苏教版数学高一必修3导学案 3.3《几何概型》(2)
高中数学第3章概率3.3几何概型(2)教案苏教版必修3
3.3 几何概型第2课时导入新课设计思路一:〔问题导入〕以下图是卧室与书房地砖示意图,图中每一块地砖除颜色外完全一样,小猫分别在卧室与书房中自由地走来走去.在哪个房间里,小猫停留在黑砖上概率大?卧室〔书房〕设计思路二:〔情境导入〕在概率论开展早期,人们就已经注意到只考虑那种仅有有限个等可能结果随机试验是不够,还必须考虑有无限多个试验结果情况.例如一个人到单位时间可能是8:00 至9:00之间任何一个时刻;往一个方格中投一个石子,石子可能落在方格中任何一点……这些试验可能出现结果都是无限多个.推进新课新知探究对于导入思路一:由于地砖除颜色外完全一样,小猫自由地走来走去,因此,小猫可能会停留在任何一块地砖上,而且在任何一块地砖上停留可能性一样,对于这样一个随机事件概率,有如下结论:对于一个随机试验,如果我们将每个根本领件理解为从某特定几何区域内随机地抽取一点,而该区域内每一点被取到时机都一样,这样就可以把随机事件与几何区域联系在一起.如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型,简称几何概型.几何概型与古典概型一样也是一种等可能事件概率模型,它特点是:〔1〕试验中所有可能出现结果,也就是根本领件有无限多个. 〔2〕根本领件出现可能性相等.实际上几何概型是将古典概型中有限性推广到无限性,而保存等可能性,这就是几何概型.几何概型概率计算方法如下:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内〞为事件A ,那么事件A 发生概率为P(A)= .这里要求D 测度不为0,其中“测度〞意义依D 确定,当D 分别是线段、平面图形与立体图形时,相应“测度〞分别是长度、面积与体积等.对于导入思路二:〔1〕几何概率模型:如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型.〔2〕几何概型概率公式:P 〔A 〕=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . 〔3〕几何概型特点:1°试验中所有可能出现结果〔根本领件〕有无限多个.2°每个根本领件出现可能性相等.应用例如思路1例1 取一个边长为2a 正方形及其内切圆〔如下图〕,随机向正方形内丢一粒豆子,求豆子落入圆内概率.分析:由于是随机丢豆子,故可以认为豆子落入正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,豆子落入圆中概率应该等于圆面积与正方形面积比.解:记“豆子落入圆内〞为事件A ,那么 P(A)=4422ππ==a a 正方形面积圆的面积. 答:豆子落入圆内概率为4π.点评:在解题时,首先要区分是古典概型还是几何概型,这两种随机事件概率类型虽然每一个事件发生都是等可能,但是几何概型是有无数个根本领件情形,古典概型是有有限个根本领件情形.此外,本例可以利用计算机模拟,过程如下:〔1〕在Excel 软件中,选定A1,键入“=〔rand 〔〕-0.5〕*2”. 〔2〕选定A1,按“ctrl+C〞.选定A2~A1 000,B1~B1 000,按“ctrl+V〞.此时,A1~A1 000,B1~B1 000均为[-1,1]区间上均匀随机数.〔3〕选定D1,键入“=power 〔A1,2〕+ power 〔B1,2〕〞;再选定D1,按“ctrl+C〞;选定D2~D1 000,按“ctrl+V〞,那么D列表示A2+B2.〔4〕选定F1,键入“=IF〔D1>1,1,0〕〞;再选定F1,按“ctrl+C〞;选定F2~F1 000,按“ctrl+V〞,那么如果D列中A2+B2>1,F列中值为1,否那么F列中值为0.〔5〕选定H1,键入“FREQUENCY〔F1:F10,0.5〕〞,表示F1~F10中小于或等于0.5个数,即前10次试验中落到圆内豆子数;类似,选定H2,键入“FREQUENCY〔F1:F20,0.5〕〞,表示前20次试验中落到圆内豆子数;选定H3,键入“FREQUENCY 〔F1:F50,0.5〕〞,表示前50次试验中落到圆内豆子数;选定H4,键入“FREQUENCY〔F1:F100,0.5〕〞,表示前100次试验中落到圆内豆子数;选定H5,键入“FREQUENCY〔F1:F500,0.5〕〞,表示前500次试验中落到圆内豆子数;选定H6,键入“FREQUENCY〔F1:F1 000,0.5〕〞,表示前1 000次试验中落到圆内豆子数.〔6〕选定I1,键入“H1*4/10〞,表示根据前10次试验得到圆周率π估计值;选定I2,键入“H2*4/10〞,那么I2为根据前20次试验得到圆周率π估计值;类似操作,可得I3为根据前50次试验得到圆周率π估计值,I4为根据前100次试验得到圆周率π估计值,I5为根据前500次试验得到圆周率π估计值,I6为根据前1 000次试验得到圆周率π估计值.如图:例2 如图,在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC概率.分析:在线段AB上取一点C′,使得线段AC′长度等于线段AC长度.那么原问题就转化为求AM小于AC′概率.所以,当点M 位于以下图中线段AC′上时,AM<AC,故线段AC′即为区域d.区域d测度就是线段AC′长度,区域D测度就是线段AB长度.解:在AB上截取AC′=AC.于是P(AM<AC)=P(AM<AC′)=.2.答:AM小于AC′概率为2变式训练:假设将例2改为:如以下图,在等腰直角三角形ABC 中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC概率.解:此时,应该看作射线CM落在∠ACB内部是等可能.公式中区域D是∠ACB〔内部〕,而区域d求法应该与原题是一样,即在线段AB上取一点C′,使得线段AC′长度等于线段AC长度〔如图〕,那么区域d就是∠ACC′〔内部〕.从而区域d测度就是∠ACC′度数,区域D测度就是∠ACB度数.∠ACC′==67.5°,所以所求事件概率为.点评:由此可见,背景相似问题,当等可能角度不同时,其概率是不一样.此题可参考习题3.3第6题.例3 (会面问题)甲、乙二人约定在12 点到下午5 点之间在某地会面,先到者等一个小时后即离去.设二人在这段时间内各时刻到达是等可能,且二人互不影响.求二人能会面概率.分析:两人相约时间都是5小时,设X ,Y 分别表示甲、乙二人到达时刻,因此,0≤X≤5,0≤Y≤5,这样两人到达时刻就构成一个正方形,而两人能会面必须满足|X -Y|≤1,而这个不等式所表示是一个带状,位于正方形内图形,由于两人到达时刻是随机,而且,在每一个时刻到达可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:记A={二人能会面}.以 X ,Y 分别表示甲、乙二人到达时刻,于是0≤X≤5,0≤Y≤5,即点M 落在图中阴影局部.所有点构成一个正方形,即有无穷多个结果.由于每人在任一时刻到达都是等可能,所以落在正方形内各点是等可能,符合几何概型条件.二人会面条件是:|X -Y|≤1,故正方形面积为5×5=25,阴影局部面积为5-2×21×42259. 点评: 建立适当数学模型,是解决几何概型问题关键.对于“碰面问题〞可以模仿此题建立数学模型.例4 如图,随机投掷一个飞镖扎在靶子上,假设飞镖既不扎在黑色靶心,也不扎在两个区域之间,更不会脱靶,求飞镖扎在以下区域概率:(1)编号为25区域;(2)编号在6到9之间区域;(3)编号为奇数区域.〔每一个小区域面积一样〕分析:由于飞镖是随机投掷到靶子上,并且落在靶子每一个位置可能性一样,因此,符合几何概型特点.解: 假设靶子每一个区域面积为1个单位,那么靶子所在圆面积为28个单位.〔1〕记事件A 为“飞镖扎在编号为25区域〞,那么P(A)= 281. 〔2〕记事件B 为“飞镖扎在编号为6到9之间区域〞,那么P(B)= .〔3〕记事件C 为“飞镖扎在编号为奇数区域〞,那么P(C)=.答:〔1〕飞镖扎在编号为25区域概率为281;(2)飞镖扎在编号在6到9之间区域概率为71;(3)飞镖扎在编号为奇数区域概率为21. 点评:仔细研读题目,从题目提供信息进展分析,寻找适当解题方法,是解决此题要害所在.思路2例1 在1 L 高产小麦种子中混入了一粒带麦锈病种子,从中随机取出10 mL ,含有麦诱病种子概率是多少分析:病种子在这1 L 种子中分布可以看作是随机,取得10 mL 种子可视为区域d ,所有种子可视为区域D.解:取出10 mL 麦种,其中“含有病种子〞这一事件记为A ,那么 P(A)=1001100010==所有种子的体积取出种子的体积. 答:含有麦诱病种子概率为1001. 