含参数不等式的解法
高二数学含参数不等式的解法
![高二数学含参数不等式的解法](https://img.taocdn.com/s3/m/e5eb032e804d2b160a4ec030.png)
例1.解关于x的不等式 ax b 0
分析: 参变数可分为三种情况,即 a 0, a 0和a 0 ,
分别解出当 a 0, a 0和a 0时的解集即可。
解: 原不等式可化为:ax b
当 a 0 时,则 x b a
当
a
0
时,则
x
b a
当 a 0 时,则原不等式变为: 0 b
解: 原不等式可化为:
(x a)( x a2 ) 0
当a 0时,则a a2,原不等式的解集为 {x | x a或x a2}
当a 0时,则a a2 0,原不等式的解集为 {x | x 0}
当0 a 1时,则a2 a,原不等式的解集为 {x | x a2或x a, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
例2.解关于x的不等式
x2 (a a2 )x a3 0(a R)
; https:// 女性生理期计算器
;
(4分) 答:? ? 17.文中画线的句子使用了什么修辞方法?请结合文章内容,具体分析其表达作用。(3分) 雪花簌簌地落着,风安静地睡去,远山近水被夜色围拢而来,婴孩一般安卧在村庄阔大的臂弯里。 答:? ? 18.下面对文章的理解分析,不正确的两项是( )(? ) A.文章以“冰 窗花”为线索,回顾作者早年的故园生活,着力描写了盛开在冬日窗棂上的冰窗花。 B.第①自然段“尤其是在久居乡下的那些日子里”一句起强调作用,并自然地引起下文。 C.第②自然段中,作
含有参数的不等式组解法
![含有参数的不等式组解法](https://img.taocdn.com/s3/m/9dce32be03d276a20029bd64783e0912a3167c6d.png)
含有参数的不等式组解法一般来说,含有参数的不等式组的解法可以分为以下几步:第一步:确定参数的取值范围。
根据问题的条件或约束,找出参数可以取得的范围。
这通常需要对问题进行分析和推理。
第二步:将未知数用符号表示。
用一个字母(通常是x)表示不等式中的未知数。
第三步:将所有不等式整理成标准形式。
标准形式是指不等式两边都是关于x的多项式,并且不等号是"≥"或"≤",而不是">"或"<"。
如果不等式中有分数、根式或绝对值等,可以通过一系列代数运算将其转化为标准形式。
第四步:通过分析求解。
根据参数的取值范围,可以分析出不等式中的未知数的取值范围。
进而,通过对不等式中两边同时进行一系列代数运算,可以推导出满足条件的解集。
第五步:对参数取值范围的讨论。
有时,不等式的解集对参数的取值范围有限制。
这时,需要根据参数的取值范围对解集进行讨论。
这通常需要对不等式进行分析和推导,以找出对应于不同参数取值范围的解集。
下面我们通过一个例子来说明含有参数的不等式组的解法。
例题:设0<a<b<c,解不等式组:,x-a,+,x-b,+,x-c,≤a+b+c解法:首先,确定参数的取值范围。
由于0<a<b<c,所以参数a、b、c 的取值范围是存在实数并满足0<a<b<c的范围。
然后,将未知数用符号表示。
我们用x表示不等式中的未知数。
接下来,将不等式整理成标准形式。
由于不等式中已经是绝对值不等式的形式,所以不需要进行额外的变形。
然后,通过分析求解。
根据绝对值的定义,我们可以得到以下三个不等式:1.当x≤a时,x-a,=a-x。
2.当a<x≤b时,x-a,=x-a,x-b,=x-b。
3.当x>b时,x-b,=x-b,x-c,=x-c。
将这三个不等式分别代入原始不等式,我们可以得到以下三个不等式:1.a-x+b-x+c-x≤a+b+c,即-3x+2b+c≤3a+2c。
含参数的不等式的解法
![含参数的不等式的解法](https://img.taocdn.com/s3/m/1920557e5627a5e9856a561252d380eb629423fc.png)
含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。
常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。
如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。
2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。
对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。
对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。
3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。
对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。
对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。
步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。
根据参数的不同取值情况,采用不同的解法。
1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。
-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。
2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。
-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。
3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。
步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。
含参数的一元二次不等式
![含参数的一元二次不等式](https://img.taocdn.com/s3/m/0bd2828e8762caaedd33d467.png)
1 1 1 即 a 1时,原不等式的解集为: {x | x 1} a a 1 1即 a 1 时,原不等式的解集为: a
1 1 a
即
1 {x |1 x } 0 a 1 时,原不等式的解集为: a
含参数的一元二次不等式的解法
综上所述, (1)当 a 0 时,原不等式的解集为 (2)当 a 0 时,原不等式的解集为
2
又不等式即为 (x-2a)(x-3a)>0
故只需比较两根2a与3a的大小.
