AB =(1,-2),u u u r AD =(2,1),则u u u r AD ·u u u r AC =( )A .5B .4C .3D .2 解析:选A 由四边形ABCD 是平行四边形,知u u u r AC =u u u r AB +u u u r AD =(1,-2)+(2,1)=(3,-1),故u u u r AD ·u u u r AC =(2,1)·(3,-1)=2×3+1×(-1)=5.3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则-λ2+2λ2=35,所以λ=-3,b =(3,-6),故选A.4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94 解析:选B ∵n⊥(t m +n ),∴n·(t m +n )=0,即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B. 5.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则u u u r AF ·u u u r BC 的值为( )A .-58 解析:选B 如图所示,u u u r AF =u u u r AD +u u u r DF .又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以u u u r AD =12u u u r AB ,u u u r DF =12u u u r AC +14u u u r AC =34u u u r AC ,所以u u u r AF =12u u u r AB +34u u u r AC .又u u u r BC =u u u r AC -u u u r AB ,则u u u r AF ·u u u r BC =12u u u r AB +34u u u r AC ·(u u u r AC -u u u r AB )=12u u u r AB ·u u u r AC -12u u u r AB 2+34u u u r AC 2-34u u u r AC ·u u u r AB =34u u u r AC 2-12u u u r AB 2-14u u u r AC ·u u u r AB .又|u u u r AB |=|u u u r AC |=1,∠BAC =60°,故u u u r AF ·u u u r BC =34-12-14×1×1×12=18.故选B. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足u u u r AP =λu u u r AB ,uuu r AQ =(1-λ)u u u r AC ,λ∈R ,若uuu r BQ ·uuu r CP =-32,则λ=( )解析:选 A ∵uuu r BQ =uuu r AQ -u u u r AB =(1-λ)u u u r AC -u u u r AB ,uuu r CP =u u u r AP -u u u r AC =λu u u r AB -u u u r AC ,又uuu r BQ ·uuu r CP =-32,|u u u r AB |=|u u u r AC |=2,A =60°,u u u r AB ·u u u r AC =|u u u r AB |·|u u u r AC |cos 60°=2,∴[(1-λ)u u u r AC -u u u r AB ]·(λu u u r AB -u u u r AC )=-32,即λ|u u u r AB |2+(λ2-λ-1)u u u r AB ·u u u r AC +(1-λ)|u u u r AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. 二、填空题7.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )·b ,则|c |=________.解析:由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )·b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+-82=8 2.答案:828.已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为________.解析:∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6,又|a |=2,|b |=1,∴a ·b =-1,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.答案:2π39.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是________.解析:a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞.答案:⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则u u u u r AM ·u u u u r AN 的最大值为________. 解析:设u u u u r AN =λu u u r AB +μu u u r AD ,因为N 在菱形ABCD 内,所以0≤λ≤1,0≤μ≤1.u u u u r AM =u u u r AD +12u u u r DC =12u u u r AB +u u u r AD .所以u u u u r AM ·u u u u r AN =⎝ ⎛⎭⎪⎫12 u u u r AB +u u u r AD ·(λu u u r AB +μu u u r AD )=λ2u u u r AB 2+⎝ ⎛⎭⎪⎫λ+μ2u u u r AB ·u u u r AD +μu u u r AD 2=λ2×4+⎝ ⎛⎭⎪⎫λ+μ2×2×2×12+4μ=4λ+5μ.所以0≤u u u u r AM ·u u u u r AN ≤9,所以当λ=μ=1时,u u u u r AM ·u u u u r AN 有最大值9,此时,N 位于C 点.答案:9三、解答题11.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解:(1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴m ·n =|m ||n |cos π3=1×1×12=12,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C .(1)求角C 的大小; (2)若sin A ,sin C ,sin B 成等差数列,且u u u r CA ·(u u u r AB -u u u r AC )=18,求边c 的长.解:(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),对于△ABC ,A +B =π-C,0<C <π,∴sin(A +B )=sin C ,∴m ·n =sin C ,又m ·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b . ∵u u u r CA ·(u u u r AB -u u u r AC )=18,∴u u u r CA ·uuu r CB =18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,∴c 2=4c 2-3×36,c 2=36,∴c =6.。

