函数信号发生器的设计与实现 (1)资料
《模拟电子技术》简易函数信号发生器的设计与制作
《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电路知识,运用AD画图软件,设计并制作完成一简易函数信号发生器,要求能产生方波和三角波,且频率可调,自行设计电路所需电源电路。
1.2 整机实现的基本原理及框图1.函数信号发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路。
本课题需要完成一个能产生方波、三角波的简易函数信号发生器。
产生方波、三角波的方案有很多种,本课题采用运放构成电压比较器出方波信号,采用积分器将方波变为三角波输出,其原理框图如图1所示。
2 硬件电路设计直流电源电路一般由“降压——整流——滤波——稳压”这四个环节构成。
基本组成框图如图2所示。
(1)电源变压器的作用是将电网220V的交流电压变成整流电路所需要的电压u。
因此,uj=nu;(n 为变压器的变比)。
整流电路的作用是将交流电压u.变换成单方向脉动的直流Uz。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U=0.9u。
每只二极管所承受的最大反向1 0.45u电压uey=、2u,,平均电流/ouv)=之 R R对于RC滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC=(3~5)T/2,T为50Hz交流电压的周期,即20ms。
(2)器件选择①变压器将220V交流电压变成整流电路所需要的电压u。
②整流电路将交流电压u:转换成单方向脉动的直流U2,有半波整流、全波整流,可以利用整流二极管构成整流桥堆来实现。
此题建议用二极管搭建全波整流电路实现。
③滤波电路将脉动直流电压Uz滤除纹波,变成纹波较小的U,有RC滤波电路、LC滤波电路等。
此题建议采用大电容滤波。
④稳压器常用集成稳压器有固定式三端稳压器和可调式三端稳压器。
下面分别介绍其典型应用及选择原则。
固定式三端稳压器的常见产品有:78XX系列稳压器输出固定的正电压,如7805输出为+5V;79XX系列稳压器输出固定的负电压,如7905输出为-5V。
函数信号发生器的设计
函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
DDS函数信号发生器的设计与实现-课程设计.docx
DDS函数信号发生器的设计与实现•课程设计DDS函数信号发生器的设计与实现一、主要功能要求:1、设计任务(1)正弦波、三角波、方波、锯齿波输出频率范围:1KHZ~1MHZ(2)具有频率设置功能,频率步骤:100HZ;(3)输出信号频率定度:优于10 A4(4)输出电压幅度:在5K负载电阻上的电压峰一一峰值Vopp^lV;(5)失真度:用示波器观察使无明显失真。
2、基本要求:(1)掌握采用FPGA硬件特性、及软件开发工具MAXPLUS II的使用。
(2)掌握DDS函数信号发生器的原理,并采用VIIDL语言设计DDS内核单元。
(3 )掌握单片机与DDS单无连接框图原理,推导出频率控制字、相位控制字的算法。
(4)设计键盘输入电路和程序并调试。
掌握键盘和显示(LCD1602)配合使用的方法和技巧。
(5)掌握硬件和软件联合调试的方法。
(6)完成系统硬件电路的设计和制作。
(7)完成系统程序的设计。
(8)完成整个系统的设计、调试和制作。
(9)完成课程设计报告。
3、捉高部分:(1)三角波、方波输出频率范围:1KHZ〜1MHZ;(2)产生二进制PSK、ASK信号:再50KHZ固定频率载波进行二进制键控,二进制基带序列码速率固定为10Kbps,二进制基带序列信号自行产生。
(3)设计高速DA转换电路。
4、发挥部分:(1)对数据频率进行倍频。
二、整体设计框图及整机概述:1、DDS的实现原理:它建立在采样定理的基础上,首先对需要产生的波形进行采样,将采样值数字化后存入存储器作为查找表,然后再通过查表将数据读出,经过D/A转换器转换成模拟量,把存入的波形重新合成出来.2、整体设计框图图一DDS函数信号发生器系统框图结构3、整机概述:整个DDS信号发生器由单片机子系统,DDS子系统,模拟子系统三部分组成。
单片机子系统由单片机、人机接口组成,人机接口由液晶显示器和键盘组成,通过键盘选择信号波形和输入信号频率,液晶用来显示波的类型和波当前的频率值。
简易函数信号发生器设计报告
简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
《模拟电子技术》简易函数信号发生器的设计与制作
《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技在此处键入公式。
术知识,运用AD软件设计并制作一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源1.2 整机实现的基本原理及框图1.电源电路组成由变压器—整流电路—滤波电路—滤波电路—稳压电路组成。
变压器将220V 电源降压至双15V,经整流电路变换成单方向脉冲直流电压,此电源使用四个整流二极管组成全波整流桥电源变压器的作用是将电网220V 的交流电压变成整流电路所需要的电压u1。
因此,u1=nu i(n 为变压器的变比)。
整流电路的作用是将交流电压山变换成单方向脉动的直流U2。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U2=0.9u1。
每只二极管所承受的最大反向电压u RN= √2u1,平均电流I D(A V),=12I R=0.45U1R对于RC 滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC= (3~5)T/2,T 为50Hz 交流电压的周期,即20ms。
此电源使用大电容滤波,稳压电路,正电压部分由三端稳压器7812输出固定的正12V电压,负电压部分由三端稳压器7912输出固定-12V电压。
并联两颗LED灯分别指示正负电压。
2.该函数发生器由运放构成电压比较器出方波信号,方波信号经过积分器变为三角波输出。
2 硬件电路设计硬件电路设计使用Altium Designer 8.3设计PCB,画好NE5532P,7812及7912的原理图和封装后,按照电路图画好原理图后生成PCB图。