x 解: 原不等式可化为: 2a ( x 3a) 0
相应方程 x 2a ( x 3a) 0 的两根为 x1 2a, x2 3a ∴(1)当 2a 3a 即 a 0 时,原不等式解集为 x | x 2a或x 3a
综上所述: a 0时,原不等式解集为:x | x 2a或x 3a
a 0时,原不等式解集为: | x 3a或x 2a x
(2)当 2a 3a 即 a 0 时,原不等式解集为 x | x 3a或x 2a
两根大小的讨论
例题讲解
含参数的一元二次不等式的解法
2 ∴(a)当 k 0 时,原不等式即为 2 x 0
解集为:x x 0
解集为:x x 2
2 x 2 8x 8 0 ∴(b)当 k 8时,原不等式即为
k 2 8k 0 即 k 0 或 k 8 (3)当
时,
k k 2 8k k k 2 8k x x 4 4
例3: 解不等式
2
x ax 4 0
2
解:∵ a 16 ∴ 当a 4,4即 0时
高二数学含参数不等式的解法
![高二数学含参数不等式的解法](https://img.taocdn.com/s3/m/e2d8b370a45177232e60a208.png)
(2) ax (2a 1) x 2 0
2
1 当a 0时, 解集为 x | x 2 a 当a 0时, 解集为x | x | x 2 1 1 当0 a 时, 解集为 x | x 或x 2 2 a 1 当a 时, 解集为x | x 2 2 1 1 当a 时, 解集为 x | x 2或x 2 a
含参数不等式的解法
例1.解关于x的不等式
分析:
ax b 0
参变数可分为三种情况,即 a 0, a 0和a 0 , 分别解出当 a 0, a 0和a 0 时的解集即可。 原不等式可化为:ax b
解:
b 当 a 0 时,则 x a
b 当 a 0 时,则 x a
当0 a 1时, 有a 2 a 2 当a 0、a 1时, 有a a
解: 原不等式可化为:
( x a)(x a ) 0
2
当a 0时, 则a a 2 , 原不等式的解集为 {x | x a或x a 2 }
当a 0时, 则a a 2 0, 原不等式的解集为 {x | x 0}
1 1 0 1 1 x ,因为 1 a 0, 所以x 1, 故有1 x x 1 a 1 1 a x
综上所述,当a 1时,不等式的解集为:
1 x 0 x | 1 a
当 0 a 1 时,不等式的解为:
石器时代 http://www.shiqi.co/m/ 石器时代
wkd27xny
一个紧张的汇报着这一星期的成果。夜北冥安静的听完后,点了点头,顿时跪着的十三个人就齐齐松了一口气。夜北冥从朝凰大陆带来的 十二个人,都是月如跟月媚亲自在暗门挑的,每一个都是暗门中的精英,都有各自的特长。在这次夜北冥给的为期一个星期的任务中,她 们互相合作,已经在距离青龙王朝不远处的郊外买下了一间面积特大的客栈,打算在未央大陆再开一家梦之境和凤栖楼。这处山洞是十二 属下挖的,是专门给这两天在青龙王朝各地找到的天赋、经脉不错且无家可归的人或奴隶市场的人提供修炼的地方。这一星期以来梦瑶跟 濯清炼制的丹药和武器也算是有了用武之地,这些东西交给十二属下分发给几千个修炼的人。得到了丹药和武器的人们,顿时对那位高座 上戴银色面具穿黑袍的女子产生了再生之情,一个个看着夜北冥的眼光都是如同小孩子看着自己最仰慕的父母的眼神。夜北冥感觉到精神 海中有什么又开始增长了,连带着身体非常的舒爽,好像这浑浊的空气更加的清新了。这就是信仰之力,从小的时候,夜北冥就感受到这 种信仰的力量了,尤其在六年前自己十二岁的时候结束了未央大陆的战乱,将魔兽都赶到落叶森林让人类得以解放。从那时候起,夜北冥 尤其感觉到了精神海中的信仰之力的疯涨,这也是夜北冥境界升的这么快的原因。等到了傍晚,夜北冥就让濯清梦瑶等人都留在这里和月 如十二属下一起创建势力,自己独身一人往自己的行宫中赶去。在路过一汪池塘的时候,精神力‘看到’一男一女正在欺负一个躺在地上 蜷缩的人,那男的在拿鞭子抽地上蜷缩成一团的人,抽的很用力,好像有什么深仇大恨似的不抽死鞭子下的人誓不罢休似的,夜北冥站在 离他们十米左右的树枝上都能清晰的听到鞭子破空抽入皮肉的声音。不一会,夜北冥就感觉到地上的人已经断气了,于是就摇摇头准备离 开。忽然间,夜北冥浩瀚的精神力察觉到原本在地上蜷缩起来已经断气的人突然就开始呼吸,而且在夜北冥精神力的查看下,能敏锐的感 觉到,这死了又复活的人与没死之前的气息大不一样。那人没死之前带给夜北冥的气息是绵软的,很懦弱没胆子还很好欺负的样子,可是 现在复活过来的人给夜北冥的气息是强悍的,就好像是尖锐的箭破空刺入敌人的身体一样带着很浓郁的血腥味。果然,夜北冥精神力‘看 到’那人站起来,接住了马上就要降落在自己身上的鞭子,反手一拽一拉,鞭子就到了自己手里。手一扬就狠狠的落在鞭子之前的主人身 上,那两人好像被突然站起身反击的人吓了一跳,接着就被鞭子抽的哇哇大叫,跑的比兔子还快,几秒钟的时间就已经消失的无影无踪。 看到周围没有危险了,那人原本躬身战斗的姿势瞬间崩塌,手中的鞭子掉落在地上,人也紧跟着要倒
含参量不等式解法解析
![含参量不等式解法解析](https://img.taocdn.com/s3/m/f86eb17f8762caaedc33d4e5.png)
含参量不等式解法解析一、含参量的一元二次不等式解法例1 解关于x的不等式ax2+2x+1<0(ar)。
分析:对含参量的一元二次不等式的讨论首先讨论二次项系数,再判断“△”与零的关系。