平面向量的数量积及平面向量的应用举例

平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角

高考数学考点专题:平面向量:平面向量的数量积及应用举例

高考数学考点专题:平面向量:平面向量的数量积及应用举例

平面向量的数量积及应用举例【考点梳理】1.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0. 2.平面向量数量积的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 【教材改编】1.(必修4 P 104例1改编)已知|a |=5,|b |=4,a 与b 的夹角为120°,则a·b 为( ) A .10 3 B .-10 3 C .10 D .-10[答案] D[解析] a ·b =|a |·|b |cos 120°=5×4×cos 120°=20×⎝ ⎛⎭⎪⎫-12=-10.故选D.2.(必修4 P 107例6改编)设a =(5,-7),b =(-6,t ),若a ·b =-2,则t 的值为( )A .-4B .4 C.327 D .-327 [答案] A[解析] 由a ·b =-2,得5×(-6)+(-7)t =-2, -7t =28,∴t =-4,故选A.3.(必修4 P 108A 组T 6改编)已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( )A.π6B.π3C.2π3D.5π6[答案] D[解析] cos θ=a ·b |a|·|b |=-632×6=-32. 又∵0≤θ≤π,∴θ=5π6,故选D.4.(必修4 P 107练习T 2改编)设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( )A .-6 B.10 C. 5 D .10 [答案] D[解析] ∵a =(1,x ),b =(2,-4)且a ∥b ,∴-4-2x =0,x =-2,∴a =(1,-2),a ·b =10,故选D.5.(必修4 P 119A 组T 10改编)已知△ABC 的三个顶点A (1,2),B (2,3),C (-2,5),则最小角的余弦值为( )A.1010 B.31010C.13D.105 [答案] B[解析] 由图可知,显然C 为△ABC 的最小角,∵CA →=(3,-3),CB →=(4,-2),∴cos 〈CA →,CB →〉=CA →·CB →|CA →||CB →|=1832·25=31010.6.(必修4 P 105例3改编)已知|a |=3,|b |=2,(a +2b )·(a -3b )=-18,则a 与b 的夹角为( )A .30°B .60°C .120°D .150°[答案] B[解析] (a +2b )·(a -3b )=-18, ∴a 2-6b 2-a ·b =-18,∵|a |=3,|b |=2,∴9-24-a ·b =-18, ∴a ·b =3,∴cos 〈a ,b 〉=a ·b |a ||b |=36=12, ∴〈a ,b 〉=60°.7.(必修4 P 110例2改编)△ABC 中,∠BAC =2π3,AB =2,AC =1,DC→=2BD →,则AD →·BC→=________. [答案] -83[解析] 由DC →=2BD →得AD →=13()AC →+2AB →. ∴AD →·BC →=13()AC →+2AB →·(AC →-AB →)=13()AC →2+AC →·AB→-2AB →2=13⎣⎢⎡⎦⎥⎤12+1×2×⎝⎛⎭⎪⎫-12-2×22=-83.8.(必修4 P106练习T3改编)若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为________.[答案] 1[解析] 由(a-c)·(b-c)≤0,得a·b-a·c-b·c+c2≤0,又a·b=0,且a,b,c均为单位向量,得-a·c-b·c≤-1,|a+b-c|2=(a+b-c)2=a2+b2+c2+2(a·b-a·c-b·c)=3+2(-a·c-b·c)≤3-2=1,故|a+b-c|的最大值为1.9.(必修4 P108A组T3改编)已知|a|=2,|b|=5,|a+b|=7,则a·b=________.[答案] 10[解析] ∵|a+b|2=(a+b)2=a2+2a·b+b2=22+2a·b+52=29+2a·b∴29+2a·b=49,∴a·b=10.10.(必修4 P113A组T4改编)平面上三个力F1,F2,F3作用于一点且处于平衡状态,已知|F1|=1 N,|F2|= 2 N,F1与F2的夹角为45°,则F3的大小为________.[答案] 5 N[解析] 根据物理中力的平衡原理有F3+F1+F2=0,∴|F3|2=|F1|2+|F2|2+2F1·F2=12+(2)2+2×1×2×cos 45°=5.∴|F3|= 5.11.(必修4 P119B组T1(5)改编)若e1,e2是夹角为60°的两个单位向量,求a=2e 1+e 2,b =-3e 1+2e 2的夹角.[解析] ∵|e 1|=|e 2|=1,且夹角θ=60°, ∴|a |2=(2e 1+e 2)2=4e 21+4e 1·e 2+e 22 =4×12+4×1×1×cos 60°+12=7. ∴|a |=7.|b |2=(-3e 1+2e 2)2=9e 21-12e 1·e 2+4e 22 =9×12-12×1×1×cos 60°+4×12=7, ∴|b |=7.a ·b =(2e 1+e 2)·(-3e 1+2e 2) =-6e 21+e 1·e 2+2e 22=-6×12+1×1×cos 60°+2×12=-72, ∴cos θ=a ·b |a |·|b |=-727×7=-12. 又0≤θ≤π,∴θ=2π3.故a 与b 的夹角为23π.。

平面向量的数量积与应用

平面向量的数量积与应用

向量夹角计算
添加 标题
定义:两个非零向量的夹角是指它们所在的直线之间的夹角,取值范围为$[0^{\circ},180^{\circ}]$
添加 标题
计算公式:$\cos\theta = \frac{\overset{\longrightarrow}{u} \cdot \overset{\longrightarrow}{v}}{|\overset{\longrightarrow}{u}| \cdot |\overset{\longrightarrow}{v}|}$,其中 $\overset{\longrightarrow}{u}$和$\overset{\longrightarrow}{v}$是两个非零向量,$\theta$是它们的夹角
平面向量的数量积 与应用
单击此处添加副标题
汇报人:XX
目录
平面向量的数量积概念 平面向量的数量积的应用
平面向量的数量积运算
平面向量的数量积的扩展 应用
01
平面向量的数量积 概念
定义与性质
定义:平面向量的数量积是 两个向量之间的点积,表示 为a·b,等于它们的模长和 夹角的余弦值的乘积。
性质:数量积满足交换律和 分配律,即a·b=b·a和 (a+b)·c=a·c+b·c。
几何意义
平面向量的数量积表示向量在 平面上的投影长度
等于两个向量在垂直方向上的 投影的乘积
表示两个向量在平面上的夹角 大小
等于两个向量在水平方向上的 投影的乘积
运算性质
交换律:a · b = b · a 分配律:(a+b) · c = a · c + b · c 数乘性质:k(a · b) = (ka) · b = a · (kb) 向量数量积的性质:|a · b| ≤ |a| |b|

平面向量的数量积及应用举例

平面向量的数量积及应用举例
1 120° =20×-2
解析:选 D.a· b=|a|· |b|cos 120° =5×4×cos =-10.故选 D.
栏目 导引
第五章
平面向量
(教材习题改编)设 a=(5,-7),b=(-6,t),若 a· b=-2, 则 t 的值为( A.-4 32 C. 7 ) B.4 32 D.- 7
第五章
平面向量
2.在等腰梯形 ABCD 中,已知 AB∥DC,AB=2,BC=1, → 2→ ∠ABC=60° .点 E 和 F 分别在线段 BC 和 DC 上, 且BE= BC, 3 → 1→ → → DF= DC,则AE· AF的值为________. 6
栏目 导引
第五章
平面向量
→ → 解析:法一:取BA,BC为一组基底, → → → 2→ → 则AE=BE-BA= BC-BA, 3 7 → → → → → → → → 5 → AF=AB+BC+CF=-BA+BC+ BA=- BA+BC, 12 12 2→ → 7 → → → → - BA+BC 所以AE· AF=3BC-BA· 12
2
3 → → → 时,PA· (PB+PC)取得最小值,为- ,选择 B. 2
【答案】 (1)C (2)B
栏目 导引
第五章
平面向量
平面向量数量积的三种运算方法 (1) 当已知向量的模和夹角时,可利用定义法求解,即 a· b= |a||b|cos〈a,b〉 . (2)当已知向量的坐标时, 可利用坐标法求解, 即若 a=(x1, y1), b=(x2,y2),则 a· b=x1x2+y1y2. (3)利用数量积的几何意义求解.
a· b -6 3 3 解析:选 D.cos θ= = =- . |a|· |b| 2×6 2 5π 又因为 0≤θ≤π,所以 θ= ,故选 D. 6