合理摆放好各器件后设置规则:各焊盘大小按实际情况设置为了更容易的进行打孔操作,设置偏大一些,正负12V电源线路宽度首选尺寸1.2mm,最小宽度1mm,最大宽度1.2mm,GND线路宽度首选尺寸1mm,最小宽度1mm,最大宽度1.5mm,其他线路首选尺寸0.6mm,最小宽度1mm,最大宽度1.2mm。
函数信号发生器设计方案
函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。
下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。
硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。
可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。
2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。
根据频率范围选择合适的振荡器、计数器等电路元件。
3.精度:考虑信号的精度要求,如频率精度、相位精度等。
可以通过使用高精度的时钟源和自动频率校准电路来提高精度。
4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。
可以使用滤波电路、反馈电路等技术来改善波形质量。
5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。
软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。
2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。
可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。
3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。
对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。
4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。
存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。
5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。
总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。
在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。
【精品】函数信号发生器课程设计报告
【精品】函数信号发生器课程设计报告函数信号发生器课程设计报告摘要:本课程设计主要是设计一台函数信号发生器,它在从低频(如Sine)到较高频(如Square)常用波形之间能够进行切换,常用于电子仪器和测量检测中,用来给装置注入一定形态的信号,以辅助检测装置的有效性,稳定性,精度等特性。
该设备采用STM32F030F4P6单片机,使用1602液晶屏显示函数状态,用HD74HC4040电路分频输出指定期望频率,使用R-2R电路控制EPWM波形从正弦波到脉冲波,满足多种测试状况下的需求。
本系统实现调整频率的功能,使用户可以设置函数发生器的频率,因此满足用户的不同要求。
关键词: STM32F030F4P6; 1602液晶屏; HD74HC4040 电路; R-2R 电路; PWM 波形一、简介函数信号发生器是一种常用的信号发生器,可以产生多种类型的波形。
包括正弦波、三角波、方波、脉冲波和梯形波等等,其应用广泛,比如在检测仪表中,可以用来观察测量仪表的工作状态,以便于分析测量仪表的特性,进而排除故障。
此外,函数信号发生器通常也可以用在动态信号检测中,对电机、变压器和泵等,进行性能检测和控制应用,也可用来做为一种测试应用,来控制和验证电子设备性能,在现在的电子技术发展中,函数信号发生器扮演重要的作用。
二、设计实现设计本次函数信号发生器主要任务是实现指定期望频率信号的输出,并对多种波形满足需求。
主要设备相关技术如下:(一)STM32F030F4P6单片机STM32F030F4P6单片机,采用ARM 32位内核设计,使用Cortex-M0指令集,配备有SYSTICK时钟,PWM波形输出,I2C接口,满足调整函数信号发生器指定频率和波形的要求。
(二)1602液晶屏它的主要功能是显示函数发生器的状态,如频率,波形,用户可以通过屏幕上的提示,清楚的了解函数发生器当前的实时状态,使用比较简单。
(三) HD74HC4040 电路使用 HD74HC4040 电路进行分频输出,可以实时调整输出信号的频率。
北邮电子电路实验-函数信号发生器-实验报告
北京邮电大学电子电路综合设计实验实验报告实验题目:函数信号发生器院系:信息与通信工程学院班级:姓名:学号:班内序号:一、课题名称:函数信号发生器的设计二、摘要:方波-三角波产生电路主要有运放组成,其中由施密特触发器多谐振荡器产生方波,积分电路将方波转化为三角波,差分电路实现三角波-正弦波的变换。
该电路振荡频率由第一个电位器调节,输出方波幅度的大小由稳压管的稳压值决定;正弦波幅度和电路的对称性分别由后两个电位器调节。
关键词:方波三角波正弦波频率可调幅度三、设计任务要求:1.基本要求:设计制作一个方波-三角波-正弦波信号发生器,供电电源为±12V。
1)输出频率能在1-10KHZ范围内连续可调;2)方波输出电压Uopp=12V(误差<20%),上升、下降沿小于10us;3)三角波输出信号电压Uopp=8V(误差<20%);4)正弦波信号输出电压Uopp≥1V,无明显失真。
2.提高要求:1)正弦波、三角波和方波的输出信号的峰峰值Uopp均在1~10V范围内连续可调;2)将输出方波改为占空比可调的矩形波,占空比可调范围30%--70%四、设计思路1. 结构框图实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。
此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。
除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。
由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。
其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