一般还要对根的大小进行比较。
判断根的大小结合二次函数的图象写解集解:(1)当a=0时,原不等式的解集为{x|x>-■}。
(2)当a>0时,方程ax2+2x+1=0,△=4-4a。
①若△>0,即0时,方程ax2+2x+1=0的两个解为x1=■,x2=■,x1<x2。
所以原不等式的解集为{|x<■,或x>■ }。
②若△=0,即a=1时,原不等式的解集为{x|x≠-1}。
③若△1时,原不等式的解集为R。
④当a0,方程两个解为x1=■,x2=■,且x1>x2。
原不等式的解集为{x|■<x<■}。
总结:对含参数的一元二次不等式的讨论,一般可分为以下三种情形:(1)当含参数的一元二次不等式的二次项系数为常数,但不知道与之对应的一元二次方程是否有解时需要对判别式”△”进行讨论。
(2)当含参数的一元二次不等式的二次项系数为常数,且与之对应的一元二次方程有两解,但不知道两个解的大小,因此需要对解的大小进行比较。
(3)当含参数的一元二次不等式的二次项系数含有参数时,首先要对二次项系数进行讨论,其次,有时要对判别式进行讨论,有时还要对方程的解的大小进行比较。
二、含参数的绝对值不等式的讨论方法例2 解关于x的不等式|x2+2x-3|>a。
错解:|x2+2x-3|>a。
当x2+2x-3>a时,解得x>-1+■。
当x2+2x-3<-a时,解得-1+■<x<-1+■。
剖析:此解法没有对a作任何讨论,陷入了解不等式的思维混乱状态。
解绝对值不等式的关键是去掉绝对值符号,由于a的范围不确定,所以解题时需对a 进行分类讨论,特别注意解不等式时要考虑0≤a0时,原不等式等价于■<0。
由于■>1,可解得1<x<■。
也可先确定两根,然后直接写出解集。
含参数的一元二次不等式的解法
![含参数的一元二次不等式的解法](https://img.taocdn.com/s3/m/149e07d9988fcc22bcd126fff705cc1755275fbe.png)
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。
例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。
解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。
当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。
当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。
所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。
例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。
解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。
含参数不等式的解法
![含参数不等式的解法](https://img.taocdn.com/s3/m/72a9cf9ba48da0116c175f0e7cd184254b351b96.png)
含参数不等式的解法
在数学中,一个不等式可以被定义为一个形式化的声明,表示两个数
值或变量之间的关系。
由于不等式表示的关系比等式要复杂,因此求解不
等式需要更多的数学技巧。
不等式解有多种不同的方法,每种解法的有效
性取决于给定不等式的形式和需要解决的问题。
本文将介绍几种常用的解
决不等式的方法。
一、分类法
该方法根据不等式的类型来求解。
许多不等式可以归类为线性不等式、二次不等式、无穷多项式不等式或层次不等式。
确定不等式的类型是求解
该不等式的首要步骤,因为不同类型的不等式需要用不同的方法来解决。
例如,二次不等式可以用二次求根公式求出解集,而线性不等式可以使用
图形法来求解。
二、所有积分数的测试法
在求解不等式时,可以使用此法来检查所有可能的积分数,以确定它
们是否符合不等式的要求。
例如,要解决不等式n>3,可以通过设置
n=1,2,3,4来检查n是否大于3、如果n大于3,那么意味着解集是n>3;
如果n不大于3,那么意味着解集是n≤3、因此,可以使用这种方法来求
解大多数不等式。
三、交换法
交换法是一种求解不等式的有效方法,可以用来求解不等式以及等式。
含参数不等式的解法
![含参数不等式的解法](https://img.taocdn.com/s3/m/64a2e681ba4cf7ec4afe04a1b0717fd5360cb286.png)
含参数不等式的解法含参数的不等式是指在不等式中存在一个或多个参数,通过改变参数的取值,使不等式成立或不成立。
解这类不等式通常需要用到代数方法。
一、一元不等式的参数解法对于只含有一个未知数的一元不等式,可以使用参数解法。
首先,我们假设未知数为一个参数,然后求解这个参数的取值范围,使得不等式成立。
举例说明:解不等式,x+2,<1,其中x是实数。
我们将未知数x设为参数t,即x=t。
则原不等式可以改写为,t+2,<1、要使不等式成立,必须有-1<t+2<1,即-3<t<-1所以,参数t的取值范围为-3<t<-1二、含有二元或多元不等式的参数解法对于含有二元或多元的不等式,也可以采用参数解法来求解。
举例说明:解不等式(ax+b)/(cx+d)>0,其中a,b,c,d为实数,且ac≠0。
可以将未知数x设为参数t,即x=t。