平面向量的数量积与向量积的性质与应用

平面向量的数量积与向量积的性质与应用

平面向量的数量积与向量积的性质与应用平面向量是代表大小和方向的有向线段。

在研究平面向量的性质和应用时,我们经常会涉及到数量积和向量积这两个概念。

本文将分别介绍平面向量的数量积和向量积,并探讨它们的性质和应用。

一、平面向量的数量积平面向量的数量积,也称为点积或内积,是指两个向量之间的数量乘积。

给定两个平面向量u和v,它们的数量积的定义如下:u · v = |u| |v| cosθ其中,|u|和|v|分别表示向量u和v的模(长度),θ表示u和v之间的夹角。

数量积的结果是一个标量,即一个实数。

1.1 数量积的性质数量积具有以下性质:性质1:交换律u · v = v · u性质2:分配律(u + v) · w = u · w + v · w性质3:数量积与向量模的关系u · u = |u|^2性质4:数量积为零的条件当且仅当两个向量正交(即夹角θ=90°)时,它们的数量积为零。

1.2 数量积的应用数量积具有广泛的应用,其中一些常见的应用如下:应用1:求向量夹角通过数量积的定义,我们可以得到夹角θ的计算公式:cosθ = (u · v) / (|u| |v|)应用2:判断向量正交当且仅当两个向量的数量积为零时,它们相互垂直。

因此,可以利用数量积来判断向量是否正交。

二、平面向量的向量积平面向量的向量积,也称为叉积或外积,是指两个向量之间的向量乘积。

给定两个平面向量u和v,它们的向量积的定义如下:u × v = |u| |v| sinθ n其中,|u|和|v|分别表示向量u和v的模,θ表示u和v之间的夹角,n是垂直于u和v所在平面的单位向量,其方向由右手定则确定。

向量积的结果是一个垂直于u和v所在平面的向量。

2.1 向量积的性质向量积具有以下性质:性质1:反交换律u × v = -v × u性质2:分配律u × (v + w) = u × v + u × w性质3:数量积与向量模的关系|u × v| = |u| |v| sinθ2.2 向量积的应用向量积也具有广泛的应用,其中一些常见的应用如下:应用1:求向量的面积两个非零向量u和v的向量积的模等于由u和v所张成的平行四边形的面积。

平面向量的数量积及平面向量的应用

平面向量的数量积及平面向量的应用

解析 建立平面直角坐标系如图所示,则A(2,0),
设P(0,y),C(0,b),则B(1,b),且0≤y≤b.
所以 PA

+3 PB
=(2,-y)+3(1,b-y)=(5,3b-4y),
所以| PA

+3 PB
|= 25

(3b

4
y)2
(0≤y≤b),
所以当y= 3 b时,| PA

+3 PB
§5.2 平面向量的数量积及平面向量的应用
知识清单
考点一 向量数量积的定义及长度、角度问题 1.两向量夹角的定义和范围
2.两向量的夹角分别是锐角与钝角的充要条件
3.平面向量的数量积
4.向量数量积的性质 设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则 (1)e·a=a·e=⑤ |a|·cos θ . (2)a⊥b⇔⑥ a·b=0 . (3)当a与b同向时,⑦ a·b=|a||b| ;当a与b反向时,⑧ a·b=-|a||b| . 特别地,a·a=⑨ |a|2 .
解析 因为a⊥(2a+b),所以a·(2a+b)=0,
所以a·b=-2|a|2,设a与b的夹角为θ,则cos
θ= a b
| a || b |
=
2 4|
| a |2 a |2
=- 1 ,又0≤θ≤π,
2
所以θ= 2 ,故选C.
3
例4 (2017江西七校联考,13)已知向量a=(1, 3 ),b=(3,m),且b在a的方向