2.系统的组成框图五、分块电路与总体电路的设计1.方波—三角波产生电路如图所示为方波—三角波产生电路,由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。
函数信号发生器实验报告
函数发生器设计(1)一、设计任务和指标要求1、可调频率范围为10Hz~100Hz 。
2、可输出三角波、方波、正弦波。
、可输出三角波、方波、正弦波。
3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。
可调。
4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。
可调。
5、输出阻抗约600Ω。
二、电路构成及元件参数的选择 1、振荡器、振荡器由于指标要求的振荡频率不高,由于指标要求的振荡频率不高,对波形非线性无特殊要求。
对波形非线性无特殊要求。
对波形非线性无特殊要求。
采用图采用图1所示的电路。
所示的电路。
同时同时产生三角波和方波。
产生三角波和方波。
图1 振荡电路振荡电路振荡电路根据输出口的信号幅度要求,可得最大的信号幅度输出为:根据输出口的信号幅度要求,可得最大的信号幅度输出为:V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为:,电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V选取3.3V 的稳压二极管,工作电流取5mA ,则:,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。
为方波输出的峰值电压。
OM Z CC Z 3Z Z V -V V -1.5V -V 9-1.5-4R ==700ΩI I 5»=()1AR4R2R1R3DZ DZRW2AR5R7CVozVosR6Vi+取680680ΩΩ。
取8.2K 8.2KΩΩ。
R 1=R 2/3=8.2/1.5=5.47(K Ω)取5.1K Ω。
三角波输出的电压峰值为:三角波输出的电压峰值为:V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω取3K Ω。
Z Z V 4RW=8K 0.1~0.2I 0.15==W ´()()取10K Ω。
R 6=RW/9=10/9=1.11(K Ω)取1K Ω。
简易函数信号发生器的设计报告
简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。
在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。
本文将着重介绍一种设计简易函数信号发生器的原理和方法。
二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。
同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。
三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。
振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。
2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。
例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。
根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。
3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。
放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。
4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。
通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。
5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。
同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。
四、设计步骤1.确定电路结构和信号发生器的类型。
根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。
2.根据所选振荡器电路进行参数计算和元件的选择。
例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。
3.设计输出放大器电路。
简易函数信号发生器的设计与实现
简易函数信号发生器的设计与实现陈贞【摘要】This paper introduces a design of a simple function signal generator that output sine wave square wave ,and triangle wave based on the LM324 chip .The circuit structure is simple in structure ,hav-ing the characteristics of adjusting the signal amplitude ,frequency and other parameters ,having better per-formance output in the simulation software and laboratory tests ,altering laboratory standard function gen-erator to complete the general experimental requirements ,and saving the cost of teaching .%介绍以L M 324运放芯片为核心,实现正弦波-方波-三角波输出的简易函数信号发生器的设计。
该电路结构简单,信号的幅度、频率等参数可调,在仿真软件和实验室检测都有较好的性能输出,可替代实验室标准的函数信号发生器完成一般的实验要求,节省教学成本。