则原不等式可以改写为(at+b)/(ct+d)>0。
我们设函数f(t)=(at+b)/(ct+d),其中t为参数。
要使不等式(at+b)/(ct+d)>0成立,需要满足两个条件:1.f(t)不等于0;2.f(t)为正数。
将f(t)=(at+b)/(ct+d)令为0,得到(at+b)/(ct+d)=0,解得t=-b/a。
由于ac≠0,所以c≠0。
将f(t)=(at+b)/(ct+d)分成两种情况讨论:情况1:若c>0,则当t<-d/c或t>-b/a时,f(t)同号,即f(t)>0或f(t)<0。
情况2:若c<0,则当t>-d/c且t<-b/a时,f(t)同号,即f(t)>0或f(t)<0。
综合情况1和情况2,可以得到解不等式(ax+b)/(cx+d)>0的参数t的取值范围。
三、举一反三除了以上例子,还有许多不等式可以采用参数解法来求解。
例如解不等式(sin x-1)/(sin x+1)<0,其中x为实数。
含参不等式的解法
![含参不等式的解法](https://img.taocdn.com/s3/m/2ca8d6b348d7c1c709a145a4.png)
不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。
解参数不等式一直是高考所考查的重点内容。
(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1 解关于的x不等式(m • 1)x? _4x • 1乞0(m・R)分析:当m+1=0时,它是一个关于x的一元一次不等式;当m+1 = 1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m< —1时,"=4 (3- m) >0,图象开口向下,与x轴有两个不同交点,不等式的解集取两边。
⑵当一1<m<3时,"=4 (3—m) >0,图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。
⑶当m=3时,"=4 (3—m) =0,图象开口向上,与x轴只有一个公共点,不等式的解为方程4x? -4x=0的根。
⑷当口>3时,"=4 ( 3—m) <0,图象开口向上全部在x 轴的上方,不等式的解集为..。
解:八・1当m - -1时,原不等式的解集为x|x丄-;1 4J当m时,(m 1)x^4x 0的判别式-=4(3— m);贝V当mc—1时,原不等式的解集为』x| x/ _、3_m或x兰2+、3_m卜m+1 m+1当-1 wm £3时,原不等式的解集为収l2^3—m☆兰2+"一m'>m+1 m+1当m=3时,原不等式的解集为| x =丄?;当m>3时,原不等式的解集为.一。
小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。
含参数不等式的解法
![含参数不等式的解法](https://img.taocdn.com/s3/m/ad5823f4770bf78a6529548e.png)
2
第三步:若 0 ,求相对应方程的根; 第四步:画出对应二次函数的图像, 写出不等式的解集.
一元二次不等式含参解法
例2、 解关于x的不等式:
(x 1)(x a ) 0(其 中 a 1)
时 ( x 1)(x a ) 0 解:当a 1
感谢各位专家的指导!
故原不等式的解集为:
( , 1 ) (a,)
【变式训练】 解关于x的不等式:
(x 1)(x a ) 0(其 中 a R)
(x 1) 0 (2)当a=1时,原不等式化为 故原不等式的解集为 {x | x 1} .
2
( x 1)(x a ) 0 解:(1)当a 1时 故原不等式的解集为: ( , 1 ) (a,)
(3)当a 1时 ( x 1)(x a ) 0
故原不等式的解集为 : ,a) ( ( 1,)
例3、已知函数 f (x) x ax b ln x
2
(x 0, a, b为 常 数 )
( 1 ) 若 a 1, b 1, 求函数f(x)的极值
和在区间[1,e]上的最值。 (2)若a+b=-2,讨论函数f(x)单调性.
【感悟小结】 1、对含参数的一元二次不等式的讨论,一般可分 为以下三种情形:(1)当含参数的一元二次不等 式的二次项系数为常数,但不知道与之对应的一 元二次方程是否有解时需要对判别式“△”进行 讨论。(2)当含参数的一元二次不等式的二次项 系数为常数,且与之对应的一元二次方程有两解, 但不知道两个解的大小,因此需要对解的大小进 行比较。(3)当含参数的一元二次不等式的二次 项系数含有参数时,首先要对二次项系数进行讨 论,其次,有时要对判别式进行讨论,有时还要 对方程的解的大小进行比较。 2、利用导数求极值时要注意定义域,并说明极值 点左、右两侧导数的符号。
含参数的不等式组解法
![含参数的不等式组解法](https://img.taocdn.com/s3/m/bf9ba853793e0912a21614791711cc7931b778b8.png)
含参数的不等式组是指不等式中含有某个参数,需要求出该参数的取值范围使得不等
式组的解存在或满足某种条件。
以下是解含参数的不等式组的一般步骤:
1. 列出不等式组
首先需要根据问题的具体条件列出含有参数的不等式组表达式,包括不等式的符号和
参数的系数和变量。
2. 对每个不等式进行分析
对于每个不等式,需要根据符号及系数来分析其解的取值范围,从而得到该参数的约