标→求 AF · BC
解析 解法一:如图,

AF · BC

=( AD

第3节 平面向量的数量积及平面向量的应用

第3节 平面向量的数量积及平面向量的应用

第3节 平面向量的数量积及平面向量的应用知识梳理1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0. (3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律). 4.平面几何中的向量方法三步曲:(1)用向量表示问题中的几何元素,将几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系; (3)把运算结果“翻译”成几何关系.1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.3.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0),不能得出b =c ,两边不能约去同一个向量.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(4)若a ·b =a ·c (a ≠0),则b =c .( ) 答案 (1)× (2)√ (3)√ (4)× 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等.2.已知向量a =(1,1),b =(2,4),则(a -b )·a =( ) A.-14 B.-4C.4D.14答案 B解析 由题意得a -b =(-1,-3),则(a -b )·a =-1-3=-4. 3.设a ,b 是非零向量,则“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件.4.(2020·湘潭模拟)已知平面向量a ,b ,满足|a |=|b |=1,若(2a -b )·b =0,则向量a ,b 的夹角为( ) A.π6 B.π4C.π3D.2π3答案 C解析 由(2a -b )·b =0,可得a ·b =12b 2=12,设向量a 、b 的夹角为θ, 则cos θ=a ·b |a ||b |=12,又θ∈[0,π],所以向量a 、b 的夹角为π3.5.(多选题)(2021·青岛统检)已知向量a +b =(1,1),a -b =(-3,1),c =(1,1),设a ,b 的夹角为θ,则( ) A.|a |=|b | B.a ⊥c C.b ∥cD.θ=135°答案 BD解析 由a +b =(1,1),a -b =(-3,1),得a =(-1,1),b =(2,0),则|a |=2,|b |=2,故A 不正确;a ·c =-1×1+1×1=0,故B 正确; 不存在λ∈R ,使b =λc 成立,故C 不正确;cos θ=a ·b |a |·|b |=-22×2=-22,所以θ=135°,故D 正确.综上知选BD.6.(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22.考点一 平面向量的数量积运算1.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3C.2D.0答案 B解析 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.2.(2020·北京卷)已知正方形ABCD 的边长为2,点P 满足AP →=12()AB →+AC →,则|PD→|=__________;PB →·PD →=__________. 答案5 -1解析 法一 ∵AP→=12(AB →+AC →),∴P 为BC 的中点.以A 为原点,建立如图所示的平面直角坐标系,由题意知A (0,0),B (2,0),C (2,2),D (0,2),P (2,1),∴|PD →|=(2-0)2+(1-2)2= 5. 易得PB→=(0,-1),PD →=(-2,1). ∴PB→·PD →=(0,-1)·(-2,1)=-1.法二 如图,在正方形ABCD 中,由AP→=12(AB →+AC →)得点P 为BC的中点,∴|PD→|=12+22= 5. PB→·PD →=PB →·(PC →+CD →)=PB →·PC →+PB →·CD → =-PB→2+0=-1. 3.在四边形ABCD 中,AD ∥BC ,AB =23,AD =5,∠A =30°,点E 在线段CB的延长线上,且AE =BE ,则BD →·AE →=________. 答案 -1解析 如图,在等腰△ABE 中, 易得∠BAE =∠ABE =30°,故BE =2. 则BD→·AE →=(AD →-AB →)·(AB →+BE →) =AD→·AB →+AD →·BE →-AB →2-AB →·BE → =5×23×cos 30°+5×2×cos 180°-12-23×2×cos 150° =15-10-12+6=-1.4.(2020·新高考山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP→·AB →的取值范围是( ) A.(-2,6) B.(-6,2)C.(-2,4)D.(-4,6)答案 A解析 法一 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP→=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6). 故选A.法二 AP→·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP→|cos ∠P AB 表示AP →在AB →方向上的投影. 结合几何图形,当点P 与F 重合时投影最小,当P 与点C 重合时,投影最大, 又AC→·AB →=23×2×cos 30°=6,AF →·AB →=2×2cos 120°=-2, 故当点P 在正六边形ABCDEF 内时,-2<AP →·AB →<6.感悟升华 1.计算平面向量的数量积主要方法: (1)利用定义:a ·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. (3)活用平面向量数量积的几何意义.2.解决涉及几何图形的向量的数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简后再运算.但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补.考点二向量数量积的性质及应用角度1夹角与垂直【例1】(1)(2020·全国Ⅱ卷)已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()A.a+2bB.2a+bC.a-2bD.2a-b(2)(2021·新高考8省联考)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案(1)D(2) B解析(1)易知a·b=|a||b|cos 60°=1 2,则b·(a+2b)=52≠0,b·(2a+b)=2≠0,b·(a-2b)=a·b-2b2=-32≠0,b·(2a-b)=0.因此b⊥(2a-b).(2)法一设a=(1,0),b=(0,1),则c=(7,2),∴sin〈a,c〉=2 3.法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.角度2平面向量的模【例2】(1)(2020·南昌模拟)设x,y∈R,a=(x,1),b=(2,y),c=(-2,2),且a⊥c,b∥c,则|2a+3b-c|=()A.234B.26C.12D.210(2)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值是________.答案 (1)A (2)2+1解析 (1)因为a ⊥c ,所以a ·c =-2x +2=0,解得x =1,则a =(1,1), 因为b ∥c ,所以4+2y =0,解得y =-2,则b =(2,-2). 所以2a +3b -c =(10,-6),则|2a +3b -c |=234. (2)法一 由a ·b =0,得a ⊥b .如图所示,分别作OA→=a ,OB →=b ,作OC →=a +b ,则四边形OACB 是边长为1的正方形,所以|OC →|= 2.作OP→=c ,则|c -a -b |=|OP →-OC →|=|CP →|=1. 所以点P 在以C 为圆心,1为半径的圆上.由图可知,当点O ,C ,P 三点共线且点P 在点P 1处时,|OP →|取得最大值2+1.故|c |的最大值是2+1. 法二 由a ·b =0,得a ⊥b .建立如图所示的平面直角坐标系,则OA →=a =(1,0),OB →=b=(0,1).设c =OC →=(x ,y ), 由|c -a -b |=1, 得(x -1)2+(y -1)2=1,所以点C 在以(1,1)为圆心,1为半径的圆上. 所以|c |max =2+1.法三 易知|a +b |=2,|c -a -b |=|c -(a +b )| ≥||c |-|a +b ||=||c |-2|, 由已知得||c |-2|≤1,所以|c |≤1+2,故|c |max =2+1.感悟升华 1.两个向量垂直的充要条件是两向量的数量积为0,若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.若题目给出向量的坐标,可直接运用公式cos θ=x1x2+y1y2x21+y21·x22+y22求解.没有坐标时可用公式cos θ=a·b|a||b|.研究向量夹角应注意“共起点”,注意取值范围是[0,π].3.向量模的计算主要利用a2=|a|2,把向量模的运算转化为数量积运算,有时借助几何图形的直观性,数形结合,提高解题效率.【训练1】(1)(多选题)(2021·湖南三校联考)已知a,b是单位向量,且a+b=(1,-1),则()A.|a+b|=2B.a与b垂直C.a与a-b的夹角为π4 D.|a-b|=1(2)已知单位向量a,b的夹角为θ,且tan θ=12,若向量m=5a-3b,则|m|=()A.2B.3C.26D.2或26答案(1)BC(2)A解析(1)|a+b|=12+(-1)2=2,故A错误;因为a,b是单位向量,所以|a|2+|b|2+2a·b=1+1+2a·b=2,得a·b=0,a与b 垂直,故B正确;|a-b|2=a2+b2-2a·b=2,|a-b|=2,故D错误;cos〈a,a-b〉=a·(a-b)|a||a-b|=a2-a·b1×2=22,所以a与a-b的夹角为π4,故C正确.故选BC.(2)依题意|a|=|b|=1,又θ为a,b的夹角,且tan θ=1 2,∴θ为锐角,且cos θ=2sin θ,又sin2θ+cos2θ=1,从而cos θ=25 5.由m=5a-3b,∴m2=(5a-3b)2=5a2+9b2-65a·b=2,因此|m|= 2.考点三 平面向量的综合应用【例3】 (1)(2020·天津卷)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD→=λBC →,AD →·AB →=-32,则实数λ的值为__________;若M ,N 是线段BC 上的动点,且|MN→|=1,则DM →·DN →的最小值为__________.答案 16 132解析 因为AD→=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD→·AB →=|AD →|·|AB →|·cos 120°=-32, 解得|AD→|=1. 因为AD→,BC →同向,且BC =6, 所以AD→=16BC →,即λ=16. 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系. 如图,设M (a ,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝ ⎛⎭⎪⎫1,332,所以DM →=⎝ ⎛⎭⎪⎫a -1,-332, DN→=⎝⎛⎭⎪⎫a ,-332, 所以DM→·DN →=a 2-a +274=⎝ ⎛⎭⎪⎫a -122+132. 所以当a =12时,DM→·DN →取得最小值132.(2)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C . ①求角C 的大小;②若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 ①m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,cos C =12. 又因为C ∈(0,π),故C =π3.②由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA→·(AB →-AC →)=18,所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36,所以c =6.感悟升华 1.以平面几何为载体的向量问题有两种基本解法:(1)基向量法:恰当选择基底,结合共线定理、平面向量的基本定理进行向量运算.(2)坐标法:如果图形比较规则,可建立平面坐标系,把有关点与向量用坐标表示,从而使问题得到解决.2.解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题.