【期刊名称】《武汉工程职业技术学院学报》【年(卷),期】2014(000)003【总页数】4页(P75-78)【关键词】运放;LM324;函数信号发生器;正弦波;方波;三角波【作者】陈贞【作者单位】武汉工程职业技术学院湖北武汉430080【正文语种】中文【中图分类】TN750 引言信号源是研制、生产、测试和维修各种元器件以及整机设备时的重要设备。
函数信号发生器实验报告
电子电路模拟综合实验实验报告2011年4月3日函数信号发生器的设计与调测摘要使用运放组成的积分电路产生一定频率和周期的三角波、方波(提高要求中通过改变积分电路两段的积分常数从而产生锯齿波电压,同时改变方波的占空比),将三角波信号接入下级差动放大电路(电流镜提供工作电流),利用三极管线性区及饱和区的放大特性产生正弦波电压并输出。
关键词三角波-正弦波运放积分电路差动放大电路镜像电流源实验内容1、基本要求:a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。
1)输出频率能在1-10KHz范围内连续可调,无明显失真;2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%;3)三角波Uopp=8V;4)正弦波Uopp>1V。
b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)2、提高要求:a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。
b)三种输出波形的输出阻抗小于100欧。
c)用PROTEL软件绘制完整的印制电路板图(PCB)。
实验原理1,方波三角波产生电路如图所示为方波-三角波产生电路,由于采用了运放组成的积分电路,可得到比较理想的方波和三角波。
该电路振荡频率和幅度便于调节,输出方波幅度的大小由稳压管VDW1,VDW2的稳压值决定。
改变R1和Rf的比值可调节Uo2m的大小。
电路与原件的确定:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率合适的运放。
②根据所需输出方波幅度的要求,选择稳压值合适的稳压管的型号和限流电阻Ro的大小。
③根据输出三角波的幅度要求,确定R1与Rf的大小R1=Uo2m*Rf/(Uz+Ud)2,电流镜偏震差动放大器的设计差动放大器具有很高的共模抑制比,被广泛地应用于集成电路中,常作为输入级或中间放大级。
⑴确定静态工作点电流Ic1.Ic2和Ic3静态时,差动放大器不加输入信号,对于电流镜Re3=Re4=ReIr=Ic4+Ib3+Ib4=Ic4+2Ib4=Ic4+2Ic4/β=Ic4=Ic3上式表明恒定电流Ic3主要有电源电压和电阻R,Re4决定,与晶体管的参数无关。
函数信号发生器的设计与制作
函数信号发生器的设计与制作实验任务与要求①要求所设计的函数信号发生器能产生方波、三角波、正弦波②要求该函数信号发生器能够实现频率可调实验目的:1: 进一步巩固简熟悉易信号发生器的电路结构及电路原理并了解波形的转变方法;2:学会用简单的元器件及芯片制作简单的函数信号发生器,锻炼动手能力;3:学会调试电路并根据结果分析影响实验结果的各种可能的因素实验方案采用555组成的多谐振荡器可以在接通电源后自行产生矩形波再通过积分电路将矩形波转变为三角波再经积分网络转变为正弦波555定时器芯片工作原理,功能及应用555定时器是一种数字电路与模拟电路相结合的中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳态触发器和多谐振荡器等,因而广泛用于信号的产生、变换、控制与检测。
一、555定时器555定时器产品有TTL型和CMOS型两类。
TTL型产品型号的最后三位都是555,CMOS 型产品的最后四位都是7555,它们的逻辑功能和外部引线排列完全相同。
555定时器的电路如图9-28所示。
它由三个阻值为5k?的电阻组成的分压器、两个电压比较器C1和C2、基本RS触发器、放电晶体管T、与非门和反相器组成。
555定时器原理图分压器为两个电压比较器C1、C2提供参考电压。
如5端悬空(也可对地接上0.01uF 左右的滤波电容),则比较器C1的参考电压为2 Vcc 3 ,加在同相端;C2的参考电压为Vcc3 ,加在反相端。
u11是比较器C1的信号输入端,称为阈值输入端;u12是比较器C2的信号输入端,称为触发输入端。
 ̄RD 是直接复位输入端。
当 ̄RD 为低电平时,基本RS 触发器被置0,晶体管T 导通,输出端u0为低电平。
u11和u12分别为6端和2端的输入电压。
当u11>2 Vcc 3 ,u12>Vcc3 时,C1输出为低电平,C2输出为高电平,,基本RS 触发器被置0,晶体管T 导通,输出端u0为低电平。
毕业设计(论文)-基于fpga的函数信号发生器的设计与实现[管理资料]
基于FPGA的函数信号发生器的设计与实现摘要波形发生器己成为现代测试领域应用最为广泛的通用仪器之一,代表了信号源的发展方向。
直接数字频率合成(DDS)是二十世纪七十年代初提出的一种全数字的频率合成技术,其查表合成波形的方法可以满足产生任意波形的要求。
由于现场可编程门阵列(FPGA)具有高集成度、高速度、可实现大容量存储器功能的特性,能有效地实现DDS技术,极大的提高函数发生器的性能,降低生产成本。
本文首先介绍了函数波形发生器的研究背景和DDS的理论。
然后详尽地叙述了用FPGA完成DDS模块的设计过程,接着分析了整个设计中应处理的问题,根据设计原理就功能上进行了划分,将整个仪器功能划分为控制模块、外围硬件、FPGA器件三个部分来实现。
最后就这三个部分分别详细地进行了阐述。
本文利用Altera的设计工具QuartuSH并结合VeI’i1og一HDL语言,采用硬件编程的方法很好地解决了这一问题。
论文最后给出了系统的测量结果,并对误差进行了一定分析,结果表明,,、三角波、锯齿波、方波,通过实验结果表明,本设计达到了预定的要求,并证明了采用软硬件结合,利用FPGA技术实现波形发生器的方法是可行的。