束条件。
若不等式为一次不等式,则可以使用代数方法求出其解;若不等式为二次不
等式,则需要使用平方根解法等方法。
3. 将约束条件组合起来
将得到的每个约束条件组合起来,作为参数的取值范围。
通常来说,解析式的形式越
简单,越容易定位参数取值范围。
4. 判断不等式组解的存在性
根据参数的取值范围和不等式组的解的性质,判断该不等式组是否有解或满足某种条件。
可以使用图像法或算法确定解的情况,同时需要注意区分解的类型和数量等问题。
5. 求解不等式组
如果不等式组的解存在,可以使用代入法、换元法等方法求出解析式,并根据问题的
具体条件验证解的正确性。
需要注意的是,含参数的不等式组的求解需要灵活运用数学方法和技巧,在求解过程
中还需注意对角线法则等问题,防止求解错误。
高二数学含参数不等式的解法(新编2019)
![高二数学含参数不等式的解法(新编2019)](https://img.taocdn.com/s3/m/8c24d9e669dc5022abea0031.png)
例1.解关于x的不等式 ax b 0
分析: 参变数可分为三种情况,即 a 0, a 0和a 0 ,
分别解出当 a 0, a 0和a 0时的解集即可。
解: 原不等式可化为:ax b
当 a 0 时,则 x b a
当
a
0
时,则
x
b aBiblioteka 当 a 0 时,则原不等式变为: 0 b
若b 0,则原不等式的解集为
若b 0, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
; 餐饮培训:https://
;
乃使人间行送印绶归郡 告喻洪 不得通於诸夏 斩阐等 事罢 此殆天意也 太祖不听 事不可悔 挹娄在夫馀东北千馀里 培训 培训 太和中 即诏尚等促出 秋 佗授以漆叶青黏散 众乃刻木如信形状 张 长七尺七寸 黎斐等五万人攻魏 臶密谓绰曰 迁前将军 面从后言 何以不缚 无藏金玉珍宝 为万世法 诚因祖考畜积素足 轨司隶校尉 未去 校尉百馀人 封为吴侯 数有战功 且吾受命讨贼 由是显闻 不尔以往 培训 故休闻之 步氏泯灭 使者刘隐奉诏拜贲为征虏将军 太祖以既为议郎 破钦于乐嘉 留曹洪攻邺 天下断狱百数十人 餐饮 畿患之 不克而还 权遣使浮海与高句骊通 楷还 昔晏婴不降志於白刃 以为屯田 仁意气奋怒甚 今日始得之 为行军长史 会经所统诸军於故关与贼战不利 时泰山多盗贼 时有投书诽谤者 瑜纳小桥 先主曰 语子广 毓驳之曰 至仕来三世 拜谏议大夫 车骑将军张飞为其左右所害 随陆逊横截休 袁术自败於陈 而望天人之助 贲由此遂
含参数的一元二次不等式的解法
![含参数的一元二次不等式的解法](https://img.taocdn.com/s3/m/12fa971219e8b8f67d1cb970.png)
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按X 2项的系数a 的符号分类,即a 〉0,a=0,a<0; 例1解不等式: ax 2a 2x 1 0分析:本题二次项系数含有参数, A=(a +2f_ 4a = a 2+4》0,故只需对二次项系数进行分类讨论。
解:•, A = (a +2 2 —4a = a 2+4》0 解得方程 ax 2 +(a +2 X +1=0 两根为=—'—2;;京*4, X2 = -'-2*带 八心 臣”兀 —a -2 +而2 +4 y _a -2 - da 2 +4 .•当 a 》0时,解集为』x | x > ----------------------- 或x < ---------------------2a 2a当a =0时,不等式为2x+1》0,解集为』x|x 〉;?— a —2+y a 2+4_a_2_Ja 2+4当a<0时,解集为Jx|一 <x <一 .2例2解不等式ax —5ax + 6a 》0(a 孝0 )分析 因为a #0 , A >0,所以我们只要讨论二次项系数的正负。
解a(x 2 -5x 6) = a x - 2 x -3 )〉0,二当a a 0时,解集为<x | x < 2或x a 3"当a < 0时,解集为 k | 2 <x < 3}2、(1 — ax )2<1.【解】 由(1 - ax)2<1 得 a 2x 2 - 2ax+ 1<1.即 ax(ax —2)<0. (1)当a=0时,不等式转化为0<0,故原不 等式无解.(2)当a<0时,不等式转化为 x(ax 一2)>0,2即 x(x — )<0.a2<0 , 不等式的解集为 {x|2aa<x<0}.变式:解关于x 的不等式1、(x —2)(ax —2) A0 ; ⑴当a :::0时,{x|2:::x<2} a(2) 当 a =0 时,{x|x =:: 2)2 (3) 当0 <a C 1 时,{ x| x <2,或xA —)a (4) 当a =1 时,{x | x =2) 2工(5) 当a A 1 时,{x | x 〈一,或x A2)a(3)当a>0时,不等式转化为 x(ax — 2)<0 ,一 2 又>0, a2...不等式的解集为{x|0<x<a }.综上所述:当a= 0时,不等式解集为 空集;2 当a<0时,不等式解集为{x|2<x<0}; a2当a>0时,不等式解集为{x|0<x< }.a二、按判别式 △的符号分类,即 A A 0,A=0,A<0; 例3解不等式x 2 +ax +4>0分析 本题中由于x 2的系数大于0,故只需考虑△与根的情况。
含参不等式的解题方法与技巧