【训练2】 (1)(2020·全国Ⅲ卷)在平面内,A ,B 是两个定点,C 是动点.若AC →·BC →=1,则点C 的轨迹为( ) A.圆B.椭圆C.抛物线D.直线(2)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若AB →·AC →=6AO →·EC →,则AB AC 的值是________. 答案 (1)A (2)3解析 (1)以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设点A ,B 分别为(-a ,0),(a ,0)(a >0),点C 为(x ,y ),则AC→=(x +a ,y ),BC→=(x -a ,y ),所以AC →·BC →=(x -a )(x +a )+y ·y =x 2+y 2-a 2=1,整理得x 2+y 2=a 2+1.因此点C 的轨迹为圆.故选A.(2)法一 如图,过点D 作DF ∥CE 交AB 于点F ,由D 是BC 的中点,可知F 为BE 的中点.又BE =2EA ,则知EF =EA ,从而可得AO =OD ,则有AO→=12AD →=14(AB →+AC →),EC →=AC →-AE →=AC →-13AB →,所以6AO →·EC →=32(AB →+AC →)·⎝ ⎛⎭⎪⎫AC →-13AB →=32AC →2-12AB →2+AB →·AC →=AB→·AC →,整理可得AB →2=3AC →2,所以AB AC= 3.法二 以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.设E (1,0),C (a ,b ),则B (3,0),D ⎝ ⎛⎭⎪⎫a +32,b 2.⎭⎪⎬⎪⎫l AD :y =ba +3x ,l CE :y =ba -1(x -1)⇒O ⎝ ⎛⎭⎪⎫a +34,b 4. ∵AB→·AC →=6AO →·EC →, ∴(3,0)·(a ,b )=6⎝ ⎛⎭⎪⎫a +34,b 4·(a -1,b ),即3a =6⎣⎢⎡⎦⎥⎤(a +3)(a -1)4+b 24,∴a 2+b 2=3,∴AC = 3.∴AB AC =33= 3.平面向量与三角形的“四心”向量具有数形二重性,借助几何直观研究向量,优化解题过程,进而提高解题效率.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA→|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA→·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.一、平面向量与三角形的“重心”【例1】已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心B.△ABC 的垂心C.△ABC 的重心D.AB 边的中点答案 C解析 取AB 的中点D ,则2OD→=OA →+OB →,∵OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 二、平面向量与三角形的“内心”问题【例2】在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063 B.1463 C.43D.62答案 B解析 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 三、平面向量与三角形的“外心”问题【例3】(2020·安庆质检)在△ABC 中,O 为其外心,OA →·OC →=3,且3OA →+7OB →+OC →=0,则边AC 的长是________. 答案3-1解析 设△ABC 外接圆的半径为R , ∵O 为△ABC 的外心, ∴|OA→|=|OB →|=|OC →|=R , 又3OA→+7OB →+OC →=0, 则3OA→+OC →=-7OB →, ∴3OA→2+OC →2+23OA →·OC →=7OB →2, 从而OA→·OC →=32R 2, 又OA→·OC →=3,所以R 2=2, 又OA→·OC →=|OA →||OC →|cos ∠AOC =R 2cos ∠AOC =3, ∴cos ∠AOC =32,∴∠AOC =π6, 在△AOC 中,由余弦定理得 AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-2 3. 所以AC =3-1.四、平面向量与三角形的“垂心”问题【例4】已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心 B.垂心C.外心D.内心答案 B解析 因为OP→=OA →+λ(AB →|AB →|cos B +AC→|AC →|cos C),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以BC→·AP →=BC →·λ(AB →|AB →|cos B +AC→|AC →|cos C)=λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.A 级 基础巩固一、选择题1.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A.-92 B.0C.3D.152答案 C解析 因为2a -3b =(2k -3,-6),(2a -3b )⊥c ,所以(2a -3b )·c =2(2k -3)-6=0,解得k =3,选C.2.(2020·新乡质检)已知向量a =(0,2),b =(23,x ),且a 与b 的夹角为π3,则x =( ) A.-2B.2C.1D.-1答案 B解析 由题意得a ·b |a ||b |=2x 2·12+x 2=12, 则2x =12+x 2,解之得x =2,x =-2(舍去).3.(2021·长沙调研)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE→=-7DE →,3BF →=FC →,则AF →·BE →=( )A.11B.10C.-10D.-11答案 D解析 以A 为坐标原点,建立直角坐标系如图.则A (0,0),B (4,0),E (1,4),F (5,1),所以AF →=(5,1),BE→=(-3,4),则AF →·BE →=-15+4=-11. 4.若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( ) A.π3 B.2π3C.5π6D.π6答案 D解析 设|b |=1,则|a +b |=|a -b |=2. 由|a +b |=|a -b |,得a ·b =0,故以a 、b 为邻边的平行四边形是矩形,且|a |=3, 设向量a +b 与a 的夹角为θ,则cos θ=a ·(a +b )|a |·|a +b |=a 2+a ·b |a |·|a +b |=|a ||a +b |=32,又0≤θ≤π,所以θ=π6.5.(多选题)(2021·武汉调研)如图,点A ,B 在圆C 上,则AB →·AC →的值( )A.与圆C 的半径有关B.与圆C 的半径无关C.与弦AB 的长度有关D.与点A ,B 的位置有关 答案 BC解析 如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB→·AC →的值与圆C 的半径无关,只与弦AB 的长度有关,故选BC. 6.(多选题)(2020·青岛调研)在Rt △ABC 中,CD 是斜边AB 上的高,如图,则下列等式成立的是( ) A.|AC→|2=AC →·AB → B.|BC→|2=BA →·BC → C.|AB→|2=AC →·CD → D.|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2答案 ABD解析 因为AC→·AB →=|AC →||AB →|cos A =|AC →||AC →|=|AC →|2,选项A 正确;因为BA→·BC →=|BA →||BC →|cos B =|BC →||BC →|=|BC →|2,选项B 正确; 由AC→·CD →=|AC →||CD →|·cos(π-∠ACD )<0,|AB →|2>0,知选项C 错误; 由题图可知Rt △ACD ∽Rt △ABC ,所以|AC→||BC →|=|AB →||CD →|,结合选项A ,B 可得|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2,选项D 正确.故选ABD.二、填空题7.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉=________. 答案 23解析 由题意,得cos 〈a ,c 〉=a ·(2a -5b )|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23.8.(2020·全国Ⅰ卷)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 如图,设OA →=a ,OB →=b ,利用平行四边形法则得OC →=a +b ,∵|a |=|b |=|a +b |=1,∴△OAC 为正三角形,∴|BA →|=|a -b |=2×32×|a |= 3.9.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+MD →|的最小值为________.答案 3解析 以BC 所在直线为x 轴,BA 所在直线为y 轴建立如图所示的平面直角坐标系,设A (0,a ),M (0,b ),且0≤b ≤a ,由于BC =2,AD =1. ∴C (2,0),D (1,a ).则MC →=(2,-b ),MD →=(1,a -b ), ∴MC→+MD →=(3,a -2b ). 因此|MC→+MD →|=9+(a -2b )2, ∴当且仅当a =2b 时,|MC →+MD →|取得最小值3.三、解答题10.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0,于是tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.B 级 能力提升11.(2021·石家庄调研)已知向量a ,b 满足|a |=1,(a -b )⊥(3a -b ),则a 与b 的夹角的最大值为( ) A.π6 B.π3C.2π3D.5π6答案 A解析 设a 与b 的夹角为θ,θ∈[0,π]. 因为(a -b )⊥(3a -b ),所以(a -b )·(3a -b )=0. 整理可得3a 2-4a ·b +b 2=0, 即3|a |2-4a ·b +|b |2=0.将|a |=1代入3|a |2-4a ·b +|b |2=0, 可得3-4|b |cos θ+|b |2=0, 整理可得cos θ=34|b |+|b |4≥234|b |×|b |4=32,当且仅当34|b |=|b |4,即|b |=3时取等号, 故cos θ≥32,结合θ∈[0,π], 可知θ的最大值为π6.12.(2021·重庆联考)已知点O 为坐标原点,向量OA →=(1,2),OB →=(x ,y ),且OA→·OB →=10,则|OB →|的最小值为________. 答案 25解析 由题意知|OB→|=x 2+y 2,x +2y =10,∴点B 在直线x +2y -10=0上,∴|OB→|的最小值为点O 到直线x +2y -10=0的距离. 则|OB →|min=|0+0-10|12+22=105=2 5. 13.(2020·浙江卷)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤ 2.设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是__________. 答案 2829解析 因为单位向量e 1,e 2满足|2e 1-e 2|≤2, 所以|2e 1-e 2|2=5-4e 1·e 2≤2,即e 1·e 2≥34. 因为a =e 1+e 2,b =3e 1+e 2,a ,b 的夹角为θ,所以cos 2θ=(a ·b )2|a |2|b |2=[(e 1+e 2)·(3e 1+e 2)]2|e 1+e 2|2·|3e 1+e 2|2=(4+4e 1·e 2)2(2+2e 1·e 2)(10+6e 1·e 2)=4+4e 1·e 25+3e 1·e 2. 不妨设t =e 1·e 2,则t ≥34,cos 2θ=4+4t 5+3t ,又y =4+4t 5+3t 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增,所以cos 2θ≥4+35+94=2829, 所以cos 2θ的最小值为2829.14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ), sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2·5c ·⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7(舍去),故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.。