点评:由于病种子是随机地处在容器中,它可以位于容器任何一个位置,而且在每一个位置可能性一样,符合几何概型特点,所以运用几何概型概率计算方法来解决此题.例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)概率是多少?分析:由于两人到达与离开时刻是随机,而且,在每一个时刻到达或离开可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:如图,以横坐标x表示报纸送到时间,纵坐标y表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能,所以符合几何概型条件.根据题意,只要点落到阴影局部,就表示父亲在离开家前能得到报纸,即事件A发生,所以P(A)==87.5%.点评:建立适当数学模型,该模型符合几何概型特点,这是解答此题关键所在.另外我们还可以运用计算机产生随机数来模拟该试验.设X是0到1之间均匀随机数,Y也是0到1之间均匀随机数.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.计算机模拟方法:〔1〕选定A1,键入函数“=rand〔〕〞;〔2〕选定A1,按“ctrl+C〞,选定A2~A50,B1~B50,按“ctrl+V〞.此时,A1~A50,B1~B50均为[0,1]区间上均匀随机数.用A列数加7表示父亲离开家时间,B列数加6.5表示送报人送到报纸时间.如果A+7>B+6.5,即A-B>-0.5,那么表示父亲在离开家前能得到报纸.〔3〕选定D1,键入“=A1-B1”;再选定D1,按“ctrl+C〞,选定D2D50,按“ctrl+V〞.〔4〕选定E1,键入函数“=FREQUENCY〔D1:D50,-0.5〕〞,E1表示统计D列中小于或等于-0.5数个数,即父亲在离开家前不能得到报纸频数.〔5〕选定F1,键入“=〔50-E1〕/50.F1表示统计50次试验中,父亲在离开家前能得到报纸频率.下面是我们在计算机上做50次试验,得到结果是P(A)=0.88,如图:例3 假设一个直角三角形两直角边长都是0到1之间随机数,试求斜边长小于34事件概率.分析:由于直角边长是0到1之间随机数,因此设两直角边长分别为x,y,而x,y满足0≤x≤1,0≤y≤1,斜边长=,x,y可以落在0≤x≤1,0≤y≤1所表示图形任何一个位置,而且在每个位置可能性一样,满足几何概型特点.解:设两直角边长分别为x,y,那么0≤x≤1,0≤y≤1,斜边长=,如右图,样本空间为边长是1正方形区域,而满足条件事件所在区域面积为.因此,所求事件概率为P=.点评:根据条件,构造满足题目条件数学模型,再运用几何概型概率计算方法来计算某个事件发生概率,是一种常用求解概率问题方法.例4 甲、乙两人相约于中午12点到13点之间在某一个地方碰面,并约定先到者等候20分钟后可以离开,试设计模拟方法估计两人能碰面概率.分析:当两人到达碰面地点时间相差在20分钟之内时,两人能碰面.我们可以用两个转盘来模拟两人到达碰面地点时间.解: 运用转盘模拟方法.具体步骤如下:〔1〕做两个带指针〔分针〕转盘,标上刻度在0到60来表示时间,如右图;〔2〕每个转盘各转m 次,并记录转动得到结果,以第一个转盘结果x 表示甲到达碰面地点时间,以第二个转盘结果y 表示乙到达碰面地点时间;〔3〕统计两人能碰面〔满足|x -y|<20〕次数n ;〔4〕计算m n 值,即为两人能碰面概率近似值〔理论值为95〕. 点评:实施模拟方法除了转盘模拟方法外,还可以运用现代信息技术即计算机来模拟,具体操作如下:〔1〕新建一个电子表格文件,在A1位置输入:=RAND( )60,产生一个0到60随机数x ;〔2〕将A1位置处表达式复制到B1处,这样又产生一个0到60随机数y ;〔3〕在C1位置处输入:=IF 〔A1-B1<=-20,0,IF 〔A1-B1<20,1,0〕,判断两人能否碰面〔即是否满足|x -y|<20〕,如果是,就返回数值1,否那么返回数值0;〔4〕将第一行三个表达式复制100行,产生100组这样数据,也就是模拟了100次这样试验,并统计每次结果;〔5〕在C101处输入:=SUM(C1:C100)/100统计这100次重复试验中正好两人能碰面频率,即事件“两人能碰面〞发生概率近似值.知能训练课本本节练习4、5.解答:4.设A={射线OA落在∠xOT内}.因为射线OA落在∠xOT内是随机,也就是射线OA可以落在∠xOT内任意一个位置,这符合几何概型条件,区域d测度是60,区域D测度是360,根据几何概型概率计算公式,得P(A)=.5.运用计算机模拟结果大约为2.7左右.点评:根据实际问题背景,判断是否符合几何概型特点,如是那么选择符合题意“测度〞,运用求几何概型概率方法来解决问题,此外我们还可以设计符合问题模拟方法来模拟得到问题近似解.课堂小结在这节课上我们主要是运用几何概型求解一些问题概率,以及运用模拟方法求某一个事件概率近似值.结合上节课内容可以知道,几何概型概率问题仍然是随机事件概率,与古典概型区别是古典概型所含根本领件个数是有限个,而几何概型所包含根本领件个数是无限.对于几何概型我们着重研究如下几种类型:〔1〕与长度有关几何概型;〔2〕与面积有关几何概型;〔3〕与体积有关几何概型;(4)与角度有关几何概型.其中我们对与面积有关几何概型与与体积有关几何概型要求重点掌握.作业课本习题3.3 4、5、6.设计感想几何概型是区别于古典概型又一随机事件概率模型,在解决实际问题时首先根据问题背景,判断该事件是属于古典概型还是几何概型,这两者区别在于构成该事件根本领件个数是有限个还是无限个.在使用几何概型概率计算公式时,一定要注意其适用条件:每个事件发生概率只与构成该事件区域长度成比例.随机数在日常生活中,有着广泛应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣量〔如概率值、常数〕有关,然后设计适当试验,并通过这个试验结果来确定这些量.这种方法也是我们研究问题常用方法.习题详解1.记A={灯与两端距离都大于2 m}.因为把一盏灯挂在绳子上位置是随机,也就是说灯挂在绳子上位置可以是绳子上任意一点,这符合几何概型条件,根据P=,得P(A)= .答:灯与两端距离都大于2 m概率为13.2.记A={所投点落入小正方形内}.由于是随机投点,故可以认为所投点落入大正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入小正方形内概率应该等于小正方形内面积与大正方形面积比,即 P(A)=943222==大正方形面积小正方形面积. 答:所投点落入小正方形内概率为94.3.记A={所投点落在梯形内部}.由于是随机投点,故可以认为所投点落入矩形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入梯形内部概率应该等于梯形面积与矩形面积比,即 P(A)=125)2131(21=⨯⨯+⨯=b a b a a 矩形面积梯形面积. 答:所投点落在梯形内部概率为125. 4.设A={该点落在正方形内}.因为该点落在正方形内是随机,也就是该点可以落在正方形内任意一个位置,这符合几何概型条件,根据几何概型求概率计算公式,得P(A)=. 答:乘客到达站台立即乘上车概率为π21. 5.分析:直接求“硬币落下后与格线有公共点〞概率比拟困难,可以考虑先求“硬币落下后与格线无公共点〞概率,再求“硬币落下后与格线有公共点概率〞.解:因为直径等于2 cm 硬币投掷到正方形网格上是随机,也就是硬币可以落在正方形网格上任意一个位置,这符合几何概型条件.要求“硬币落下后与格线无公共点〞概率,根据几何概型求概率计算公式:P(A)=,因为每个小正方形边长都等于6 cm ,硬币直径为2 cm ,设有n 个小正方形,那么区域d 测度为n·π·12,区域D 测度n·62,故“硬币落下后与格线无公共点〞概率为,而事件“硬币落下后与格线有公共点〞是“硬币落下后与格线无公共点〞对立面,所以事件“硬币落下后与格线有公共点〞概率为1-36π.答:硬币落下后与格线有公共点概率为1-36π.6.贝特朗算出了三种不同答案,三种解法似乎又都有道理.人们把这种悖论称为概率悖论,或贝特朗奇怪论.贝特朗解法如下:解法一:任取一弦AB ,过点A 作圆内接等边三角形〔如图1〕.因为三角形内角A 所对弧,占整个圆周31.显然,只有点B 落在这段弧上时,AB 弦长度才能超过正三角形边长a ,故所求概率是31.解法二:任取一弦AB ,作垂直于AB 直径PQ.过点P 作圆内接等边三角形,交直径于N ,并取OP 中点M 〔如图2〕.容易证明QN=NO=OM=MP.我们知道,弦长与弦心距有关.一切与PQ 垂直弦,如果通过MN 线段,其弦心距均小于QN ,那么该弦长度就大于等边三角形边长,故所求概率是21.解法三:任取一弦AB.作圆内接等边三角形内切圆〔如图3〕,这个圆是大圆同心圆,而且它半径是大圆21,它面积是大圆4141. 图1 图2 图3细细推敲一下,三种解法前提条件各不一样:第一种假设了弦端点在四周上均匀分布;第二种假设弦中点在直径上均匀分布;第三种假设弦中点在小圆内均匀分布.由于前提条件不同,就导致三种不同答案.这是因为在那时候概率论一些根本概念〔如事件、概率及可能性等〕还没有明确定义,作为一个数学分支来说,它还缺乏严格理论根底,这样,对同一问题可以有不同看法,以致产生一些奇谈怪论.。