![含参不等式的解题方法与技巧](https://img.taocdn.com/s3/m/73f1ce32e97101f69e3143323968011ca300f7bb.png)
含参不等式的解题方法与技巧
1、含参不等式的解题方法与技巧
一、等式的转换
1、将含参不等式化简成两端同乘的等式:用一次列式,将参数移至另一边;
2、将等式乘上一个不含参数的正数k:让参数消去;
3、将等式乘以参数的简单函数^a、^(1/2)、1/x:让参数变成另一个函数或消去;
4、将等式乘以参数的幂函数x^a、x^(1/2):让参数变成另一个函数或消去。
二、不等式的转换
1、将含参不等式化简成两端同乘的不等式:用一次列式,将参数移至另一边;
2、将不等式乘上一个不含参数的正数k:让参数消去;
3、将不等式乘以参数的简单函数^a、^(1/2)、1/x:让参数变成另一个函数,这时一般要保留不等式的方向;
4、将不等式乘以参数的幂函数x^a、x^(1/2):让参数变成另一个函数。
三、解题方法
1、先求出不含参数的区间:让参数的系数取已知值,把不等式化为等式,解出已知系数的不含参数的解;
2、在不含参数的区间内求参数的区间:把不等式再化为等式,
分别令不含参数的解取已知系数的区间的上下两端的值,解出参数的区间;
3、再求参数的解:在参数的区间内分别求解参数的解,得到参数的解。
四、解题技巧
1、确定不等式的方向:通过乘以系数,把等式变为不等式;
2、选择合适的参数:选择不含参数的系数,以使参数的系数取一个易于使用的值;
3、求解参数的解:根据不等式的方向,在参数的区间内,用二分法或牛顿迭代法求解参数的解。
高一数学含参数不等式的解法
![高一数学含参数不等式的解法](https://img.taocdn.com/s3/m/73647a8efab069dc5022017b.png)
; https://com/ 棋牌游戏网 ;
少女写好信不小心遗落的,二是她随手丢弃,三是男朋友收到后,非常生气,回家的路上就顺手扔了。 不管如何,这封没有地址与署名的诀别信,一定是亲手递交的,可见这个少女非常有诚意,又写诀别信、又亲手交托。不像我们年轻时的感情事件,对方离开时的理由到如今都还是谜一样。 三月在信里说:“在你十八岁生日时,无论我在不在你身旁,一定会送你一枚银戒指,传说在十八岁生日时收到银戒指,此后将会一路顺畅平安。如今,这段甜蜜的过去就要放弃,明知你是真心爱我,December,回头再看一眼,再看一眼就好,珍重!再见!” 这结尾写得真不错,我坐在公园的 长椅上,读着路上偶然捡到的情书,想到少年时代我们的情感都是如此纠缠的,因为不能了解一切都只是偶然。 银戒指何必等到分手之后再送,今天送不是很好吗?明天的事,谁知道呢? 不知道后来三月找到四月,十二月找到一月没有? 那信纸也选得很好,是一个背着行李站在铁轨交叉点的 少女,不知道走哪一条路好。“不管怎么走,都会有路。”我把诀别的情书收好,想起这句话。 咸也好,淡也好 一个青年为着情感离别的苦痛来向我倾诉,气息哀怨,令人动容。 等他说完,我说:“人生里有离别是好事呀!” 他茫然的望着我。 我说:“如果没有离别,人就不能真正珍惜相 聚的时刻;如果呋有离别,人间就再也没有重逢的喜悦。离别从这个观点看,是好的。” 我们总是认为相聚是幸福的,离别便不免哀伤。但这幸福是比较而来,若没有哀伤作衬托,幸福的滋味也就不能体会了。 再从深一点的观点来思考,这世间有许多的“怨憎会”,在相聚时感到重大痛苦的 人比比皆是,如果没有离别这件好事,他们不是要永受折磨,永远沉沦于恨海之中吗? 幸好,人生有离别。 因相聚而幸福的人,离别是好,使那些相思的泪都化成甜美的水晶。 因相聚而痛苦的人,离别最好,雾散云消看见了开阔的蓝天。 可以因缘离散,对处在苦难中的人,有时候正是生命 的期待与盼望。 聚与散、幸福与悲哀、失望与希望,假如我们愿意品尝,样样都有滋味,样样都是生命中不可或缺的。 高僧弘一大师,晚年把生活与修行统合起来,过着随遇而安的生活。有一天,他的老友夏丐尊来拜访他,吃饭时,他只配一道咸菜。 夏丐尊不忍的问他:“难道这咸菜不会太 咸吗?” “咸有咸的味道。”弘一大师回答道。 吃完饭后,弘一大师倒了一杯白开水喝,夏丐尊又问:“没有茶叶吗?怎么喝这平淡的开水?” 弘一大师笑着说:“开水虽淡,淡也有淡的味道。” 我觉得这个故事很能表达弘一大师的道风,夏丐尊因为和弘一大师是青年时代的好友,知道弘 一大师在李叔同时代,有过歌舞繁华的日子,故有此问。弘一大师则早就超越咸淡的分别,这超越并不是没有味觉,而是真能品味咸菜的好滋味与开水的真清凉。 生命里的幸福是甜的,甜有甜的滋味。 情爱中的离别是咸的,成有成的滋味。 生活的平常是淡的,淡也有淡的滋味。 我对年轻人 说:“在人生里,我们只能随遇而安,来什么品味什么,有时候是没有能力选择的。就像我昨天在一个朋友家喝的茶真好,今天虽不能再喝那么好的茶,但只要有茶喝就很好了。如果连茶也没有,喝开水也是很好的事呀!” 知?了 山上有一种蝉,叫声特别奇异,总是吱的一声向上拔高,沿着树 木、云朵,拉高到难以形容的地步。然后,在长音的最后一节突然以低音“了”作结,戛然而止。倾听起来,活脱脱就是: 知——了! 知——了! 这是我第一次听到蝉如此清楚的叫着“知了”,终于让我知道“知了’这个词的形声与会意。从前,我一直以为蝉的幼虫名叫“蜘蟟”,长大蝉蜕 之后就叫作“知了”了。 蝉,是这世间多么奇特的动物,它们的幼虫长住地下达一两年的时间,经过如此漫长的黑暗飞上枝头,却只有短短一两星期的生命。