2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)

2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)

专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。

平面向量的数量积及其应用

平面向量的数量积及其应用

解析 解法一:∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|=2,且|a+b|+|a-b|≥|(a+b)(a-b)|=2|b|=4, ∴|a+b|+|a-b|≥4,当且仅当a+b与a-b反向时取等号,此时|a+b|+|a-b|取最 小值4.
| a b |2 | a b |2 | a b| | a b| ∵ ≤ = a 2 b 2 = 5 , 2 2
2 2 x12 y12 ,|b|= x2 y2 (2)|a|= .
平面向量的长度问题
( x1 x2 ) 2 ( y1 y2 ) 2 . 2.若A(x1,y1),B(x2,y2),则| AB |=

考点三
平面向量的夹角、两向量垂直及数量积的应用
x1 x2 y1 y2
已知a=(x1,y1),b=(x2,y2). (1)若a与b的夹角为θ,则cos θ= . 2 (2)a⊥b⇔x1x2+y1y2=0.
∴|a+b|+|a-b|≤2 5 . 当且仅当|a+b|=|a-b|时取等号,此时a· b=0.
故当a⊥b时,|a+b|+|a-b|有最大值2 5 .
解法二:设x=|a+b|,由||a|-|b||≤|a+b|≤|a|+|b|, 得1≤x≤3.
设y=|a-b|,同理,1≤y≤3. 而x2+y2=2a2+2b2=10, 故可设x= 10 cos θ, ≤cos θ≤ , y= 10 sin θ, ≤sin θ≤ . 设α1,α2为锐角,且sin α1= ,sin α2= ,
方法 2 求向量夹角问题的方法