关键词:函数发生器,直接数字频率合成,现场可编程门阵列The Design and Realize of DDS Based on FPGAAbstractArbitrary Waveform Generator(AWG) is one of the most popular instruments in modern testing domains,Which represents the developing direction of signal sources· Direct Digital frequency Synthesis(DDS) advance dearly in full digital technology for frequency synthesis,its LUT method for synthes waveform .Adapts togenerate arbitrary Waveform· Field programable GateArray(FPGA)has the feature sof Iargeseale integration,high working frequency and ean realize lal’ge Memory,50FPGAeaneffeetivelyrealizeDDS.The of Corporation Altera ehosen to do the main digitalProcessing work,which based on its large sale and highs Peed. The 53C2440MCU ehosenasa control ehip· Inthisdesign,how to design the fpga chip and theInter faee between the FPGA and the control ehiP the the method ofSoftware and hardware Programming,the design used the software Quartus11 and languageverilog一HDL solves ,the PrineiPle of DDS and Basis of EDA technology introdueed Problem is the design are analyzed and the whole fun into three Parts:masterehiP,FPGA deviee and PeriPheral three Parts are described indetail disadvantage and thing sneed toadv anceareal Of the dissertation,or asquare wave with in the frequency rangeto20MHz .Planed and the way to use software and hardware Programming method and DDS Technology to realize Functional Waveform Generatoravailable.Keywords:DDS;FPGA;Functional Waveform Generator目录第一章绪论 ................................................ IV ............................................................................................................... IV ................................................................................................................. V ......................................................................................................... V....................................................................................................... VI .............................................................................................................. VII ...................................................................................................... VIIDMA输出方式.......................................................................... VII...................................................................................................... VII..................................................................................................... V III 第二章直接数字频率合成器的原理及性能 ................................................ I .................................................................................................................. I .......................................................................................................... I......................................................................................................... I I DDS原理 ............................................................................................. I II 第三章基于FPGA的DDS模块的实现 .......................................................... I (FPGA)简介 ............................................................................................. I II软件并建立工程 ....................................................................... I I新建Block Diagram/Schematic File并添加模块电路。