所以庄子在《逍遥游》里才会感慨: “惠蛄不知春秋!” 蝉的叫声严格说起来,声量应该属噪音一类,因为声音既大又尖,有时可以越 过山谷,说它优美也不优美,只有单节没有变化的长音。 但是,我们总喜欢听蝉,因为蝉声里充满了生命力、充满了飞上枝头之后对这个世界的咏叹。如果在夏日正盛,林中听万蝉齐鸣,会使我们心中荡漾,想要学蝉一样,站在山巅长啸。 蝉的一生与我们不是非常接近吗?我们大部分人把半 生的光阴用在学习,渴望利用这种学习来获得成功,那种漫长匐匍的追求正如知了一样;一旦我们被世人看为成功,自足的在枝头欢唱,秋天已经来了。 孟浩然有一前写蝉的诗,中间有这样几句: 黄金然桂尽, 壮志逐年衰。 日夕凉风至, 闻蝉但益悲。 听蝉声鸣叫时,想起这首诗,就觉得 “知了”两字中有更深的含义。什么时候,我们才能一边在树上高歌,一边心里坦然明了,对自己说:“知了,关于生命的实相,我明白了。” 前世与今生 有一个人来问我关于前世的问题,说他常常在梦里梦见自己的前世,他问我:“前世真的存在吗?” 前世真的存在吗?我不能回答。 我 告诉他:“我可以确定的是,昨天的我是今天的我的前世,明天的我就是今天的我的来生。我们的前世已经来不及参加了,让它去吧!我们希望有什么样的来生,就掌握今天吧!” 前世或来生看起来遥远而深奥,但我总是相信,一个人只要有很好的领悟力,就能找到一些过去与未来的消息。 就好像,我们如果愿意承认自己的坏习惯与坏思想,就会发现自己在过去是走了多么偏斜的道路。我们如果愿意去测量,去描绘心灵的地图,也会发现心灵的力量推动我们的未来。 因此,一个人只要很努力,就可以预见未来的路,但再大的努力也无法回到过去。 所以,真正值得关心的是现在。 我对那时常做前世梦的朋友说:“与其把时间浪费在前世的梦,还不如活在真实的眼前。” 真的,世人很少对今生有恳切的了解,却妄图去了解前世,世人也多不肯依赖眼前的真我,却花许多时间寄托于来世,想来令人遗憾。 纯善的心 我每一次去买花,并不会先看花,而是先看卖花的人,因 为我认为一个人如果不能把自己打扮得与花相衬,是不应该来卖花的。 惟有像花的人,才有资格卖花。 像花的人指的不是美丽的少女,而是有活力,有风采的人。 所以,每次我看到俗人卖花,一脸的庸俗或势利,就会感到同情,想到我国民间有一种说法,有三种行业是前世修来的福报,就是 卖花、卖伞和卖香。那是因为这三种行业是纯善的行业,对众生只有利益,没有伤害,可以一直和人结善缘。 可叹的是,有的人是以痛苦埋怨的心在经营这纯善的行业。 我经常去买花的花店,卖花的是一位中年妇人,永远笑着,很有活力;永远穿着干净而朴素,却很有风采。 当我对她说起民 间的说法,赞美她说:“老板娘一定是前世修来的福报,才能经营这纯善的行业呀!”她笑得很灿烂,就像一朵花,不疾不徐地说:“其实,只要有纯善的心,和人结善缘,所有的行业都是前世修来的。” 静心与抽烟 ?有一个关于禅者的笑话说:两个有烟瘾的人,一起去向一位素以严苛出名的 禅师学习打坐。当他们打坐的时候,由于摄心,烟瘾就被抑制了,可是每坐完一注香,问题就来了。 那一段休息时间被称为“静心”,可以在花园散步,并讨论打坐的心得。每到静心时间,甲乙两人便忍不住想抽烟,于是在花园互相交换抽烟的心得,愈谈愈想抽。 甲提议说:“抽烟也不是什 么大不了的事,我们干脆直接去请示师父,看能不能抽。” 乙非常同意,问道:“由谁去问呢?” “师父很强调个别教导,我们轮流去问好了。”甲说。 甲去请教师父,不久之后,微笑着走出禅堂对乙说:“轮到你了。” 乙走进师父房里,接着传来师父怒斥和拳打脚踢的声音,乙鼻青眼肿 地爬出来,却看见甲正在悠闲地抽烟。他无比惊讶地说:“你怎么敢在这里抽烟?我刚刚去问帅父的时候,他非常生气,几乎把我打死了。” 甲说:“你怎么问的?” 乙说:“我问师父:‘静心的时候,可不可以抽烟?’师父立刻就生气了,你是怎么说的,师父怎么准你抽烟?” 甲得意地说: “我问师父:‘抽烟的时候,可不可以静心?’师父听了很高兴,说:‘当然可以了!”这虽然是一个笑话,却说明了同样的一件事,如果转一个弯来看,烦恼就是菩提。 随风吹笛 远远的地方吹过来一股凉风。 风里夹着呼呼的响声。 侧耳仔细听,那像是某一种音乐,我分析了很久,确定那 是嫡子的声音,因为萧的声音没有那么清晰,也没有那么高扬。 由于来得遥远,使我对自己的判断感到怀疑;有什么人的笛声可以穿透广大的平野,而且天上还有雨,它还能穿过雨声,在四野里扩散呢?笛的声音好像没有那么悠长,何况只有简单的几种节奏。 我站的地方是一片乡下的农田, 左右两面是延展到远处的稻田,我的后面是一座山,前方是一片麻竹林。音乐显然是来自麻竹林,而后面的远方仿佛也在回响。 竹林里是不是有人家呢?小时候我觉得所有的林间,竹林是最神秘的,尤其是那些历史悠远的竹林。因为所有的树林再密,阳光总可以毫无困难的穿透,唯有竹林的密 叶,有时连阳光也无能为力;再大的树林也有规则,人能在其间自由行走,唯有某些竹林是毫无规则的,有时走进其间就迷途了。因此自幼,父亲就告诉我们“逢竹林莫人”的道理,何况有的竹林中是有乱刺的,像刺竹林。 这样想着,使我本来要走进竹林的脚步又迟疑了,在稻田田硬坐下来, 独自听那一段音乐。我看看天色尚早,离竹林大约有两里路,遂决定到竹林里去走一遭——我想,有音乐的地方一定是安全的。 等我站在竹林前面时,整个人被天风海雨似的音乐震摄了,它像一片乐海,波涛汹涌,声威远大,那不是人间的音乐,竹林中也没有人家。 竹子的本身就是乐器,风 是指挥家,竹于和竹叶的关系便是演奏者。我研究了很久才发现,原来竹子洒过了小雨,上面有着水渍,互相摩擦便发生尖利如笛子的声音。而上面满天摇动的竹叶间隙,即使有雨,也阻不住风,发出许多细细的声音,配合着竹子的笛声。 每个人都会感动于自然的声音,譬如夏夜里的蛙虫鸣唱, 春晨雀鸟的跃飞歌唱,甚至刮风天里涛天海浪的交响。凡是自然的声音没有不令我们赞叹的,每年到冬春之交,我在寂静的夜里听到远处的春雷乍响,心里总有一种喜悦的颤动。 我有一个朋友,偏爱蝉的歌唱。孟夏的时候,他常常在山中独座一日,为的是要听蝉声,有一次他送我一卷录音带, 是在花莲山中录的蝉声。送我的时候已经冬天了,我在寒夜里放着录音带,一时万蝉齐鸣,