平面向量的数量积与应用

平面向量的数量积与应用

平面向量的数量积与应用平面向量的数量积是向量运算中的一种重要概念,可以帮助我们理解和解决许多与向量相关的问题。

本文将介绍平面向量的数量积的定义和性质,并探讨其在几何和物理中的应用。

1. 数量积的定义平面向量的数量积又称为点积或内积,用符号"·"表示。

对于平面上任意两个向量A和B,其数量积的定义如下:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和B的模长,θ为A与B之间的夹角。

2. 数量积的性质(1)交换律:A·B = B·A(2)分配律:(A + B)·C = A·C + B·C(3)常数乘法:(kA)·B = k(A·B),其中k为实数(4)数量积与向量的垂直关系:A·B = 0 当且仅当A与B垂直3. 应用一:向量的夹角与正交投影通过数量积的定义,我们可以得到向量A与B之间的夹角公式:cosθ = A·B / (|A||B|)这个公式在几何中的应用非常广泛,其中一个重要的应用就是求解向量的正交投影。

给定向量A和B,向量B在A上的正交投影向量的长度可以利用数量积公式求得:projA(B) = (B·A / |A|^2) * AprojA(B)表示向量B在A上的正交投影向量。

4. 应用二:向量的工作与功率在物理学中,向量的数量积有许多重要应用,其中之一是描述力的方向与物体位移方向的关系。

当力F作用于物体上时,通过点积可以得到该力对物体作用的工作W:W = F·d其中,d表示物体位移的向量。

如果力与位移方向相同,则工作为正值;如果力与位移方向相反,则工作为负值;如果力与位移方向垂直,则工作为零。

同时,功率P也可以利用数量积表示:P = F·v其中,v表示物体的速度向量。

5. 应用三:向量的投影与图形的面积利用数量积,我们还可以求解平面上某个凸多边形的面积。

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用简介:平面向量是解决平面几何问题的重要工具之一。

其数量积和向量积是平面向量运算中常用的两种运算方式。

本文将探讨平面向量的数量积和向量积在几何问题中的应用。

一、平面向量的数量积平面向量的数量积,又称为点积或内积,表示两个向量之间的夹角关系。

其计算公式为:A ·B = |A| × |B| × cosθ其中,A和B为两个平面向量,|A|和|B|分别表示A和B的模长,θ表示A和B的夹角。

应用一:空间点的投影平面向量的数量积可以应用于求空间点在某个向量上的投影。

设空间点P(x, y, z)在向量A(a, b, c)上的投影为点Q,利用数量积的定义可以得到:PQ = OP · u其中,OP表示向量OP的数量积,u表示向量A的单位向量。

应用二:判断向量正交与共线根据平面向量的数量积,我们可以判断两个向量是否正交或共线。

若两个向量的数量积为0,则它们垂直或正交;若两个向量的数量积等于它们的模长乘积,则它们共线。

应用三:求角的余弦值在解决几何问题时,常常需要求夹角的余弦值。

利用平面向量的数量积可以得到两个向量夹角的余弦值。

根据数量积的定义,可以求出两个向量的模长并代入计算公式中,进而得到夹角的余弦值。

二、平面向量的向量积平面向量的向量积,又称为叉积或外积,表示两个向量之间的叉乘关系。

其计算公式为:A ×B = |A| × |B| × sinθ × n其中,A和B为两个平面向量,|A|和|B|分别表示A和B的模长,θ表示A和B的夹角,n为法向量,其方向满足右手法则。

应用一:求平行四边形面积利用平面向量的向量积,可以求解平行四边形的面积。

设平行四边形的两条边向量分别为A和B,根据向量积的定义可以得到平行四边形的面积为:S = |A × B|应用二:判断三角形形状平面向量的向量积可以用于判断三角形的形状。

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用一、引言平面向量是解决几何问题中常用的工具之一,其中数量积和向量积是平面向量的两种重要运算。