基于单片机的函数信号发生器的设计与实现
基于单片机的函数信号发生器的设计与实现首先,我们需要确定信号发生器的基本功能和要支持的信号类型。
常见的信号类型包括正弦波、方波、三角波和锯齿波等。
我们可以设计一个菜单界面,通过按键或旋钮选择需要生成的信号类型。
选择信号类型后,用户可以调节频率、幅度和相位等参数,生成相应的信号。
接下来,我们需要设计硬件电路。
基于单片机的函数信号发生器需要一个DA转换芯片来实现数字信号到模拟信号的转换。
我们可以选择常用的模数转换芯片,比如R-2R电阻网络型DA转换芯片。
通过电阻网络的调节,我们可以将单片机输出的数字信号转换为对应的模拟信号。
另外,我们还需要考虑信号的放大和滤波问题。
常见的做法是使用运放作为信号的放大器,通过运放的增益调节,我们可以将信号放大到合适的幅度。
同时,我们还需要滤波电路来去除高频噪声和谐波,以保证输出信号的质量。
在硬件设计完成后,我们需要进行软件编程。
我们可以选择一种合适的单片机,根据其开发环境和编程语言进行开发。
常见的单片机包括51单片机、AVR单片机和STM32等。
我们可以使用C语言或汇编语言编写程序,通过定时器和IO口控制输出信号的频率和幅度。
在软件编程中,我们需要实现信号类型的选择、频率、幅度和相位的调节,以及信号输出的控制。
可以根据用户的选择,生成对应的数字信号,并通过DA转换芯片转换成模拟信号。
同时,我们还可以在程序中添加一些附加功能,比如保存设置、显示当前参数等。
最后,我们需要进行整体调试和测试。
我们可以通过示波器来观察输出信号的波形和频谱,以验证信号发生器的功能和性能。
如果有问题,我们可以通过调整电路和程序进行调试和优化。
总之,基于单片机的函数信号发生器的设计与实现是一个相对复杂和庞大的项目。
它需要我们对单片机的原理和编程有一定了解,同时还需要具备一定的电路设计和调试能力。
但是,通过这个项目的实践,我们可以提高我们的技术能力和创新能力,在电子领域中取得更多的成就。
北邮模电实验报告 函数信号发生器的设计
北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计学院:班级:姓名:学号:班内序号:课题名称:函数信号发生器的设计摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。
三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。
关键词:方波三角波正弦波一、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。
(1) 输出频率能在1-10KHz范围内连续可调,无明显失真。
(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。
(3) 三角波Uopp=8V(误差小于20%)。
(4) 正弦波Uopp1V,无明显失真。
2.提高要求:(1) 输出方波占空比可调范围30%-70%。
(2) 三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。
二、设计思路和总体结构框图总体结构框图:设计思路:由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。
将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。
利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。
三、分块电路和总体电路的设计过程1.方波-三角波产生电路电路图:设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。
函数信号发生器课程设计报告
《模拟电子技术》课程设计函数信号发生器姓名:学号:系别:专业:年级:指导教师:年月日函数信号发生器摘要利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。
根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。
经测试,所设计波形发生电路产生的波形与要求大致相符。
关键词:波形发生器;集成运放;RC充放电回路;滞回比较器;积分电路目录中文摘要 ............................................................. 错误!未定义书签。
1.系统设计 (4)1.1设计指标 (4)1.2方案论证与比较 (4)2.单元电路设计 (5)2.1方波的设计 (5)2.2三角波的设计 (8)2.3正弦波的设计 (7)3.参数选择 (11)3.1方波电路的元件参数选择 (11)4.结果分析 (11)5.工作总结 (12)6.附录 (12)1.系统设计1.1设计指标1.1.1 电源特性参数 ①输入:双电源 12V②输出:正弦波pp V >1V ,方波pp V ≈12 V ,三角波pp V ≈5V ,幅度连续可调,线性失真小。
1.1.2工作频率工作频率范围:10 HZ ~100HZ ,100 HZ ~1000HZ1.2方案论证与比较1.2.1 方案1:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的,通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波,并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。