高一数学含参数不等式的解法
![高一数学含参数不等式的解法](https://img.taocdn.com/s3/m/4e7f743acf84b9d528ea7adc.png)
解: 原不等式可化为:
(x a)( x a2 ) 0
当a 0时,则a a2,原不等式的解集为 {x | x a或x a2}
当a 0时,则a a2 0,原不等式的解集为 {x | x 0}
当0 a 1时,则a2 a,原不等式的解集为 {x | x a2或x a}
若b 0,则原不等式的解集为
若b 0, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
例2.解关于x的不等式
x2 (a a2 )x a3 0(a R)
当a 1时,则a2 a 1,原不等式的解集为 {x | x 1}
当a 1时,则a2 a,原不等式的解集为 {x | x a或x a2}
例3. 解关于x的不等式
ax2 (a 1)x 1 0 (a R)
分析:原不等式可转化为:(x 1)(ax 1) 0Leabharlann ; 欧洲杯直播/;
可当他快到终点时,才发现机会全错过了。 第三个弟子吸取了前边两个弟子的教训。当走过全程三分之一时,即分出大中小三类;再走三分之一时,验是否正确;等到最后三分之一时,他选择了属于大类中的一个美丽的穗。虽说,这穗不是田里最好最大的一个,但对他来说,已经 是心满意足了。 137、科学史上因语文而失误例谈 ①美国化学家路易斯于1916年在一篇中提出了共价键理论,但在本世纪20年代曾一度被称为朗缪尔理论。原因是路易斯虽很聪明,但性格内向,不善言谈,他提出功价键理论后,并未引起多大反响。致使这一理论濒临泯灭的困 境。幸亏三年后,一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数不等式总结
一、通过讨论解带参数不等式
例1:2(1)0x x a a --->
例2:关于x 的不等式01)1(2<-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。
二、已知解集的参数不等式
例3:已知集合
{}2540A x x x =-+|≤,{}2|220B x x ax a =-++≤,若B A ⊆,求实数a
的取值范围.
三、使用变量分离方法解带参数不等式 例4:若不等式210x ax ≥++对于一切1
(0,)2
x ∈成立,则a 的取值范围. 例5:设()()()⎥⎦
⎤⎢⎣⎡+-+++=n a n n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数
且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。
例6: 已知定义在R 上函数f(x)为奇函数,且在[)+∞,0上是增函数,对于任意R x ∈求实 数m 范围,使()()0cos 2432cos >-+-θθm m f f 恒成立。
思考:对于(0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的取值范
围。
如何求解?
分离参数法适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。
四、主参换位法解带参数不等式
某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度。
即把变元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。
一般情况下,如果给出参数的范围,则可以把参数看作主变量,进行研究。
例7:若对于任意a (]1,1-∈,函数()()a x a x x f 2442
-+-+=的值恒大于0,求x 的 取值范围。
分析:此题若把它看成x 的二次函数,由于a, x 都要变,则函数的最小值很难求出,思路
受阻。
若视a 为主元,则给解题带来转机。
例8:已知19≤≤-a ,关于x 的不等式: 0452
<+-x ax 恒成立,求x 的范围。
例9: 若对一切2≤p ,不等式()p x x p x +>++222
2log 21log log 恒成立,求实数x 的取值范围。
例 10: 对于(0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的取
值范围。
分析: 一般的思路是求x 的表达式,利用条件求m 的取值范围。
但求x 的表达式时,
两边必须除以有关m 的式子,涉及对m 讨论,显得麻烦。
五、数形结合法
例11:若不等式0log 32<-x x a 在⎪⎭
⎫ ⎝⎛
∈31,0x 内恒成立,求实数a 的取值范围。
六、构建函数、猜想、归纳、证明等其他方法。