2019-2020学年高中数学 3.3《几何概型》教案(2) 苏教版必修3.doc
2019-2020学年高中数学 3.3《几何概型》教案(2) 苏教版必修3 教学目标: (1)能运用模拟的方法估计概率,掌握模拟估计面积的思想;(2)增强几何概型在解决实际问题中的应用意识.教学重点、难点:将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.教学过程:一、课前热身【复习回顾】1.几何概型的特点:⑴、有一个可度量的几何图形S ;⑵、试验E 看成在S 中随机地投掷一点;⑶、事件A 就是所投掷的点落在S 中的可度量图形A 中.2.几何概型的概率公式.3.古典概型与几何概型的区别.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.4.几何概型问题的概率的求解.(1)某公共汽车站每隔5分钟有一辆公共汽车通过,乘客到达汽车站的任一时刻都是等可能的,求乘客等车不超过3分钟的概率。
35p = (2)如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率。
11P π= 238P =(3)某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会. 如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份)。
甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?1720p = 2120p = 3110p = 415p = 二、数学运用例1 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度)【分析】点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图335--中线段'AC 内时,AM AC <,故线段'AC 即为区域d .【解】在AB 上截取'AC AC =.于是'()()P AM AC P AM AC <=<'AC AB =AC AB =2=。
高中数学 3.3《几何概型》导学案(2) 苏教版必修3
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
高中数学 3.3《几何概型》导学案(2) 苏教版必修3
3.3《几何概型》导学案 (2)学习目标:(1)能运用模拟的方法估计概率,掌握模拟估计面积的思想;(2)增强几何概型在解决实际问题中的应用意识.学习重点、难点:将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.学习过程:一、课前热身【复习回顾】1.几何概型的特点:⑴、有一个可度量的几何图形S;⑵、试验E看成在S中随机地投掷一点;⑶、事件A就是所投掷的点落在S中的可度量图形A中.2.几何概型的概率公式.3.古典概型与几何概型的区别.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.4.几何概型问题的概率的求解.(1)某公共汽车站每隔5分钟有一辆公共汽车通过,乘客到达汽车站的任一时刻都是等可能的,求乘客等车不超过3分钟的概率.(2)如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.(3)某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会. 如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份)。
甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?二、数学运用例1 在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.("测度"为长度)--中线段【分析】点M随机地落在线段AB上,故线段AB为区域D.当点M位于图335 'AC即为区域d.AC内时,AM AC<,故线段'例2、抛阶砖游戏“抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手上的“金币”(设“金币”的直径为r)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为a 的正方形)的范围内(不与阶砖相连的线重叠),便可获奖.问:参加者获奖的概率有多大?练习:有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求硬币完全落入圆内的概率.例 3.甲、乙二人约定在 12 点到 17点之间在某地会面,先到者等一个小时后即离去设二人在这段时间内的各时刻到达是等可能的,且二人互不影响.求二人能会面的概率.【变式题】假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?例4.在一个圆上任取三点A、B、C, 求能构成锐角三角形的概率.三、课堂练习1、已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率.2.在线段 AD 上任意取两个点 B、C,在 B、C 处折断此线段而得三折线,求此三折线能构成三角形的概率.a<的概率是_____.3、在区间(10,20]内的所有实数中,随机取一个实数a,则这个实数134 在一张方格纸上随机投一个直径 1 的硬币,问方格多小才能使硬币与线相交的概率大于0.99 ?5.一个服务窗口每次只能接待一名顾客,两名顾客将在 8 小时内随机到达.顾客甲需要 1 小时服务时间,顾客乙需要 2 小时.计算有人需要等待的概率.四、回顾小结:五、课外作业:课本第112页7,8中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
苏教版高中数学必修3《几何概型》参考教案2
3.3 几何概型教学目标:1、知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P(A)=dD的测度的测度;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)会利用均匀随机数解决具体的有关概率的问题.2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
教学重点:几何概型的概念、公式及应用;教学难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.教学过程:一、问题情境1.取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色、黑色、蓝色、红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m 外射箭.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?3.两个人约定在8:00至9:00之间到某地点约会,规定先到的人等十分钟后离开,问两人能见面的概率是多大?二、建构数学从上面的分析可以看到,对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样。
一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域内”为事件A ,则事件A 发生的概率:P (A )=d D 的测度的测度. 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.三、数学运用1.例题例1 取一个边长为2a的正方形及其内切圆(如图),随机向正方形内丢一粒豆子,求豆子落入圆内的概率.思考:由此例可知,豆子落入圆内的概率()4P A π=,我们可用Exc el来模拟撒豆子的试验,以此来估计圆周率,请你设计出相关算法。
苏教版高中数学(必修3)3.3《几何概型》WORD学案
(2)每个基本事件出现的可能性相等.