1.2.2 方案2:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波,方波经过积分之后可以形成三角波,三角波再经过低通滤波可以形成正弦波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,相比第一方案,其操作成功率较低.2.单元电路设计2.1方波的设计2.1.1原理图2.1.2工作原理矩形波发生电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要成分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈,因为输出状态应按一定时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路,它由反相输入的滞回比较器和RC电路组成.RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。
函数信号发生器设计实验报告
函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。
设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
函数信号发生器设计(三角波、方波、正弦波发生器)
基于AT89C51的函数信号发生器设计设计团队:郭栋、陈磊、集炜、査荣杰指导老师:程立新2011-11-13目录1、概述 (3)2、技术性能指标 (3)2.1、设计内容及技术要求 (3)3、方案的选择 (3)3.1、方案一 (4)3.2、方案二 (6)3.3、方案三 (6)4、单元电路设计 (6)4.1、正弦波产生电路 (6)4.2、方波产生电路 (8)4.3、矩形波产生锯齿波电路 (99)5、总电路图 (10)6、波形仿真结果 (1010)6.1正弦波仿真结果 (10)6.2矩形波仿真结果 (11)6.3锯齿波仿真结果 (11)7、PCB版制作与调试 (12)8、元件清单 (134)结论 (14)总结与体会 (14)参考文献 (15)函数信号发生器1、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
2、技术性能指标2.1、设计内容及技术要求:设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为10Hz——10KHz;3、输出信号幅值:正弦波3V,矩形波10V,锯齿波4V;4、输出矩形波占空比50%-95%可调,矩形波斜率可调。
5、信号发生器用220V/50Hz的工频交流电供电;6、电源:220V/50Hz的工频交流电供电。
按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PCB软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩3、方案的选择根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机与信息学院电子信息工程系综合课程设计报告专业班级电子信息工程11-2班学生姓名及学号陈雪莹20112661指导教师方静课题名称函数信号发生器2013~2014 学年第三学期函数信号发生器的设计与实现一.课题的基本描述在科学研究和实际工业测量控制系统开发过程中,方波、三角波和正弦波等是常用的基本测试信号,函数信号发生器就是用来产生、模拟这些真实信号源的通用电子设备。
本课题要求设计一种以单片机为控制器的简易函数信号发生器,包含:主控电路、D/A转换电路、按键和波形选择电路以及显示输出电路,可以输出正弦波、三角波和方波三种信号,输出信号的频率可用按键进行增、减调整,并在LCD(12864)实时显示输出波形。
二.设计的基本要求1. 正弦波、三角波频率调节范围:0.1-50HZ 输出幅值:1.0-1.5V方波频率调节范围:1Hz-1KHz 输出幅值:5V2.通过按键选择输出信号类型,幅值、频率等相关指标;3. 具有显示输出波形的频率和幅度的功能。
三.技术方案及关键问题(1).总体方案:数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。
89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将89C51再配置按键、数模转换及波形输出等部分,即可构成所需的函数信号发生器。
因此本系统利用单片机AT89C51采用程序设计方法产生三角波、正弦波、矩形波三种波形,再通过D/A转换器PCF8591T将数字信号转换成模拟信号,最终由液晶屏12864显示出来。
通过按键来控制三种波形的类型选择、频率和幅度的变化,并通过数码管显示其各自的类型,液晶屏显示幅度和频率的大小。
系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分。
(2).信号发生电路方案:通过单片机控制D/A,输出三种波形。
此方案输出的波形不够稳定,抗干扰能力弱,不易调节。
但此方案电路简单、成本低。
(3).显示方案:采用一位共阴LED数码管,显示波形类型(1-3)。
由于人眼具有视觉暂留特性,当每只数码管显示的时间间隔小于1/16s时人眼感觉不到闪动,看到的是每只数码管常亮。
使用数码管显示编程较易,但要显示内容多,而且数码管不能显示字母。
采用LCD液晶显示器12864,显示波形以及它的幅度和频率。
12864其功率小,效果明显,显示编程容易控制,可以显示波形。
(4).按键方案:独立按键,当没有键闭合时,呈高电平。
当某一个键闭合时,该键所对应的线被短路。
系统的总体框图 :图(1)系统的总体框图四.系统(算法)设计实现硬件实现及单元电路设计:AT89C51是片内有ROM/EPROM的单片机,因此,这种芯片构成的最小系统简单﹑可靠。
用AT89C51单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,如图(2)AT89C51单片机最小系统所示。
由于集成度的限制,最小应用系统只能用作一些小型的控制单元。
其应用特点:(1)有可供用户使用的大量I/O口线。
(2)内部存储器容量有限。
(3)应用系统开发具有特殊性。
图(2) AT89C51单片机最小系统芯片的引脚描述如下:1、主电源引脚VCC和VSSVCC——(40脚)接+5V电压;VSS——(20脚)接地。
2、外接晶体引脚XTAL1和XTAL2XTAL1(19脚)接外部晶体的一个引脚。
在单片机内部,它是一个反相放大器的输入端,这个放大器构成了片内振荡器。
当采用外部振荡器时,对HMOS单片机,此引脚应接地;对CHMOS单片机,此引脚作为驱动端。
XTAL2(18脚)接外晶体的另一端。
在单片机内部,接至上述振荡器的反相放大器的输出端。
采用外部振荡器时,对HMOS单片机,该引脚接外部振荡器的信号,即把外部振荡器的信号直接接到内部时钟发生器的输入端;对XHMOS,此引脚应悬浮。