本文将重点探讨平面向量的数量积和向量积的应用。

二、数量积的应用数量积又称为点积或内积,其运算结果是一个数值。

下面将介绍数量积在平面向量的几个应用方面。

1. 计算两向量夹角数量积可以通过余弦函数的定义,计算两个向量的夹角。

设有两向量A、B,它们的数量积为AB。

根据数量积的定义,有AB =|A||B|cosθ,其中θ为A与B的夹角。

通过这个关系式,可以计算出任意两个向量的夹角,而不需要通过求解三角函数。

2. 判断两向量的垂直与平行关系若两个非零向量A、B的数量积为0,即AB = 0,则A与B垂直。

这是因为根据数量积的定义,若θ为0°或180°,则cosθ为0,从而使得AB = 0。

同样,若AB ≠ 0,则可以判断A与B不垂直。

3. 计算向量在某一方向上的投影长度向量的投影长度是向量在某一方向上的长度,可以通过数量积来计算。

设向量A在向量B方向上的投影长度为h,则h = |A|cosθ,其中θ为A与B的夹角。

通过这个公式可以计算出向量在某一方向上的投影长度,进而进行相关的几何问题求解。

三、向量积的应用向量积又称为叉积或外积,它的运算结果是一个向量。

下面将介绍向量积在平面向量的几个应用方面。

1. 求解平行四边形面积若平行四边形的两条边分别为向量A、B,那么平行四边形的面积可以通过向量积的模长来求解。

设向量积A×B的模长为S,则S即为平行四边形的面积。

这是因为向量积的模长表示向量所张成的面积。

2. 判断向量的方向向量积可以根据右手定则来判断新向量的方向。

设有两个向量A、B,它们的向量积为C(C = A×B),则以右手四指从A旋转到B的方向,拇指所指的方向即为C的方向。

3. 计算平面向量的面积若平面上三个非零向量A、B、C的起点相同,可以通过向量积来计算三角形ABC所在平面的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用;第二步,根据数量积的坐标公式进行运算即可.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC上,且BE =23BC ,DF =16DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝ ⎛⎭⎪⎫-12,1,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =⎝ ⎛⎭⎪⎫23 BC -BA ·⎝ ⎛⎭⎪⎫-712 BA +BC =712|BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.突破点(二) 平面向量数量积的应用的关系平面向量的垂直问题1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC(2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D.(2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C[易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法:(1)a 2=a ·a =|a |2; (2)|a ±b |=a ±b 2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( ) A .2 B .6 C .2 3 D .12 (2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. [解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3. (2)∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233 [方法技巧] 求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2. (2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题第一步 由坐标运算或定义计算出这两个向量的数量积第二步 分别求出这两个向量的模第三步 根据公式cos 〈a ,b 〉=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值第四步 根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) D .π(2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a ||b |cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0.∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8, a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223.[易错提醒] (1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线.(2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.突破点(三) 平面向量与其他知识的综合问题 平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.平面向量与三角函数的综合问题[例1] 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z), 所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1. 又0<A <π,故π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sin C .由正弦定理得2b =3c ,②由①②,可得b =3,c =2.[方法技巧]平面向量与三角函数综合问题的类型及求解思路(1)向量平行(共线)、垂直与三角函数的综合:此类题型的解答一般是利用向量平行(共线)、垂直关系得到三角函数式,再利用三角恒等变换对三角函数式进行化简,结合三角函数的图象与性质进行求解.(2)向量的模与三角函数综合:此类题型主要是利用向量模的性质|a |2=a 2,如果涉及向量的坐标,解答时可利用两种方法:一是先进行向量的运算,再代入向量的坐标进行求解;二是先将向量的坐标代入,再利用向量的坐标运算求解.此类题型主要表现为两种形式:①利用三角函数与向量的数量积直接联系;②利用三角函数与向量的夹角交汇,达到与数量积的综合.平面向量与几何的综合问题[例2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ·BE =1, 则AB 的长为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE ·AF =1,则 λ的值为________.[解析] (1)设|AB |=x ,x >0,则AB ·AD =12x .又AC ·BE =(AD +AB )·(AD -12AB )=1-12x 2+14x =1,解得x =12,即AB 的长为12. (2)由题意可得AB ·AD =|AB |·|AD |cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2, 在菱形ABCD 中,易知AB =DC ,AD =BC ,所以AE =AB +BE =AB +13AD ,AF =AD +DF =1λAB +AD ,AE ·AF =⎝ ⎛⎭⎪⎫AB +13 AD ·⎝ ⎛⎭⎪⎫1λ AB +AD =4λ+43-2⎝ ⎛⎭⎪⎫1+13λ=1,解得λ=2.[答案] (1)12(2)2 [方法技巧]平面向量与几何综合问题的求解方法(1)坐标法:把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.[检验高考能力]一、选择题1.已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )A .-3B .-2C .1D .-1解析:选A 因为a +2b 与c 垂直,所以(a +2b )·c =0,即a ·c +2b ·c =0,所以3k +3+23=0,解得k =-3.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB =(1,-2),AD =(2,1),则AD ·AC =( )A .5B .4C .3D .2解析:选A 由四边形ABCD 是平行四边形,知AC =AB +AD =(1,-2)+(2,1)=(3,-1),故AD ·AC =(2,1)·(3,-1)=2×3+1×(-1)=5.3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则-λ2+2λ2=35,所以λ=-3,b =(3,-6),故选A.4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-94解析:选B ∵n⊥(t m +n ),∴n·(t m +n )=0,即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B. 5.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ·BC 的值为( )A .-58解析:选B 如图所示,AF =AD +DF .又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD =12AB ,DF =12AC +14AC =34AC ,所以AF =12AB +34AC .又BC =AC -AB ,则AF ·BC =12AB +34AC ·(AC -AB )=12AB ·AC -12AB 2+34AC 2-34AC ·AB =34AC 2-12AB 2-14AC ·AB .又|AB |=|AC |=1,∠BAC =60°,故AF ·BC =34-12-14×1×1×12=18.故选B. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP =λAB ,AQ =(1-λ)AC ,λ∈R ,若BQ ·CP =-32,则λ=( )解析:选 A ∵BQ =AQ -AB =(1-λ)AC -AB ,CP =AP -AC =λAB -AC ,又BQ ·CP =-32,|AB |=|AC |=2,A =60°,AB ·AC =|AB |·|AC |cos 60°=2,∴[(1-λ)AC -AB ]·(λAB -AC )=-32,即λ|AB |2+(λ2-λ-1)AB ·AC +(1-λ)|AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. 二、填空题7.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )·b ,则|c |=________.解析:由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )·b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+-82=8 2.答案:828.已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为________.解析:∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6,又|a |=2,|b |=1,∴a ·b =-1,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.答案:2π39.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是________.解析:a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞.答案:⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ·AN 的最大值为________.解析:设AN =λAB +μAD ,因为N 在菱形ABCD 内,所以0≤λ≤1,0≤μ≤1.AM =AD +12DC =12AB +AD .所以AM ·AN =⎝ ⎛⎭⎪⎫12 AB +AD ·(λAB +μAD )=λ2AB 2+⎝ ⎛⎭⎪⎫λ+μ2AB ·AD +μAD 2=λ2×4+⎝⎛⎭⎪⎫λ+μ2×2×2×12+4μ=4λ+5μ.所以0≤AM ·AN ≤9,所以当λ=μ=1时,AM ·AN 有最大值9,此时,N 位于C 点.答案:9三、解答题11.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解:(1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴m ·n =|m ||n |cos π3=1×1×12=12,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA ·(AB -AC )=18,求边c 的长.解:(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),对于△ABC ,A +B =π-C,0<C <π,∴sin(A +B )=sin C ,∴m ·n =sin C ,又m ·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b . ∵CA ·(AB -AC )=18,∴CA ·CB =18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,∴c 2=4c 2-3×36,c 2=36,∴c =6.。

相关文档
最新文档