3.几何概型的概率:
一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率P(A)?d的测度. D的测度
说明:(1)D的测度不为0;
(2)其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相
3.3.1 几何概型2、熟练掌握几何概型的概率公式;
3、正确判别古典概型与几何概型,会进行简单的几何概率计算. 【课堂互动】
自学评价
试验1 取一根长度为3m的绳子,拉直后在任意位置剪断.剪得两段的
长都不小于1m的概率有多大?
试验2射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、
【分析】第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m的绳子上的任意一点.
第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm的大圆内的任意一点.
第三个试验,微生物在这杯水中任何一滴都是一个基本事件,这一滴可以是这1升水中的任何一滴。
在这三个问题中,基本事件有无限多个,虽然类似于古典概型的"等可能性",但是显然不能用古典概型的方法求解.
应的"测度"分别是长度,面积和体积.
(3)区域为"开区域";
(4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部
分的可能性大小只与该部分的测度成正比而与其形状位置无关.
【经典范例】
例1:某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时
间不多于10分钟的概率.
蓝色、红色,靶心为金色.金色靶心叫“黄心”. 奥运会的比赛靶面直径
高中数学苏教版必修3第3章《概率》(几何概型)word导学案2
江苏省响水中学高中数学 第3章《概率》几何概型(2)导学案 苏教版必修3学习目标:1.能运用模拟的方法估计概率,掌握模拟估计面积的思想;2.增强几何概型在解决实际问题中的应用意识.重点、难点: 将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.课前预习:1.回顾几何概型的概念,基本特点,计算公式.2.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是______3.已知在矩形ABCD 中,5AB =,7AC =.在长方形内任取一点P ,求APB ∠>︒90的概率.4.在正方体ABCD-A 1B 1C 1D 1中棱长为1,在正方体内随机取点M ,求使四棱锥M-ABCD 的体积小于61的概率?课堂探究:1、在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.图335--变式:在△ABC ,060=∠ABC ,2=AB ,4=BC ,在线段BC 上任取一点M 。
试求:① △ABM 为钝角三角形的概率;② △ABM 为锐角三角形的概率.③ 过顶点A 在ABC ∠内部任作一条射线AM ,△ABM 为钝角三角形的概率;2、有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,(1) 试求硬币完全落入圆内的概率.(2) 若将圆改为边长为5的正方形,试求硬币完全落入正方形内的概率?3、在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.变式:甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等一个小时后即离去,设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。
求二人能会面的概率。
(苏教版)数学必修三导学案:3.3几何概型(2)
高中数学 3.3 几何概型学案 苏教版必修3
3.3 几何概型何概型的概率.1.几何概型设D 是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.预习交流1几何概型的概率计算与构成事件的区域形状、位置有关吗?提示:几何概型的概率只与它的测度(长度、面积、体积等)有关,而与构成事件的区域形状、位置无关.2.几何概型的计算公式及特点(1)几何概型的特点:①在每次试验中,不同的试验结果有无穷多个,且全体结果可用一个有度量的几何区域来表示;②每个试验结果出现的可能性相等,即基本事件的发生是等可能的.(2)几何概型的概率计算公式:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率为P (A )=d 的测度D的测度(d ⊆D ).预习交流2(1)在区间[-1,1]上随机取一个数x ,x 2≤14的概率为__________.(2)如图的矩形,长为2米,宽为1米.在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗.据此可以估计出图中阴影部分的面积为__________.(3)如图所示,有两个转盘,甲、乙两人玩转盘游戏时规定:当指针指向B 区域时,甲获胜;否则,乙获胜.在两种情形下甲获胜的概率分别为__________.提示:(1)12 (2)2325 (3)12,35一、长度型几何概型一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看见下列两种情况的概率各是多少?(1)红灯; (2)黄灯. 思路分析:解答本题的关键是将基本事件的全部及事件A 所包含的基本事件转化为相应区间的长度.解:到达路口的每一时刻都是一个基本事件,且是等可能的,基本事件有无穷多个,所以这是几何概型问题.总的时间长度为30+5+40=75秒,设看到红灯为事件A ,看到黄灯为事件B ,(1)出现红灯的概率为:P (A )=构成事件A 的时间长度总的时间长度=3075=25.(2)出现黄灯的概率为:P (B )=构成事件B 的时间长度总的时间长度=575=115.1.两根电线杆相距100 m ,若电线遭受雷击,且雷击点距电线杆距离为10 m 之内时,电线杆上的输电设备将受损,则遭受雷击时设备受损的概率为__________.答案:15解析:距电线杆10 m 的线段有两处,左右各一段,遭受电击的线段长为20 m .故所求概率为20100=15.2.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,求某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率.解:如图所示,△ABC 中,AB =3,AC =4,BC =5,则△ABC 的周长为3+4+5=12.设某时刻该蚂蚁距离三角形的三个顶点的距离均超过1为事件A ,则()++3+2+11++122DE FG MN P A BC CA AB ===.3.取一根长度为3 m 的树干,把它锯成两段,那么锯得两段的长都不小于1 m 的概率有多大?解:从每一个位置锯断都是一个基本事件,锯断位置可以是长度为3 m 的树干上的任意一点,基本事件有无限多个,是几何概型问题.如图所示,记“锯得两段树干长都不小于1 m”为事件A ,把树干三等分,于是当锯断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于树干长的13,于是事件A 发生的概率P (A )=构成事件A 的树干长度总的树干长度=13.(1)几何概型概率计算的基本步骤是:①判断是否为几何概型.尤其要注意判断等可能性;②计算所有基本事件的“测度”与事件A 所包含的基本事件对应的区域的“测度”(如长度、面积、体积、角度等);③代入几何概型的概率计算公式进行计算.(2)在求解与长度有关的几何概型时,首先找到几何区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d .在找d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率.二、面积型几何概型取一个边长为2a 的正方形及其内切圆、外接圆,随机向外接圆内丢一粒豆子,求豆子落入图内4个白色区域的概率.思路分析:由于是随机丢豆子,故可认为豆子落入外接圆内任一点都是机会均等的,于是豆子落入图内4个白色区域的概率应等于4个白色区域的面积和与外接圆面积的比.解:记“豆子落入4个白色区域”为事件A ,则由于是随机丢豆子,故可认为豆子落入外接圆内任一点都是机会均等的,于是豆子落入图内4个白色区域的概率应等于4个白色区域的面积和与外接圆面积的比.即P (A )=4个白色区域的面积和外接圆的面积=正方形的面积-内切圆的面积外接圆的面积=4a 2-πa 2π(2a )2=4-π2π.1.如果在一个5万平方千米的海域里有表面积达40平方千米的大陆架蕴藏着石油.假如某投资公司在此海域里随意选定一点钻探,则钻到石油的概率是__________.答案:11 250解析:由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率等于贮藏石油的海域面积与整个海域面积之比,即P =4050 000=11 250.2.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为__________.答案:π16解析:D 区域:2,2x y ⎧≤⎪⎨≤⎪⎩形成面积为42的正方形区域,E 区域:x 2+y 2≤1形成面积为π的圆形区域.