3、控制或与其它电源复用引脚RST/VPD、ALE/PROG、PSEN和EA/VPP①RST/VPD(9脚)当振荡器运行时,在此脚上出现两个机器周期的高电平将使单片机复位。
推荐在此引脚与VSS引脚之间连接一个约8.2k的下拉电阻,与VCC引脚之间连接一个约10μF的电容,以保证可靠地复位。
VCC掉电期间,此引脚可接上备用电源,以保证内部RAM的数据不丢失。
当VCC主电源下掉到低于规定的电平,而VPD在其规定的电压范围(5±0.5V)内,VPD就向内部RAM提供备用电源。
②ALE/PROG(30脚):当访问外部存贮器时,ALE(允许地址锁存)的输出用于锁存地址的低位字节。
即使不访问外部存储器,ALE端仍以不变的频率周期性地出现正脉冲信号,此频率为振荡器频率的1/6。
因此,它可用作对外输出的时钟,或用于定时目的。
然而要注意的是,每当访问外部数据存储器时,将跳过一个ALE脉冲。
ALE端可以驱动(吸收或输出电流)8个LS型的TTL输入电路。
对于EPROM单片机(如8751),在EPROM编程期间,此引脚用于输入编程脉冲(PROG)。
③PSEN(29脚):此脚的输出是外部程序存储器的读选通信号。
在从外部程序存储器取指令(或常数)期间,每个机器周期两次PSEN有效。
但在此期间,每当访问外部数据存储器时,这两次有效的PSEN信号将不出现。
PSEN同样可以驱动(吸收或输出)8个LS型的TTL输入。
④EA/VPP(引脚):当EA端保持高电平时,访问内部程序存储器,但在PC (程序计数器)值超过0FFFH(对851/8751/80C51)或1FFFH(对8052)时,将自动转向执行外部程序存储器内的程序。
当EA保持低电平时,则只访问外部程序存储器,不管是否有内部程序存储器。
对于常用的8031来说,无内部程序存储器,所以EA脚必须常接地,这样才能只选择外部程序存储器。
对于EPROM型的单片机(如8751),在EPROM编程期间,此引脚也用于施加21V的编程电源(VPP)。
4、输入/输出(I/O)引脚P0、P1、P2、P3(共32根)①P0口(39脚至32脚):是双向8位三态I/O口,在外接存储器时,与地址总线的低8位及数据总线复用,能以吸收电流的方式驱动8个LS型的TTL负载。
②P1口(1脚至8脚):是准双向8位I/O口。
由于这种接口输出没有高阻状态,输入也不能锁存,故不是真正的双向I/O口。
P1口能驱动(吸收或输出电流)4个LS型的TTL负载。
对8052、8032,P1.0引脚的第二功能为T2定时/计数器的外部输入,P1.1引脚的第二功能为T2EX捕捉、重装触发,即T2的外部控制端。
对EPROM编程和程序验证时,它接收低8位地址。
③P2口(21脚至28脚):是准双向8位I/O口。
在访问外部存储器时,它可以作为扩展电路高8位地址总线送出高8位地址。
在对EPROM编程和程序验证期间,它接收高8位地址。
P2可以驱动(吸收或输出电流)4个LS型的TTL负载。
④P3口(10脚至17脚):是准双向8位I/O口,在MCS-51中,这8个引脚还用于专门功能,是复用双功能口。
P3能驱动(吸收或输出电流)4个LS型的TTL负载。
作为第一功能使用时,就作为普通I/O口用,功能和操作方法与P1口相同。
作为第二功能使用时,各引脚的定义如表所示。
值得强调的是,P3口的每一条引脚均可独立定义为第一功能的输入输出或第二功能。
第二功能描述如下:P3.0 10 RXD(串行输入口)P3.1 11 TXD(串行输出口)P3.2 12 INT0(外部中断0)P3.3 13 INT1(外部中断1)P3.4 14 T0(定时器0外部输入)P3.5 15 T1(定时器1外部输入)P3.6 16 WR(外部数据存储器写脉冲)P3.7 17 RD(外部数据存储器读脉冲)(1)波形产生模块设计由单片机采用编程方法产生三种波形、通过DA转换模块PCF8591之后输出。
其电路图如下:图(3) PCF8591芯片在与CPU的信息传输过程中仅靠时钟线SCL和数据线SDA就可以实现。
PCF8591是具有I2C总线接口的8位A/D及D/A转换器。
有4路A/D转换输入,1路D/A模拟输出。
这就是说,它既可以作A/D转换也可以作D/A转换。
A/D 转换为逐次比较型。
AIN0~AIN3:模拟信号输入端。
A0~A3:引脚地址端。
SDA、SCL:I2C总线的数据线、时钟线。
OSC:外部时钟输入端,内部时钟输出端。
EXT:内部、外部时钟选择线,使用内部时钟时EXT接地。
AGND:模拟信号地。
AOUT:D/A转换输出端。
VREF:基准电源端。
PCF8591采用典型的I2C总线接口器件寻址方法,即总线地址由器件地址、引脚地址和方向位组成。
飞利蒲公司规定A/D器件地址为1001。
引脚地址为A2A1A0,其值由用户选择,因此I2C系统中最多可接23=8个具有I2C总线接口的A/D器件。
地址的最后一位为方向位R/ ,当主控器对A/D器件进行读操作时为1,进行写操作时为0。
总线操作时,由器件地址、引脚地址和方向位组成的从地址为主控器发送的第一字节。
控制字节用于实现器件的各种功能,如模拟信号由哪几个通道输入等。
控制字节存放在控制寄存器中。
总线操作时为主控器发送的第二字节。
其格式如下所示:其中:D1、D0两位是A/D通道编号:00通道0,01通道1,10通道2,11通道3D2 自动增益选择(有效位为1)D5、D4模拟量输入选择:00为四路单数入、01为三路差分输入、10为单端与差分配合输入、11为模拟输出允许有效当系统为A/D转换时,模拟输出允许为0。
模拟量输入选择位取值由输入方式决定:四路单端输入时取00,三路差分输入时取01,单端与差分输入时取10,二路差分输入时取11。
最低两位时通道编号位,当对0通道的模拟信号进行A/D 转换时取00,当对1通道的模拟信号进行A/D转换时取01,当对2通道的模拟信号进行A/D转换时取10,当对3通道的模拟信号进行A/D转换时取11。
在进行数据操作时,首先是主控器发出起始信号,然后发出读寻址字节,被控器做出应答后,主控器从被控器读出第一个数据字节,主控器发出应答,主控器从被控器读出第二个数据字节,主控器发出应答…一直到主控器从被控器中读出第n个数据字节,主控器发出非应答信号,最后主控器发出停止信号。
(2)显示模块的设计通过液晶12864显示输出的波形以及波形的频率和幅度频率,其电路图如下:图(4)液晶显示模块如上图所示,12864的八位数据端接单片机的P0口,其三个使能端RS、RW、E分别接单片机的P2.2—P2.4。
通过软件控制液晶屏可以显示波形以及波形的幅度和频率。