如图所示.记P (A )为事件“落入E 中”的概率,则P (A )=π16. 3.如图,矩形花园ABCD 中,AB 为4米,BC 为6米,一只小鸟任意落下,则小鸟落在阴影区的概率是多少?解:矩形面积为:4×6=24(米2),阴影部分面积为:12×4×6=12(米2),P (小鸟落在阴影区)=121=242. (1)几何概型要求每个基本事件在一个区域内均匀分布,所以随机事件概率的大小与随机事件所在区域的形状、位置无关,只与区域的大小有关.如果随机事件所在的区域是一个单点,由于单点的测度(长度、面积、体积)为0,则它出现的概率为0,但它不是不可能事件.如果一个随机事件所在的区域是全部区域扣除一个单点,则它出现的概率为1,但不是必然事件.(2)解与面积有关的几何概型问题的关键是:①根据题意确认是否是与面积有关的几何概型问题; ②找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.三、体积型几何概型已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,求使得V P -ABC<12V S -ABC 的概率. 思路分析:解答本题时可先找出满足条件的点P 的位置,再用几何概型求概率.解:∵V P -ABC =13S △ABC ·h , V S -ABC =13S △ABC ·3,∴当32h <时, V P -ABC <12V S -ABC , 即点P 的位置应该在中截面的下方(不妨设中截面为面A′B′C′),据比例的性质可知31128S A B C S ABC V V -'''-⎛⎫== ⎪⎝⎭,根据几何概型的概率计算公式,所以所求概率为78S ABC S A B C S ABC V V V --'''--=.1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,求使四棱锥M -ABCD的体积小于16的概率为__________.答案:12解析:如图,正方体ABCD -A 1B 1C 1D 1. 设M -ABCD 的高为h ,则13×S ABCD ×h <16, 又S ABCD =1,∴h <12,即点M 在正方体的下半部分, ∴所求概率1122V P V ==正方体正方体.2.有一杯1升的水,其中漂浮有1个被核污染的微生物,用一个小杯从这杯水中随意取出0.1升,求这一小杯水中含有这个微生物的概率.解:总的基本事件为杯中水的体积,事件A 包含的基本事件为取出水的体积,所以小杯水中含有这个微生物的概率为P (A )=构成事件A 的水的体积总的水的体积=0.11=110.3.如图,在等腰直角△ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.解:在AB 上取AC ′=AC , 则∠ACC ′=180452︒-︒=67.5°. 设A ={在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,AM <AC }. 则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.53=904. (1)当涉及射线的转动、扇形中有关落点区域问题时,常以角度的大小作为区域度量来计算概率.(2)如果试验的全部结果所构成的区域可用体积来度量,那么我们就要结合问题的背景,选择好观察角度,准确找出构成事件A 的区域体积及试验的全部结果构成的区域体积.(3)解决此类问题的关键是事件A 在区域角度、区域体积内是均匀的,进而判定事件的发生是等可能的,从而可以用几何概型的概率公式求解.1.(2012湖北高考改编)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是__________.答案:1-2π解析:设OA =OB =2R ,连接AB ,如图所示,由对称性可得,阴影的面积就等于直角扇形拱形的面积,S 阴影=14π(2R )2-12×(2R )2=(π-2)R 2,S 扇=πR 2,故所求的概率是(π-2)R 2πR2=1-2π.2.面积为S 的△ABC 中,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为__________.答案:123.在边长为2的正方体内任取一点,则该点在正方体的内切球内的概率为__________.答案:π6解析:记“该点落入内切球内”的事件为A ,则P (A )=内切球体积正方体体积=4π3·1323=π6. 4.在长为4米的绳子上任取一点剪开,则使两段绳子的长度一段大于3米,一段小于1米的概率是__________.答案:12解析:如图,显然当剪断点在AB 或CD 上时满足条件“一段大于3米,一段小于1米”,∴P (“一段大于3米,一段小于1米”)=AB +CD AD =24=12.5.在区间(0,3)内随机地取一个数,则这个数大于2的概率为多少? 解:几何区域D 为区间长度,所以这个数大于2的概率为大于2的区间长度与总区间长度之比,即P =3-23=13.。
高中数学第3章概率3.3几何概型教材梳理导学案苏教版必修
3.3 几何概型庖丁巧解牛知识·巧学一、几何概型的概念对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.深化升华 只有每个事件发生的概率与构成该事件区域的长度(面积或体积)成比例时,这样的概率模型才为几何概率模型.二、几何概型的特征几何概型具有如下两个特征:(1)进行一次试验相当于向一个几何体G 中取一点.(2)对G 内任意子集,事件“点取自g”的概率与g 的测度(长度、面积或体积)成正比,而与g 在G 中的位置、形状无关.如果试验中的随机事件A 可用G 中的一个区域g 表示(组成事件A 的所有可能结果与g 中的所有点一一对应),那么事件A 的概率规定为:P(A)=的测度的测度G g . 例如,正方形内有一个内切圆,向正方形内随机地撒一粒芝麻的试验就是几何概型,记事件“芝麻落在圆内”为A ,则P(A)=4π=正方形的面积圆的面积. 联想发散 对于几何概型,随机事件A 的概率P(A)与表示它的区域g 的测度(长度、面积或体积)成正比,而与区域g 的位置和形状无关;只要表示两个事件的区域有相同的测度(长度、面积或体积),不管它们的位置和形状如何,这两个事件的概率一定相等.三、几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.(3)几何概型同古典概型一样也是一种等可能概型.辨析比较 几何概型与古典概型的区别:几何概型的基本事件总数有无限多个,古典概型的基本事件总数有有限个.四、几何概型的计算公式几何概型中,事件A 的概率的计算公式如下:P (A )=的测度的区域试验的全部结果所构成的测度的区域构成事件D d A . 公式中的“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.因为区域中每一点被取到的机会都一样(等可能性),某个事件发生的概率才与构成该事件区域的“测度”成比例.误区警示 当试验的全部结果所构成的区域面积一定时,事件A 的概率只与构成事件A 的区域面积有关,而与A 的位置和形状无关.五、利用几何概型求概率需注意哪些方面(1)几何概型适用于试验结果是无穷多且事件是等可能发生的概率类型;如与速度、温度变化有关的物理问题,与长度、面积、体积有关的实际生产、生活问题.(2)几何概型主要用于解决与长度、面积、体积有关的题目;(3)公式为P(A)=),(),(体积面积长度试验结果所构成的区域体积面积的区域长度构成事件A ; (4)计算几何概率要先计算基本事件总体与事件A 包含的基本事件对应的长度(角度、面积、体积).典题·热题知识点 几何概型概率计算例1 国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上,从开始30 s 处起,有10 s 长的一段内容包含两间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?思路分析:包含两个间谍谈话录音的部分在30到40 s 之间,当按错键的时刻在这段时间之内时,部分被擦掉,当按错键的时刻在0到30 s 之间时全部被擦掉,即在0到40 s 之间即0到32 min 之间的时间段内按错键时含有犯罪内容的谈话被部分或全部擦掉,而0到30 min 之间的时间段内任一时刻按错键的可能性是相等的,所以按错键使含有犯罪内容的谈话被部分或全部擦掉的概率只与从开始到谈话内容结束的时间段长度有关,符合几何概型的条件. 解:记A={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 发生就是在0到32min 之间的时间段内按错键.P (A )=4513032. 误区警示 此题有两个难点:一是等可能性的判断;二是事件A 对应的区域是0到32 min 的时间段,而不是21 min 到32 min 的时间段. 例2 甲乙两人相约10天之内在某地会面,约定先到的人等候另一人3天以后方可离开,若他们在期限内到达目的地是等可能的,则此二人会面的概率为_________.思路分析:这是会面问题,将问题转化为几何概型求解.设甲乙两人分别在第x,y 天到达某地,则0≤x≤10,0≤y≤10,两人会面的条件是|x-y|≤3.图3-3-2如图3-3-2所示,区域Ω是边长为10的正方形,图中介于两直线x-y=±3之间阴影表示事件A :“此二人会面”问题可以理解为求出现在图中阴影部分的概率.于是μΩ=10×10=100.μA =102-(10-3)2=51.故所求概率为P(A)=10051=ΩμμA 答案:10051 深化升华 把两个时间分别用x,y 两个坐标表示,构成平面内的点(x,y),从而把时间这个一维长度问题转化为平面图形的二维面积问题,转化成面积型几何概率.例3 如图3-3-3,在等腰RT△ABC 中,在斜边AB 上取一点M ,求AM 的长小于AC 的概率.图3-3-3思路分析:此题是“长度比”型的概率求法.点M 随机地落在线段AB 上,线段AB 为试验所有结果构成的区域D ,当点M 位于图中线段AC′上时,AM <AC ,线段AC 即为构成事件的区域d.方法一:在AB 上截取AC′=AC,于是 P(AM<AC)=P(AM<AC′)=22=='AB AC AB C A , 即AM 的长小于AC 的长的概率为22. 方法二:视射线CM 在∠ACB 内是等可能分布的,在AB 上取AC′=AC,则∠ACC′= 245180︒-︒=67.5° . 故所求的概率为43905.67=. 误区警示 背景相似的问题,当等可能的角度不同时,其概率是不一样的.问题·探究思想方法探究问题 我们已经学习了两种计算事件发生概率的方法:(1)通过试验方法得到事件发生的频率,来估计概率;(2)用古典概型的公式来计算概率.可以求解很多的随机事件概率,为什么还要学习几何概型?探究过程:通过试验方法得到事件发生的频率,来估计概率,这是一种近似估计,需通过大量重复试验,具有局限性.另外,用古典概型的公式来计算概率,仅适用基本事件为有限个的情况.而对于基本事件为无限个的,每个基本事件又是等可能的情况,我们无从下手. 探究结论:所以有必要学习几何概型.。
高中数学 第3章《概率》几何概型(2) 精品导学案 苏教版必修三
江苏省响水中学高中数学 第3章《概率》几何概型(2)导学案 苏教版必修3学习目标:1.能运用模拟的方法估计概率,掌握模拟估计面积的思想;2.增强几何概型在解决实际问题中的应用意识.重点、难点: 将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.课前预习:1.回顾几何概型的概念,基本特点,计算公式.2.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是______3.已知在矩形ABCD 中,5AB =,7AC =.在长方形内任取一点P ,求APB ∠>︒90的概率.4.在正方体ABCD-A 1B 1C 1D 1中棱长为1,在正方体内随机取点M ,求使四棱锥M-ABCD 的体积小于61的概率?课堂探究:1、在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.图335--变式:在△ABC ,060=∠ABC ,2=AB ,4=BC ,在线段BC 上任取一点M 。
试求:① △ABM 为钝角三角形的概率;② △ABM 为锐角三角形的概率.③ 过顶点A 在ABC ∠内部任作一条射线AM ,△ABM 为钝角三角形的概率;2、有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,(1)试求硬币完全落入圆内的概率.(2)若将圆改为边长为5的正方形,试求硬币完全落入正方形内的概率?3、在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.变式:甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等一个小时后即离去,设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。
求二人能会面的概率。
教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
高中数学必修三导学案-几何概型二
§3.3.1 几何概型(二)(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P()A A =构成事件的区域 d 的长度(面积、角度或体积)试验的全部结果所构成的区域 D 的长度(面积、角度或体积);(3)会把相应的几何概型问题“角度”化、“面积”化、“体积”化.重点: 几何概型的概念及应用.难点: 对几何概型的理解,将问题“角度”化、“面积”化、“体积”化.学法指导处理几何概型的主要思路是问题“长度”化、 “面积”化、“角度”化或“体积”化.几何概型的概率公式及其应用.【典型例题】 测量面积一般的对于两个平面区域d ,D ,且d D ⊂,点P 落在区域D 内每一点上都是等可能的,当D 是个平面图形,记“点P 落在区域d 内” 为事件A ,且事件A 发生的概率只与d 的面积有关时,一般有P().A =d 的面积D 的面积例1 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是等可能的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
练习:如图1是一个边长为1米的正方形木板,上面画着一个边界不规则的地图和板上被雨点打上的痕迹,则这个地图的面积为______平方米.分析:雨点落在地图上的概率问题是几何 概型,用面积比计算. 雨点打在地图和板上 是随机的,地图上有 9个雨点痕迹,板上 其他位置有18个雨点痕迹,由此计算雨点落在地图上的概率,反过来推导地图面积. 例2假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A ,那么事件A 是哪种类型的事件?分析:送报人到达的时刻与父亲离开家的时刻是相互独立且是等可能的,所以应该引入两个变量来求解.设送报人到达的时间为x(6.5≤x ≤7.5),父亲离开家的时刻为y(7≤y ≤8)事件A 对应于不等关系“y ≥x ”.怎样建立x 与y 之间的关系才能解决这一不等关系呢?自然我们就想到建立二维平面直角坐标系,将x 与y 之间的关系向点(x, y )转化,用点来解决(参看课本p138图3.3-2)。
苏教版数学高一学案 3.3 几何概型
[学习目标] 1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.知识点一几何概型的含义1.几何概型的定义设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.[思考]几何概型与古典概型有何区别?答几何概型与古典概型的异同点知识点二几何概型的概率计算公式一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A 发生的概率P (A )=d 的测度D 的测度.[思考] 计算几何概型的概率时,首先考虑的应该是什么? 答 首先考虑取点的区域,即要计算的区域的几何度量.题型一 与长度有关的几何概型例1 取一根长为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?解 如图,记“剪得两段的长都不小于1m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段时,事件A 发生,因为中间一段的长度为1m ,所以事件A 发生的概率为P (A )=13.反思与感悟 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练1 平面上画了一组彼此平行且相距2a 的平行线.把一枚半径r <a 的硬币任意投掷在平行线之间,求硬币不与任一条平行线相碰的概率. 解 设“硬币不与任一条平行线相碰”为事件A .如图,在两条相邻平行线间画出与平行线间距为r 的两条平行虚线,则当硬币中心落在两条虚线间时,与平行线不相碰.故P (A )=虚线间距离平行线间距离=2a -2r 2a =a -r a .题型二 与面积有关的几何概型例2 射箭比赛的箭靶中有五个涂有不同颜色的圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运动员在一定距离外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为多少? 解 如图,记“射中黄心”为事件B .因为中靶点随机地落在面积为⎝⎛⎭⎫14×π×1222cm 2的大圆内,而当中靶点落在面积为⎝⎛⎭⎫14×π×12.22cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14×π×12.2214×π×1222=0.01.反思与感悟 解此类几何概型问题的关键:(1)根据题意确定是不是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.跟踪训练2 一只海豚在水池中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.解 如图所示,区域Ω是长30m 、宽20m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2m 的概率约为0.31. 题型三 与体积有关的几何概型例3 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M到底面的距离小于h2的概率.解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为13Sh -13·S 4·h 2=13Sh ·78.所以点M 到底面的距离小于h 2的概率为P =78.反思与感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练3 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率. 解 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为P =1333=127.题型四 与角度有关的几何概型例4 如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在∠xOT 内的概率.解 以O 为起点作射线OA 是随机的,因而射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件. 于是,记事件B ={射线OA 落在∠xOT 内}. 因为∠xOT =60°,所以P (B )=60°360°=16.反思与感悟 当涉及射线的运动,扇形中有关落点区域问题时,常以角的大小作为区域度量来计算概率,切不可用线段代替,这是两种不同的度量手段.跟踪训练4 如图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 因为CM 是∠ACB 内部的任意一条射线,而总的基本事件是∠ACB 的大小,即为90°, 所以作AC ′=AC ,且∠ACC ′=180°-45°2=67.5°.如图,当CM 在∠ACC ′内部的任意一个位置时,皆有AM <AC ′=AC ,即P (AM <AC )=67.5°90°=34. 例5 把长度为a 的木棒任意折成三段,求它们可以构成一个三角形的概率.分析 将长度为a 的木棒任意折成三段,要能够构成三角形必须满足“两边之和大于第三边”这个条件,进而求解即可.解 设将长度为a 的木棒任意折成三段的长分别为x ,y ,a -x -y ,则(x ,y )满足的条件为⎩⎪⎨⎪⎧0≤x ≤a ,0≤y ≤a ,0≤x +y ≤a ,它所构成的区域为图中的△AOB .设事件M ={能构成一个三角形}, 则当(x ,y )满足下列条件时,事件M 发生.⎩⎪⎨⎪⎧x +y >a -x -y ,x +a -x -y >y ,y +a -x -y >x ,即⎩⎪⎨⎪⎧x +y >a 2,y <a2,x <a 2,它所构成的区域为图中的阴影部分, 故P (M )=S 阴影S △AOB =12×⎝⎛⎭⎫a 2212×a 2=14.故满足条件的概率为14.解后反思 解决本题的关键是将之转化为与面积有关的几何概型问题.一般地,有一个变量可以转化为与长度有关的几何概型,有两个变量可以转化为与面积有关的几何概型,有三个变量可以转化为与体积有关的几何概型.1.在区间[0,3]上任取一个数,则此数不大于2的概率是________. 答案 23解析 此数不大于2的概率P =区间[0,2]的长度区间[0,3]的长度=23.2.在半径为2的球O 内任取一点P ,则|OP |>1的概率为________. 答案 78解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积是________.答案 43解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A ,则事件A 构成的区域是阴影部分.设阴影区域的面积为S ,全部结果构成的区域面积是正方形的面积,则有P (A )=S 22=S 4=13,解得S =43.4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为________. 答案 58解析 至少需要等待15秒才出现绿灯的概率为40-1540=58.5.在1000mL 水中有一个草履虫,现从中随机取出3mL 水样放到显微镜下观察,则发现草履虫的概率是________. 答案31000解析 由几何概型知,P =31000.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型. 2.几何概型主要用于解决与长度、面积、体积有关的题目.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).。
高中数学 第三章 概率 3.3 几何概型(2)教案 苏教版必修3(2021年最新整理)
高中数学第三章概率3.3 几何概型(2)教案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.3 几何概型(2)教案苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.3 几何概型(2)教案苏教版必修3的全部内容。
3。
3 几何概型(2)教学目标:1.了解几何概型的基本概念、特点和意义;2.了解测度的简单含义;3.了解几何概型的概率计算公式;4.能运用其解决一些简单的几何概型的概率计算问题.教学重点:测度的简单含义,即:线的测度就是其长度,平面图形的测度就是其面积,立体图形的测度就是其体积等.教学难点:如何确定事件的测度(是长度还是面积、体积等).教学方法:谈话、启发式.教学过程:一、知识回顾1.复习与长度有关的几何概型.有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?二、学生活动从每一个位置剪断都是一个基本事件,基本事件有无限多个。
但在每一处剪断的可能性相等,故是几何概型.三、建构数学古典概型与几何概型的对比。
相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型的概率公式.积等)的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件A A P =)( 四、数学运用1.例题.与面积(或体积)有关的几何概型例1 在1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL ,含有麦锈病种子的概率是多少?解:取出10mL 麦种,其中“含有病种子”这一事件记为A ,则.1001为含有麦锈病种子的概率:答1001100010所有种子的体积取出种子的体积P(A)===变式训练:1.街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板。
苏教版数学高一-必修3教学案 3.3几何概型(二)
3.3几何概型(二)引入新课1.什么叫几何概型?其特点如何?2.几何概型的常见类型有几种?例题剖析例1 在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.BM例2 如图,在圆心角为︒90的扇形中,以圆心O 为起点作射线OC . (1)求使得AOC ∠小于︒30的概率;(2)求使得AOC ∠和BOC ∠都不小于︒30的概率.利用随机模拟方法计算曲线211===x x xy ,,和0=y 所围成的图形的面积.ABO例3巩固练习1.已知等腰ABC Rt ∆中,︒=∠90C .(1)在直角边BC 上任取一点M ,求︒<∠30CAM 的概率; (2)在CAB ∠内作射线AM ,求︒<∠30CAM 的概率.2.在正方体1111D C B A ABCD -中,棱长为1.在正方体内随机取点M , 求使四棱锥ABCD M -的体积小于16的概率.课堂小结几何概型的基本特点;几何概型的概率的求法.课后训练 一 基础题1.已知直线b x y +=,]32[ -∈,b ,则直线在y 轴上的截距大于1的概率是________.2.已知实数y x ,,可以在20<<x ,20<<y 的条件下随机取数,那么取出的 数对)(y x ,满足1)1()1(22<-+-y x 的概率是__________.3.如图,在直角坐标系内,射线OT 落在︒60的终边上,任作一条射线OA , 求射线OA 落在xOT ∠内的概率.x4.两根相距m 6的木杆上系一根绳子,并在绳子上挂一盏灯, 求灯与两端距离都大于m 2的概率.二 提高题5.如图,在一个边长为cm 3的正方形内部画一个边长为cm 2的正方形,向大正方形内 随机投点,求所投的点落入小正方形内的概率.三能力题6.向如图所示的正方形椭机地投掷飞镖(假设所有飞镖都一定能投掷在正方形范围内),求飞镖落在阴影部分的概率.。
高中数学必修三3.3几何概型导学案
高中数学必修三3.3几何概型导学案3.3几何概型【学习目标】1.理解几何概型的定义,会用公式计算概率.2.掌握几何概型的概率公式:P(A)=【知识梳理】知识回顾:1.基本事件的两个特点:一是任何两个基本事件是的;二是任何事件(除不可能事件)都可以表示为.2.古典概型的两个重要特征:一是一次试验可能出现的结果只有;二是每种结果出现的可能性.3.在古典概型中,=.新知梳理:1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的()成比例,则称这样的概型为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有.(2)每个基本事件出现的可能性.3.几何概型的概率公式=.对点练习:1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是().(A)0.5(B)0.4(C)0.004(D)不能确定2.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在(g)范围内的概率是()(A)0.62(B)0.38(C)0.02(D)0.683.在长为10cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于25cm2与49cm2之间的概率为()(A)(B)(C)(D)4.已知地铁列车每10min一班,在车站停1min.则乘客到达站台立即乘上车的概率为.【合作探究】典例精析例题1.取一根长3米的绳子,拉直后再任意位置剪断,那么剪得的两段的长都不少于1米的概率有多大?变式训练1.在半径为1的圆周上任取两点,连接两点成一条弦,求弦长超过此圆内接正三角形边长的概率.例题2.在圆内随机投点,求点与圆心间的距离变式训练2.在以为中心,边长为1的正方形内投点,求点与正方形的中心的距离小于的概率.例题3.在棱长为3的正方体内任意取一点,求这个点到各面的距离均大于棱长的的概率.变式训练3.在棱长为3的正方体内任意取一点,求这个点到各面的距离小于棱长的的概率.【课堂小结】【当堂达标】1.一个红绿灯路口,红灯亮的时间为30秒,黄灯亮的时间是5秒,绿灯亮的时间是45秒.当你走到路口时,恰好看到黄灯亮的概率是()A.B.C.D.2.面积为的中,是的中点,向内部投一点,那么点落在内的概率是()A.B.C.D.3.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为()A.0.002B.0.004C.0.005D.0.008【课时作业】1.同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为().(A)(B)(C)(D)2.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为().(A)(B)(C)(D)3.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则求两人会面的概率为(A)(B)(C)(D)4.如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为().(A)(B)(C)(D)5.如图,有一圆盘其中的阴影部分的圆心角为,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为().(A)(B)(C)(D)6.现有的蒸馏水,假定有一个细菌,现从中抽取,则抽到细菌的概率为().(A)(B)(C)(D)7.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨至和下午至,则该船在一昼夜内可以进港的概率是().(A)(B)(C)(D)8.在区间中任意取一个数,则它与之和大于的概率是().(A)(B)(C)(D)9.若过正三角形的顶点任作一条直线,则与线段相交的概率为().(A)(B)(C)(D)10.平面上画了一些彼此相距2a的平行线,把一枚半径r(A)(B)(C)(D)11.向面积为9的内任投一点,那么的面积小于3的概率为.12.在区间(0,1)中随机地取出两个数,则两数之和小于的概率是.13.在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?14.飞镖随机地掷在下面的靶子上.(1)在靶子1中,飞镖投到区域A、B、C的概率是多少?(2)在靶子1中,飞镖投在区域A或B中的概率是多少?在靶子2中,飞镖没有投在区域C中的概率是多少?15.一只海豚在水池中游弋,水池为长,宽的长方形,求此刻海豚嘴尖离岸边不超过的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 几何概型(2)
教学目标
(1)能运用模拟的方法估计概率,掌握模拟估计面积的思想;
(2)增强几何概型在解决实际问题中的应用意识.
教学重点、难点
将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.
教学过程
一、课前热身
【复习回顾】
1.几何概型的特点:
⑴、有一个可度量的几何图形S;
⑵、试验E看成在S中随机地投掷一点;
⑶、事件A就是所投掷的点落在S中的可度量图形A中.
2.几何概型的概率公式.
3.古典概型与几何概型的区别.
相同:两者基本事件的发生都是等可能的;
不同:古典概型要求基本事件有有限个,
几何概型要求基本事件有无限多个.
4.几何概型问题的概率的求解.
(1)某公共汽车站每隔5分钟有一辆公共汽车通过,乘客到达汽车站的任一时刻都是等可
能的,求乘客等车不超过3分钟的概率。
3
5 p
(2)如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率。
11P π= 238P = (3)某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会. 如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份)。
甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?
1720p = 2120p = 3110p = 415
p = 二、数学运用
例1 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度)
【分析】点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图335--中线段'AC 内时,AM AC <,故线段'
AC 即为区域d .
【解】在AB 上截取'AC AC =.于是'()()P AM AC P AM AC <=< 'AC AB =AC AB
=22=。
答:AM 小于AC 的概率为
22
例2、抛阶砖游戏
“抛阶砖”是国外游乐场的典型游戏之一.参与者只须
将手上的“金币”(设“金币”的直径为 r )抛向离身边若干
距离的阶砖平面上,抛出的“金币”若恰好落在任何一个
阶砖(边长为a 的正方形)的范围内(不与阶砖相连的
线重叠),便可获奖.问:参加者获奖的概率有多大?
解:设阶砖每边长度为a ,“金币”直径为r 。
若“金币”
成功地落在阶砖上,其圆心必位于右图的绿色区域A 内。
问题化为:向平面区域S (面积为a2)随机投点( “金币” 中心),求该点落在区域A 内的概率。
于是成功抛中阶砖的概率
A p S =的面积的面积2
2
()a r a -=(0<r<a ) 由此可见,当r 接近a, p 接近于0; 而当r 接近0, p 接近于1.
例 3.甲、乙二人约定在 12 点到 17点之间在某地会面,先到者等一个小时后即离去设二人在这段时间内的各时刻到达是等可能的,且二人互不影响.求二人能会面的概率.
解:以X , Y 别表示甲乙二人到达的时刻,于是即点M 落在图中的阴影部分.所有的点构成一个正方形,即有无穷多个结果。
由于每人在任一时刻到达都是等可能的,所以落在正方形内各点是等可能的。
二人会面的条件是:||1,X Y -≤
21252492()2525.
P A -⨯⨯===阴影部分的面积正方形的面积
【变式题】假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件
A)的概率是多少?
解: 以横坐标X 表示报纸送到时间,以纵坐标Y
表示父亲离家时间建立平面直角坐标系,假设随机试
验落在方形区域内任何一点是等可能的,所以符合几
何概型的条件。
根据题意,只要点落到阴影部分,就表
示父亲在离开家前能得到报纸,即事件A 发生,所以
2
2
230602()87.5%.60P A -== 例4.在一个圆上任取三点A 、B 、C, 求能构成锐角三角形的概率.
解:在一个圆上任取三点A 、B 、C ,构成的三角形内角分别为∠A 、 ∠B 、 ∠C. 设∠A
=x , ∠B =y ,则0,0.x y x ππ<<⎧⎨<<-⎩
它们构成本试验的样本空间 S 。
构成锐角三角形的(x,y)应满足的条件是:0,20,22x y x y πππ⎧<<⎪⎪⎪<<⎨⎪⎪+>⎪⎩
0,0.x y x ππ<<⎧⎨<<-⎩ 0,20,22x y x y πππ⎧<<⎪⎪⎪<<⎨⎪⎪+>⎪⎩
由几何概率计算得所求概率为
14
三、课堂练习
1、在线段 AD 上任意取两个点 B 、C ,在 B 、C 处折断此线段 而得三折线,求此三折线能构成三角形的概率.
2、在一张方格纸上随机投一个直径 1 的硬币,问方格多小才能使硬币与线相交的概率大于 0.99 ?
3、Bertrand 问题:已知半径为 1 33的概率.
4、一个服务窗口每次只能接待一名顾客,两名顾客将在 8 小时内随机到达.顾客甲需要 1 小时服务时间,顾客乙需要 2 小时.计算有人需要等待的概率.
四、回顾小结
1.几何概型的特点:
⑴、有一个可度量的几何图形S ;
⑵、试验E 看成在S 中随机地投掷一点;
⑶、事件A 就是所投掷的点落在S 中的可度量图形A 中.
2.古典概型与几何概型的区别.
相同:两者基本事件的发生都是等可能的;
不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.
3.几何概型的概率公式.
构成事件的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
A
P(A).
4.几何概型问题的概率的求解.
五、课外作业
课本第112页7,8。